JP5488726B2 - Manufacturing method of oil well steel pipe and oil well steel pipe - Google Patents

Manufacturing method of oil well steel pipe and oil well steel pipe Download PDF

Info

Publication number
JP5488726B2
JP5488726B2 JP2013024008A JP2013024008A JP5488726B2 JP 5488726 B2 JP5488726 B2 JP 5488726B2 JP 2013024008 A JP2013024008 A JP 2013024008A JP 2013024008 A JP2013024008 A JP 2013024008A JP 5488726 B2 JP5488726 B2 JP 5488726B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
pipe
oil well
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013024008A
Other languages
Japanese (ja)
Other versions
JP2013174350A (en
Inventor
光男 木村
全人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013024008A priority Critical patent/JP5488726B2/en
Publication of JP2013174350A publication Critical patent/JP2013174350A/en
Application granted granted Critical
Publication of JP5488726B2 publication Critical patent/JP5488726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、原油あるいは天然ガスの油井、ガス井(以下、これらを総称して単に油井という)内に埋設されて使用される油井用鋼管に係り、とくに拡管性の向上に関する。   The present invention relates to oil well steel pipes that are embedded in crude oil or natural gas oil wells or gas wells (hereinafter collectively referred to simply as oil wells), and more particularly to improvement of pipe expandability.

地表から地下の油田まで油井管を敷設するには、まず地表から所定の深さまで掘削し、その中にケーシングと呼ばれる鋼管を埋設し壁の崩壊を防止する。その後、ケーシングの先端からさらに地下を掘削してより深い井戸とし、先に埋設したケーシング内を通して新たなケーシングを埋設する。この作業を繰り返して、最終的に油田に到達する油井管(チュービング)が敷設される。深度の深い井戸を掘削する場合には、直径の異なる多種類のケーシングを必要とする。原油やガスを通す油井管(チュービング)の径は定められているため、深度の深い井戸を掘削する場合には、径方向における掘削面積を広くする必要があり、掘削に要する費用は増大することになる。このため、油井の掘削費を低減することが強く要望されている。   In order to lay an oil well pipe from the ground surface to an underground oil field, first, excavation from the ground surface to a predetermined depth is carried out, and a steel pipe called a casing is buried therein to prevent the collapse of the wall. Thereafter, the basement is further excavated from the tip of the casing to form a deeper well, and a new casing is buried through the previously buried casing. By repeating this operation, an oil well pipe (tubing) that finally reaches the oil field is laid. When excavating deep wells, many types of casings with different diameters are required. Since the diameter of the oil well pipe (tubing) through which crude oil and gas pass is determined, when drilling deep wells, it is necessary to increase the drilling area in the radial direction, and the cost required for drilling will increase become. For this reason, it is strongly desired to reduce the drilling cost of oil wells.

このような要望に対し、例えば特許文献1、特許文献2には、井戸中でケーシング(鋼管)を、押拡げ加工等により拡管する方法が記載されている。特許文献1、特許文献2に記載された技術によれば、井戸中でケーシング(鋼管)を、半径方向に膨張させることにより、多段構造になったケーシング毎の直径を小さく抑えることができ、井戸上部のケーシングサイズを小さく抑えて、油井の掘削費を低減することが可能となるとしている。
また、例えば特許文献3には、質量%で、C:0.10〜0.45%、Si:0.1〜1.5%、Mn:0.10〜3.0%を含み、P、S、Al、Nを適正量に調整し、あるいはさらに適正量のCr、Mo、Vの1種または2種以上、および/または、Nb、Tiの1種または2種、および/または、Caの適正量を含有する組成を有し、拡管前の鋼管の強度(降伏強度YS(MPa))と結晶粒径(d(μm))とが、次式
ln(d)≦−0.0067YS+8.09
の関係を満足する拡管加工後の耐食性に優れた拡管用油井鋼管が記載されている。しかし、特許文献3に記載された技術では、限界拡管率は高々30%以下であり、更なるコスト削減要求から、拡管率が30%を超える拡管性に優れた油井用鋼管が要求されている。
In response to such a request, for example, Patent Document 1 and Patent Document 2 describe a method of expanding a casing (steel pipe) in a well by means of expansion or the like. According to the techniques described in Patent Document 1 and Patent Document 2, the diameter of each casing having a multistage structure can be kept small by expanding the casing (steel pipe) in the radial direction in the well. It is said that it is possible to reduce the well drilling cost by keeping the upper casing size small.
Further, for example, Patent Document 3 includes, in mass%, C: 0.10 to 0.45%, Si: 0.1 to 1.5%, Mn: 0.10 to 3.0%, and P, S, Al, and N are adjusted to appropriate amounts, Or a composition containing an appropriate amount of one or more of Cr, Mo, V and / or one or more of Nb, Ti and / or an appropriate amount of Ca, before expansion The steel pipe strength (yield strength YS (MPa)) and grain size (d (μm))
ln (d) ≦ −0.0067YS + 8.09
An oil well steel pipe for pipe expansion having excellent corrosion resistance after pipe expansion processing that satisfies the above relationship is described. However, in the technique described in Patent Document 3, the limit pipe expansion rate is 30% or less at the maximum, and from the demand for further cost reduction, an oil well steel pipe excellent in pipe expandability exceeding 30% is required. .

このような要求に対し、特許文献4には、質量%で、C:0.05〜0.30%、Si:0.2〜2%、Mn:0.7〜4.0%を含み、P、S、N、Oを適正量に調整し、あるいはさらに適正量のAl、Cr、Ni、Cu、Nb、V、Ti、Mo、B、Caの1種または2種以上の適正量を含有する組成を有し、組織中に5体積%以上の残留γ相を有する拡管性に優れる油井用継目無鋼管が記載されている。
特表平7−507610号公報 国際公開WO98/00626号公報 特開2002−266055号公報 特開2006−9078号公報
In response to such demands, Patent Document 4 includes, in mass%, C: 0.05 to 0.30%, Si: 0.2 to 2%, Mn: 0.7 to 4.0%, and appropriate amounts of P, S, N, and O. Or a composition containing an appropriate amount of one or more of Al, Cr, Ni, Cu, Nb, V, Ti, Mo, B, and Ca in an appropriate amount, and 5 in the structure. There is described a seamless steel pipe for oil wells having a residual γ phase of volume% or more and excellent pipe expandability.
JP 7-507610 International Publication No. WO98 / 00626 Japanese Patent Laid-Open No. 2002-266055 Japanese Unexamined Patent Publication No. 2006-9078

しかし、特許文献4に記載された技術では、限界拡管率が30%を超える継目無鋼管が得られるとしているが、高強度であり、拡管に高エネルギーを要するため、拡管コストは高価となる。このため、さらに安価に拡管を行うことができる拡管性に優れた油井用鋼管が要求されている。
またさらに油井では、例えば特許文献4に記載されたような油井用鋼管同士をねじ継手で接続して使用している。このため、油井中で鋼管を拡管すると、ねじ継手部も拡管されることになる。しかし、高拡管性を有するねじ継手は、現状ではまだ開発されておらず、ねじ継手を含め高い拡管率で拡管した場合には、ねじ継手部からガスや原油が漏れ出すことが懸念されている。
However, in the technique described in Patent Document 4, it is said that a seamless steel pipe having a limit pipe expansion rate exceeding 30% is obtained. However, since the pipe has high strength and requires high energy for pipe expansion, the pipe expansion cost becomes expensive. For this reason, there is a need for oil well steel pipes with excellent pipe expandability that can be expanded more inexpensively.
Furthermore, in an oil well, for example, oil well steel pipes as described in Patent Document 4 are connected by a threaded joint. For this reason, when the steel pipe is expanded in the oil well, the threaded joint portion is also expanded. However, threaded joints with high pipe expandability have not been developed at present, and there is concern that gas and crude oil may leak from the threaded joints when expanded at a high pipe expansion rate, including threaded joints. .

このような従来技術の問題に鑑み、本発明は、拡管性に優れ、とくに拡管後のねじ継手部からのガス、原油等の漏れを防止できる、安価な、油井用鋼管およびその製造方法を提供することを目的とする。   In view of such a problem of the prior art, the present invention provides an inexpensive steel pipe for oil wells and a method for producing the same, which is excellent in pipe expandability and can particularly prevent leakage of gas, crude oil, etc. from the threaded joint after pipe expansion. The purpose is to do.

本発明者らは、上記した目的を達成するために、まず、ねじ継手部からの漏れを防止する手段について鋭意研究した。その結果、ねじ継手部の拡管を不要とするか、あるいはねじ継手部以外の部位(母管部)に比べて、拡管量を少なくすることに思い至った。そして、ねじ継手部を母管部より少ない拡管量とするために、拡管性に優れた鋼管(母管)としたうえで、鋼管製造後に、予め、ねじが形成される鋼管の両端側を拡管し、その後、該拡管加工された部位側にねじを形成することに想到した。   In order to achieve the above-described object, the present inventors have intensively studied means for preventing leakage from the threaded joint portion. As a result, it has been thought that pipe expansion of the threaded joint portion is not required or that the amount of pipe expansion is reduced as compared with a portion other than the threaded joint portion (host pipe portion). And, in order to make the threaded joint part smaller than the main pipe part, the steel pipe (master pipe) with excellent pipe expandability is used, and after manufacturing the steel pipe, the both ends of the steel pipe where the screw is formed are expanded in advance. Then, the inventors came up with the idea of forming a screw on the side of the expanded part.

さらに拡管性を向上した鋼管(母管)とするために、母管の拡管性に及ぼす各種要因の影響について鋭意研究した。その結果、材料因子として、所望の範囲内の降伏強さを有するとともに、所定値以上のn値を有することが重要であるという知見を得た。また、所望の強度を確保するために、C、Si、Mn、Al、あるいはさらにCr、Cu、および/または、Ni、および/または、Mo、V、Nb、Ti、Zr、B、W、および/または、Caの、含有量を適正範囲内に調整し、熱処理を工夫することにより、所望の強度を有し、優れた拡管性を有する油井用鋼管とすることができることを知見した。   Furthermore, in order to make a steel pipe (master pipe) with improved pipe expandability, we have intensively studied the influence of various factors on the pipe expandability of the mother pipe. As a result, the present inventors have found that it is important to have a yield strength within a desired range as a material factor, and to have an n value equal to or greater than a predetermined value. Also, in order to ensure the desired strength, C, Si, Mn, Al, or even Cr, Cu, and / or Ni, and / or Mo, V, Nb, Ti, Zr, B, W, and It has been found that an oil well steel pipe having a desired strength and excellent pipe expandability can be obtained by adjusting the Ca content within an appropriate range and devising heat treatment.

本発明は、かかる考えをもとに、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
(1)質量%で、C:0.35%以下、Si:1.5%以下、Mn:0.10〜3.50%、P:0.07%以下、S:0.01%以下、Al:0.05%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する造管まま鋼管を素管とし、該素管まま、あるいは該素管に熱処理として、焼入れ処理および焼戻処理、または焼準処理および焼戻処理、あるいは焼戻処理を施して、降伏強さ:350MPa以上、n値:0.08以上を有し、かつn値と均一伸びu-Elとが次(2)式
n>0.007×(25−u-El)‥‥‥(2)
(ここで、n:n値、u-El:均一伸び(%))
を満足する鋼管としたのち、該素管の端面側に、次(1)式
拡管率=[{(プラグ外径)−(素管内径)}/(素管内径)]×100(%)‥‥(1)
(ここで、プラグ外径:拡管用工具(プラグ)の外径(mm)、素管内径:鋼管端面側の加工前内径(mm))
で定義される拡管率で3%以上、拡管加工を施し、ついで該拡管加工を施された部位にねじ加工を施すことを特徴とする拡管性に優れた油井用鋼管の製造方法。
The present invention has been completed based on this idea and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.35% or less, Si: 1.5% or less, Mn: 0.10 to 3.50%, P: 0.07% or less, S: 0.01% or less, Al: 0.05% or less, the balance Fe and A steel pipe having a composition composed of inevitable impurities is used as a raw pipe, and the raw pipe or the raw pipe is subjected to heat treatment, quenching treatment and tempering treatment, normalizing treatment and tempering treatment, or tempering treatment. , Yield strength: 350 MPa or more, n value: 0.08 or more, and n value and uniform elongation u-El are the following (2) equation n> 0.007 × (25−u-El) (2)
(Where n: n value, u-El: uniform elongation (%))
After making the steel pipe satisfying the following, on the end face side of the raw pipe, the following formula (1): tube expansion ratio = [{(plug outer diameter) − (element inner diameter)} / (element inner diameter)] × 100 (%) (1)
(Here, the outer diameter of the plug: the outer diameter (mm) of the tool for expanding the pipe (plug), the inner diameter of the raw pipe: the inner diameter of the steel pipe end face before processing (mm))
A method for producing an oil well steel pipe excellent in pipe expandability, wherein the pipe expansion rate is defined as 3% or more, and then the portion subjected to the pipe expansion is threaded.

(2)(1)において、前記焼戻処理が、Ac1変態点以上Ac3変態点以下の二相温度域に加熱する処理であることを特徴とする油井用鋼管の製造方法。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、次A群〜D群
A群:Cr:2.0%以下、Cu:3.5%以下のうちから選ばれた1種または2種、
B群:Ni:2.0%以下、
C群:Mo:2.0%以下、V:0.20%以下、Nb:0.20%以下、Ti:0.30%以下、Zr:0.20%以下、B:0.01%以下、W:1.0%以下のうちから選ばれた1種または2種以上、
D群:Ca:0.0005〜0.01%
のうちから選ばれた1群または2群以上を含有する組成とすることを特徴とする油井用鋼管の製造方法。
(2) The method for producing an oil well steel pipe according to (1), wherein the tempering process is a process of heating to a two-phase temperature range from the Ac1 transformation point to the Ac3 transformation point.
(3) In (1) or (2), in addition to the above composition, 1% selected from the following group A to group D: group A: Cr: 2.0% or less, Cu: 3.5% or less Seeds or two,
Group B: Ni: 2.0% or less,
Group C: Mo: 2.0% or less, V: 0.20% or less, Nb: 0.20% or less, Ti: 0.30% or less, Zr: 0.20% or less, B: 0.01% or less, W: 1.0% or less One or more,
Group D: Ca: 0.0005 to 0.01%
The manufacturing method of the steel pipe for oil wells characterized by setting it as the composition containing 1 group or 2 groups or more selected from these.

(4)油井内に挿入された状態で拡管される油井用鋼管であって、前記油井用鋼管が、質量%で、C:0.35%以下、Si:1.5%以下、Mn:0.10〜3.50%、P:0.07%以下、S:0.01%以下、Al:0.05%以下を含み、さらに、Cr:2.0%以下、Mo:2.0%以下、Nb:0.20%以下のうちの1種または2種以上を含有し、残部Feおよび不可避的不純物からなる組成を有し、降伏強さ:350MPa以上、n値:0.08以上を有し、かつn値と均一伸びu-Elとが次(2)式
n>0.007×(25−u-El) ‥‥‥(2)
(ここで、n:n値、u-El:均一伸び(%))
を満足する鋼管であり、前記油井用鋼管の端面側が、次(1)式
拡管率=[{(プラグ外径)−(素管内径)}/(素管内径)]×100(%)‥‥(1)
(ここで、プラグ外径:拡管用工具(プラグ)の外径(mm)、素管内径:鋼管端面側の加工前内径(mm))
で定義される拡管率で3%以上、拡管加工され、該拡管加工された部位にねじを形成してなることを特徴とする拡管性に優れた油井用鋼管。
(4) An oil well steel pipe that is expanded in a state of being inserted into an oil well, wherein the oil well steel pipe is, in mass%, C: 0.35% or less, Si: 1.5% or less, Mn: 0.10 to 3.50%, Including P: 0.07% or less, S: 0.01% or less, Al: 0.05% or less, and further containing one or more of Cr: 2.0% or less, Mo: 2.0% or less, Nb: 0.20% or less And having a composition composed of the balance Fe and inevitable impurities, yield strength: 350 MPa or more, n value: 0.08 or more, and n value and uniform elongation u-El are expressed by the following formula (2)
n> 0.007 × (25−u-El) (2)
(Where n: n value, u-El: uniform elongation (%))
The end face side of the oil well steel pipe is the following (1) formula pipe expansion rate = [{(plug outer diameter) − (element inner diameter)} / (element inner diameter)] × 100 (%) (1)
(Here, the outer diameter of the plug: the outer diameter (mm) of the tool for expanding the pipe (plug), the inner diameter of the raw pipe: the inner diameter of the steel pipe end face before processing (mm))
An oil well steel pipe excellent in pipe expandability, wherein the pipe expansion ratio is 3% or more as defined by the above, and a screw is formed in the pipe expanded portion.

(5)(4)において、前記組成に加えてさらに、質量%で、次A群〜D群
A群:Cu:3.5%以下、
B群:Ni:2.0%以下、
C群:V:0.20%以下、Ti:0.30%以下、Zr:0.20%以下、B:0.01%以下、W:1.0%以下のうちから選ばれた1種または2種以上、
D群:Ca:0.0005〜0.01%
のうちから選ばれた1群または2群以上を含有する組成とすることを特徴とする油井用鋼管。
(5) In (4), in addition to the above-mentioned composition, the following group A to group D group A: Cu: 3.5% or less in mass%,
Group B: Ni: 2.0% or less,
Group C: V: 0.20% or less, Ti: 0.30% or less, Zr: 0.20% or less, B: 0.01% or less, W: 1.0% or less selected from 1% or more,
Group D: Ca: 0.0005 to 0.01%
An oil well steel pipe characterized by having a composition containing one group or two or more groups selected from among them.

本発明によれば、母管および継手部を含めて、油井内における厳しい拡管加工にも耐えうる、優れた拡管性を有する、安価な油井用鋼管を容易に製造でき、産業上格段の効果を奏する。   According to the present invention, it is possible to easily manufacture inexpensive steel pipes for oil wells having excellent pipe expandability that can withstand severe pipe expansion processing in the oil well, including the mother pipe and the joint portion, and have remarkable industrial effects. Play.

本発明の油井用鋼管の概略形状を示す断面図である。It is sectional drawing which shows schematic shape of the steel pipe for oil wells of this invention.

本発明の油井用鋼管は、両端面側が拡管加工され、該拡管加工された部位(拡管部)にねじを形成してなる、図1に示すような鋼管である。本発明では、鋼管(素管)の両端面側に素管内径より大きい各種外径を有するプラグをそれぞれ押し込み、所定の拡管率となるように予め拡管して拡管部を形成し、該拡管部にはさらにねじ加工を施し、ねじ加工部を形成する。これにより、ねじ継手部における油井内での拡管量を低減することができ、油井内での拡管作業を軽減することが可能となるうえ、油井内における拡管によるねじ継手部の特性劣化を防止、あるいは軽減でき、ねじ継手部からの漏れを防止できることになる。なお、拡管加工が施される領域は、鋼管の端面から管軸方向に所定の長さとする。ここでいう「所定の長さ」とは、鋼管の端部同士を適正にねじ接合するに必要なねじ加工部を、端面側に加工できる長さを意味する。   The steel pipe for oil well of the present invention is a steel pipe as shown in FIG. 1 in which both end surfaces are expanded and a screw is formed at the expanded portion (expanded portion). In the present invention, plugs having various outer diameters larger than the inner diameter of the pipe are pushed into both end surfaces of the steel pipe (element pipe), respectively, and expanded in advance so as to obtain a predetermined expansion ratio, thereby forming the expanded section. Is further threaded to form a threaded portion. As a result, the amount of pipe expansion in the oil well in the threaded joint can be reduced, and the pipe expansion work in the oil well can be reduced, and the characteristic deterioration of the threaded joint due to pipe expansion in the oil well can be prevented. Or it can reduce, and the leak from a threaded joint part can be prevented. In addition, let the area | region where a pipe expansion process is performed be predetermined length from the end surface of a steel pipe to a pipe-axis direction. Here, the “predetermined length” means a length that allows a threaded portion necessary for properly screw-joining the ends of steel pipes to be processed on the end face side.

また、両端面側に形成するねじの形状はとくに限定する必要はないが、内容物(原油、ガス等)が漏れないような構造、例えばテーパーねじとすることが好ましい。
また、鋼管両端面側における拡管加工は、拡管率で3%以上とすることが好ましい。なお、拡管率は、下記(1)式
拡管率=[{(プラグ外径)−(素管内径)}/(素管内径)]×100(%)‥‥(1)
(ここで、プラグ外径:拡管用工具(プラグ)の外径(mm)、素管内径:鋼管端面側の加工前内径(mm))
で定義される。拡管率が3%未満では、油井内での高拡管に対応することができにくい。ここでいう「油井内での高拡管」とは、油井内での拡管率が10%以上の拡管をいうものとする。
Further, the shape of the screw formed on both end surfaces is not particularly limited, but a structure that does not leak the contents (crude oil, gas, etc.), for example, a taper screw is preferable.
Moreover, it is preferable that the pipe expansion process in the steel pipe both end surface side shall be 3% or more by a pipe expansion rate. The tube expansion rate is the following (1) equation tube expansion rate = [{(plug outer diameter) − (element tube inner diameter)} / (element tube inner diameter)] × 100 (%) (1)
(Here, the outer diameter of the plug: the outer diameter (mm) of the tool for expanding the pipe (plug), the inner diameter of the raw pipe: the inner diameter of the steel pipe end face before processing (mm))
Defined by If the pipe expansion rate is less than 3%, it is difficult to cope with high pipe expansion in the oil well. The term “high expansion in the oil well” as used herein refers to expansion with a pipe expansion rate of 10% or more in the oil well.

また、本発明の油井用鋼管は、好ましくは降伏強さ:350MPa以上を有する鋼管である。油井用鋼管を油井内に挿入した状態で行う拡管は、通常、当該鋼管内に拡管用プラグを通して行うが、油井用鋼管の降伏強さが350MPa未満では、拡管用プラグを通す際に、座屈等の問題が生じ、適正な拡管を行うことができない場合がある。このため、十分な拡管性を確保するために、本発明では油井用鋼管の降伏強さを350MPa以上に限定することが好ましい。なお、より好ましくは550MPa以下である。さらに好ましくは350〜480MPaである。   Further, the oil well steel pipe of the present invention is preferably a steel pipe having a yield strength of 350 MPa or more. Pipe expansion performed with the oil well steel pipe inserted into the oil well is normally performed through the pipe for expansion into the steel pipe. However, if the yield strength of the oil well steel pipe is less than 350 MPa, buckling will occur when the pipe for expansion is passed. In some cases, proper pipe expansion cannot be performed. For this reason, in order to ensure sufficient pipe expandability, in the present invention, it is preferable to limit the yield strength of the oil well steel pipe to 350 MPa or more. More preferably, it is 550 MPa or less. More preferably, it is 350-480MPa.

また、本発明の油井用鋼管は、0.08以上のn値を有する鋼管とすることが、高拡管性を確保するうえで好ましい。n値は、本発明者らの検討によれば、鋼管の拡管性に影響する重要な材料因子であり、更なる優れた拡管性を確保するために、本発明ではn値を0.08以上に限定することが好ましい。n値が0.08未満では、所望の優れた拡管性を確保することが難しくなる。なお、より好ましくは0.10以上である。なお、ここでいう「n値」は、管軸方向を引張方向とする引張試験片を用いてJIS Z 2253の規定に準拠して測定した値とする。   In addition, the oil well steel pipe of the present invention is preferably a steel pipe having an n value of 0.08 or more in order to ensure high pipe expandability. The n value is an important material factor affecting the pipe expandability of the steel pipe according to the study by the present inventors. In order to secure further excellent pipe expandability, the n value is limited to 0.08 or more in the present invention. It is preferable to do. If the n value is less than 0.08, it is difficult to ensure the desired excellent tube expandability. In addition, More preferably, it is 0.10 or more. The “n value” here is a value measured in accordance with the provisions of JIS Z 2253 using a tensile test piece having the tube axis direction as the tensile direction.

また、油井用鋼管の均一伸びu-Elが十分に大きければ、n値が低くても、高い拡管率の拡管が可能であるが、しかし、均一伸びu-Elが小さいと、十分な拡管性を確保できなくなる。本発明者らの検討によれば、更なる優れた拡管性を安定して確保するためには、上記した範囲のn値を有するとともに、均一伸びu-Elに関連した所定値、すなわち次(2)式
n>0.007×(25−u-El)‥‥‥(2)
(ここで、n:n値、u-El:均一伸び(%))
を満足するn値を有することが好ましいという知見を得ている。n値が(2)式を満足できない場合には、所望の更なる優れた拡管性を確保することが難しくなる。なお、均一伸びu-Elは、管軸方向を引張方向とする引張試験片を用いてJIS Z 2241の規定に準拠して測定した値を用いるものとする。
In addition, if the uniform elongation u-El of the oil well steel pipe is sufficiently large, it is possible to expand the tube with a high expansion ratio even if the n value is low. However, if the uniform elongation u-El is small, sufficient expansion is possible. Cannot be secured. According to the study by the present inventors, in order to stably secure further excellent tube expandability, the present invention has an n value in the above range and a predetermined value related to the uniform elongation u-El, that is, the following ( 2) Formula
n> 0.007 × (25−u-El) (2)
(Where n: n value, u-El: uniform elongation (%))
It has been found that it is preferable to have an n value that satisfies the above. When the n value cannot satisfy the expression (2), it becomes difficult to secure desired further excellent tube expandability. For the uniform elongation u-El, a value measured in accordance with the provisions of JIS Z 2241 using a tensile test piece with the tube axis direction as the tensile direction is used.

つぎに、本発明油井用鋼管の好ましい組成範囲およびその限定理由について、説明する。とくに断らない限り、質量%は、単に%で記す。
C:0.35%以下
Cは、鋼管強度に関係する重要な元素であり、所望の強度を確保するために、0.04%以上含有することが望ましいが、0.35%を超えて多量に含有すると、鋼管製造時に焼割れを発生する恐れが増大する。このため、Cは0.35%以下に限定することが好ましい。なお、より好ましくは0.30%以下である。
Next, the preferable composition range of the steel pipe for oil well of the present invention and the reason for limitation will be described. Unless otherwise specified, mass% is simply expressed as%.
C: 0.35% or less C is an important element related to the strength of steel pipes. To ensure the desired strength, it is desirable to contain 0.04% or more. Sometimes the risk of burning cracks increases. For this reason, it is preferable to limit C to 0.35% or less. More preferably, it is 0.30% or less.

Si:1.5%以下
Siは、通常の製鋼過程において脱酸剤として有用な元素である。このような効果を得るために0.05%以上含有することが望ましいが、1.5%を超える含有は、熱間加工性、さらには靭性を低下させる。このため、Siは1.5%以下に限定することが好ましい。なお、より好ましくは1.0%以下である。
Si: 1.5% or less
Si is an element useful as a deoxidizer in a normal steelmaking process. In order to acquire such an effect, it is desirable to contain 0.05% or more, but inclusion exceeding 1.5% reduces hot workability and furthermore toughness. For this reason, it is preferable to limit Si to 1.5% or less. In addition, More preferably, it is 1.0% or less.

Mn:0.10〜3.50%
Mnは、固溶して鋼管強度を増加させる作用を有するとともに、n値向上に有効に寄与する元素である。油井用鋼管として所望の強度を確保するために0.10%以上の含有することが望ましいが、3.50%を超える多量の含有は、靭性に悪影響を及ぼすとともに、鋼管製造時に焼割れを発生する恐れを増大させる。このため、Mnは0.10〜3.50%の範囲に限定することが好ましい。なお、より好ましくは0.50%以上である。
Mn: 0.10 to 3.50%
Mn is an element that has the effect of increasing the steel pipe strength by solid solution and contributes effectively to the improvement of the n value. It is desirable to contain 0.10% or more in order to ensure the desired strength as a steel pipe for oil wells. However, a large content exceeding 3.50% adversely affects toughness and increases the risk of causing cracking during steel pipe production. Let For this reason, it is preferable to limit Mn to the range of 0.10 to 3.50%. More preferably, it is 0.50% or more.

P:0.07%以下
Pは、熱間加工性を低下させるとともに、耐硫化物応力腐食割れ性を劣化させる元素であり、本発明ではその含有量は可及的に少ないことが望ましいが、極端な低減は製造コストの高騰を招く。そのため、本発明ではPは、工業的に比較的安価に実施可能でかつ、熱間加工性、耐硫化物応力腐食割れ性を低下させない範囲である、0.07%以下に限定することが好ましい。なお、より好ましくは0.05%以下である。
P: 0.07% or less P is an element that reduces hot workability and deteriorates resistance to sulfide stress corrosion cracking. In the present invention, its content is preferably as small as possible. Reduction leads to an increase in manufacturing costs. Therefore, in the present invention, P is preferably limited to 0.07% or less, which is a range that can be implemented industrially at a relatively low cost and does not reduce hot workability and sulfide stress corrosion cracking resistance. In addition, More preferably, it is 0.05% or less.

S:0.01%以下
Sは、パイプ造管過程における熱間加工性を著しく劣化させる元素であり、本発明ではその含有量は可及的に少ないことが望ましいが、極端な低減は製造コストの高騰を招く。そのため、本発明ではSは、通常の工程でのパイプ製造が可能な範囲である0.01%以下に限定することが好ましい。なお、より好ましくは0.007%以下である。
S: 0.01% or less S is an element that remarkably deteriorates the hot workability in the pipe-making process. In the present invention, the content is preferably as low as possible, but extreme reduction increases the manufacturing cost. Invite. Therefore, in the present invention, S is preferably limited to 0.01% or less, which is a range in which pipe production in a normal process is possible. More preferably, it is 0.007% or less.

Al:0.05%以下
Alは、強力な脱酸剤として作用するとともに、Nと結合し結晶粒を微細化する作用をも有する元素である。このような効果を安定して確保するために0.005%以上含有することが望ましいが、0.05%を超える含有は、靭性に悪影響を及ぼす。このため、Alは0.05%以下に限定することが好ましい。なお、より好ましくは0.01〜0.03%である。
Al: 0.05% or less
Al is an element that acts as a strong deoxidizer and also has an effect of combining with N to refine crystal grains. In order to ensure such an effect stably, it is desirable to contain 0.005% or more, but inclusion exceeding 0.05% adversely affects toughness. For this reason, Al is preferably limited to 0.05% or less. In addition, More preferably, it is 0.01 to 0.03%.

上記した成分が基本の成分であるが、本発明では上記した基本組成に加えて、さらに、A群〜D群のうちから選ばれた1群または2群以上を含有できる。
A群:Cr:2.0%以下、Cu:3.5%以下のうちから選ばれた1種または2種、
A群:Cr、Cuはいずれも、耐腐食性を向上させる元素であり、必要に応じて選択して含有できる。
Although the above-described components are basic components, in the present invention, in addition to the basic composition described above, one or more groups selected from Group A to Group D can be further contained.
Group A: One or two selected from Cr: 2.0% or less, Cu: 3.5% or less,
Group A: Cr and Cu are both elements that improve corrosion resistance, and can be selected and contained as necessary.

Crは、耐CO2腐食性、耐CO2応力腐食割れ性等の耐腐食性を向上させる元素である。このような効果は、0.20%以上の含有で顕著となる。一方、2.0%を超える含有は、靭性が低下する。このため、Crは2.0%以下に限定することが好ましい。なお、より好ましくは0.25〜1.0%である。
Cuは、保護皮膜を強固にして鋼中への水素の侵入を抑制し、耐硫化物応力腐食割れ性を向上させる作用を有する元素である。このような効果は0.2%以上の含有で顕著となるが、3.5%を超える含有は、高温で粒界にCuSが析出し、熱間加工性を低下させる。このため、Cuは3.5%以下に限定することが好ましい。なお、より好ましくは0.2〜1.0%である。
Cr is an element that improves resistance to CO 2 corrosion resistance and corrosion resistance, such as resistance to CO 2 stress corrosion cracking resistance. Such an effect becomes remarkable when the content is 0.20% or more. On the other hand, if the content exceeds 2.0%, the toughness decreases. For this reason, it is preferable to limit Cr to 2.0% or less. In addition, More preferably, it is 0.25 to 1.0%.
Cu is an element having an action of strengthening the protective film and suppressing the penetration of hydrogen into the steel and improving the resistance to sulfide stress corrosion cracking. Such an effect becomes remarkable when the content is 0.2% or more. However, when the content exceeds 3.5%, CuS precipitates at the grain boundary at a high temperature, thereby reducing the hot workability. For this reason, it is preferable to limit Cu to 3.5% or less. In addition, More preferably, it is 0.2 to 1.0%.

B群:Ni:2.0%以下、
B群:Niは、靭性の向上に有効に寄与する元素である。また、Cuを含有する場合には圧延時の割れを防止するのに有効に寄与する。このような効果を得るためには0.1%以上含有することが望ましいが、2.0%を超えて含有しても、効果が飽和し含有量に見合う効果が期待できなくなる。このため、Niは2.0%以下に限定することが好ましい。なお、より好ましくは0.1〜1.5%である。
Group B: Ni: 2.0% or less,
Group B: Ni is an element that contributes effectively to improving toughness. Moreover, when it contains Cu, it contributes effectively in preventing the crack at the time of rolling. In order to acquire such an effect, it is desirable to contain 0.1% or more, but even if it contains exceeding 2.0%, the effect is saturated and an effect commensurate with the content cannot be expected. For this reason, it is preferable to limit Ni to 2.0% or less. In addition, 0.1 to 1.5% is more preferable.

C群:Mo:2.0%以下、V:0.20%以下、Nb:0.20%以下、Ti:0.30%以下、Zr:0.20%以下、B:0.01%以下、W:1.0%以下のうちから選ばれた1種または2種以上
C群:Mo、V、Nb、Ti、Zr、B、Wはいずれも、鋼管強度を増加させる作用を有する元素であり、必要に応じて選択して含有できる。
Moは、焼入れ性の向上を介して、鋼管強度の増加に寄与する元素であるが、硫化水素が存在する環境下では耐硫化物応力腐食割れ性を向上させる元素でもある。このような効果を得るためには、0.1%以上含有することが望ましいが、2.0%を超えて含有しても、効果が飽和し含有量に見合う効果が期待できなくなる。このため、Moは2.0%以下に限定することが好ましい。なお、より好ましくは0.2〜0.8%である。
Group C: Mo: 2.0% or less, V: 0.20% or less, Nb: 0.20% or less, Ti: 0.30% or less, Zr: 0.20% or less, B: 0.01% or less, W: 1.0% or less 1 type or 2 types or more C group: Mo, V, Nb, Ti, Zr, B, and W are all elements which have the effect | action which increases steel pipe strength, and can be selected and contained as needed.
Mo is an element that contributes to an increase in steel pipe strength through improvement of hardenability, but is also an element that improves resistance to sulfide stress corrosion cracking in an environment where hydrogen sulfide is present. In order to acquire such an effect, it is desirable to contain 0.1% or more, but even if it contains exceeding 2.0%, an effect is saturated and the effect corresponding to content cannot be expected. For this reason, it is preferable to limit Mo to 2.0% or less. In addition, More preferably, it is 0.2 to 0.8%.

Vは、焼入れ性の向上を介して、鋼管強度の増加に寄与する元素であるが、耐硫化物応力腐食割れ性を向上させる元素でもある。このような効果を得るためには、0.02%以上含有することが望ましいが、0.20%を超える含有は、靭性を低下させる。このため、Vは0.20%以下に限定することが好ましい。なお、より好ましくは0.03〜0.10%である。
Nbは、鋼の強度増加、さらには靱性向上に有効に寄与する元素である。このような効果は0.01%以上の含有で顕著となるが、0.20%を超える含有は、靱性を低下させる。このため、Nbは0.20%以下とすることが好ましい。なお、より好ましくは0.02〜0.12%である。
V is an element that contributes to an increase in steel pipe strength through an improvement in hardenability, but is also an element that improves the resistance to sulfide stress corrosion cracking. In order to acquire such an effect, it is desirable to contain 0.02% or more, but inclusion exceeding 0.20% reduces toughness. For this reason, it is preferable to limit V to 0.20% or less. In addition, More preferably, it is 0.03-0.10%.
Nb is an element that effectively contributes to increasing the strength of steel and further improving toughness. Such an effect becomes remarkable when the content is 0.01% or more, but when the content exceeds 0.20%, the toughness is lowered. For this reason, Nb is preferably 0.20% or less. In addition, More preferably, it is 0.02 to 0.12%.

Tiは、鋼管強度を増加させ、耐応力腐食割れ性を改善する作用を有する元素である。このような効果は、0.01%以上の含有で顕著となるが、0.30%を超える含有は、靱性を劣化させる。このため、Tiは0.30%以下に限定することが好ましい。なお、より好ましくは0.02〜0.15%である。
Zrもまた、鋼管強度を増加させ、耐応力腐食割れ性を改善する作用を有する元素である。このような効果は、0.01%以上の含有で顕著となるが、一方、0.20%を超える含有は、靱性を劣化させる。このため、Zrは0.20%以下に限定することが好ましい。なお、より好ましくは0.01〜0.10%である。
Ti is an element that has an effect of increasing the steel pipe strength and improving the stress corrosion cracking resistance. Such an effect becomes remarkable when the content is 0.01% or more. However, when the content exceeds 0.30%, the toughness is deteriorated. For this reason, it is preferable to limit Ti to 0.30% or less. In addition, More preferably, it is 0.02 to 0.15%.
Zr is also an element having an action of increasing the steel pipe strength and improving the stress corrosion cracking resistance. Such an effect becomes remarkable when the content is 0.01% or more, while content exceeding 0.20% deteriorates toughness. For this reason, it is preferable to limit Zr to 0.20% or less. In addition, More preferably, it is 0.01 to 0.10%.

Bもまた、鋼管強度を増加させ、耐応力腐食割れ性を改善する作用を有する元素である。このような効果は、0.0003%以上の含有で顕著となるが、一方、0.01%を超える含有は、靱性を劣化させる。このため、Bは0.01%以下に限定することが好ましい。なお、より好ましくは0.0003〜0.005%である。
Wもまた、鋼管強度を増加させ、耐応力腐食割れ性を改善する作用を有する元素である。このような効果は、0.2%以上の含有で顕著となるが、一方、W:1.0%を超える含有は、靱性を劣化させる。このため、Wは1.0%以下に限定することが好ましい。なお、より好ましくは0.2〜0.8%である。
B is also an element having an action of increasing the steel pipe strength and improving the stress corrosion cracking resistance. Such an effect becomes remarkable when the content is 0.0003% or more, while content exceeding 0.01% deteriorates toughness. For this reason, it is preferable to limit B to 0.01% or less. In addition, More preferably, it is 0.0003 to 0.005%.
W is also an element having an action of increasing the steel pipe strength and improving the stress corrosion cracking resistance. Such an effect becomes remarkable when the content is 0.2% or more, while content exceeding W: 1.0% deteriorates toughness. For this reason, it is preferable to limit W to 1.0% or less. In addition, More preferably, it is 0.2 to 0.8%.

D群:Ca:0.0005〜0.01%
D群:Caは、SをCaSとして固定しS系介在物を球状化する作用により、介在物の周囲のマトリックスの格子歪を小さくして、水素のトラップ能を下げる作用を有する元素である。このような効果を得るためには0.0005%以上の含有が必要であるが、0.01%を超える含有は、CaOの増加を招き、耐CO2腐食性、耐孔食性が低下する。このため、Caは0.0005〜0.01%の範囲に限定することが好ましい。なお、より好ましくは0.001〜0.005%である。
Group D: Ca: 0.0005 to 0.01%
Group D: Ca is an element having an effect of reducing the trapping ability of hydrogen by reducing the lattice strain of the matrix around the inclusions by fixing S as CaS and spheroidizing the S-based inclusions. In order to obtain such an effect, the content of 0.0005% or more is necessary. However, if the content exceeds 0.01%, CaO increases, and the resistance to CO 2 corrosion resistance and pitting corrosion resistance decreases. For this reason, it is preferable to limit Ca to 0.0005 to 0.01% of range. In addition, More preferably, it is 0.001 to 0.005%.

上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、O:0.004%以下が許容できる。
つぎに、本発明油井用鋼管の好ましい製造方法を、素管とする鋼管を継目無鋼管とした場合を例にして説明する。なお、本発明では鋼管は、継目無鋼管に限定されるものではなく、溶接鋼管(電縫鋼管)としてもよいのは言うまでもない。
The balance other than the above components is Fe and inevitable impurities. As an inevitable impurity, O: 0.004% or less is acceptable.
Next, a preferred method for producing the steel pipe for oil well of the present invention will be described by taking as an example a case where the steel pipe used as a raw pipe is a seamless steel pipe. In the present invention, it is needless to say that the steel pipe is not limited to a seamless steel pipe, and may be a welded steel pipe (electrically welded steel pipe).

上記した組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の通常の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延法等の通常の方法でビレット等の鋼管素材とすることが好ましい。ついで、これら鋼管素材を加熱し、通常のマンネスマン−プラグミル方式、あるいはマンネスマン−マンドレルミル方式の製造工程を用いて熱間加工し造管して、所望の寸法の継目無鋼管とする。造管後、鋼管は、通常工程と同様に、空冷程度の冷却速度で室温程度の温度まで冷却することが好ましい。   Molten steel having the above composition is melted by a normal melting method such as a converter, an electric furnace, a vacuum melting furnace, etc., and a steel pipe such as a billet by a normal method such as a continuous casting method or an ingot-bundling rolling method. It is preferable to use a raw material. Subsequently, these steel pipe materials are heated and hot-worked and piped using a normal Mannesmann-plug mill system or Mannesmann-Mandrel mill system manufacturing process to obtain seamless steel pipes of desired dimensions. After the pipe making, the steel pipe is preferably cooled to a temperature of about room temperature at a cooling rate of about air cooling, as in the normal process.

本発明の鋼管は、造管まま鋼管を用いてもよいが、造管まま鋼管を素管とし、該素管に、さらに熱処理を施した鋼管とすることが好ましい。熱処理としては、焼入れ−焼戻処理、あるいは焼準−焼戻処理、あるいは焼戻処理とすることが好ましい。
なお、焼戻処理に代えて、Ac1変態点以上Ac3変態点以下の二相域の温度に加熱し冷却する、二相域処理としてもよい。また、焼戻処理、二相域処理は少なくとも2回繰り返す処理としてもよい。これにより、拡管性がさらに向上する。
The steel pipe of the present invention may be a steel pipe as it is, but it is preferable to use the steel pipe as a raw pipe as a raw pipe, and a steel pipe obtained by further heat-treating the raw pipe. The heat treatment is preferably quenching-tempering treatment, tempering-tempering treatment, or tempering treatment.
Instead of the tempering treatment, a two-phase region treatment in which the temperature is heated to a temperature in a two-phase region not less than the Ac1 transformation point and not more than the Ac3 transformation point may be used. The tempering process and the two-phase region process may be repeated at least twice. Thereby, pipe expandability further improves.

上記したように、熱処理を施された鋼管(素管)は、ついで、両端面側に拡管加工を施される。拡管加工は、好ましくは通常、当該鋼管内に拡管用プラグを挿入して行う。本発明では、素管の両端面側に素管内径より大きい各種外径を有するプラグをそれぞれプレス等で押し込み、好ましくは3%以上の、所定の拡管率となるように予め拡管加工して拡管部を形成する。なお、拡管加工が施される領域(拡管部)は、素管の端面から管軸方向に、適正長さのねじが加工できる長さとする。ついで、該拡管部に、適正長さのねじを加工し、ねじ加工部を形成し、本発明の油井用鋼管を得る。   As described above, the heat-treated steel pipe (base pipe) is then subjected to pipe expansion on both end surfaces. The pipe expansion process is preferably performed by inserting a pipe expansion plug into the steel pipe. In the present invention, plugs having various outer diameters larger than the inner diameter of the raw tube are respectively pushed into the both end surfaces of the raw tube with a press or the like, and are preferably expanded in advance to obtain a predetermined expansion rate of 3% or more. Forming part. In addition, let the area | region (expansion part) to which a pipe expansion process is performed be the length which can process the screw | thread of an appropriate length from the end surface of a raw tube to a pipe-axis direction. Next, a screw having an appropriate length is processed in the expanded portion to form a threaded portion, thereby obtaining the oil well steel pipe of the present invention.

さらに、実施例に基づき本発明をさらに詳細に説明する。   Furthermore, based on an Example, this invention is demonstrated still in detail.

表1に示す組成の溶鋼を、真空溶解炉で溶製し、十分に脱ガスした後、100キロ鋼塊とし、研究用モデルシームレス圧延機で熱間加工を施して造管し、継目無鋼管(外径5.5in.φ(139.7mmφ)×肉厚0.5in.(12.7mm))とした。なお、造管後、室温まで空冷とした。
次いで各鋼管に、表2に示す条件で、熱処理を施した。なお、一部の鋼管では熱間圧延まま(造管まま)とした。
Molten steel with the composition shown in Table 1 is melted in a vacuum melting furnace, fully degassed, made into a 100-kilo steel ingot, piped by hot working with a model seamless rolling mill for research, and seamless steel pipe (Outer diameter 5.5 in.φ (139.7 mmφ) × wall thickness 0.5 in. (12.7 mm)). In addition, it was made to air-cool to room temperature after pipe making.
Next, each steel pipe was subjected to heat treatment under the conditions shown in Table 2. In some steel pipes, hot rolling was performed (as it was).

また、上記した鋼管から、APIの規定に準拠して、管軸方向を引張方向とする引張試験片(弧状試験片:GL:25.4mm)を切り出し、APIの規定に準拠して、引張試験を実施し、引張特性(降伏強さYS、引張強さTS、均一伸びu-El)を求めた。また、同時に、JIS Z 2253の規定に準拠してn値を求めた。
また、上記した鋼管から、拡管試験片(鋼管:長さ300mm)を採取した。これら拡管試験片(鋼管)に、拡管試験片(鋼管)の内径より大きい各種外径を有するプラグを順次、プレスにより押し込み、亀裂が発生した時点のプラグ径を求め、次式
限界拡管率=[{(亀裂が発生したときのプラグ外径)−(試験材内径)}/(試験材内径)]×100(%)
で限界拡管率を算出した。なお、使用したプラグの外径は、拡管率が5%刻みとなるように配慮した。
In addition, a tensile test piece (arc-shaped test piece: GL: 25.4mm) with the pipe axis direction as the tensile direction is cut out from the above steel pipe in accordance with the API regulations, and a tensile test is conducted in accordance with the API regulations. The tensile properties (yield strength YS, tensile strength TS, uniform elongation u-El) were determined. At the same time, the n value was determined in accordance with JIS Z 2253.
Further, a pipe expansion test piece (steel pipe: length 300 mm) was collected from the above steel pipe. Plugs with various outer diameters larger than the inner diameter of the expanded test specimen (steel pipe) are sequentially pressed into these expanded test specimens (steel pipe), and the plug diameter when the crack occurs is obtained. {(Plug outer diameter when crack occurred)-(Test material inner diameter)} / (Test material inner diameter)] × 100 (%)
The critical expansion rate was calculated at In addition, the outer diameter of the used plug was considered so that the expansion ratio might be 5%.

得られた結果を表2に示す。
ついで、表2に示す特性を有する鋼管(素管)の両端面側に、表3に示す拡管率となるように、各種外径を有するプラグをプレスで押し込み、拡管加工を施した。拡管加工は、鋼管同士をねじ接合可能なように、同一条件で少なくとも2本について行った。なお、拡管率は次(1)式
拡管率=[{(プラグ外径)−(素管内径)}/(素管内径)]×100(%)‥‥(1)
(ここで、プラグ外径:拡管用工具(プラグ)の外径(mm)、素管内径:鋼管端面部の加工前内径(mm))
を用いて算出した。
The obtained results are shown in Table 2.
Subsequently, plugs having various outer diameters were pressed into the both end faces of a steel pipe (element tube) having the characteristics shown in Table 2 with a press so that the expansion ratios shown in Table 3 were obtained, and pipe expansion was performed. The pipe expansion process was performed on at least two pipes under the same conditions so that the steel pipes could be screwed together. The tube expansion rate is the following equation (1): tube expansion rate = [{(plug outer diameter) − (element tube inner diameter)} / (element tube inner diameter)] × 100 (%) (1)
(Here, the outer diameter of the plug: the outer diameter (mm) of the tube expansion tool (plug), the inner diameter of the raw pipe: the inner diameter of the steel pipe end face before processing (mm))
It calculated using.

ついで拡管加工を施された拡管加工部に、ねじ加工を施した。加工されたねじは、テーパねじ(テーパ角:1/8、ピッチ:1/6in.長さ:4.715in.)とし、鋼管の一方の端面側を雄ねじ、他方を雌ねじとした。
得られた同一条件の鋼管同士をねじ接合したのち、さらに、所定の内径となるように、母管およびねじ継手部に接合後の拡管加工を施した。なお、拡管加工は、ねじ加工前の端面側拡管加工を含め、合計で25%の拡管率となるように施した。接合後の拡管加工を施された鋼管について水圧試験(圧力:8MPa)を実施し、ねじ継手部からの漏れの有無を確認した。
Next, the thread expansion was applied to the tube expansion processing portion that had been subjected to the tube expansion processing. The processed screw was a taper screw (taper angle: 1/8, pitch: 1/6 in. Length: 4.715 in.), One end face side of the steel pipe was a male screw, and the other was a female screw.
After the obtained steel pipes having the same conditions were screwed together, the mother pipe and the threaded joint were subjected to pipe expansion after joining so as to have a predetermined inner diameter. In addition, pipe expansion processing was performed so that the total pipe expansion rate would be 25%, including end face side pipe expansion before threading. A water pressure test (pressure: 8 MPa) was carried out on the steel pipe that had been subjected to pipe expansion after joining, and the presence or absence of leakage from the threaded joint was confirmed.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0005488726
Figure 0005488726

Figure 0005488726
Figure 0005488726

Figure 0005488726
Figure 0005488726

本発明例はいずれも、ねじ継手部からの漏れは認められなかった。一方、本発明の範囲を外れる比較例は、ねじ継手部からの漏れが認められた。また、本発明の好適範囲を満足する本発明例は、限界拡管率が25%以上と、優れた拡管性を有する鋼管となっている。   In any of the inventive examples, no leakage from the threaded joint was observed. On the other hand, in the comparative example outside the scope of the present invention, leakage from the threaded joint was observed. Moreover, the example of the present invention that satisfies the preferred range of the present invention is a steel pipe having an excellent pipe expandability with a limit pipe expansion rate of 25% or more.

Claims (5)

質量%で、
C:0.35%以下、 Si:1.5%以下、
Mn:0.10〜3.50%、 P:0.07%以下、
S:0.01%以下、 Al:0.05%以下
を含有し、残部Feおよび不可避的不純物からなる組成を有する造管まま鋼管を素管とし、該素管まま、あるいは該素管に熱処理として、焼入れ処理および焼戻処理、または焼準処理および焼戻処理、あるいは焼戻処理を施して、降伏強さ:350MPa以上、n値:0.08以上を有し、かつn値と均一伸びu-Elとが下記(2)式を満足する鋼管としたのち、該素管の端面側に、下記(1)式で定義される拡管率で3%以上、拡管加工を施し、ついで該拡管加工を施された部位にねじ加工を施すことを特徴とする拡管性に優れた油井用鋼管の製造方法。

拡管率=[{(プラグ外径)−(素管内径)}/(素管内径)]×100(%)‥‥(1)
ここで、プラグ外径:拡管用工具(プラグ)の外径(mm)
素管内径:鋼管端面側の加工前内径(mm)
n>0.007×(25−u-El) ‥‥‥(2)
ここで、n:n値、u-El:均一伸び(%)
% By mass
C: 0.35% or less, Si: 1.5% or less,
Mn: 0.10 to 3.50%, P: 0.07% or less,
S: 0.01% or less, Al: 0.05% or less, a steel pipe having a composition composed of the balance Fe and unavoidable impurities is used as a raw pipe, and the raw pipe is subjected to a quenching treatment as a heat treatment. And tempering treatment, or normalizing treatment and tempering treatment, or tempering treatment, yield strength: 350 MPa or more, n value: 0.08 or more, and n value and uniform elongation u-El are as follows: After making the steel pipe satisfying the formula (2), the end face side of the raw pipe is subjected to a pipe expansion process of 3% or more at the pipe expansion rate defined by the following formula (1), and then the pipe expansion process is performed. The manufacturing method of the steel pipe for oil wells which was excellent in the pipe expandability characterized by performing a threading process.
Tube expansion rate = [{(plug outer diameter)-(element tube inner diameter)} / (element tube inner diameter)] x 100 (%) (1)
Here, plug outer diameter: outer diameter of pipe expansion tool (plug) (mm)
Base tube inner diameter: Inner diameter before processing of steel pipe end face (mm)
n> 0.007 × (25−u-El) (2)
Here, n: n value, u-El: uniform elongation (%)
前記焼戻処理が、Ac1変態点以上Ac3変態点以下の二相温度域に加熱する処理であることを特徴とする請求項1に記載の油井用鋼管の製造方法。   The method for producing a steel pipe for oil wells according to claim 1, wherein the tempering treatment is a treatment for heating to a two-phase temperature range from the Ac1 transformation point to the Ac3 transformation point. 前記組成に加えてさらに、質量%で、下記A群〜D群のうちから選ばれた1群または2群以上を含有する組成とすることを特徴とする請求項1または2に記載の油井用鋼管の製造方法。

A群:Cr:2.0%以下、Cu:3.5%以下のうちから選ばれた1種または2種、
B群:Ni:2.0%以下、
C群:Mo:2.0%以下、V:0.20%以下、Nb:0.20%以下、Ti:0.30%以下、Zr:0.20%以下、B:0.01%以下、W:1.0%以下のうちから選ばれた1種または2種以上、
D群:Ca:0.0005〜0.01%
The oil well according to claim 1 or 2, wherein, in addition to the composition, the composition further contains one group or two or more groups selected from the following groups A to D in mass%. Steel pipe manufacturing method.
Group A: Cr: 2.0% or less, Cu: One or two selected from 3.5% or less,
Group B: Ni: 2.0% or less,
Group C: Mo: 2.0% or less, V: 0.20% or less, Nb: 0.20% or less, Ti: 0.30% or less, Zr: 0.20% or less, B: 0.01% or less, W: 1.0% or less One or more,
Group D: Ca: 0.0005 to 0.01%
油井内に挿入された状態で拡管される油井用鋼管であって、
前記油井用鋼管が、質量%で、
C:0.35%以下、 Si:1.5%以下、
Mn:0.10〜3.50%、 P:0.07%以下、
S:0.01%以下、 Al:0.05%以下
を含み、さらに、Cr:2.0%以下、Mo:2.0%以下、Nb:0.20%以下のうちの1種または2種以上
を含有し、残部Feおよび不可避的不純物からなる組成を有し、降伏強さ:350MPa以上、n値:0.08以上を有し、かつn値と均一伸びu-Elとが下記(2)式を満足する鋼管であり、
前記油井用鋼管の端面側が、下記(1)式で定義される拡管率で3%以上、拡管加工され、該拡管加工された部位にねじを形成してなることを特徴とする拡管性に優れた油井用鋼管。

拡管率=[{(プラグ外径)−(素管内径)}/(素管内径)]×100(%)‥‥(1)
ここで、プラグ外径:拡管用工具(プラグ)の外径(mm)
素管内径:鋼管端面側の加工前内径(mm)
n>0.007×(25−u-El) ‥‥‥(2)
ここで、n:n値、u-El:均一伸び(%)
An oil well steel pipe that is expanded in a state of being inserted into the oil well,
The oil well steel pipe is in mass%,
C: 0.35% or less, Si: 1.5% or less,
Mn: 0.10 to 3.50%, P: 0.07% or less,
S: 0.01% or less, Al: 0.05% or less, Cr: 2.0% or less, Mo: 2.0% or less, Nb: 0.20% or less, containing one or more, the balance Fe and inevitable A steel pipe having a composition composed of mechanical impurities, yield strength: 350 MPa or more, n value: 0.08 or more, and n value and uniform elongation u-El satisfy the following formula (2):
The end face side of the steel pipe for oil well is expanded by 3% or more at a tube expansion rate defined by the following formula (1), and is excellent in tube expandability characterized by forming a screw in the expanded tube portion. Steel pipe for oil well.
Tube expansion rate = [{(plug outer diameter)-(element tube inner diameter)} / (element tube inner diameter)] x 100 (%) (1)
Here, plug outer diameter: outer diameter of pipe expansion tool (plug) (mm)
Base tube inner diameter: Inner diameter before processing of steel pipe end face (mm)
n> 0.007 × (25−u-El) (2)
Here, n: n value, u-El: uniform elongation (%)
前記組成に加えてさらに、質量%で、下記A群〜D群のうちから選ばれた1群または2群以上を含有する組成とすることを特徴とする請求項4に記載の油井用鋼管。

A群:Cu:3.5%以下、
B群:Ni:2.0%以下、
C群:V:0.20%以下、Ti:0.30%以下、Zr:0.20%以下、B:0.01%以下、W:1.0%以下のうちから選ばれた1種または2種以上、
D群:Ca:0.0005〜0.01%
5. The oil well steel pipe according to claim 4, wherein the oil well steel pipe further comprises, in addition to the above composition, one group or two or more groups selected from the following groups A to D in mass%.
Group A: Cu: 3.5% or less,
Group B: Ni: 2.0% or less,
Group C: V: 0.20% or less, Ti: 0.30% or less, Zr: 0.20% or less, B: 0.01% or less, W: 1.0% or less selected from 1% or more,
Group D: Ca: 0.0005 to 0.01%
JP2013024008A 2013-02-12 2013-02-12 Manufacturing method of oil well steel pipe and oil well steel pipe Active JP5488726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013024008A JP5488726B2 (en) 2013-02-12 2013-02-12 Manufacturing method of oil well steel pipe and oil well steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024008A JP5488726B2 (en) 2013-02-12 2013-02-12 Manufacturing method of oil well steel pipe and oil well steel pipe

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008015105A Division JP5487543B2 (en) 2008-01-25 2008-01-25 Oil well steel pipe with excellent pipe expansion

Publications (2)

Publication Number Publication Date
JP2013174350A JP2013174350A (en) 2013-09-05
JP5488726B2 true JP5488726B2 (en) 2014-05-14

Family

ID=49267411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024008A Active JP5488726B2 (en) 2013-02-12 2013-02-12 Manufacturing method of oil well steel pipe and oil well steel pipe

Country Status (1)

Country Link
JP (1) JP5488726B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109811261A (en) * 2019-01-25 2019-05-28 舞阳钢铁有限责任公司 Acidic environment pipeline high tenacity A516Gr60 thin plate and production method
CN111376652A (en) * 2020-03-24 2020-07-07 马鞍山钢铁股份有限公司 Vanadium-containing axle for urban rail subway and heat treatment process thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104295856B (en) * 2014-08-18 2016-05-11 安徽惠明机械制造有限公司 A kind of Wrap device sending outside wetting system
CN104178717B (en) * 2014-09-12 2016-01-13 攀钢集团成都钢钒有限公司 A kind of heat treating method of titanium alloy oil pipe
CN107058688A (en) * 2017-06-21 2017-08-18 合肥博创机械制造有限公司 A kind of drill pipe body heat treatment method
CN109266816B (en) * 2018-10-18 2021-01-15 本钢板材股份有限公司 Petroleum drill rod adapter and method for improving transverse impact toughness thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109811261A (en) * 2019-01-25 2019-05-28 舞阳钢铁有限责任公司 Acidic environment pipeline high tenacity A516Gr60 thin plate and production method
CN111376652A (en) * 2020-03-24 2020-07-07 马鞍山钢铁股份有限公司 Vanadium-containing axle for urban rail subway and heat treatment process thereof

Also Published As

Publication number Publication date
JP2013174350A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5488726B2 (en) Manufacturing method of oil well steel pipe and oil well steel pipe
JP5137048B2 (en) Austenitic alloy pipe and manufacturing method thereof
JP4833835B2 (en) Steel pipe with small expression of bauschinger effect and manufacturing method thereof
JP5500324B1 (en) Duplex stainless steel pipe and manufacturing method thereof
JP6256652B2 (en) Thick steel plate for structural pipe, method for manufacturing thick steel plate for structural pipe, and structural pipe
JP5211552B2 (en) Stainless steel pipe for oil well with excellent pipe expandability and method for producing the same
JPWO2015151469A1 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JPWO2008117680A1 (en) Duplex stainless steel used for expanding oil well pipes and expanding oil well pipes expanded in wells
JPWO2008123025A1 (en) Oil well pipe for pipe expansion in a well and its manufacturing method
JP2008291322A (en) Steel pipe for oil well having excellent pipe expandability and its manufacturing method
JP4513496B2 (en) Seamless oil well steel pipe for pipe expansion and manufacturing method thereof
JP5211708B2 (en) Stainless steel pipe for oil well with excellent pipe expandability and method for producing the same
JP2007332431A (en) Stainless steel pipe for oil well having excellent pipe expansibility
JP4367259B2 (en) Seamless steel pipe for oil wells with excellent pipe expandability
JP5487543B2 (en) Oil well steel pipe with excellent pipe expansion
JP6954492B1 (en) Stainless steel seamless steel pipe and its manufacturing method
JP2019065343A (en) Steel pipe for oil well and manufacturing method therefor
JP6475758B2 (en) Steel material for high-strength pipe expansion with excellent pipe expandability and crush resistance, expanded steel pipe, and manufacturing method thereof
JP2007169776A (en) Stainless steel pipe for oil well excellent in enlarging characteristic and its production method
JP5399635B2 (en) Stainless steel pipe for oil well with excellent pipe expandability and method for producing the same
JP5061887B2 (en) Oil well steel pipe excellent in pipe expandability and manufacturing method thereof
JP5040215B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
JP5447880B2 (en) Manufacturing method for stainless steel pipes for oil wells with excellent pipe expandability
JP2002349177A (en) Steel pipe for burying and expansion and burying method of oil well steel pipe
JP5493975B2 (en) Manufacturing method of steel pipe for oil well with excellent pipe expandability

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5488726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250