JP5493197B2 - SQUID microscope - Google Patents

SQUID microscope Download PDF

Info

Publication number
JP5493197B2
JP5493197B2 JP2006228529A JP2006228529A JP5493197B2 JP 5493197 B2 JP5493197 B2 JP 5493197B2 JP 2006228529 A JP2006228529 A JP 2006228529A JP 2006228529 A JP2006228529 A JP 2006228529A JP 5493197 B2 JP5493197 B2 JP 5493197B2
Authority
JP
Japan
Prior art keywords
sample
measured
probe
squid
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006228529A
Other languages
Japanese (ja)
Other versions
JP2008051665A (en
Inventor
秀夫 糸崎
忠之 林
実 立木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006228529A priority Critical patent/JP5493197B2/en
Publication of JP2008051665A publication Critical patent/JP2008051665A/en
Application granted granted Critical
Publication of JP5493197B2 publication Critical patent/JP5493197B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

本発明は、金属材料や無機材料、さらには、半導体素子や半導体材料など、各種の素子や材料からなる試料について、高い空間分解能をもって磁気量を計測できるSQUID顕微鏡に関し、より詳しくは超伝導量子干渉素子を備えたSQUID顕微鏡に関するものである。 The present invention relates to a SQUID microscope that can measure a magnetic quantity with high spatial resolution for a sample made of various elements and materials such as a metal material, an inorganic material, and a semiconductor element and a semiconductor material, and more specifically, a superconducting quantum interference. The present invention relates to a SQUID microscope equipped with an element.

SQUID顕微鏡は、超伝導量子干渉素子を用いた高感度磁気顕微鏡であり、SQUIDヘッドの構造によって数μmから数100μm前後の空間分解能を有し、各種素子や材料の計測や観察に使用されている(例えば、非特許文献1参照)。
特許文献1には、SQUID顕微鏡が開示されており、被測定試料平面に対して磁性材料からなる針であるプローブを垂直方向に配置している。特許文献1では、プローブが被測定試料に直接接触することで、空間分解能を高めている。

The SQUID microscope is a high-sensitivity magnetic microscope using a superconducting quantum interference device, and has a spatial resolution of several μm to several hundred μm depending on the structure of the SQUID head, and is used for measurement and observation of various elements and materials. (For example, refer nonpatent literature 1).
Patent Document 1 discloses a SQUID microscope, in which probes, which are needles made of a magnetic material, are arranged in a vertical direction with respect to a sample plane to be measured. In Patent Document 1, the spatial resolution is increased by the probe directly contacting the sample to be measured.

特開2004−12189号公報JP 2004-12189 A J. R. Kirtley et al., “SCANNING SQUID MICROSCOPY”, Annu. Rev. Mater. Sci., Vol.29, pp.117−148, 1999J. et al. R. Kirtley et al. "SCANNING SQUID MICROSCOPY", Annu. Rev. Mater. Sci. , Vol. 29, pp. 117-148, 1999

しかしながら、上記特許文献1では、被測定試料を破損しないようにプローブを接触させてはいるが、破損し易い被測定試料などの測定においては、プローブと被測定試料を非接触で測定することが望ましい。
さらに、従来のSQUID顕微鏡では、プローブの先端と被測定試料を数μm以下に近づけることは困難であるため、数μm以下の高い磁場空間分解能が得られないという課題がある。
本発明は、上記課題に鑑み、試料とプローブとが接触することなく、かつ、空間分解能を高めることができるSQUID顕微鏡を提供することを課題とする。

However, in Patent Document 1, the probe is brought into contact with the sample to be measured so as not to be damaged. However, in measuring a sample to be measured that is easily damaged, the probe and the sample to be measured may be measured in a non-contact manner. desirable.
Furthermore, in the conventional SQUID microscope, since it is difficult to bring the tip of the probe and the sample to be measured close to several μm or less, there is a problem that high magnetic field spatial resolution of several μm or less cannot be obtained.
In view of the above problems, an object of the present invention is to provide a SQUID microscope that can increase the spatial resolution without contacting the sample and the probe.

上記目的を解決するために、本発明1のSQUID顕微鏡は、例えば図1に示すように、そのSQUID顕微鏡部のプローブ(3)の先端と被測定試料(6)との間に生じるトンネル電流を測定する電流検出器(17)と、
この電流検出器で測定されたトンネル電流により、プローブの先端と被測定試料との間隔を計測する手段と、
このトンネル電流値が所望の値となるようにプローブと被測定試料との間隔を制御する制御部(9)が設けてあり、
前記制御部は、トンネル電流が一定値となるようにプローブの先端と被測定試料との間隔を制御することで、被測定試料表面の表面形状を認知するステップと、
最も高度の大きい被測定試料表面とプローブ先端との距離を設定するステップと、
前記距離に基づいて試料ステージ(7)高さを一定として走査するものであって、前記トンネル電流を流さないで、プローブの先端と被測定試料との間隔を一定として走査して、前記SQUID顕微鏡部により当該走査ライン上の磁場信号を検出するステップと、
を実行するように構成されたことを特徴とする。

In order to solve the above-mentioned object, the SQUID microscope of the present invention 1 has a tunnel current generated between the tip of the probe (3) of the SQUID microscope section and the sample to be measured (6) as shown in FIG. A current detector (17) to be measured;
Means for measuring the distance between the tip of the probe and the sample to be measured by the tunnel current measured by the current detector;
A control unit (9) is provided for controlling the distance between the probe and the sample to be measured so that the tunnel current value becomes a desired value.
The control unit recognizes the surface shape of the surface of the sample to be measured by controlling the distance between the tip of the probe and the sample to be measured so that the tunnel current becomes a constant value;
Setting the distance between the surface of the specimen to be measured having the highest altitude and the probe tip;
Based on the distance, the sample stage (7) is scanned at a constant height, and the SQUID microscope is scanned with a constant gap between the tip of the probe and the sample to be measured without passing the tunnel current. Detecting a magnetic field signal on the scanning line by the unit;
It is comprised so that it may perform.

本発明によれば、SQUID顕微鏡部により観察される被測定試料とSQUID顕微鏡部のプローブの先端との距離が、プローブと被測定試料に流れるトンネル電流により制御されるので、非接触で、従来のSQUID顕微鏡の10分の1から100分の1、即ち、サブμmの高い磁場空間分解能を得ることができる。

According to the present invention, the distance between the sample to be measured observed by the SQUID microscope unit and the tip of the probe of the SQUID microscope unit is controlled by the tunnel current flowing between the probe and the sample to be measured. It is possible to obtain a high magnetic field spatial resolution of 1/10 to 1/100 of a SQUID microscope, that is, a sub- μm .

さらに、本発明1の制御部により被測定試料とプローブの先端との距離が一定に制御されることで、凹凸を有する試料表面上の磁場分布を、プローブを破壊することなく高磁場感度で測定することができる。さらに、該制御部により、被測定試料表面の表面形状を認知し、最も高度の大きい試料表面とプローブ先端と距離を設定し、試料ステージの高さを一定として走査することもできる。
また、プローブ先端と被測定試料の距離を計測する方法として、原子間力などの物理力を用いることもできる。

Furthermore, by controlling the distance between the sample to be measured and the tip of the probe to be constant by the control unit of the present invention 1, the magnetic field distribution on the uneven sample surface can be measured with high magnetic field sensitivity without destroying the probe. can do. Furthermore, the controller can recognize the surface shape of the surface of the sample to be measured, set the distance between the sample surface having the highest altitude and the tip of the probe, and scan with the sample stage height being constant.
Further, as a method of measuring the distance between the probe tip and the sample to be measured, physical force such as atomic force can be used.

また本発明1により、被測定試料の表面形状像をSQUID顕微鏡部により検出すると共に、SQUID顕微鏡部により被測定試料の磁場分布像描出でき、試料表面像と磁場分布像との相関を調べることができる。
Further, according to the present invention 1 , the surface shape image of the sample to be measured can be detected by the SQUID microscope unit, and the magnetic field distribution image of the sample to be measured can be drawn by the SQUID microscope unit, and the correlation between the sample surface image and the magnetic field distribution image can be examined. Can do.

以下に、本発明の実施例について図面を参照して説明する。
図1は本発明の請求項1に記載のSQUID顕微鏡の構造を模式的示す断面図である。
SQUID顕微鏡は、SQUID顕微鏡部1と走査トンネル顕微鏡部2とから構成される。SQUID顕微鏡部は、その先端に磁性材料からなるプローブ3を備えたSQUIDヘッド部4と、SQUIDの検出した磁気信号を電気信号に変換する磁束電圧変換回路(磁束ロック回路)5と、被測定試料6を載置する微動ステージ7と、微動ステージを載置した粗動ステージ8と、微動ステージ7および粗動ステージ8を制御する制御部9と、を含み構成されている。さらに、プローブ3と被測定試料6との位置を目視で観察するための光学顕微鏡部を備えてもよい。上記のSQUID顕微鏡部1は、除震台上に設置されることが好ましく、さらに、SQUIDヘッド部4が磁気シールドされて外部磁場の影響を受けないようにすることが好ましい。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing the structure of a SQUID microscope according to claim 1 of the present invention.
The SQUID microscope is composed of a SQUID microscope unit 1 and a scanning tunneling microscope unit 2. The SQUID microscope section includes a SQUID head section 4 having a probe 3 made of a magnetic material at its tip, a magnetic flux voltage conversion circuit (magnetic flux lock circuit) 5 that converts a magnetic signal detected by the SQUID into an electrical signal, and a sample to be measured. 6, a fine movement stage 7 on which the fine movement stage is placed, a coarse movement stage 8 on which the fine movement stage is placed, and a control unit 9 that controls the fine movement stage 7 and the coarse movement stage 8. Furthermore, you may provide the optical microscope part for observing the position of the probe 3 and the to-be-measured sample 6 visually. The SQUID microscope unit 1 is preferably installed on a vibration isolation table, and the SQUID head unit 4 is preferably magnetically shielded so as not to be affected by an external magnetic field.

次にSQUIDヘッド部4を詳細に説明する。
SQUIDヘッド部4は真空容器10とSQUID顕微鏡部内のSQUID11を冷却するための冷媒容器12と、プローブ3を固定した窓部13と、から構成されている。
上記SQUIDヘッド部4の冷媒容器12は、冷媒容器12の下部から図面下方に向かって、SQUID11を冷媒容器12に支持するための支持部14と、この支持部14に固定されるSQUID11と、から構成されている。
Next, the SQUID head unit 4 will be described in detail.
The SQUID head unit 4 includes a vacuum container 10, a refrigerant container 12 for cooling the SQUID 11 in the SQUID microscope unit, and a window unit 13 to which the probe 3 is fixed.
The refrigerant container 12 of the SQUID head unit 4 includes a support part 14 for supporting the SQUID 11 on the refrigerant container 12 from the lower part of the refrigerant container 12 toward the lower side of the drawing, and a SQUID 11 fixed to the support part 14. It is configured.

真空容器10の底部、即ちSQUIDヘッド部4の中心には、開孔部が設けられており、SQUID11が開孔部の内部に位置するように配置される。真空容器10の中央底部にはSQUID11に被測定試料6からの磁束を伝達するプローブ3と、このプローブ3を固定するための窓部13とが配置されている。プローブ3の上端部はSQUID11の中心部に近接して結合している。   An opening is provided at the bottom of the vacuum vessel 10, that is, at the center of the SQUID head unit 4, and the SQUID 11 is disposed inside the opening. A probe 3 for transmitting magnetic flux from the sample 6 to be measured to the SQUID 11 and a window portion 13 for fixing the probe 3 are disposed at the center bottom of the vacuum vessel 10. The upper end portion of the probe 3 is coupled close to the central portion of the SQUID 11.

上記真空容器10及び冷媒容器12は、非磁性材料からなることが好ましく、ステンレスなどの非磁性鋼材、アルミニウムなどを用いることができる。
SQUID11を冷媒容器12に支持するための支持部14は、円柱形状などを有し、SQUID11を冷却する。この支持部14の材料は、非磁性材料で、かつ、熱伝導性のよい材料を用いることができる。この材料には、サファイアを用いることができる。
このSQUID11としては、例えば、液体窒素温度で動作する高温超伝導材料で製作されたDC−SQUIDを用いることができる。
The vacuum vessel 10 and the refrigerant vessel 12 are preferably made of a nonmagnetic material, and a nonmagnetic steel material such as stainless steel, aluminum, or the like can be used.
The support part 14 for supporting the SQUID 11 on the refrigerant container 12 has a cylindrical shape or the like, and cools the SQUID 11. The material of the support portion 14 can be a non-magnetic material and a material with good thermal conductivity. Sapphire can be used for this material.
As this SQUID 11, for example, a DC-SQUID made of a high-temperature superconducting material that operates at a liquid nitrogen temperature can be used.

プローブ3は、先端の半径が数十nm〜数十μmの針であり、高透磁率材料を用いて製作することができる。高透磁率材料としてはパーマロイを用いることができる。このプローブ3の先端は、後述する窓部13の中心孔に挿入され、プローブ3の先端が、SQUIDヘッド部4の内部から外部へ貫通している。

The probe 3 is a needle having a tip radius of several tens of nanometers to several tens of micrometers , and can be manufactured using a high magnetic permeability material. Permalloy can be used as the high magnetic permeability material. The tip of the probe 3 is inserted into a center hole of a window portion 13 described later, and the tip of the probe 3 penetrates from the inside of the SQUID head portion 4 to the outside.

窓部13は、非磁性材料からなり、プローブ3を貫通させる孔を有し、プローブ3が窓部に真空機密を保つように固定される。この窓部13の材料としては、ガラスなどを用いることができる。このため、被測定試料6に近接して所定の距離に配設したプローブ3の先端付近の磁束が、プローブ3を通って真空容器10内部のプローブ3の他端へと導かれ、SQUID11により磁束が計測される。
真空容器10と冷媒容器12とは最上部で接続され、真空容器10と窓部13とも真空機密が保たれるように接続される。冷媒容器12は、冷媒15を保持するための断熱容器である。真空容器10に接続される真空装置により、所定の真空度となるように真空排気されてもよい。冷媒15としては、液体窒素、液体ヘリウムなどを用いることができる。また冷媒15の代わりにヘリウムなどを用いた冷凍機を用いてもよい。
The window portion 13 is made of a nonmagnetic material, has a hole through which the probe 3 passes, and the probe 3 is fixed to the window portion so as to keep a vacuum secret. As the material of the window portion 13, glass or the like can be used. For this reason, the magnetic flux near the tip of the probe 3 arranged at a predetermined distance in the vicinity of the sample 6 to be measured is guided to the other end of the probe 3 inside the vacuum vessel 10 through the probe 3, and the magnetic flux is generated by the SQUID 11. Is measured.
The vacuum vessel 10 and the refrigerant vessel 12 are connected at the uppermost portion, and the vacuum vessel 10 and the window portion 13 are also connected so that vacuum confidentiality is maintained. The refrigerant container 12 is a heat insulating container for holding the refrigerant 15. A vacuum device connected to the vacuum vessel 10 may be evacuated to a predetermined vacuum level. As the refrigerant 15, liquid nitrogen, liquid helium, or the like can be used. A refrigerator using helium or the like may be used instead of the refrigerant 15.

走査トンネル顕微鏡部2は、プローブ3と被測定試料6間にトンネル電流を流すためのバイアス電圧源16と、トンネル電流を高感度で検出するための電流検出器17と、トンネル電流の大きさにより微動ステージ7を制御する制御部9とからなる。この場合の制御部9はSQUID顕微鏡部1の制御部9とを兼ねて図示している。   The scanning tunneling microscope unit 2 includes a bias voltage source 16 for passing a tunnel current between the probe 3 and the sample 6 to be measured, a current detector 17 for detecting the tunnel current with high sensitivity, and a magnitude of the tunnel current. The control unit 9 controls the fine movement stage 7. The control unit 9 in this case also serves as the control unit 9 of the SQUID microscope unit 1.

本発明のSQUID顕微鏡は以上のように構成されており、次にその動作について説明する。
先ず、被測定試料6の観察すべき箇所にプローブ3の先端が移動するように、その位置が制御される。
次に、被測定試料6をX方向に走査する。このとき走査トンネル顕微鏡部2により被測定試料6の表面とSQUID顕微鏡部1のプローブ3の先端との間にバイアス電圧源16から電圧を印加して一定のトンネル電流が流れるように、すなわち被測定試料6の表面とプローブ3の先端との間の距離が一定となるように、微動ステージ7のZ軸が制御され、被測定試料6の高さ情報が得られる。
次に、上記高さ情報をもとに、プローブ3の先端と被測定試料6の表面との間の距離が一定となるように再度同一走査ラインを走査し、SQUID顕微鏡部1により走査ライン上の磁場信号を検出する。このとき、プローブ3の先端を被測定試料6の表面から一定の距離で離すこともできる。つぎに、Y方向にステージを移動し、上記を繰り返して2次元の磁場分布像18を得る。なお、ノイズを除去するために、トンネル電流による試料表面形状測定と磁場信号の検出は同時に行わないほうが望ましいが、磁場信号が大きくノイズの影響を受けにくい試料の場合はトンネル電流の検出と試料の磁場信号の検出を同時に行うことも可能である。好ましくは、被測定試料の表面形状像19と磁場分布像18の双方とを描出できることが望ましい。
The SQUID microscope of the present invention is configured as described above, and the operation thereof will be described next.
First, the position of the probe 3 is controlled so that the tip of the probe 3 moves to a position to be observed on the sample 6 to be measured.
Next, the sample 6 to be measured is scanned in the X direction. At this time, a constant tunnel current flows by applying a voltage from the bias voltage source 16 between the surface of the sample 6 to be measured and the tip of the probe 3 of the SQUID microscope unit 1 by the scanning tunneling microscope unit 2, that is, the sample to be measured. The Z-axis of fine movement stage 7 is controlled so that the distance between the surface of sample 6 and the tip of probe 3 is constant, and height information of sample 6 to be measured is obtained.
Next, based on the height information, the same scanning line is scanned again so that the distance between the tip of the probe 3 and the surface of the sample 6 to be measured is constant, and the SQUID microscope unit 1 scans the scanning line. The magnetic field signal is detected. At this time, the tip of the probe 3 can be separated from the surface of the sample 6 to be measured by a certain distance. Next, the stage is moved in the Y direction, and the above is repeated to obtain a two-dimensional magnetic field distribution image 18. In order to eliminate noise, it is desirable not to perform sample surface shape measurement and magnetic field signal detection by tunnel current at the same time. It is also possible to simultaneously detect magnetic field signals. Preferably, it is desirable that both the surface shape image 19 and the magnetic field distribution image 18 of the sample to be measured can be drawn.

このとき、被測定試料6の表面と、SQUID顕微鏡部1のプローブ3の先端との距離は、例えば0.01μmと制御することができる。
また、被測定試料6の表面の形状を計測し、最も高い試料表面とプローブ3の先端と距離を設定し、微動ステージ7の高さを一定にしてX方向の走査ができることが望ましい。
これにより、本発明のSQUID顕微鏡においては、SQUID顕微鏡部1により観察される被測定試料6とSQUID顕微鏡部1のプローブ3の先端との距離が走査トンネル顕微鏡部2により制御され、所定の距離に保持されることで高い空間分解能を得ることができる。
本発明のSQUID顕微鏡によれば、被測定試料として、磁性を有する金属材料、無機材料、半導体材料など、あるいは各種の素子や材料からなる試料について、高い空間分解能をもって磁気量を計測することができる。例えば、磁気材料の非破壊検査、磁区構造の観察や、集積回路等の各種電気回路における配線の欠陥検査などに使用することができる。

At this time, the distance between the surface of the sample 6 to be measured and the tip of the probe 3 of the SQUID microscope unit 1 can be controlled to 0.01 μm , for example.
Further, it is desirable that the shape of the surface of the sample 6 to be measured is measured, the distance between the highest sample surface and the tip of the probe 3 is set, and the height of the fine movement stage 7 is kept constant to perform scanning in the X direction.
Thereby, in the SQUID microscope of the present invention, the distance between the sample 6 to be measured observed by the SQUID microscope unit 1 and the tip of the probe 3 of the SQUID microscope unit 1 is controlled by the scanning tunneling microscope unit 2 to a predetermined distance. A high spatial resolution can be obtained by being held.
According to the SQUID microscope of the present invention, a magnetic quantity can be measured with a high spatial resolution for a sample made of a metallic material, an inorganic material, a semiconductor material, etc., or various elements or materials having magnetism as a sample to be measured. . For example, it can be used for nondestructive inspection of magnetic materials, observation of magnetic domain structures, and inspection of wiring defects in various electric circuits such as integrated circuits.

以下、実施例によって本発明をさらに詳細に説明する。
実施例に用いた本発明の請求項1に記載のSQUID顕微鏡は、図1の構成であり、被測定試料6として、金属基板の上に蒸着した1μm角のニッケルの磁性薄膜を用いる。プローブ3の先端と被測定試料6との間に1Vのバイアス電圧を印加する。このときプローブ3の先端と被測定試料6との間に流れるトンネル電流を電流検出器17により検出し、トンネル電流の値が0.1nAになるよう微動ステージ7をZ軸方向に移動する。次に、トンネル電流を常に0.1nAに、すなわちプローブ3の先端と被測定試料6の表面との距離が一定となるように微動ステージ7をZ軸方向に制御し、微動ステージ7をX軸方向に走査する。この走査中の微動ステージ7のZ軸方向への移動量により被測定試料6の表面形状が計測される。次に、バイアス電圧を0Vとしてトンネル電流を流さないよう制御し、微動ステージ7をZ軸の負の方向に100nm移動し、表面形状を計測したときよりも、プローブ3の先端と被測定試料6表面との間に100nmの距離を設ける。次に、同一走査線を上記表面形状を計測したときの微動ステージ7のZ軸方向への移動量を加えながら、X軸方向に走査し、このときの磁気信号をSQUID顕微鏡部1により検出する。
これにより、プローブ3の先端と被測定試料6の表面との距離を一定としたときの磁気信号を検出する。次に、微動ステージ7をY方向に移動し、次の走査線の表面形状と磁気信号を測定する。上記を繰り返して、2次元の被測定試料6の表面形状像19と磁場分布像18を得る。プローブ3の先端と被測定試料6の表面との距離を100nm程度とすることで、本実施例で得られるニッケルの磁気信号からは0.5μm、つまり、サブマイクロンでの急峻な磁気変化が確認できる。
次に、比較例について説明する。従来の光学顕微鏡を用いたSQUID顕微鏡により実施例と同じ被測定試料として、金属基板の上に蒸着した1μm角のニッケルの磁性薄膜を用いる。測定においては、プローブの先端と被測定試料との距離は5μmに設定する。本比較例で得られるニッケルの磁気信号からは5μmの幅の磁気変化が確認できる。つまり、分解能が5μmと低い。これから、実施例の場合には、水平方向の分解能が比較例の1/10に改善される。
本発明は、上記実施例に記載のSQUID顕微鏡に限定されることはなく、被測定試料に応じてSQUIDの構造やプローブ構造などは、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。
Hereinafter, the present invention will be described in more detail with reference to examples.
The SQUID microscope according to claim 1 of the present invention used in the examples has the configuration of FIG. 1 and uses a 1 μm- square nickel magnetic thin film deposited on a metal substrate as the sample 6 to be measured. A bias voltage of 1 V is applied between the tip of the probe 3 and the sample 6 to be measured. At this time, the tunnel current flowing between the tip of the probe 3 and the sample 6 to be measured is detected by the current detector 17, and the fine movement stage 7 is moved in the Z-axis direction so that the value of the tunnel current becomes 0.1 nA. Next, the fine movement stage 7 is controlled in the Z-axis direction so that the tunnel current is always 0.1 nA, that is, the distance between the tip of the probe 3 and the surface of the sample 6 to be measured is constant. Scan in the direction. The surface shape of the sample 6 to be measured is measured by the amount of movement of the fine movement stage 7 in the Z-axis direction during scanning. Next, the bias voltage is set to 0 V so that the tunnel current does not flow, the fine movement stage 7 is moved 100 nm in the negative direction of the Z axis, and the tip of the probe 3 and the sample 6 to be measured 6 are compared with the case where the surface shape is measured. A distance of 100 nm is provided between the surface. Next, the same scanning line is scanned in the X-axis direction while adding the movement amount of the fine movement stage 7 in the Z-axis direction when the surface shape is measured, and the magnetic signal at this time is detected by the SQUID microscope unit 1. .
Thereby, a magnetic signal is detected when the distance between the tip of the probe 3 and the surface of the sample 6 to be measured is constant. Next, fine movement stage 7 is moved in the Y direction, and the surface shape and magnetic signal of the next scanning line are measured. By repeating the above, a surface shape image 19 and a magnetic field distribution image 18 of the two-dimensional sample 6 to be measured are obtained. By setting the distance between the tip of the probe 3 and the surface of the sample 6 to be measured to about 100 nm, the magnetic signal of nickel obtained in the present embodiment is 0.5 μm , that is, a steep magnetic change at a submicron. I can confirm.
Next, a comparative example will be described. As a sample to be measured by the SQUID microscope using a conventional optical microscope, a 1 μm square nickel magnetic thin film deposited on a metal substrate is used. In the measurement, the distance between the probe tip and the sample to be measured is set to 5 μm . From the magnetic signal of nickel obtained in this comparative example, a magnetic change with a width of 5 μm can be confirmed. That is, the resolution is as low as 5 μm . From this, in the case of the example, the resolution in the horizontal direction is improved to 1/10 of the comparative example.
The present invention is not limited to the SQUID microscope described in the above embodiment, and the SQUID structure and the probe structure are variously modified within the scope of the invention described in the claims depending on the sample to be measured. Needless to say, these are also included in the scope of the present invention.

本発明の請求項1に記載のSQUID顕微鏡の構造を模式的示す模式図である。It is a schematic diagram which shows typically the structure of the SQUID microscope of Claim 1 of this invention.

符号の説明Explanation of symbols

1:SQUID顕微鏡部
2:走査トンネル顕微鏡部
3:プローブ
4:SQUIDヘッド部
5:FLL回路
6:被測定試料
7:微動ステージ
8:粗動ステージ
9:制御部
10:真空容器
11:SQUID
12:冷媒容器
13:窓部
14:支持部
15:冷媒
16:電圧源
17:電流検出器
18:磁場分布像
19:表面形状像
1: SQUID microscope unit 2: Scanning tunneling microscope unit 3: Probe 4: SQUID head unit 5: FLL circuit 6: Sample to be measured 7: Fine movement stage 8: Coarse movement stage 9: Control unit 10: Vacuum vessel 11: SQUID
12: Refrigerant container 13: Window part 14: Support part 15: Refrigerant 16: Voltage source 17: Current detector 18: Magnetic field distribution image 19: Surface shape image

Claims (1)


超伝導量子干渉素子を備えたSQUID顕微鏡であって、 そのSQUID顕微鏡部のプローブの先端と被測定試料との間に生じるトンネル電流を測定する電流検出器と、

この電流検出器で測定されたトンネル電流により、前記プローブの先端と前記被測定試料との間隔を計測する手段と、
この電流値が所望の値となるように前記プローブと前記被測定試料との間隔を制御する制御部が設けてあり、 前記制御部は、前記トンネル電流が一定値となるように前記プローブの先端と前記被測定試料との間隔を制御することで、被測定試料表面の表面形状を認知するステップと、
最も高度の大きい前記被測定試料表面とプローブ先端との距離を設定するステップと、
前記距離に基づいて試料ステージ高さを一定として走査するものであって、前記トンネル電流を流さないで、前記プローブの先端と前記被測定試料との間隔を一定として走査して、前記SQUID顕微鏡部により当該走査ライン上の磁場信号を検出するステップと、
を実行するように構成されたことを特徴とするSQUID顕微鏡。


A SQUID microscope equipped with a superconducting quantum interference device, a current detector for measuring a tunnel current generated between the probe tip of the SQUID microscope section and a sample to be measured;

Means for measuring the distance between the tip of the probe and the sample to be measured by the tunnel current measured by the current detector;
A control unit is provided for controlling a distance between the probe and the sample to be measured so that the current value becomes a desired value, and the control unit has a tip of the probe so that the tunnel current becomes a constant value. Recognizing the surface shape of the sample surface to be measured by controlling the distance between the sample and the sample to be measured;
Setting a distance between the surface of the sample to be measured having the highest altitude and the probe tip;
The SQUID microscope unit scans the sample stage at a constant height based on the distance, and scans the probe tip and the sample to be measured at a constant interval without flowing the tunnel current. Detecting a magnetic field signal on the scan line by:
A SQUID microscope configured to perform the above.

JP2006228529A 2006-08-25 2006-08-25 SQUID microscope Expired - Fee Related JP5493197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228529A JP5493197B2 (en) 2006-08-25 2006-08-25 SQUID microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228529A JP5493197B2 (en) 2006-08-25 2006-08-25 SQUID microscope

Publications (2)

Publication Number Publication Date
JP2008051665A JP2008051665A (en) 2008-03-06
JP5493197B2 true JP5493197B2 (en) 2014-05-14

Family

ID=39235856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228529A Expired - Fee Related JP5493197B2 (en) 2006-08-25 2006-08-25 SQUID microscope

Country Status (1)

Country Link
JP (1) JP5493197B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2923190B2 (en) * 1993-12-16 1999-07-26 シャープ株式会社 High density recording medium and recording / reproducing apparatus therefor
JP2000227468A (en) * 1999-02-08 2000-08-15 Seiko Instruments Inc Superconducting quantum interference element microscope sensor and manufacture thereof
JP2002006018A (en) * 2000-06-23 2002-01-09 Seiko Instruments Inc Magnetic field applying device for squid microscope

Also Published As

Publication number Publication date
JP2008051665A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
US9513230B2 (en) Apparatus and method for optical inspection, magnetic field and height mapping
US10175295B2 (en) Optical nanoprobing of integrated circuits
US6930479B2 (en) High resolution scanning magnetic microscope operable at high temperature
US6211673B1 (en) Apparatus for use in magnetic-field detection and generation devices
US6817231B2 (en) Scanning probe microscope for ultra sensitive electro-magnetic field detection and probe thereof
JP4245951B2 (en) Electrical property evaluation equipment
US7262597B2 (en) Hybrid squid microscope with magnetic flux-guide for high resolution magnetic and current imaging by direct magnetic field sensing
Kim et al. Construction of a vector-field cryogenic magnetic force microscope
Chong et al. Scanning Hall probe microscopy on an atomic force microscope tip
JP5493197B2 (en) SQUID microscope
JP2002156409A (en) Measuring sonde for detecting electrical signal in integrated circuit, method for using the measuring sonde, method for manufacturing the measuring sonde and measuring system by the measuring sonde
Josephs-Franks et al. Measurement of the spatial sensitivity of miniature SQUIDs using magnetic-tipped STM
US6396261B1 (en) Scanning AC hall microscope
Faley et al. Nondestructive evaluation using a high-T c SQUID microscope
JP5218954B2 (en) SQUID microscope
JP3647818B2 (en) Near-field optical excitation squid microscope
JP6129630B2 (en) Thermally assisted magnetic head element inspection method and apparatus, temperature measurement method and apparatus for micro heat source, cantilever and manufacturing method thereof
Poppe et al. High temperature superconductor dc-SQUID microscope with a soft magnetic flux guide
Reig et al. Magnetoresistive sensors for surface scanning
KR100474844B1 (en) Lorentz force microscope and method of measuring magnetic domain utilizing lorentz force
Hayashi et al. STM-SQUID probe microscope
Hayashi et al. SQUID probe microscope combined with scanning tunneling microscope
KR100262628B1 (en) High-resolution scanning squid microscope
Woods et al. High resolution current imaging by direct magnetic field sensing
Ruskell et al. Field mapping with the magnetic resonance force microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5493197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees