JP5493975B2 - Manufacturing method of steel pipe for oil well with excellent pipe expandability - Google Patents

Manufacturing method of steel pipe for oil well with excellent pipe expandability Download PDF

Info

Publication number
JP5493975B2
JP5493975B2 JP2010033387A JP2010033387A JP5493975B2 JP 5493975 B2 JP5493975 B2 JP 5493975B2 JP 2010033387 A JP2010033387 A JP 2010033387A JP 2010033387 A JP2010033387 A JP 2010033387A JP 5493975 B2 JP5493975 B2 JP 5493975B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
pipe
group
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010033387A
Other languages
Japanese (ja)
Other versions
JP2011168833A (en
Inventor
光男 木村
全人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010033387A priority Critical patent/JP5493975B2/en
Publication of JP2011168833A publication Critical patent/JP2011168833A/en
Application granted granted Critical
Publication of JP5493975B2 publication Critical patent/JP5493975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、原油あるいは天然ガスの油井あるいはガス井(以下、単に「油井」と総称する)内で使用される鋼管に係り、とくに油井内にて拡管加工ができる、拡管性に優れた油井用鋼管に関する。   The present invention relates to a steel pipe used in an oil well or a gas well (hereinafter simply referred to as “oil well”) of crude oil or natural gas, and particularly for an oil well excellent in pipe expansion that can be expanded in the oil well. It relates to steel pipes.

近年、近い将来に予想される石油資源の枯渇という状況に鑑み、従来ではかえりみられなかったような深層油田に対する開発が、世界規模で進められている。しかし、このような油田開発では、多大な掘削費用を必要とし、油田開発のコストが高騰するという問題があり、油井掘削費の削減が要求されている。最近では、このような油井掘削費の低減という要求から、油井掘削においては、例えば、特許文献1、特許文献2に記載されているように、井戸内での押拡げ加工による拡管を用いた工法が開発されてきた。この工法、いわゆる拡管埋設工法によれば、ケーシングを地中に埋設したのち、坑井内においてケーシングを半径方向に膨張させ、多段構造とすることで、坑井上部のケーシングサイズを小さく抑えることができ、井戸の掘削にかかるコストを削減できるとしている。   In recent years, in light of the anticipated situation of oil resource depletion in the near future, development of deep oil fields, which has not been seen in the past, has been promoted on a global scale. However, such oil field development requires a large amount of drilling costs, and there is a problem that the cost of oil field development is soaring, and reduction of oil well drilling costs is required. Recently, due to the demand for reducing the oil well drilling cost, in the oil well drilling, for example, as described in Patent Document 1 and Patent Document 2, a construction method using pipe expansion by expansion processing in a well Has been developed. According to this method, the so-called pipe expansion method, the casing size in the upper part of the well can be kept small by burying the casing in the ground and then expanding the casing in the radial direction in the well to form a multistage structure. The cost of drilling wells can be reduced.

このような拡管埋設工法を適用するためには、使用する油井管(ケーシング)用鋼管には、優れた拡管性を有することが要求されることになる。このような要求に対し、例えば特許文献3には、埋設拡管用油井管が記載されている。特許文献3に記載された埋設拡管用油井管は、C:0.05〜0.45%、Si:0.1〜1.5%、Mn:0.1〜3.0%、sol.Al:0.001〜0.05%、Ti:0.005〜0.03%を含み、固溶N量が40ppm以上200ppm以下である油井管であり、さらにNb:0.005〜0.03%、V:0.005〜0.2%、B:0.0005〜0.005%のうちの1種または2種以上、Cr:0.1〜1.5%およびMo:0.1〜1.0%のうちの1種または2種、Ca:0.001〜0.005%を含有してもよいとしている。これにより、高靭性、高耐コラプス性を有しているため、坑井内で拡管しても、信頼性の高い油井管となるとしている。   In order to apply such a pipe burying method, the oil well pipe (casing) steel pipe to be used is required to have excellent pipe expandability. In response to such a requirement, for example, Patent Document 3 describes an oil well pipe for buried pipe expansion. Oil well pipes for buried pipe expansion described in Patent Document 3 are: C: 0.05 to 0.45%, Si: 0.1 to 1.5%, Mn: 0.1 to 3.0%, sol. Al: 0.001 to 0.05%, Ti: 0.005 to 0.03% And a solid solution N amount of 40 ppm or more and 200 ppm or less, and Nb: 0.005 to 0.03%, V: 0.005 to 0.2%, B: 0.0005 to 0.005%, or one or more of them, One or two of Cr: 0.1 to 1.5% and Mo: 0.1 to 1.0%, Ca: 0.001 to 0.005% may be contained. Thereby, since it has high toughness and high collapse resistance, it is said that even if the pipe is expanded in the well, it becomes a highly reliable oil well pipe.

特表平7−567610号公報JP 7-567610 A 国際公開WO98/00626号パンフレットInternational Publication WO98 / 00626 Pamphlet 特開2005−8912号公報JP 2005-8912 A

最近では、さらにケーシングサイズを小さくし、掘削コストが低減できるように、油井内で拡管率が30%、あるいは40%を超えるような拡管加工(押拡げ加工)が可能な油井用鋼管が要求されるようになってきた。しかしながら、特許文献3に記載された技術で製造された油井管では、このような最近の更なる拡管性の向上要求を満足させるに足る、十分な高延性を具備しているとは言い難く、厳しい拡管加工用鋼管としては問題を残していた。   Recently, in order to reduce the casing size further and reduce drilling costs, there is a demand for steel pipes for oil wells that can be expanded (expanded) so that the pipe expansion rate exceeds 30% or 40% in the oil well. It has come to be. However, in the oil well pipe manufactured by the technique described in Patent Document 3, it is difficult to say that it has sufficient high ductility to satisfy the recent demand for further improvement of pipe expandability. There was a problem as a severe steel pipe for pipe expansion.

本発明は、このような従来技術の問題を有利に解決し、安価で、油井用として、優れた拡管性を具備する鋼管を提供することを目的とする。
ここでいう「優れた拡管性」とは、拡管率が40%以上である場合をいうものとする。なお、拡管率は、割れを発生させずに拡管可能な限界拡管率をいうものとし、次式で定義される。
An object of the present invention is to advantageously solve such problems of the prior art, and to provide a steel pipe that is inexpensive and has excellent pipe expandability for use in an oil well.
Here, “excellent tube expandability” refers to a case where the tube expansion rate is 40% or more. The tube expansion rate refers to a limit tube expansion rate that allows tube expansion without causing cracks, and is defined by the following equation.

拡管率(%)=[(拡管後の管の内径)−(拡管前の管の内径)/(拡管前の管の内径)]×100   Expansion rate (%) = [(inner diameter of the tube after expansion) − (inner diameter of the tube before expansion) / (inner diameter of the tube before expansion)] × 100

本発明者らは、上記した目的を達成するために、鋼管の拡管性に及ぼす各種要因の影響について鋭意考究した。その結果、所望の高強度を具備できるようにC、Mn等の合金元素量を適正範囲内に調整するとともに、鋼管のn値が適正範囲内となるように、安定度を向上させた残留オーステナイト(残留γ)を所定の適正範囲内の含有量に調整することにより、高強度と所望の優れた拡管性を兼備した油井用鋼管とすることができることを新たに見出した。   In order to achieve the above-mentioned object, the present inventors diligently studied the influence of various factors on the tube expandability. As a result, the amount of alloying elements such as C and Mn is adjusted within an appropriate range so that the desired high strength can be achieved, and the retained austenite has improved stability so that the n value of the steel pipe is within the appropriate range. It was newly found out that by adjusting (residual γ) to a content within a predetermined appropriate range, a steel pipe for oil wells having both high strength and desired excellent pipe expandability can be obtained.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.04〜0.30%、Si:0.5〜2.0%、Mn:2.0〜4.0%、P:0.07%以下、S:0.01%以下、Al:0.05%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼管を、加熱温度:800〜1050℃の範囲の温度に加熱したのち、200℃以下の温度まで空冷以上の冷却速度で冷却する第一の熱処理と、ついで、加熱温度:650〜750℃の範囲の温度に加熱し、該温度域で、保持時間:300s以上保持したのち、該温度域から、5℃/s未満の平均冷却速度で室温まで冷却する第二の熱処理と、を施すことにより、前記鋼管の組織を、体積率で50%以上の焼戻マルテンサイト相と体積率で15〜29%の残留オーステナイト相を含む組織とすることを特徴とする拡管性に優れた油井用高強度鋼管の製造方法。
(2)(1)において、前記組成に加えてさらに、質量%で、下記A群〜C群
A群:Cr:2.0%以下、Ni:2.0%以下、Mo:2.0%以下、B:0.0005〜0.01%のうちから選ばれた1種または2種以上、
B群:Ca:0.0005〜0.01%、
C群:Cu:3.5%以下、
D群:V:0.20%以下、Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、W:1.0%以下のうちから選ばれた1種または2種以上
のうちから選ばれた1群または2群以上を含有する組成とすることを特徴とする油井用高強度鋼管の製造方法。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.04 to 0.30%, Si: 0.5 to 2.0%, Mn: 2.0 to 4.0%, P: 0.07% or less, S: 0.01% or less, Al: 0.05% or less, and the balance Fe And a first heat treatment in which a steel pipe having a composition composed of inevitable impurities is heated to a temperature in the range of 800 to 1050 ° C. and then cooled to a temperature of 200 ° C. or lower at a cooling rate equal to or higher than air cooling, Heating temperature: Heating to a temperature in the range of 650 to 750 ° C., holding in this temperature range for a holding time of 300 s or more, and then cooling from this temperature range to room temperature at an average cooling rate of less than 5 ° C./s The steel pipe has a microstructure including a tempered martensite phase with a volume ratio of 50% or more and a retained austenite phase with a volume ratio of 15 to 29%. For producing high-strength steel pipes for oil wells with excellent properties.
(2) In (1), in addition to the above composition, the following group A to group C: group A: Cr: 2.0% or less, Ni: 2.0% or less, Mo: 2.0% or less, B: 0.0005- One or more selected from 0.01%,
Group B: Ca: 0.0005 to 0.01%,
C group: Cu: 3.5% or less,
Group D: V: 0.20% or less, Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% or less, W: selected from one or more selected from 1.0% or less The manufacturing method of the high strength steel pipe for oil wells characterized by setting it as the composition containing 1 group or 2 groups or more.

本発明によれば、拡管率が40%以上という苛酷な条件の拡管加工にも耐えられる、拡管性に優れ、かつ引張強さ:600 MPa以上の高強度を有する油井用高強度鋼管を、安価にしかも容易に製造でき、産業上格段の効果を奏する。   According to the present invention, a high-strength steel pipe for oil wells that can withstand pipe expansion under severe conditions with a pipe expansion ratio of 40% or more, has excellent pipe expansion properties, and has a high tensile strength of 600 MPa or more is inexpensive. Moreover, it can be easily manufactured, and has a remarkable industrial effect.

実施例で用いた拡管試験方法の概要を模式的に示す説明図である。It is explanatory drawing which shows typically the outline | summary of the pipe expansion test method used in the Example.

まず、本発明で使用する鋼管の組成限定理由について説明する。以下、とくに断わらない限り組成に関する質量%は、単に%で記す。
C:0.04〜0.30%
Cは、鋼管の強度を増加させる作用を有し、さらに、熱処理時にγ相に濃化して、残留γ相を安定化させる作用を有する有用な元素である。このような効果を得るためには0.04%以上の含有を必要とする。Cの含有量が0.04%未満では、一様伸びが少なく、所望の拡管性を確保できなくなる。一方、0.30%を超える含有は、製造時の焼割れを発生させる危険性が高くなる。このため、Cは0.04〜0.30%の範囲に限定した。なお、好ましくは0.05〜0.20%である。
First, the reasons for limiting the composition of the steel pipe used in the present invention will be described. Hereinafter, unless otherwise specified, the mass% related to the composition is simply expressed as%.
C: 0.04-0.30%
C is a useful element that has the effect of increasing the strength of the steel pipe, and further has the effect of concentrating into the γ phase during heat treatment to stabilize the residual γ phase. In order to obtain such an effect, a content of 0.04% or more is required. If the C content is less than 0.04%, the uniform elongation is small, and the desired tube expandability cannot be ensured. On the other hand, the content exceeding 0.30% increases the risk of causing burning cracks during production. For this reason, C was limited to the range of 0.04 to 0.30%. In addition, Preferably it is 0.05 to 0.20%.

Si:0.5〜2.0%
Siは、脱酸剤として作用するとともに、残留オーステナイト相を安定化し、拡管性の向上に寄与する元素である。さらにSiは、熱処理時にγ相へのCの濃化を促進する作用を有する。このような効果は、0.5%以上の含有で顕著となる。一方、2.0%を超える含有は、上記した効果が飽和するうえ、熱間加工性を著しく低下させる。このため、Siは0.5〜2.0%の範囲に限定した。なお、好ましくは0.7〜1.8%である。
Si: 0.5-2.0%
Si is an element that acts as a deoxidizing agent, stabilizes the retained austenite phase, and contributes to an improvement in tube expandability. Furthermore, Si has an action of promoting the concentration of C in the γ phase during heat treatment. Such an effect becomes remarkable when the content is 0.5% or more. On the other hand, if the content exceeds 2.0%, the above-described effects are saturated and hot workability is remarkably lowered. For this reason, Si was limited to the range of 0.5 to 2.0%. In addition, Preferably it is 0.7 to 1.8%.

Mn:2.0〜4.0%
Mnは、鋼管の強度を増加させる作用を有し、さらに熱処理時にγ相に濃化して、残留γ相を安定化させる作用を有する有用な元素である。このような効果を得るためには2.0%以上の含有を必要とする。一方、4.0%を超える含有は、製造時の焼割れを発生させ、靭性を低下させる等の悪影響を及ぼすことがある。このため、Mnは2.0〜4.0%の範囲に限定した。なお、好ましくは2.5〜3.5%である。
Mn: 2.0-4.0%
Mn is a useful element that has the effect of increasing the strength of the steel pipe, and further has the effect of concentrating into the γ phase during heat treatment to stabilize the residual γ phase. In order to obtain such an effect, a content of 2.0% or more is required. On the other hand, a content exceeding 4.0% may cause adverse effects such as causing cracking during production and reducing toughness. For this reason, Mn was limited to the range of 2.0 to 4.0%. In addition, Preferably it is 2.5 to 3.5%.

P:0.07%以下
Pは、鋼管の強度を増加させる作用を有するが、粒界等に偏析しやすく、熱間加工性、耐硫化物応力腐食割れ性を低下させる。このため、本発明ではできるだけ低減することが好ましいが、極端な低減は製造コストの高騰を招く。本発明では、Pは、熱間加工性や耐硫化物応力腐食割れ性を低下させない範囲であり、比較的安価に実施可能な0.07%を上限とした。
P: 0.07% or less P has the effect of increasing the strength of the steel pipe, but is easily segregated at grain boundaries and the like, and decreases hot workability and resistance to sulfide stress corrosion cracking. For this reason, although it is preferable to reduce as much as possible in this invention, extreme reduction invites the increase in manufacturing cost. In the present invention, P is a range in which hot workability and sulfide stress corrosion cracking resistance are not lowered, and the upper limit is 0.07%, which can be implemented relatively inexpensively.

S:0.01%以下
Sは、鋼中では主としてMn系硫化物MnSとして、粗大で伸展した介在物を形成し、熱間加工性や、靭性や拡管性を著しく低下させるため、できるだけ低減することが好ましい。しかし、極端な低減は製造コストの高騰を招くため、本発明では通常工程による鋼管製造が可能なS含有量の上限である0.01%を、上限とした。なお、好ましくは0.005%以下である。
S: 0.01% or less S can be reduced as much as possible because it forms coarse and extended inclusions as steel, mainly Mn-based sulfide MnS, and significantly reduces hot workability, toughness, and pipe expandability. preferable. However, since extreme reduction leads to an increase in production cost, in the present invention, the upper limit is set to 0.01%, which is the upper limit of the S content that enables steel pipe production by a normal process. In addition, Preferably it is 0.005% or less.

Al:0.05%以下
Alは、脱酸剤として作用する元素であり、このような効果を得るためには0.01%以上含有することが望ましいが、0.05%を超えて含有すると、アルミナ系介在物が増加して、清浄度を低下させ、靭性、拡管性に悪影響を及ぼす。このため、Alは0.05%以下に限定した。なお、好ましくは0.02〜0.05%である。
Al: 0.05% or less
Al is an element that acts as a deoxidizer. In order to obtain such an effect, it is desirable to contain 0.01% or more. However, if it exceeds 0.05%, alumina inclusions increase and cleanliness occurs. Deteriorating the degree, adversely affecting toughness and pipe expandability. For this reason, Al was limited to 0.05% or less. In addition, Preferably it is 0.02 to 0.05%.

上記した成分が基本の組成であるが、必要に応じて、上記した基本の組成に加えてさらに、次A群〜D群
A群:Cr:2.0%以下、Ni:2.0%以下、Mo:2.0%以下、B:0.0005〜0.01%のうちから選ばれた1種または2種以上、
B群:Ca:0.0005〜0.01%、
C群:Cu:3.5%以下、
D群:V:0.20%以下、Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、W:1.0%以下のうちから選ばれた1種または2種以上、
のうちから選ばれた1群または2群以上を含有してもよい。
A群:Cr:2.0%以下、Ni:2.0%以下、Mo:2.0%以下、B:0.0005〜0.01%のうちから選ばれた1種または2種以上
A群のCr、Ni、Mo、Bはいずれも、焼入れ性向上を介して鋼管の強度を増加させる作用を有する元素であり、必要に応じて選択して含有できる。
The above-described components have a basic composition. If necessary, in addition to the basic composition described above, the following group A to group D group A: Cr: 2.0% or less, Ni: 2.0% or less, Mo: 2.0 %, B: one or more selected from 0.0005 to 0.01%,
Group B: Ca: 0.0005 to 0.01%,
C group: Cu: 3.5% or less,
Group D: V: 0.20% or less, Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% or less, W: 1.0% or less selected from 1.0% or less,
1 group or 2 groups or more selected from among them may be contained.
Group A: Cr: 2.0% or less, Ni: 2.0% or less, Mo: 2.0% or less, B: One or more selected from 0.0005 to 0.01% A group Cr, Ni, Mo, B is Any of them is an element having an action of increasing the strength of the steel pipe through the improvement of hardenability, and can be selected and contained as necessary.

Crは、強度を増加させるとともに、耐炭酸ガス腐食性、耐炭酸ガス応力腐食割れ性を向上させる作用を有する元素である。このような効果を得るためには0.20%以上含有することが望ましい。一方、2.0%を超えて含有すると、靭性が低下する。このため、含有する場合には、Crは2.0%以下に限定することが好ましい。
Niは、強度を増加させるとともに、靭性を向上させる作用を有する元素である。このような効果を得るためには0.10%以上含有することが望ましい。一方、2.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できないため経済的に不利となる。このため、含有する場合にはNiは2.0%以下に限定することが好ましい。
Cr is an element that increases the strength and improves the carbon dioxide gas corrosion resistance and the carbon dioxide stress corrosion cracking resistance. In order to acquire such an effect, it is desirable to contain 0.20% or more. On the other hand, when it contains exceeding 2.0%, toughness will fall. For this reason, when contained, Cr is preferably limited to 2.0% or less.
Ni is an element that has the effect of increasing strength and improving toughness. In order to acquire such an effect, it is desirable to contain 0.10% or more. On the other hand, if the content exceeds 2.0%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, when it contains, it is preferable to limit Ni to 2.0% or less.

Moは、強度を増加させるとともに、耐硫化物応力腐食割れ性を向上させる元素である。このような効果を得るためには0.10%以上含有することが望ましい。一方、2.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できないため経済的に不利となる。このため、含有する場合にはMoは2.0%以下に限定することが好ましい。
Bは、少量の含有で焼入れ性を向上させ、鋼管の強度を増加させる作用を有する元素である。このような効果を得るためには0.0005%以上含有することが望ましい。一方、0.01%を超えて含有すると、靭性が低下する。このため、Bは0.0005〜0.01%に限定することが望ましい。
Mo is an element that increases the strength and improves the resistance to sulfide stress corrosion cracking. In order to acquire such an effect, it is desirable to contain 0.10% or more. On the other hand, if the content exceeds 2.0%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, when it contains, it is preferable to limit Mo to 2.0% or less.
B is an element that has the effect of improving the hardenability and increasing the strength of the steel pipe when contained in a small amount. In order to acquire such an effect, it is desirable to contain 0.0005% or more. On the other hand, when it contains exceeding 0.01%, toughness will fall. For this reason, it is desirable to limit B to 0.0005 to 0.01%.

B群:Ca:0.0005〜0.01%
B群のCaは、SをCaSとして固定し、硫化物系介在物を球状化する、介在物の形態制御に有効に寄与する元素である。介在物を球状化することにより、介在物周囲のマトリックスの格子歪が小さくでき、鋼の水素トラップ能を低下させることができ、耐硫化物応力腐食割れ性を向上させることができる。このような効果を得るためには0.0005%以上含有することが好ましい。一方、0.01%を超える含有は、酸化物系介在物(CaO)量の増加を招き、耐炭酸ガス腐食性、耐孔食性が低下する。このため、含有する場合には、Caは0.0005〜0.01%の範囲に限定することが好ましい。
Group B: Ca: 0.0005 to 0.01%
B group Ca is an element that contributes effectively to inclusion morphology control, fixing S as CaS and spheroidizing sulfide inclusions. By making the inclusions spherical, the lattice strain of the matrix around the inclusions can be reduced, the hydrogen trapping ability of the steel can be reduced, and the resistance to sulfide stress corrosion cracking can be improved. In order to acquire such an effect, it is preferable to contain 0.0005% or more. On the other hand, if the content exceeds 0.01%, the amount of oxide inclusions (CaO) is increased, and the carbon dioxide corrosion resistance and pitting corrosion resistance are reduced. For this reason, when it contains, it is preferable to limit Ca to 0.0005 to 0.01% of range.

C群:Cu:3.5%以下
C群のCuは、保護皮膜を強化し鋼中への水素の侵入を抑制し、耐硫化物応力腐食割れ性を向上させる元素である。このような効果を得るためには、0.10%以上含有させることが望ましいが、3.5%を超えて含有すると、CuSが粒界に析出し、熱間加工性が低下する。このため、含有する場合には、3.5%以下に限定することが好ましい。
Group C: Cu: 3.5% or less Group C Cu is an element that strengthens the protective film and suppresses the penetration of hydrogen into the steel and improves the resistance to sulfide stress corrosion cracking. In order to acquire such an effect, it is desirable to make it contain 0.10% or more, but when it contains exceeding 3.5%, CuS will precipitate to a grain boundary and hot workability will fall. For this reason, when it contains, it is preferable to limit to 3.5% or less.

D群:Ti:0.3%以下、V:0.2%以下、Nb:0.2%以下、Zr:0.2%以下、W:1.0%以下のうちから選ばれた1種または2種以上、
D群のTi、V、Nb、Zr、Wはいずれも、鋼中に固溶しあるいは炭化物、窒化物として析出し、鋼管の強度を増加させる作用を有するとともに、さらに耐応力腐食割れ性を向上させる作用を有する元素であり、必要に応じて選択して1種または2種以上含有できる。このような効果を得るためには、Ti:0.02%以上、V:0.01%以上、Nb:0.01%以上、Zr:0.01%以上、W:0.02%以上それぞれ含有することが望ましい。一方、Ti:0.3%、V:0.2%、Nb:0.2%、Zr:0.2%、W:1.0%を、それぞれ超える含有は、靭性を劣化させる。このため、含有する場合には、それぞれ、Ti:0.3%以下、V:0.2%以下、Nb:0.2%以下、Zr:0.2%以下、W:1.0%以下に限定することが好ましい。
Group D: Ti: 0.3% or less, V: 0.2% or less, Nb: 0.2% or less, Zr: 0.2% or less, W: 1.0% or less selected from 1.0% or less,
D, Ti, V, Nb, Zr, and W are all dissolved in steel or precipitated as carbides and nitrides to increase the strength of the steel pipe and further improve the resistance to stress corrosion cracking. It is an element which has the effect | action to make it select as needed, and can contain 1 type, or 2 or more types. In order to obtain such an effect, it is desirable to contain Ti: 0.02% or more, V: 0.01% or more, Nb: 0.01% or more, Zr: 0.01% or more, W: 0.02% or more. On the other hand, the content exceeding Ti: 0.3%, V: 0.2%, Nb: 0.2%, Zr: 0.2%, W: 1.0% respectively deteriorates toughness. For this reason, when it contains, it is preferable to limit to Ti: 0.3% or less, V: 0.2% or less, Nb: 0.2% or less, Zr: 0.2% or less, and W: 1.0% or less, respectively.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、N:0.01%以下、O:0.006%以下が許容できる。
N:0.01%以下
Nは、過剰に含有すると粗大な窒化物を形成し、靭性や拡管性を低下させる。このため、0.01%以下に調整することが望ましい。
The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include N: 0.01% or less and O: 0.006% or less.
N: 0.01% or less When N is excessively contained, coarse nitrides are formed, and toughness and pipe expandability are reduced. For this reason, it is desirable to adjust to 0.01% or less.

O:0.006%以下
Oは、過剰に含有すると介在物が増加しすぎて、凝集し介在物として存在しやすくなり、靭性や拡管性を低下させる。このため、0.006%以下に調整することが望ましい。
本発明で使用する鋼管の製造方法については、とくに限定する必要はなく、上記した組成を有し、通常公知の方法で製造された、溶接鋼管、継目無鋼管等がいずれも好適である。ここでは、継目無鋼管を例にとり、以下に本発明の鋼管の製造方法を具体的に説明する。なお、本発明は継目無鋼管に、限定されないことは言うまでもない。
O: 0.006% or less When O is contained excessively, inclusions increase excessively, tend to aggregate and exist as inclusions, and lower toughness and tube expandability. For this reason, it is desirable to adjust to 0.006% or less.
The manufacturing method of the steel pipe used in the present invention is not particularly limited, and any of a welded steel pipe and a seamless steel pipe having the above-described composition and manufactured by a generally known method is suitable. Here, taking a seamless steel pipe as an example, the method for producing a steel pipe of the present invention will be specifically described below. In addition, it cannot be overemphasized that this invention is not limited to a seamless steel pipe.

まず、上記した組成の溶鋼を、転炉、電気炉等の通常公知の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延法等の通常公知の方法で、ビレット等の鋼管素材とする。ついで、これら鋼管素材を加熱し、マンネスマン−プラグミル方式、マンネスマン−マンドレルミル方式等の穿孔圧延装置を用いて、造管して、所定寸法の継目無鋼管とする。なお、本発明で素材として使用する継目無鋼管は、上記した製造方法に限定されないことは言うまでもない。   First, the molten steel having the above composition is melted by a generally known melting method such as a converter or an electric furnace, and a steel pipe such as a billet by a generally known method such as a continuous casting method or an ingot-bundling rolling method. The material. Subsequently, these steel pipe materials are heated and piped using a piercing and rolling apparatus such as a Mannesmann-plug mill system or a Mannesmann-Mandrel mill system to obtain a seamless steel pipe having a predetermined size. In addition, it cannot be overemphasized that the seamless steel pipe used as a raw material by this invention is not limited to an above-described manufacturing method.

本発明では、好ましくは上記した方法で製造された鋼管(継目無鋼管)に、第一の熱処理とそれに続く、第二の熱処理を施し、油井用高強度鋼管(継目無鋼管)とする。
第一の熱処理は、鋼管(継目無鋼管)を、加熱温度:800〜1050℃の範囲の温度に再加熱し、好ましくは所定の時間保持したのち、200℃以下の温度まで空冷以上の冷却速度で冷却する処理とする。
In the present invention, preferably, a steel pipe (seamless steel pipe) manufactured by the above-described method is subjected to a first heat treatment followed by a second heat treatment to obtain a high-strength steel pipe for oil wells (seamless steel pipe).
In the first heat treatment, the steel pipe (seamless steel pipe) is reheated to a temperature in the range of 800 to 1050 ° C., preferably held for a predetermined time, and then cooled to a temperature of 200 ° C. or lower by air cooling or higher. Cooling is performed at

本発明における第一の熱処理では、組織を面積率で80%以上のマルテンサイト相を主体とした組織に調整する。鋼管組織を上記したマルテンサイト相を主体とした組織とすることができなければ、その後の第二の熱処理で、所望の高強度を確保できないうえ、安定した残留オーステナイト相を適正量析出させることができない。
第一の熱処理における加熱温度が800℃未満では、十分なマルテンサイト相を主体とした組織とすることができない場合があり、所望の強度、拡管性を確保できなくなる。一方、1050℃を超えて高温となると、結晶粒が粗大化する傾向となり、靭性、延性が低下する。このようなことから、第一の熱処理における加熱温度は800〜1050℃の範囲の温度に限定した。なお、上記した加熱温度における保持時間は、300s程度以上とすることが好ましいが、保持なしでもなんら問題はない。
In the first heat treatment in the present invention, the structure is adjusted to a structure mainly composed of a martensite phase having an area ratio of 80% or more. If the steel pipe structure cannot be made a structure mainly composed of the martensite phase described above, the desired high strength cannot be secured in the subsequent second heat treatment, and an appropriate amount of stable retained austenite phase can be precipitated. Can not.
If the heating temperature in the first heat treatment is less than 800 ° C., it may not be possible to obtain a structure mainly composed of a sufficient martensite phase, and desired strength and tube expandability cannot be ensured. On the other hand, when the temperature is higher than 1050 ° C., the crystal grains tend to be coarsened and the toughness and ductility are lowered. For this reason, the heating temperature in the first heat treatment was limited to a temperature in the range of 800 to 1050 ° C. The holding time at the above heating temperature is preferably about 300 s or more, but there is no problem even without holding.

第一の熱処理においては、加熱し、好ましくは上記した所定時間保持したのち、200℃以下、好ましくは室温まで、空冷以上の冷却速度で冷却する。冷却速度が空冷未満では、冷却が遅すぎて、所望のマルテンサイト相を主体とした組織とすることができず、所望の高強度と優れた拡管性を確保できなくなる。
上記した第一の熱処理を施された鋼管に、ついで、第二の熱処理として、加熱温度:650〜750℃の範囲の温度に加熱し、該温度域で、保持時間:300s以上保持したのち、該温度域から、5℃/s未満の平均冷却速度で室温まで冷却する処理を施す。
In the first heat treatment, after heating and preferably holding for a predetermined time as described above, cooling to 200 ° C. or lower, preferably room temperature, at a cooling rate equal to or higher than air cooling. If the cooling rate is less than air cooling, the cooling is too slow to obtain a structure mainly composed of a desired martensite phase, and the desired high strength and excellent tube expandability cannot be ensured.
After heating the steel pipe subjected to the first heat treatment to a temperature in the range of 650 to 750 ° C. as the second heat treatment, and holding in the temperature range for 300 seconds or more, From the temperature range, a process of cooling to room temperature at an average cooling rate of less than 5 ° C./s is performed.

第二の熱処理は、第一の熱処理で得られたマルテンサイト相を主体とする組織をベースとして、該組織を焼戻して所望の高強度を維持しつつ、安定した残留γ相を所定量析出させて、0.12以上という高いn値の鋼管とし、優れた拡管性を確保するための、重要な処理である。
第二の熱処理における加熱温度が650℃未満では、加熱温度が低く、加熱時に十分な量のオーステナイトが析出せず、その後の冷却で所定量の残留γ相を確保できない。一方、750℃を超えて高温となると、オ−ステナイト量が多くなりすぎ、適正量の安定した残留γ相を確保できない。このようなことから、第二の熱処理における加熱温度は650〜750℃の範囲の温度に限定した。
The second heat treatment is based on the structure mainly composed of the martensite phase obtained in the first heat treatment, tempering the structure to maintain a desired high strength, and depositing a predetermined amount of stable residual γ phase. Therefore, it is an important treatment to ensure a high n value steel pipe of 0.12 or more and to ensure excellent pipe expandability.
When the heating temperature in the second heat treatment is less than 650 ° C., the heating temperature is low, a sufficient amount of austenite does not precipitate during heating, and a predetermined amount of residual γ phase cannot be secured by subsequent cooling. On the other hand, when the temperature is higher than 750 ° C., the amount of austenite increases too much, and an appropriate amount of a stable residual γ phase cannot be secured. For this reason, the heating temperature in the second heat treatment was limited to a temperature in the range of 650 to 750 ° C.

さらに、第二の熱処理においては、上記した温度域で、保持時間:300s以上保持する。該温度域での保持時間が300s未満では、析出したγ相への、C,Mn,Si等の合金元素の拡散が不十分となり、所望の残留γ相の安定性を確保できなくなる。
第二の熱処理では、ついで、上記した温度域から、5℃/s未満の冷却速度で室温まで冷却する。これにより、所望量の安定な残留γ相を確保でき、優れた拡管性を確保できる。
Further, in the second heat treatment, the holding time is held for 300 seconds or more in the above temperature range. If the holding time in the temperature range is less than 300 s, the diffusion of alloy elements such as C, Mn, Si, etc. into the precipitated γ phase becomes insufficient, and the stability of the desired residual γ phase cannot be ensured.
In the second heat treatment, cooling is then performed from the above temperature range to room temperature at a cooling rate of less than 5 ° C./s. As a result, a desired amount of stable residual γ phase can be secured, and excellent tube expandability can be secured.

上記した加熱温度域から冷却するにあたり、平均の冷却速度が5℃/s以上では、冷却速度が速すぎて、得られる残留γ相の安定性が低くなる。残留γ相の安定性が低いと、n値が低下し、所望の優れた拡管性を確保することが困難となる。このため、第二の熱処理では、加熱温度域からの冷却を、平均の冷却速度で、5℃/s未満に限定した。
上記した製造方法で得られる鋼管(継目無鋼管)は、上記した組成と、焼戻マルテンサイト相を主相とし、安定な残留γ相を含む組織を有し、引張強さTS:600MPa以上の高強度を有し、拡管性に優れた高強度鋼管(継目無鋼管)となる。なお、ここでいう「主相」とは、体積率で50%以上の相をいうものとする。焼戻マルテンサイト相以外の第2相は、残留γ相以外に、フェライト相を体積率で20%以下を含んでもよい。
In cooling from the above-described heating temperature range, when the average cooling rate is 5 ° C./s or more, the cooling rate is too high and the stability of the obtained residual γ phase becomes low. If the stability of the residual γ phase is low, the n value decreases, and it becomes difficult to ensure the desired excellent tube expandability. For this reason, in the second heat treatment, cooling from the heating temperature range was limited to an average cooling rate of less than 5 ° C./s.
The steel pipe (seamless steel pipe) obtained by the manufacturing method described above has the above composition, a structure containing a tempered martensite phase as a main phase and a stable residual γ phase, and a tensile strength of TS: 600 MPa or more. It becomes a high-strength steel pipe (seamless steel pipe) having a high strength and excellent pipe expandability. Here, the “main phase” means a phase having a volume ratio of 50% or more. The second phase other than the tempered martensite phase may contain a ferrite phase in a volume ratio of 20% or less in addition to the residual γ phase.

表1に示す組成の溶鋼を、真空溶解炉で溶製し、十分に脱ガス処理を行い、小型鋼塊(100キロ鋼塊)とした。ついで、これら鋼塊を加熱し、研究用モデルシームレス圧延機を用いて、継目無鋼管(外径:33in.φ×肉厚0.5in.)とした。
これら鋼管を素材とし、該素材から試験材(管材:長さ300mm)を採取し、該試験材に、表2に示す第一の熱処理および第二の熱処理を施した。熱処理済みの試験材について、組織観察、引張試験、拡管試験を行なった。試験方法は次のとおりである。
(1)組織観察
熱処理済みの試験材から、観察面が管軸方向断面(L断面)となるように、組織観察用試験片を採取し、研磨、腐食(ナイタール腐食)して、光学顕微鏡(倍率:400倍)および走査型電子顕微鏡(倍率:1000倍)を用いて、組織を観察し撮像して、画像解析装置により、組織の同定、および各相の組織分率(面積%)を求めた。なお、残留γ相は、X線回折により得られる、αとγの回折強度を用いて、定量した。
(2)引張試験
熱処理済みの試験材から、引張方向が管軸方向となるように、JIS Z 2201の規定に準拠してJIS 12B号試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS、全伸びEl、一様伸びEl)を求めた。なお、同時に、全領域にわたり、真応力と真歪(対数歪)との関係を測定し、n値を算出した。なお、得られた真応力σと対数歪εの関係は、次式
σ=Cε
で近似し、σとεを両対数グラフにプロットし、その直線の傾きから、n値を求めた。
(3)拡管試験
熱処理済みの試験材(管材)について、押拡げ加工法による拡管試験を実施した。押拡げ加工法は、図1に示すように、プラグ2を試験材(管材1)の管内に挿入し、該プラグ2を機械的に引抜き方向3に引き抜き、試験材(管材1)の管径を押拡げる加工法である。挿入するプラグ2は、管材1の内径Dより大きい最大外径Dを有する。拡管率は、拡管前後の平均内径を使用して求めた。なお、プラグ2の最大外径Dは、拡管率が5%間隔で変化するようにして拡管した。管材1に亀裂が発生する最小の径を限界拡管径として、各鋼管の限界拡管率を求めた。
Molten steel having the composition shown in Table 1 was melted in a vacuum melting furnace and sufficiently degassed to obtain a small steel ingot (100 kg steel ingot). Subsequently, these steel ingots were heated and made into seamless steel pipes (outer diameter: 33 in.φ × thickness 0.5 in.) Using a model seamless rolling mill for research.
Using these steel pipes as raw materials, test materials (tube materials: length of 300 mm) were collected from the raw materials, and the test materials were subjected to the first heat treatment and the second heat treatment shown in Table 2. The heat-treated test material was subjected to structure observation, tensile test, and tube expansion test. The test method is as follows.
(1) Microstructure observation From a heat-treated test material, a specimen for microstructural observation is collected so that the observation surface has a cross section in the tube axis direction (L cross section), polished, and corroded (Nital corrosion). Magnification: 400 times) and a scanning electron microscope (magnification: 1000 times), the tissue is observed and imaged, and the tissue is identified and the tissue fraction (area%) of each phase is obtained by an image analyzer. It was. The residual γ phase was quantified using α and γ diffraction intensities obtained by X-ray diffraction.
(2) Tensile test JIS 12B specimens were collected from the heat-treated test material in accordance with the provisions of JIS Z 2201 so that the tensile direction is the pipe axis direction, and in accordance with the provisions of JIS Z 2241. Tensile tests were carried out to determine tensile properties (yield strength YS, tensile strength TS, total elongation El, uniform elongation El u ). At the same time, the relationship between true stress and true strain (logarithmic strain) was measured over the entire region, and the n value was calculated. Incidentally, the relationship between true stress sigma a logarithmic strain epsilon a obtained, the following equation σ a = Cε a n
Σ a and ε a were plotted on a log-log graph, and the n value was obtained from the slope of the straight line.
(3) Tube expansion test A tube expansion test was conducted on the heat-treated test material (tube material) by the expansion method. As shown in FIG. 1, the expansion process is performed by inserting the plug 2 into the pipe of the test material (pipe material 1), and mechanically pulling the plug 2 in the drawing direction 3 to obtain the pipe diameter of the test material (pipe material 1). Is a processing method that spreads The plug 2 to be inserted has a maximum outer diameter D 1 that is larger than the inner diameter D 0 of the tube material 1. The tube expansion rate was determined using the average inner diameter before and after tube expansion. The maximum outer diameter D 1 of the plug 2, and tube expansion as the expansion ratio is varied by 5% intervals. The minimum diameter at which the cracks occurred in the tube material 1 was taken as the limit expansion diameter, and the limit expansion ratio of each steel pipe was determined.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0005493975
Figure 0005493975

Figure 0005493975
Figure 0005493975

Figure 0005493975
Figure 0005493975

本発明例はいずれも、適正範囲の安定した残留オーステナイト量を確保でき、40%以上の高い限界拡管率を有する、拡管性に優れた鋼管となっている。一方、本発明の範囲を外れる比較例では、所望の限界拡管率を確保できていない。   In all of the examples of the present invention, a stable amount of retained austenite in an appropriate range can be secured, and the steel tube has a high limit tube expansion rate of 40% or more and excellent in tube expandability. On the other hand, in the comparative example outside the scope of the present invention, the desired limit tube expansion rate cannot be ensured.

1 管材(試験材)
2 プラグ
3 引抜き方向
1 Tube material (test material)
2 Plug 3 Pull-out direction

Claims (2)

質量%で、
C:0.04〜0.30%、 Si:0.5〜2.0%、
Mn:2.0〜4.0%、 P:0.07%以下、
S:0.01%以下、 Al:0.05%以下
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼管に、
加熱温度:800〜1050℃の範囲の温度に加熱したのち、200℃以下の温度まで空冷以上の冷却速度で冷却する第一の熱処理と、ついで、
加熱温度:650〜750℃の範囲の温度に加熱し、該温度域で、保持時間:300s以上保持したのち、該温度域から、5℃/s未満の平均冷却速度で室温まで冷却する第二の熱処理と、
を施すことにより、前記鋼管の組織を、体積率で50%以上の焼戻マルテンサイト相と体積率で15〜29%の残留オーステナイト相を含む組織とすることを特徴とする拡管性に優れた油井用高強度鋼管の製造方法。
% By mass
C: 0.04 to 0.30%, Si: 0.5 to 2.0%,
Mn: 2.0 to 4.0%, P: 0.07% or less,
A steel pipe having a composition comprising S: 0.01% or less, Al: 0.05% or less, the balance being Fe and inevitable impurities,
Heating temperature: after heating to a temperature in the range of 800 to 1050 ° C. and then cooling to a temperature of 200 ° C. or lower at a cooling rate of air cooling or higher,
Heating temperature: Heating to a temperature in the range of 650 to 750 ° C., holding in this temperature range for a holding time of 300 s or more, and then cooling from this temperature range to room temperature at an average cooling rate of less than 5 ° C./s Heat treatment of
By applying the steel pipe, the structure of the steel pipe is excellent in pipe expandability characterized by having a structure containing a tempered martensite phase of 50% or more by volume and a residual austenite phase of 15 to 29% by volume . Manufacturing method of high strength steel pipe for oil well.
前記組成に加えてさらに、質量%で、下記A群〜D群のうちから選ばれた1群または2群以上を含有する組成とすることを特徴とする請求項1に記載の油井用鋼管の製造方法。

A群:Cr:2.0%以下、Ni:2.0%以下、Mo:2.0%以下、B:0.0005〜0.01%のうちから選ばれた1種または2種以上、
B群:Ca:0.0005〜0.01%、
C群:Cu:3.5%以下、
D群:V:0.20%以下、Nb:0.20%以下、Ti:0.3%以下、Zr:0.2%以下、W:1.0%以下のうちから選ばれた1種または2種以上
In addition to the said composition, it is set as the composition containing 1 group or 2 groups or more selected from the following A group-D group by the mass%, The steel pipe for oil wells of Claim 1 characterized by the above-mentioned. Production method.
Group A: Cr: 2.0% or less, Ni: 2.0% or less, Mo: 2.0% or less, B: one or more selected from 0.0005 to 0.01%,
Group B: Ca: 0.0005 to 0.01%,
C group: Cu: 3.5% or less,
Group D: V: 0.20% or less, Nb: 0.20% or less, Ti: 0.3% or less, Zr: 0.2% or less, W: 1.0% or less selected from 1% or more
JP2010033387A 2010-02-18 2010-02-18 Manufacturing method of steel pipe for oil well with excellent pipe expandability Active JP5493975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033387A JP5493975B2 (en) 2010-02-18 2010-02-18 Manufacturing method of steel pipe for oil well with excellent pipe expandability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033387A JP5493975B2 (en) 2010-02-18 2010-02-18 Manufacturing method of steel pipe for oil well with excellent pipe expandability

Publications (2)

Publication Number Publication Date
JP2011168833A JP2011168833A (en) 2011-09-01
JP5493975B2 true JP5493975B2 (en) 2014-05-14

Family

ID=44683246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033387A Active JP5493975B2 (en) 2010-02-18 2010-02-18 Manufacturing method of steel pipe for oil well with excellent pipe expandability

Country Status (1)

Country Link
JP (1) JP5493975B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412365B1 (en) 2012-03-29 2014-06-27 현대제철 주식회사 High strength steel sheet and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415414A (en) * 1977-07-06 1979-02-05 Kawasaki Steel Co Method of making steel pipe having good colddtoughness and abrasionnresistance
JP4513496B2 (en) * 2003-10-20 2010-07-28 Jfeスチール株式会社 Seamless oil well steel pipe for pipe expansion and manufacturing method thereof
JP4367259B2 (en) * 2004-06-25 2009-11-18 Jfeスチール株式会社 Seamless steel pipe for oil wells with excellent pipe expandability
AR054935A1 (en) * 2005-08-22 2007-07-25 Sumitomo Metal Ind STEEL TUBE WITHOUT SEWING FOR PIPES AND PROCEDURE FOR MANUFACTURING

Also Published As

Publication number Publication date
JP2011168833A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
JP5971435B1 (en) High strength seamless steel pipe for oil well and method for producing the same
CA2766028C (en) High-strength seamless steel tube, having excellent resistance to sulfide stress cracking, for oil wells and method for manufacturing the same
JP5387799B1 (en) Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking
JP5145793B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP6369547B2 (en) Low alloy oil well steel pipe
JP6369662B1 (en) Duplex stainless steel and manufacturing method thereof
WO2019035329A1 (en) High strength stainless seamless steel pipe for oil wells, and method for producing same
JP6172391B2 (en) Low alloy oil well steel pipe
JP6146542B2 (en) Steel pipe for thick oil well and manufacturing method thereof
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
WO2019225281A1 (en) Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
JP6418333B2 (en) Stainless steel pipe and manufacturing method thereof
JP2008297602A (en) Stainless steel pipe having superior pipe expandability for oil well, and manufacturing method therefor
JP4367259B2 (en) Seamless steel pipe for oil wells with excellent pipe expandability
JP2008291322A (en) Steel pipe for oil well having excellent pipe expandability and its manufacturing method
JP6292142B2 (en) Manufacturing method of high strength stainless steel seamless steel pipe for oil well
WO2019225280A1 (en) Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
JP2007332431A (en) Stainless steel pipe for oil well having excellent pipe expansibility
EP3133182A1 (en) Hot-rolled wire
JP2019065343A (en) Steel pipe for oil well and manufacturing method therefor
JP6315076B2 (en) Manufacturing method of high strength stainless steel seamless steel pipe for oil well
JP7207557B2 (en) Stainless seamless steel pipe for oil country tubular goods and manufacturing method thereof
JP5493975B2 (en) Manufacturing method of steel pipe for oil well with excellent pipe expandability
JP5040215B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5493975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250