JP5488724B2 - Resonant contactless power supply system - Google Patents

Resonant contactless power supply system Download PDF

Info

Publication number
JP5488724B2
JP5488724B2 JP2012557105A JP2012557105A JP5488724B2 JP 5488724 B2 JP5488724 B2 JP 5488724B2 JP 2012557105 A JP2012557105 A JP 2012557105A JP 2012557105 A JP2012557105 A JP 2012557105A JP 5488724 B2 JP5488724 B2 JP 5488724B2
Authority
JP
Japan
Prior art keywords
resonance
power supply
power
coil
resonance coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012557105A
Other languages
Japanese (ja)
Other versions
JP2013539647A (en
Inventor
和良 高田
定典 鈴木
慎平 迫田
幸宏 山本
真士 市川
達 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012557105A priority Critical patent/JP5488724B2/en
Publication of JP2013539647A publication Critical patent/JP2013539647A/en
Application granted granted Critical
Publication of JP5488724B2 publication Critical patent/JP5488724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明は、共鳴型非接触給電システムに係り、詳しくは移動体に搭載された蓄電装置に非接触で充電を行う場合に好適な共鳴型非接触給電システムに関する。   The present invention relates to a resonance-type non-contact power supply system, and more particularly to a resonance-type non-contact power supply system suitable for charging a power storage device mounted on a moving body in a non-contact manner.

従来、特許文献1に記載されているように、共鳴法によって車両外部の電源からワイヤレスで充電電力を受電し、車載の蓄電装置を充電可能な充電システムが提案されている。上記公報の充電システムは、電動車両と給電装置とを備え、電動車両は、2次自己共振コイル(2次側共鳴コイル)と2次コイルと、整流器と蓄電装置とを含み、給電装置は、高周波電力ドライバと、1次コイルと、1次自己共振コイル(1次側共鳴コイル)とを備える。2次自己共振コイルの巻数は、蓄電装置の電圧、1次自己共振コイルと2次自己共振コイルとの距離、1次自己共振コイル及び2次自己共振コイルの共鳴周波数に基づいて設定される。給電装置と車両との間の距離は、車両の状況(積載状況やタイヤの空気圧等)によって変化する。給電装置の1次自己共振コイルと車両の2次自己共振コイルとの間の距離の変化は、1次自己共振コイル及び2次自己共振コイルの共鳴周波数に変化をもたらす。そこで、2次自己共振コイルの導線間に可変コンデンサを接続し、蓄電装置の充電時に、蓄電装置の充電電力を電圧センサ及び電流センサの検出値に基づいて算出し、その充電電力が最大となるように、2次自己共振コイルの可変コンデンサの容量を調整することにより2次自己共振コイルのLC共振周波数を調整することが開示されている。   Conventionally, as described in Patent Document 1, there has been proposed a charging system capable of receiving charging power wirelessly from a power source outside the vehicle by a resonance method and charging an in-vehicle power storage device. The charging system of the above publication includes an electric vehicle and a power supply device, and the electric vehicle includes a secondary self-resonant coil (secondary resonance coil), a secondary coil, a rectifier, and a power storage device. A high-frequency power driver, a primary coil, and a primary self-resonant coil (primary resonance coil) are provided. The number of turns of the secondary self-resonant coil is set based on the voltage of the power storage device, the distance between the primary self-resonant coil and the secondary self-resonant coil, and the resonant frequency of the primary self-resonant coil and the secondary self-resonant coil. The distance between the power feeding device and the vehicle varies depending on the vehicle status (loading status, tire pressure, etc.). A change in the distance between the primary self-resonant coil of the power supply apparatus and the secondary self-resonant coil of the vehicle causes a change in the resonance frequency of the primary self-resonant coil and the secondary self-resonant coil. Therefore, a variable capacitor is connected between the conductors of the secondary self-resonant coil, and when the power storage device is charged, the charging power of the power storage device is calculated based on the detection values of the voltage sensor and the current sensor, and the charging power is maximized. Thus, it is disclosed that the LC resonance frequency of the secondary self-resonant coil is adjusted by adjusting the capacitance of the variable capacitor of the secondary self-resonant coil.

特開平2009−106136号公報JP 2009-106136 A

特許文献1には、1次自己共振コイルと2次自己共振コイルとの距離が、車両の状況によって変化した場合にも、給電側から受電側に電力を効率良く供給する方法として、蓄電装置の充電時に、蓄電装置の充電電力が最大となるように、2次自己共振コイルの可変コンデンサの容量を調整する方法が開示されている。この場合、車両が適正な充電位置に停車している状態で、車両の状況によって1次自己共振コイルと2次自己共振コイルとの距離が変化した場合を前提としている。そのため、車両を所定の充電停止位置に停止させるために、給電側の共鳴コイルと受電側の共鳴コイルとの距離を検出することに関しては何ら記載がない。   Patent Document 1 discloses a method for efficiently supplying power from the power supply side to the power reception side even when the distance between the primary self-resonance coil and the secondary self-resonance coil changes depending on the situation of the vehicle. A method of adjusting the capacity of the variable capacitor of the secondary self-resonant coil so that the charging power of the power storage device is maximized during charging is disclosed. In this case, it is assumed that the distance between the primary self-resonant coil and the secondary self-resonant coil changes depending on the state of the vehicle while the vehicle is stopped at an appropriate charging position. Therefore, there is no description regarding detecting the distance between the resonance coil on the power supply side and the resonance coil on the power reception side in order to stop the vehicle at a predetermined charging stop position.

車両が充電のための所定位置に駐車する場合、共鳴系の共鳴状態を検出しながら、給電側の共鳴コイルと受電側の共鳴コイルとの間の距離が給電側から電力を効率良く受電するのに適した距離になるように車両を停止する方法が考えられる。この場合、車両が駐車を開始するまでに給電装置を給電側から充電時の電力を供給する状態にした上で、車両は共鳴系の共鳴状態を検出しながら適切な位置に停止する必要がある。そのため、充電開始までに無駄な電力消費が生じる。   When the vehicle is parked at a predetermined position for charging, the distance between the resonance coil on the power supply side and the resonance coil on the power reception side efficiently receives power from the power supply side while detecting the resonance state of the resonance system. It is conceivable to stop the vehicle so that the distance is suitable for the vehicle. In this case, the vehicle needs to stop at an appropriate position while detecting the resonance state of the resonance system after the power supply device is in a state of supplying power during charging from the power supply side before the vehicle starts parking. . Therefore, useless power consumption occurs before the start of charging.

本発明の目的は、給電側の共鳴コイルと受電側の共鳴コイルとの距離を移動体側で検出して、給電側から電力を効率良く受電側に供給することができる位置に移動体を停止することができ、且つ電力消費を低減することができる共鳴型非接触給電システムを提供することにある。   An object of the present invention is to detect the distance between the resonance coil on the power supply side and the resonance coil on the power reception side on the mobile body side, and stop the mobile body at a position where power can be efficiently supplied from the power supply side to the power reception side. Another object of the present invention is to provide a resonance type non-contact power feeding system that can reduce power consumption.

上記目的を達成するため、本発明の一態様では、給電側設備と、移動体側設備と、を備える共鳴型非接触給電システムが提供される。前記給電側設備は、交流電源と、1次側共鳴コイルと、制御装置と、を備える。前記1次側共鳴コイルは、前記交流電源から電力の供給を受ける。前記制御装置は、前記交流電源を制御する。前記移動体側設備は、2次側共鳴コイルと、整流器と、蓄電装置と、距離検出部と、高周波電源と、を備える。前記2次側共鳴コイルは、前記1次側共鳴コイルからの電力を受電する。前記整流器は、前記2次側共鳴コイルが受電した電力を整流する。前記蓄電装置には、前記整流器により整流された電力が供給される。前記距離検出部及び前記高周波電源は、前記1次側共鳴コイルと前記2次側共鳴コイルとの間の距離を検出するように協働する。前記制御装置は、前記距離検出部による前記距離の検出時には前記交流電源を準備状態に保持する。前記制御装置は、前記距離の検出終了後には前記交流電源を給電状態に立ち上げる。   In order to achieve the above object, in one embodiment of the present invention, a resonance-type non-contact power feeding system including a power feeding side facility and a moving body side facility is provided. The power supply side facility includes an AC power source, a primary resonance coil, and a control device. The primary resonance coil is supplied with electric power from the AC power source. The control device controls the AC power supply. The moving body side equipment includes a secondary resonance coil, a rectifier, a power storage device, a distance detection unit, and a high frequency power source. The secondary resonance coil receives power from the primary resonance coil. The rectifier rectifies the electric power received by the secondary resonance coil. The electric power rectified by the rectifier is supplied to the power storage device. The distance detector and the high frequency power supply cooperate to detect a distance between the primary resonance coil and the secondary resonance coil. The control device holds the AC power supply in a ready state when the distance detection unit detects the distance. The control device starts up the AC power supply in a power supply state after the detection of the distance.

ここで、「準備状態」とは、コンピュータのスタンバイ状態のように、交流電源からの電力の供給は停止されるが、交流電源と制御装置との信号授受は最低限可能な状態のことを意味する。また、「給電状態に立ち上げる」とは、交流電源を、移動体設備に充電のための電力を供給する状態にすることを意味する。   Here, the “prepared state” means that the power supply from the AC power supply is stopped as in the computer standby state, but the signal exchange between the AC power supply and the control device is at least possible. To do. Further, “starting up to a power supply state” means that the AC power supply is in a state of supplying power for charging to the mobile facility.

この発明では、給電側設備から移動体側設備の蓄電装置への電力供給に先立って、2次側共鳴コイルと1次側共鳴コイルとの間の距離が検出される。この距離検出のときは、距離検出用高周波電源から共鳴系に高周波電力が出力され、共鳴系の入力インピーダンスに基づいて距離検出部により2次側共鳴コイルと1次側共鳴コイルとの間の距離が検出される。「共鳴系」は、1次側共鳴コイルと2次側共鳴コイルとを有する。加えて、移動体側設備における距離検出時には、「共鳴系」は、距離検出用高周波電源と2次側共鳴コイルとの間に存在する回路部品(例えば、整合器や2次コイル)と、給電側設備の1次側共鳴コイルと交流電源との間に存在する回路部品(例えば、1次コイルや整合器)とを含む。一方、2次側共鳴コイルの1次側共鳴コイルからの電力受電時には、「共鳴系」は、交流電源と1次側共鳴コイルとの間に存在する回路部品(例えば、整合器や1次コイル)と、2次側共鳴コイルから電力が供給される整流器、蓄電装置、及び2次側共鳴コイルと整流器との間に存在する回路部品(例えば、整合器や2次コイル)をさらに含む。また、「共鳴系の入力インピーダンス」とは、距離検出時に交流が入力される1次側コイルの両端で測定した共鳴系(1次側コイル、2次側コイル)全体のインピーダンスを意味する。そのため、共鳴系の入力インピーダンスを測定することにより、2次側共鳴コイルと1次側共鳴コイルとの間の距離を検出することができる。そして、距離検出中は、交流電源が準備状態に保持される。したがって、給電側の共鳴コイルと受電側の共鳴コイルとの間の距離を移動体側(前記距離検出部)で検出して、給電側から電力を効率良く受電側に供給することができる位置に移動体を停止することができ、且つ電力消費を低減することができる。   In the present invention, the distance between the secondary side resonance coil and the primary side resonance coil is detected prior to the power supply from the power supply side facility to the power storage device of the mobile unit side facility. In this distance detection, high frequency power is output from the distance detection high frequency power source to the resonance system, and the distance between the secondary resonance coil and the primary resonance coil is detected by the distance detection unit based on the input impedance of the resonance system. Is detected. The “resonance system” includes a primary resonance coil and a secondary resonance coil. In addition, at the time of distance detection in the mobile-side equipment, the “resonance system” includes circuit components (for example, a matching unit and a secondary coil) existing between the high-frequency power source for distance detection and the secondary-side resonance coil, and the power supply side. Circuit components (for example, a primary coil and a matching unit) existing between the primary resonance coil of the facility and the AC power supply. On the other hand, when receiving power from the primary side resonance coil of the secondary side resonance coil, the “resonance system” is a circuit component (for example, a matching unit or a primary coil) existing between the AC power source and the primary side resonance coil. ) And a rectifier supplied with electric power from the secondary resonance coil, a power storage device, and circuit components (for example, a matching device and a secondary coil) existing between the secondary resonance coil and the rectifier. The “input impedance of the resonance system” means the impedance of the entire resonance system (primary side coil and secondary side coil) measured at both ends of the primary side coil to which alternating current is input during distance detection. Therefore, the distance between the secondary resonance coil and the primary resonance coil can be detected by measuring the input impedance of the resonance system. During the distance detection, the AC power source is kept in the ready state. Therefore, the distance between the resonance coil on the power supply side and the resonance coil on the power reception side is detected on the moving body side (the distance detection unit) and moved to a position where power can be efficiently supplied from the power supply side to the power reception side. The body can be stopped and power consumption can be reduced.

本発明の一実施形態に係る共鳴型非接触給電システムの構成図。The block diagram of the resonance type non-contact electric power feeding system which concerns on one Embodiment of this invention. 図1のシステムの作用を示すフローチャート。The flowchart which shows the effect | action of the system of FIG.

以下、本発明を車載バッテリを充電するための共鳴型非接触給電システムに具体化した一実施形態を図1及び図2にしたがって説明する。
図1に示すように、共鳴型非接触給電システムは、地上側に設けられる給電側設備(送電側設備)10と、移動体としての車両(自動車)に搭載された受電側設備としての移動体側設備20とを備える。
Hereinafter, an embodiment in which the present invention is embodied in a resonance-type non-contact power feeding system for charging an in-vehicle battery will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, the resonance-type non-contact power feeding system includes a power feeding side facility (power transmission side facility) 10 provided on the ground side, and a moving body side as a power receiving side facility mounted on a vehicle (automobile) as a moving body. Equipment 20.

給電側設備10は、交流電源としての高周波電源11、1次側整合器12、1次側コイル13及び給電側制御装置としての電源側コントローラ14を備えている。高周波電源11は、電源側コントローラ14からの制御信号に基づいて制御される。高周波電源11は、共鳴系の予め設定された共鳴周波数に等しい周波数の交流電力、例えば数MHz程度の高周波電力を出力する。   The power supply side equipment 10 includes a high frequency power source 11 as an AC power source, a primary side matching unit 12, a primary side coil 13, and a power source side controller 14 as a power supply side control device. The high frequency power supply 11 is controlled based on a control signal from the power supply controller 14. The high frequency power supply 11 outputs AC power having a frequency equal to a preset resonance frequency of the resonance system, for example, high frequency power of about several MHz.

1次側コイル13は、1次コイル13aと1次側共鳴コイル13bとを備える。1次コイル13aは、1次側整合器12及びスイッチSW1を介して高周波電源11に接続されている。1次コイル13aと1次側共鳴コイル13bとは同軸上に位置するように配設され、1次側共鳴コイル13bにはコンデンサCが並列に接続されている。1次コイル13aは、1次側共鳴コイル13bに電磁誘導で結合され、高周波電源11から1次コイル13aに供給された交流電力が電磁誘導で1次側共鳴コイル13bに供給される。   The primary coil 13 includes a primary coil 13a and a primary resonance coil 13b. The primary coil 13a is connected to the high frequency power supply 11 via the primary side matching device 12 and the switch SW1. The primary coil 13a and the primary side resonance coil 13b are disposed so as to be coaxially arranged, and a capacitor C is connected in parallel to the primary side resonance coil 13b. The primary coil 13a is coupled to the primary side resonance coil 13b by electromagnetic induction, and AC power supplied from the high frequency power supply 11 to the primary coil 13a is supplied to the primary side resonance coil 13b by electromagnetic induction.

1次側整合器12は、可変リアクタンスとしての2つの可変コンデンサ15,16とインダクタ17とから構成されている。一方の可変コンデンサ15はスイッチSW1を介して高周波電源11に接続され、他方の可変コンデンサ16は1次コイル13aに並列に接続されている。インダクタ17は両可変コンデンサ15,16間に接続されている。1次側整合器12は、可変コンデンサ15,16の容量が変更されることでそのインピーダンスが変更される。可変コンデンサ15,16は、例えば、図示しない回転軸がモータにより駆動される公知の構成で、モータが電源側コントローラ14からの駆動信号により駆動されるようになっている。   The primary side matching device 12 includes two variable capacitors 15 and 16 as variable reactances and an inductor 17. One variable capacitor 15 is connected to the high frequency power supply 11 via the switch SW1, and the other variable capacitor 16 is connected in parallel to the primary coil 13a. The inductor 17 is connected between the variable capacitors 15 and 16. The impedance of the primary side matching device 12 is changed by changing the capacitances of the variable capacitors 15 and 16. The variable capacitors 15 and 16 have, for example, a known configuration in which a rotating shaft (not shown) is driven by a motor, and the motor is driven by a drive signal from the power supply side controller 14.

給電側設備10にはスイッチSW1を介して共鳴系に接続可能な終端抵抗18が設けられている。スイッチSW1は、電源側コントローラ14からの指令により、1次側整合器12を高周波電源11及び終端抵抗18のいずれか一方に選択的に接続する。スイッチSW1は、移動体側設備20による距離検出時には、終端抵抗18に接続される。即ち、共鳴系は、距離検出時には、高周波電源11から切り離されて終端抵抗18に接続される。スイッチSW1は、リレーのc接点を示す。図1には、リレーのc接点が有接点式で図示されているが、半導体素子を用いた無接点リレーでもよい。また、給電側設備10は、移動体側設備20と無線通信を行うための通信装置19を備えている。   The power supply side equipment 10 is provided with a termination resistor 18 that can be connected to the resonance system via the switch SW1. The switch SW <b> 1 selectively connects the primary side matching unit 12 to either the high frequency power source 11 or the termination resistor 18 according to a command from the power source side controller 14. The switch SW1 is connected to the termination resistor 18 when the distance is detected by the moving body side equipment 20. That is, the resonance system is disconnected from the high-frequency power supply 11 and connected to the termination resistor 18 when detecting the distance. The switch SW1 indicates the c contact of the relay. In FIG. 1, the contact c of the relay is shown as a contact type, but a contactless relay using a semiconductor element may be used. The power supply side equipment 10 includes a communication device 19 for performing wireless communication with the mobile body side equipment 20.

移動体側設備20は、2次側コイル21、2次側整合器22、距離検出用高周波電源23、整流器24、充電器25、充電器25に接続された蓄電装置としての2次電池(バッテリ)26及び制御装置としての車両側コントローラ27を備えている。2次側整合器22は、スイッチSW2を介して距離検出用高周波電源23に接続される状態と、整流器24に接続される状態とに切り換え可能になっている。距離検出用高周波電源23は、高周波電源11が電力伝送時に出力するより二桁程度小さな交流電力を出力するように構成されている。   The mobile equipment 20 includes a secondary coil 21, a secondary matching device 22, a distance detection high-frequency power supply 23, a rectifier 24, a charger 25, and a secondary battery (battery) as a power storage device connected to the charger 25. 26 and a vehicle-side controller 27 as a control device. The secondary matching unit 22 can be switched between a state connected to the distance detection high-frequency power source 23 and a state connected to the rectifier 24 via the switch SW2. The distance detection high-frequency power supply 23 is configured to output AC power that is about two orders of magnitude smaller than the high-frequency power supply 11 outputs during power transmission.

また、移動体側設備20は、2次電池26の電圧を検出する電圧センサ28と、整流器24から充電器25を介して2次電池26に流れる電流を検出する電流センサ29とを備えている。車両側コントローラ27は、電圧センサ28及び電流センサ29の検出信号に基づいて2次電池26の充電状態(残存容量)を演算する。充電器25は、整流器24で整流された直流を2次電池26に充電するのに適した電圧に変換するDC/DCコンバータ(図示せず)を備えている。車両側コントローラ27は、充電時に充電器25のDC/DCコンバータのスイッチング素子を制御する。   In addition, the mobile-side equipment 20 includes a voltage sensor 28 that detects the voltage of the secondary battery 26, and a current sensor 29 that detects the current flowing from the rectifier 24 through the charger 25 to the secondary battery 26. The vehicle-side controller 27 calculates the state of charge (remaining capacity) of the secondary battery 26 based on detection signals from the voltage sensor 28 and the current sensor 29. The charger 25 includes a DC / DC converter (not shown) that converts the direct current rectified by the rectifier 24 into a voltage suitable for charging the secondary battery 26. The vehicle-side controller 27 controls the switching element of the DC / DC converter of the charger 25 during charging.

2次側コイル21は、2次コイル21aと2次側共鳴コイル21bとを備える。2次コイル21aと2次側共鳴コイル21bとは同軸上に位置するように配設され、2次側共鳴コイル21bにはコンデンサCが接続されている。2次コイル21aは、2次側共鳴コイ
ル21bに電磁誘導で結合され、共鳴により1次側共鳴コイル13bから2次側共鳴コイル21bに供給された交流電力が電磁誘導で2次コイル21aに供給される。2次コイル21aは、2次側整合器22に接続されている。
The secondary coil 21 includes a secondary coil 21a and a secondary resonance coil 21b. The secondary coil 21a and the secondary side resonance coil 21b are disposed so as to be coaxially arranged, and a capacitor C is connected to the secondary side resonance coil 21b. The secondary coil 21a is coupled to the secondary resonance coil 21b by electromagnetic induction, and AC power supplied from the primary resonance coil 13b to the secondary resonance coil 21b by resonance is supplied to the secondary coil 21a by electromagnetic induction. Is done. The secondary coil 21 a is connected to the secondary matching unit 22.

なお、1次コイル13a、1次側共鳴コイル13b、2次側共鳴コイル21b及び2次コイル21aの巻数、巻径は給電側設備10から移動体側設備20へ給電(伝送)しようとする電力の大きさ等に対応して適宜設定される。   The number of turns and the winding diameter of the primary coil 13a, the primary side resonance coil 13b, the secondary side resonance coil 21b, and the secondary coil 21a are the power to be supplied (transmitted) from the power supply side equipment 10 to the mobile body side equipment 20. It is set appropriately according to the size and the like.

2次側整合器22は、可変リアクタンスとしての2つの可変コンデンサ30,31とインダクタ32とを備える。インダクタ32は両可変コンデンサ30,31間に接続されている。一方の可変コンデンサ30は2次コイル21aに並列に接続され、他方の可変コンデンサ31はスイッチSW2に接続されている。2次側整合器22は、可変コンデンサ30,31の容量が変更されることでそのインピーダンスが変更される。可変コンデンサ30,31は、例えば、図示しない回転軸がモータにより駆動される公知の構成で、モータが車両側コントローラ27からの駆動信号により駆動されるようになっている。   The secondary side matching device 22 includes two variable capacitors 30 and 31 and an inductor 32 as variable reactances. The inductor 32 is connected between the two variable capacitors 30 and 31. One variable capacitor 30 is connected in parallel to the secondary coil 21a, and the other variable capacitor 31 is connected to the switch SW2. The impedance of the secondary side matching unit 22 is changed by changing the capacitance of the variable capacitors 30 and 31. The variable capacitors 30 and 31 have, for example, a known configuration in which a rotating shaft (not shown) is driven by a motor, and the motor is driven by a drive signal from the vehicle-side controller 27.

2次コイル21aには並列に距離検出部を構成する電圧センサ33が接続されている。2次側共鳴コイル21bと1次側共鳴コイル13bとの間の距離を検出するときには、車両側コントローラ27は、スイッチSW2が距離検出用高周波電源23と2次側整合器22とを接続するようにスイッチSW2を切り換え制御する。そして、距離検出用高周波電源23から共鳴系に高周波電力が供給される状態で、車両側コントローラ27は、電圧センサ33の検出信号に基づいて2次側共鳴コイル21bと1次側共鳴コイル13bとの間の距離を検出する。   A voltage sensor 33 that constitutes a distance detection unit is connected to the secondary coil 21a in parallel. When detecting the distance between the secondary side resonance coil 21b and the primary side resonance coil 13b, the vehicle-side controller 27 causes the switch SW2 to connect the distance detection high-frequency power source 23 and the secondary side matching unit 22 to each other. The switch SW2 is switched and controlled. Then, in a state in which high-frequency power is supplied from the distance detection high-frequency power supply 23 to the resonance system, the vehicle-side controller 27 determines whether the secondary-side resonance coil 21b and the primary-side resonance coil 13b are based on the detection signal of the voltage sensor 33. Detect the distance between.

この実施形態では、移動体側設備20における距離検出時には、1次側整合器12、1次コイル13a、1次側共鳴コイル13b、2次側共鳴コイル21b、2次コイル21a、2次側整合器22が共鳴系を構成する。また、2次側共鳴コイル21bの1次側共鳴コイル13bからの電力受電時には、1次側整合器12、1次コイル13a、1次側共鳴コイル13b、2次側共鳴コイル21b、2次コイル21a、2次側整合器22、整流器24、充電器25及び2次電池26が共鳴系を構成する。   In this embodiment, at the time of detecting the distance in the moving body side equipment 20, the primary side matching device 12, the primary coil 13a, the primary side resonance coil 13b, the secondary side resonance coil 21b, the secondary coil 21a, and the secondary side matching device. 22 constitutes a resonance system. When receiving power from the primary side resonance coil 13b of the secondary side resonance coil 21b, the primary side matching unit 12, the primary coil 13a, the primary side resonance coil 13b, the secondary side resonance coil 21b, and the secondary coil. 21a, the secondary side matching device 22, the rectifier 24, the charger 25, and the secondary battery 26 constitute a resonance system.

車両側コントローラ27はCPU34及びメモリ(記憶装置)35を備える。メモリ35には、2次側共鳴コイル21bと1次側共鳴コイル13bとの間の距離と、距離検出用高周波電源23から所定周波数の交流を出力したときの共鳴系の入力インピーダンスとの関係を示すデータがマップ又は関係式として記憶されている。このデータは予め試験により求められる。車両側コントローラ27は、距離検出時に、電圧センサ33により2次コイル21aの両端の電圧を検出することにより、入力インピーダンスを測定する。そして、検出された入力インピーダンスと前記マップ又は関係式とに基づいて、2次側共鳴コイル21bと1次側共鳴コイル13bとの間の距離を演算する。車両側コントローラ27は距離演算部として機能する。また、車両側コントローラ27及び電圧センサ33は、距離検出部を構成する。   The vehicle-side controller 27 includes a CPU 34 and a memory (storage device) 35. In the memory 35, the relationship between the distance between the secondary resonance coil 21b and the primary resonance coil 13b and the input impedance of the resonance system when alternating current of a predetermined frequency is output from the distance detection high frequency power supply 23 is shown. Data to be shown is stored as a map or a relational expression. This data is obtained in advance by testing. The vehicle-side controller 27 measures the input impedance by detecting the voltage across the secondary coil 21a with the voltage sensor 33 when detecting the distance. Then, based on the detected input impedance and the map or the relational expression, the distance between the secondary resonance coil 21b and the primary resonance coil 13b is calculated. The vehicle-side controller 27 functions as a distance calculation unit. The vehicle controller 27 and the voltage sensor 33 constitute a distance detection unit.

また、メモリ35には、充電時に車両が給電側設備10の所定の停止位置に正確に停止した状態における2次電池26の充電状態と、その状態において2次側共鳴コイル21bと整流器24との整合がとれた状態の2次側整合器22の可変コンデンサ30,31の容量との関係を示すデータがマップ又は関係式として記憶されている。車両側コントローラ27は、充電開始後、2次電池26の充電状態に対応して2次側整合器22の調整を行う。すなわち、車両側コントローラ27は調整部として機能する。   Further, the memory 35 stores the charged state of the secondary battery 26 in a state where the vehicle is accurately stopped at a predetermined stop position of the power supply side equipment 10 during charging, and the secondary side resonance coil 21b and the rectifier 24 in that state. Data indicating a relationship with the capacitances of the variable capacitors 30 and 31 of the secondary side matching unit 22 in a matched state is stored as a map or a relational expression. The vehicle-side controller 27 adjusts the secondary matching unit 22 in accordance with the charged state of the secondary battery 26 after the start of charging. That is, the vehicle controller 27 functions as an adjustment unit.

また、車両には、距離検出時に、検出距離が給電側設備10から効率良く非接触給電を
受けるのに適しているか否かを報知する報知装置(図示せず)が装備されている。報知装置は、目視による確認可能な表示装置、例えば、ディスプレイに適正距離とのずれの状態が表示されるものが好ましい。しかし、聴覚により確認可能な音声による報知装置等であってもよい。車両側コントローラ27は、車両が充電停止位置に駐車するとき、報知装置を駆動する。
In addition, the vehicle is equipped with a notification device (not shown) for notifying whether or not the detection distance is suitable for efficiently receiving non-contact power supply from the power supply facility 10 when detecting the distance. The notification device is preferably a display device that can be visually confirmed, for example, a device that displays a state of deviation from an appropriate distance on a display. However, it may be a voice notification device that can be confirmed by hearing. The vehicle-side controller 27 drives the notification device when the vehicle is parked at the charging stop position.

移動体側設備20は、給電側設備10と無線通信を行うための通信装置36を備えている。そして、電源側コントローラ14と、車両側コントローラ27とは、通信装置19,36を介して通信可能になっている。車両が充電のため給電側設備10の所定の充電停止位置に停止(駐車)するときから充電終了まで、電源側コントローラ14と車両側コントローラ27とは必要な情報の送受信を行う。   The moving body side equipment 20 includes a communication device 36 for performing wireless communication with the power feeding side equipment 10. And the power supply side controller 14 and the vehicle side controller 27 are communicable via the communication apparatuses 19 and 36. FIG. From the time when the vehicle stops (parks) at a predetermined charging stop position of the power supply side equipment 10 for charging to the end of charging, the power supply side controller 14 and the vehicle side controller 27 transmit and receive necessary information.

次に前記のように構成された共鳴型非接触給電システムの作用を説明する。
車両に搭載された2次電池26に充電を行う場合には、2次側共鳴コイル21bと1次側共鳴コイル13bとの間の距離が所定の距離となる充電位置に車両を駐車(停止)する必要がある。そのため、給電側設備10から移動体側設備20への電力供給に先立って、移動体側設備20で2次側共鳴コイル21bと1次側共鳴コイル13bとの間の距離検出が行われる。その距離検出情報に基づいて車両が所定の駐車位置まで移動した後、車両側コントローラ27は、電源側コントローラ14に給電要求信号を送信する。電源側コントローラ14は、給電要求信号を受信すると、給電を開始する。
Next, the operation of the resonance type non-contact power feeding system configured as described above will be described.
When charging the secondary battery 26 mounted on the vehicle, the vehicle is parked (stopped) at a charging position where the distance between the secondary resonance coil 21b and the primary resonance coil 13b is a predetermined distance. There is a need to. Therefore, prior to the power supply from the power supply side equipment 10 to the mobile body side equipment 20, the mobile body side equipment 20 detects the distance between the secondary side resonance coil 21b and the primary side resonance coil 13b. After the vehicle has moved to a predetermined parking position based on the distance detection information, the vehicle-side controller 27 transmits a power supply request signal to the power supply-side controller 14. When receiving the power supply request signal, the power supply controller 14 starts power supply.

駐車開始から充電開始までの作用を図2に示すフローチャートにしたがって説明する。ステップS1の駐車開始で、車両側コントローラ27は電源側コントローラ14に駐車開始信号を送信する。電源側コントローラ14は、駐車開始信号を受信すると、ステップS2で、スイッチSW1を1次側整合器12と終端抵抗18とを接続する状態に切り換え、その旨を車両側コントローラ27に送信する。なお、電源側コントローラ14は、車両側コントローラ27から距離検出を終了した旨の送信を受信するまで、高周波電源11を立ち上げずに準備状態に保持する。車両側コントローラ27は、終端抵抗18が1次側整合器12と接続されたことを確認すると、ステップS3で1次側共鳴コイル13bと2次側共鳴コイル21bとの間の距離検出を開始する。   The operation from the start of parking to the start of charging will be described with reference to the flowchart shown in FIG. At the start of parking in step S <b> 1, the vehicle-side controller 27 transmits a parking start signal to the power supply-side controller 14. When receiving the parking start signal, the power supply side controller 14 switches the switch SW1 to a state in which the primary side matching unit 12 and the terminating resistor 18 are connected in step S2, and transmits the fact to the vehicle side controller 27. The power supply side controller 14 does not start up the high frequency power supply 11 and holds it in a ready state until receiving a transmission from the vehicle side controller 27 indicating that the distance detection has been completed. When the vehicle-side controller 27 confirms that the termination resistor 18 is connected to the primary-side matching unit 12, the vehicle-side controller 27 starts detecting the distance between the primary-side resonance coil 13b and the secondary-side resonance coil 21b in step S3. .

詳述すると、車両側コントローラ27は、スイッチSW2を2次側整合器22と距離検出用高周波電源23とを接続する状態に切り換えて、移動体側設備20を距離検出用高周波電源23から所定周波数の交流電力が出力される状態にする。そして、2次側コイル21から1次側コイル13へ非接触で電力が伝送される。このとき、距離検出用高周波電源23の出力は、充電器25側へは供給されずに共鳴系に供給される。また、給電側設備10においては1次側整合器12が高周波電源11から切り離されて終端抵抗18に接続された状態にあるため、共鳴系の入力インピーダンスが高周波電源11、充電器25及び2次電池26の充電状態の影響を受けない。その状態で車両側コントローラ27は、電圧センサ33の検出信号に基づいて2次コイル21aの入力インピーダンスを演算し、その入力インピーダンスの値と、前記マップ又は関係式とに基づいて、2次側共鳴コイル21bと1次側共鳴コイル13bとの間の距離を検出(演算)する。また、車両側コントローラ27は、検出距離が給電側設備10から効率良く非接触給電を受けるのに適しているか否かを報知する報知装置を駆動させる。   More specifically, the vehicle-side controller 27 switches the switch SW2 to a state in which the secondary-side matching unit 22 and the distance detection high-frequency power supply 23 are connected, and the mobile-side equipment 20 is connected to the distance detection high-frequency power supply 23 from the distance detection high-frequency power supply 23. Make sure that AC power is output. Then, electric power is transmitted from the secondary coil 21 to the primary coil 13 in a non-contact manner. At this time, the output of the distance detection high-frequency power supply 23 is supplied to the resonance system without being supplied to the charger 25 side. Further, in the power supply side equipment 10, since the primary side matching unit 12 is disconnected from the high frequency power source 11 and connected to the termination resistor 18, the resonance system input impedance is the high frequency power source 11, the charger 25, and the secondary. The battery 26 is not affected by the state of charge. In this state, the vehicle-side controller 27 calculates the input impedance of the secondary coil 21a based on the detection signal of the voltage sensor 33, and the secondary-side resonance based on the input impedance value and the map or relational expression. The distance between the coil 21b and the primary resonance coil 13b is detected (calculated). In addition, the vehicle-side controller 27 drives a notification device that notifies whether or not the detection distance is suitable for efficiently receiving non-contact power supply from the power supply-side facility 10.

ステップS4では、車両が充電位置にむかって移動する。車両の運転者は、報知装置により、移動体側設備20が給電側設備10から効率良く非接触給電を受けるのに適した位置(充電位置)まで車両が移動したか否かを判断し、充電位置まで移動した時点で車両を停止させる。即ち、ステップS4において、車両は車両側コントローラ27が受信した距離情報に基づいて所定の駐車位置(充電位置)まで移動する。車両が所定の駐車位置まで
移動すると、ステップS5で車両側コントローラ27は、距離検出を終了し、その旨を電源側コントローラ14に送信する。また、車両側コントローラ27は、スイッチSW2を2次側整合器22と整流器24とを接続する状態に切り換えるとともに、距離検出用高周波電源23の出力を停止させる。
In step S4, the vehicle moves toward the charging position. The driver of the vehicle determines whether or not the vehicle has moved to a position (charging position) suitable for the mobile body side equipment 20 to efficiently receive non-contact power feeding from the power feeding side equipment 10 using the notification device. The vehicle is stopped when moving to. That is, in step S4, the vehicle moves to a predetermined parking position (charging position) based on the distance information received by the vehicle-side controller 27. When the vehicle moves to a predetermined parking position, the vehicle-side controller 27 ends the distance detection in step S5 and transmits a message to that effect to the power-source-side controller 14. Further, the vehicle-side controller 27 switches the switch SW2 to a state in which the secondary-side matching unit 22 and the rectifier 24 are connected, and stops the output of the distance detection high-frequency power source 23.

電源側コントローラ14は、車両側コントローラ27による距離検出終了を確認すると、ステップS6でスイッチSW1を、1次側整合器12と高周波電源11とを接続する状態に切り換える。そして、ステップS7で、電源側コントローラ14は、高周波電源11を立ち上げる。その結果、それまで準備状態にあった高周波電源11は、移動体側設備20が2次電池26の充電を行う際の所定の出力の高周波電力を出力する状態になる。   When the power source controller 14 confirms the end of the distance detection by the vehicle controller 27, the power switch 14 switches the switch SW1 to a state in which the primary matching unit 12 and the high frequency power source 11 are connected in step S6. In step S <b> 7, the power supply side controller 14 starts up the high frequency power supply 11. As a result, the high-frequency power supply 11 that has been in a ready state until then is in a state of outputting high-frequency power of a predetermined output when the mobile unit 20 charges the secondary battery 26.

共鳴系のインピーダンスに基づいて行う1次側共鳴コイル13bと2次側共鳴コイル21bとの間の距離検出を、給電側設備10から共鳴系に高周波電力を供給せずに、移動体側設備20の距離検出用高周波電源23から共鳴系に高周波電力を供給して行う。距離検出中は、高周波電源11が準備状態に保持される。そのため、車両が充電に適した位置に停止するまでの間も、高周波電源11が電力供給を行う構成に比べて無駄な電力消費が防止される。   The distance detection between the primary side resonance coil 13b and the secondary side resonance coil 21b, which is performed based on the impedance of the resonance system, can be performed without supplying high frequency power from the power supply side equipment 10 to the resonance system. The high frequency power is supplied from the distance detection high frequency power supply 23 to the resonance system. During the distance detection, the high-frequency power supply 11 is kept in the ready state. Therefore, wasteful power consumption is prevented compared to the configuration in which the high frequency power supply 11 supplies power until the vehicle stops at a position suitable for charging.

次にステップS8で、充電に先立って、電力伝送用の整合が行われる。即ち、車両の駐車位置において、共鳴系の共鳴状態が最良となるように必要に応じて1次側整合器12及び2次側整合器22の調整が行われる。その後、ステップS9で充電が開始される。   Next, in step S8, matching for power transmission is performed prior to charging. That is, at the parking position of the vehicle, the primary side matching unit 12 and the secondary side matching unit 22 are adjusted as necessary so that the resonance state of the resonance system is the best. Thereafter, charging is started in step S9.

そして、給電側設備10の高周波電源11から1次コイル13aに共鳴周波数の交流電力が供給され、1次側共鳴コイル13bから電力が非接触共鳴で2次側共鳴コイル21bへ供給される。2次側共鳴コイル21bが受電した電力は、2次側整合器22及び整流器24を介して充電器25に供給され、充電器25に接続された2次電池26が充電される。充電が開始されて2次電池26の充電状態が変化すると、2次電池26のインピーダンスが変化し、共鳴系のインピーダンスが適切な状態から変化する。車両側コントローラ27は、充電中、メモリ35に記憶されている2次電池26の充電状態と、充電状態に対応した適切なインピーダンスとの関係を示すマップ又は関係式に基づいて、充電状態に対応したインピーダンスになるように2次側整合器22を調整する。そして、充電が適切な状態で行われる。車両側コントローラ27は、例えば、2次電池26の電圧が所定電圧になった時点からの経過時間により充電完了を判断し、充電が完了すると、電源側コントローラ14に充電完了信号を送信する。電源側コントローラ14は、充電完了信号を受信すると電力伝送を終了する。   Then, AC power having a resonance frequency is supplied from the high frequency power supply 11 of the power supply side equipment 10 to the primary coil 13a, and power is supplied from the primary side resonance coil 13b to the secondary side resonance coil 21b by non-contact resonance. The electric power received by the secondary resonance coil 21b is supplied to the charger 25 via the secondary matching device 22 and the rectifier 24, and the secondary battery 26 connected to the charger 25 is charged. When charging is started and the charging state of the secondary battery 26 changes, the impedance of the secondary battery 26 changes, and the impedance of the resonance system changes from an appropriate state. The vehicle-side controller 27 responds to the charging state based on a map or a relational expression indicating the relationship between the charging state of the secondary battery 26 stored in the memory 35 and an appropriate impedance corresponding to the charging state during charging. The secondary matching unit 22 is adjusted so that the impedance becomes the same. And charging is performed in an appropriate state. For example, the vehicle-side controller 27 determines the completion of charging based on the elapsed time from when the voltage of the secondary battery 26 reaches a predetermined voltage, and transmits a charging completion signal to the power-side controller 14 when the charging is completed. The power supply side controller 14 will complete | finish electric power transmission, if a charge completion signal is received.

この実施形態によれば、以下に示す利点を得ることができる。
(1)共鳴型非接触給電システムは、交流電源(高周波電源11)、高周波電源11から電力の供給を受ける1次側共鳴コイル13b及び交流電源を制御する電源側コントローラ14を備えた給電側設備10と、1次側共鳴コイル13bからの電力を受電する2次側共鳴コイル21bを備えた移動体側設備20とを備えている。移動体側設備20は、2次側共鳴コイル21bが受電した電力を整流する整流器24、整流器24により整流された電力が供給される充電器25、充電器25に接続された2次電池26、1次側共鳴コイル13bと2次側共鳴コイル21bとの距離を検出するための距離検出部及び距離検出用高周波電源23を備えている。電源側コントローラ14は、移動体側設備20における1次側共鳴コイル13bと2次側共鳴コイル21bとの距離検出時には、高周波電源11を準備状態に保持し、距離検出終了後に給電状態に立ち上げる。したがって、給電側の共鳴コイルと、受電側の共鳴コイルとの距離を移動体(車両)側で検出して、給電側から電力を効率良く受電側に供給することができる位置に移動体を停止でき、しかも給電側での電力消費を低減することができる。
According to this embodiment, the following advantages can be obtained.
(1) The resonance-type non-contact power supply system includes an AC power source (high frequency power source 11), a primary side resonance coil 13b that receives power supply from the high frequency power source 11, and a power source side controller 14 that controls the AC power source. 10 and a moving body side facility 20 including a secondary side resonance coil 21b that receives power from the primary side resonance coil 13b. The mobile unit 20 includes a rectifier 24 that rectifies the power received by the secondary resonance coil 21b, a charger 25 that is supplied with power rectified by the rectifier 24, and secondary batteries 26 and 1 connected to the charger 25. A distance detection unit for detecting the distance between the secondary resonance coil 13b and the secondary resonance coil 21b and a high frequency power supply 23 for distance detection are provided. The power supply side controller 14 holds the high frequency power supply 11 in the ready state when detecting the distance between the primary side resonance coil 13b and the secondary side resonance coil 21b in the moving body side equipment 20, and starts up the power supply state after the distance detection is completed. Therefore, the distance between the resonance coil on the power supply side and the resonance coil on the power reception side is detected on the mobile body (vehicle) side, and the mobile body is stopped at a position where power can be efficiently supplied from the power supply side to the power reception side. In addition, power consumption on the power feeding side can be reduced.

(2)給電側設備10にはスイッチSW1を介して共鳴系に接続可能な終端抵抗18が設けられ、移動体側設備20による距離検出時には共鳴系は交流電源(高周波電源11)から切り離されて終端抵抗18に接続される。距離検出時に共鳴系が高周波電源11に接続された状態であっても、高周波電源11から共鳴系に電力が供給されない状態であれば、移動体側設備20による距離検出は可能である。しかしながら、この状態では共鳴系のインピーダンスに対する高周波電源11の影響が多少あるため距離検出精度が低くなる。本実施形態では、距離検出時には共鳴系は高周波電源11から切り離されて終端抵抗18に接続されるため、共鳴系のインピーダンスに対する高周波電源11の影響がなくなって距離検出精度が高くなる。   (2) The power supply side equipment 10 is provided with a termination resistor 18 that can be connected to the resonance system via the switch SW1, and the resonance system is disconnected from the AC power source (high frequency power source 11) when the distance is detected by the mobile body side equipment 20. Connected to resistor 18. Even if the resonance system is connected to the high-frequency power source 11 at the time of distance detection, the distance detection by the mobile unit side equipment 20 is possible if power is not supplied from the high-frequency power source 11 to the resonance system. However, in this state, since the high frequency power supply 11 has some influence on the impedance of the resonance system, the distance detection accuracy is lowered. In the present embodiment, the resonance system is disconnected from the high frequency power supply 11 and connected to the termination resistor 18 at the time of distance detection, so that the influence of the high frequency power supply 11 on the impedance of the resonance system is eliminated and the distance detection accuracy is increased.

(3)移動体側設備20が搭載された車両には、距離検出時に、検出距離が給電側設備10から効率良く非接触給電を受けるのに適しているか否かを報知する報知装置が装備されている。したがって、車両の運転者は、車両が給電側設備10から効率良く非接触給電を受けるのに適した位置(充電位置)まで移動したか否かを報知装置によって判断することができ、車両を充電位置に容易に移動、停止させることができる。   (3) A vehicle equipped with the moving body side equipment 20 is equipped with a notification device for notifying whether or not the detection distance is suitable for receiving non-contact power supply efficiently from the power supply side equipment 10 when detecting the distance. Yes. Therefore, the driver of the vehicle can determine whether or not the vehicle has moved to a position (charging position) suitable for receiving the contactless power supply from the power supply side equipment 10 efficiently, and charge the vehicle. It can be easily moved to a position and stopped.

(4)移動体側設備20は、2次側整合器22及び2次電池26の充電状態を検出する部分(車両側コントローラ27、電圧センサ28、電流センサ29)を備える。車両側コントローラ27は、充電時に2次電池26のインピーダンスが充電状態に対応して変化しても、共鳴系のインピーダンスが効率良く非接触給電が行われる状態となるように2次側整合器22の調整を行う。したがって、2次電池26の充電状態が変化しても効率良く充電を行うことができる。   (4) The moving body-side equipment 20 includes portions (a vehicle-side controller 27, a voltage sensor 28, and a current sensor 29) that detect the charging state of the secondary-side matching unit 22 and the secondary battery 26. Even if the impedance of the secondary battery 26 changes corresponding to the state of charge at the time of charging, the vehicle-side controller 27 sets the secondary side matching unit 22 so that the impedance of the resonance system can be efficiently contactlessly fed. Make adjustments. Therefore, even if the charging state of the secondary battery 26 changes, it can be charged efficiently.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
・終端抵抗18は必須ではなく、終端抵抗18を省略して、給電側設備10を1次側整合器12が常に高周波電源11に接続された構成としてもよい。この場合共鳴系を高周波電源11から切り離して終端抵抗18に接続する構成に比べると距離の検出精度は低くなる。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The terminating resistor 18 is not essential, and the terminating resistor 18 may be omitted, and the power supply side equipment 10 may be configured such that the primary side matching unit 12 is always connected to the high frequency power source 11. In this case, the distance detection accuracy is lower than the configuration in which the resonance system is disconnected from the high-frequency power supply 11 and connected to the termination resistor 18.

・本実施形態では、距離検出用高周波電源23が2次側整合器22に接続される状態と、共鳴系から切り離される状態とに移動体側設備20がスイッチSW2を介して切り換えられる。この構成に代えて、スイッチSW2を設けずに、距離検出用高周波電源23を2次側整合器22と整流器24との間に接続するとともに、距離検出時において距離検出用高周波電源23から高周波電力を出力するときに、スイッチSW2よりも充電器25側の回路部品をハイインピーダンスにすることで対応してもよい。この場合、距離検出時に距離検出用高周波電源23から出力された高周波電力は、スイッチSW2よりも充電器25側の回路部品へは供給されずに、スイッチSW2よりも2次側共鳴コイル21b側の回路部品へ供給される。そのため、充電器25側を共鳴系から切り離さなくても共鳴系のインピーダンスに2次電池26の充電状態が悪影響を与えることがない。   -In this embodiment, the mobile body side equipment 20 is switched via the switch SW2 between a state in which the distance detection high-frequency power source 23 is connected to the secondary matching unit 22 and a state in which the distance detection high-frequency power source 23 is disconnected from the resonance system. Instead of this configuration, the distance detection high-frequency power source 23 is connected between the secondary matching unit 22 and the rectifier 24 without providing the switch SW2, and the high-frequency power is supplied from the distance detection high-frequency power source 23 at the time of distance detection. May be dealt with by setting the circuit component closer to the charger 25 than the switch SW2 to high impedance. In this case, the high frequency power output from the distance detection high frequency power supply 23 at the time of distance detection is not supplied to the circuit components on the charger 25 side of the switch SW2, but on the secondary resonance coil 21b side of the switch SW2. Supplied to circuit components. Therefore, the state of charge of the secondary battery 26 does not adversely affect the impedance of the resonance system without disconnecting the charger 25 side from the resonance system.

・共鳴型非接触給電システムが、給電側設備10と移動体側設備20との間で非接触給電を行うためには、1次コイル13a、1次側共鳴コイル13b、2次コイル21a及び2次側共鳴コイル21bの全てが必須ではなく、少なくとも1次側共鳴コイル13b及び2次側共鳴コイル21bを備えていればよい。即ち、1次側コイル13を1次コイル13a及び1次側共鳴コイル13bで構成する代わりに、1次側共鳴コイル13bを1次側整合器12を介して高周波電源11に接続するとともに、2次側コイル21を2次コイル21a及び2次側共鳴コイル21bで構成する代わりに、2次側共鳴コイル21bを2次側整合器22を介して整流器24に接続してもよい。しかし、1次コイル13a、1次側共鳴コイル13b、2次コイル21a及び2次側共鳴コイル21bの全てを備えた構成の方
が、共鳴状態に調整するのが容易で、1次側共鳴コイル13bと2次側共鳴コイル21bとの距離が大きくなった場合でも共鳴状態を維持し易い。
In order for the resonance-type non-contact power supply system to perform non-contact power supply between the power supply side equipment 10 and the moving body side equipment 20, the primary coil 13a, the primary side resonance coil 13b, the secondary coil 21a, and the secondary All of the side resonance coils 21b are not essential, and may include at least the primary side resonance coil 13b and the secondary side resonance coil 21b. That is, instead of configuring the primary side coil 13 with the primary coil 13a and the primary side resonance coil 13b, the primary side resonance coil 13b is connected to the high frequency power source 11 via the primary side matching unit 12, and 2 Instead of configuring the secondary coil 21 with the secondary coil 21 a and the secondary resonance coil 21 b, the secondary resonance coil 21 b may be connected to the rectifier 24 via the secondary matching device 22. However, the configuration including all of the primary coil 13a, the primary side resonance coil 13b, the secondary coil 21a, and the secondary side resonance coil 21b is easier to adjust to the resonance state, and the primary side resonance coil. Even when the distance between 13b and the secondary resonance coil 21b is increased, the resonance state is easily maintained.

・2次コイル21aを無くした場合、距離検出部を構成する電圧センサ33は2次側共鳴コイル21bの両端の電圧を測定する。そして、車両側コントローラ27は、1次側共鳴コイル13bと2次側共鳴コイル21bとの間の距離と、その電圧値との関係を示すマップ又は関係式から1次側共鳴コイル13bと2次側共鳴コイル21bとの間の距離を検出する。   When the secondary coil 21a is eliminated, the voltage sensor 33 constituting the distance detection unit measures the voltage across the secondary resonance coil 21b. Then, the vehicle-side controller 27 determines that the primary-side resonance coil 13b and the secondary-side resonance coil 13b and the secondary-side resonance from the map or the relational expression showing the relationship between the distance between the primary-side resonance coil 13b and the secondary-side resonance coil 21b and the voltage value. The distance to the side resonance coil 21b is detected.

・移動体としての車両は、走行駆動力を発生する電動機を備えた電動車両を意味し、電気自動車、電動機とともに内燃機関をさらに動力源として搭載したハイブリッド車、あるいは車両駆動用の直流電源として2次電池26とともに燃料電池をさらに搭載した車両等が挙げられる。また、運転者を必要とする車両に限らず無人搬送車でもよい。   A vehicle as a moving body means an electric vehicle equipped with an electric motor that generates a driving force, and is an electric vehicle, a hybrid vehicle equipped with an internal combustion engine as a power source together with an electric motor, or a DC power source for driving a vehicle. A vehicle or the like on which a fuel cell is further mounted together with the secondary battery 26 may be mentioned. Further, the vehicle is not limited to a vehicle that requires a driver, and may be an automatic guided vehicle.

・移動体は、車両に限らず、充電時以外は給電側設備から離れて移動するもの、例えば、ロボットであってもよい。
・1次側整合器12及び2次側整合器22は、二つの可変コンデンサとインダクタを備えた構成に限らず、インダクタとして可変インダクタを備えた構成や、可変インダクタと二つの非可変コンデンサとを備える構成としてもよい。
The moving body is not limited to a vehicle, and may be one that moves away from the power supply side equipment except during charging, for example, a robot.
The primary-side matching unit 12 and the secondary-side matching unit 22 are not limited to a configuration including two variable capacitors and an inductor, but include a configuration including a variable inductor as an inductor, a variable inductor and two non-variable capacitors. It is good also as a structure provided.

・1次側整合器12及び2次側整合器22を省略してもよい。しかし、1次側整合器12及び2次側整合器22が存在する方が、共鳴系のインピーダンスを微調整することができ、給電側から電力をより効率良く受電側に供給することができる。   The primary side matching unit 12 and the secondary side matching unit 22 may be omitted. However, the presence of the primary-side matching device 12 and the secondary-side matching device 22 can finely adjust the impedance of the resonance system, and can more efficiently supply power from the power feeding side to the power receiving side.

・整流器24と充電器25とを独立して設ける構成に代えて、充電器25として整流器24を内蔵した構成のものを使用してもよい。
・移動体設備20から、充電器25を省略してもよい。この場合、前記整流器24によって整流された電力は、そのまま2次電池26に供給される。また充電器25の有無に限らず、給電側設備10は、高周波電源11の出力電力を調整するように構成されてもよい。
-Instead of the structure which provides the rectifier 24 and the charger 25 independently, you may use the thing of the structure which incorporated the rectifier 24 as the charger 25. FIG.
The charger 25 may be omitted from the mobile facility 20. In this case, the electric power rectified by the rectifier 24 is supplied to the secondary battery 26 as it is. Moreover, not only the presence or absence of the charger 25, the electric power feeding side equipment 10 may be comprised so that the output electric power of the high frequency power supply 11 may be adjusted.

・蓄電装置は充放電可能な直流電源であればよく、2次電池26に限らず、例えば、大容量のキャパシタであってもよい。
・高周波電源11は、出力交流電圧の周波数が変更可能でも変更不能でもよい。
The power storage device is not limited to the secondary battery 26 as long as it is a chargeable / dischargeable DC power source, and may be a large-capacity capacitor, for example.
The high frequency power supply 11 may be capable of changing the frequency of the output AC voltage or not.

・1次側共鳴コイル13b及び2次側共鳴コイル21bに接続されたコンデンサCを省略してもよい。しかし、コンデンサCを接続した構成の方が、コンデンサCを省略した場合に比べて、共鳴周波数を下げることができる。また、共鳴周波数が同じであれば、コンデンサCを省略した場合に比べて、1次側共鳴コイル13b及び2次側共鳴コイル21bの小型化が可能になる。   The capacitor C connected to the primary side resonance coil 13b and the secondary side resonance coil 21b may be omitted. However, the configuration in which the capacitor C is connected can lower the resonance frequency compared to the case where the capacitor C is omitted. Further, if the resonance frequency is the same, the primary resonance coil 13b and the secondary resonance coil 21b can be downsized as compared with the case where the capacitor C is omitted.

Claims (6)

交流電源と、同交流電源から電力の供給を受ける1次側共鳴コイルと、前記交流電源を制御する制御装置と、を備えた給電側設備と、
前記1次側共鳴コイルからの電力を受電する2次側共鳴コイルと、前記2次側共鳴コイルが受電した電力を整流する整流器と、前記整流器により整流された電力が供給される蓄電装置と、前記1次側共鳴コイルと前記2次側共鳴コイルとの間の距離を検出するように協働する距離検出部及び高周波電源と、を備えた移動体側設備と
を備え、
前記制御装置は、前記距離検出部による前記距離の検出時には前記交流電源を準備状態に保持し、前記距離の検出終了後には前記交流電源を給電状態に立ち上げる、共鳴型非接触給電システム。
A power supply side facility comprising: an AC power source; a primary resonance coil that receives power supply from the AC power source; and a control device that controls the AC power source;
A secondary resonance coil that receives power from the primary resonance coil, a rectifier that rectifies the power received by the secondary resonance coil, and a power storage device that is supplied with the power rectified by the rectifier; A movable body-side facility comprising a distance detection unit and a high-frequency power source that cooperate to detect a distance between the primary-side resonance coil and the secondary-side resonance coil;
The control device holds the AC power supply in a ready state when the distance detection unit detects the distance, and starts up the AC power supply in a power supply state after the detection of the distance.
前記給電側設備は、スイッチと、前記1次側及び2次側共鳴コイルを含む共鳴系に前記スイッチを介して接続可能な終端抵抗と、をさらに備え、前記スイッチは前記距離の検出時には前記共鳴系を前記交流電源から切り離すとともに前記終端抵抗に接続する、請求項1に記載の共鳴型非接触給電システム。   The power supply side equipment further includes a switch and a terminating resistor connectable to the resonance system including the primary side and secondary side resonance coils via the switch, and the switch detects the resonance when detecting the distance. The resonance-type non-contact power feeding system according to claim 1, wherein a system is disconnected from the AC power source and connected to the termination resistor. 前記距離検出部は、前記高周波電源から高周波電力を出力した時の共鳴系の入力インピーダンスに基づいて前記2次側共鳴コイルと前記1次側共鳴コイルとの間の距離を検出し、前記共鳴系は前記1次側共鳴コイルと前記2次側共鳴コイルとを含む、請求項1に記載の共鳴型非接触給電システム。   The distance detection unit detects a distance between the secondary side resonance coil and the primary side resonance coil based on an input impedance of the resonance system when high frequency power is output from the high frequency power source, and the resonance system The resonance-type non-contact electric power feeding system according to claim 1 including said primary side resonance coil and said secondary side resonance coil. 前記移動体側設備は
2次側整合器と、
前記蓄電装置の充電状態と前記2次側整合器の適切なインピーダンスとの関係を示すデータに基づいて充電時に前記2次側整合器の調整を行なう調整部と、をさらに備える、請求項1〜3のうちのいずれか一項に記載の共鳴型非接触給電システム。
The moving body side equipment includes a secondary side matching unit,
An adjustment unit that adjusts the secondary matching unit during charging based on data indicating a relationship between a charging state of the power storage device and an appropriate impedance of the secondary matching unit. The resonance-type non-contact electric power feeding system according to any one of 3.
前記移動体側設備は、電動車両に搭載されて使用される、請求項1〜4のうちのいずれか一項に記載の共鳴型非接触給電システム。   The resonance type non-contact power feeding system according to any one of claims 1 to 4, wherein the moving body side equipment is mounted and used in an electric vehicle. 前記移動体側設備はさらに、前記整流器と前記蓄電装置との間に設けられた充電器を備え、
前記整流器によって整流された電力は、前記充電器に供給され、
前記蓄電装置は、前記充電器に接続される、請求項1〜5のうちのいずれか一項に記載の共鳴型非接触給電システム。
The mobile unit facility further includes a charger provided between the rectifier and the power storage device,
The power rectified by the rectifier is supplied to the charger,
The resonance type non-contact power supply system according to claim 1, wherein the power storage device is connected to the charger.
JP2012557105A 2010-07-29 2011-07-28 Resonant contactless power supply system Expired - Fee Related JP5488724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012557105A JP5488724B2 (en) 2010-07-29 2011-07-28 Resonant contactless power supply system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010170591 2010-07-29
JP2010170591 2010-07-29
PCT/JP2011/004281 WO2012014483A1 (en) 2010-07-29 2011-07-28 Resonance type non-contact power supply system
JP2012557105A JP5488724B2 (en) 2010-07-29 2011-07-28 Resonant contactless power supply system

Publications (2)

Publication Number Publication Date
JP2013539647A JP2013539647A (en) 2013-10-24
JP5488724B2 true JP5488724B2 (en) 2014-05-14

Family

ID=44583291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012557105A Expired - Fee Related JP5488724B2 (en) 2010-07-29 2011-07-28 Resonant contactless power supply system

Country Status (2)

Country Link
JP (1) JP5488724B2 (en)
WO (1) WO2012014483A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6116832B2 (en) * 2012-09-03 2017-04-19 日立マクセル株式会社 Contactless charging system
JP5888201B2 (en) * 2012-10-03 2016-03-16 株式会社豊田自動織機 Power receiving device and non-contact power transmission device
WO2014103280A1 (en) * 2012-12-28 2014-07-03 パナソニック株式会社 Non-contact power supply apparatus
KR102004541B1 (en) * 2012-12-31 2019-07-26 지이 하이브리드 테크놀로지스, 엘엘씨 Method for controlling wireless power transmission in resonat wireless power transmission system, wireless power transmitting apparatus using the same, and wireless power receiving apparatus using the same
JP6265324B2 (en) * 2013-06-18 2018-01-24 国立大学法人信州大学 Contactless power supply system
CN104852479A (en) * 2015-05-28 2015-08-19 天津工业大学 Indoor mobile robot wireless power supply technology
CN104852448A (en) * 2015-05-28 2015-08-19 天津工业大学 Mobile robot autonomous wireless charging system
CN109969013A (en) * 2019-04-02 2019-07-05 贵州翰凯斯智能技术有限公司 A kind of automatic charging system and charging method of intelligent driving electric car

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189508A (en) * 2001-12-14 2003-07-04 Furukawa Electric Co Ltd:The Non-contact power supply device
JP4453741B2 (en) 2007-10-25 2010-04-21 トヨタ自動車株式会社 Electric vehicle and vehicle power supply device
CN102239622A (en) * 2008-12-09 2011-11-09 株式会社丰田自动织机 Non-contact power transmission apparatus and power transmission method using a non-contact power transmission apparatus
JP5135204B2 (en) * 2008-12-26 2013-02-06 株式会社日立製作所 Non-contact power transmission system and load device in the non-contact power transmission system

Also Published As

Publication number Publication date
JP2013539647A (en) 2013-10-24
WO2012014483A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5458187B2 (en) Resonant contactless power supply system
JP5488724B2 (en) Resonant contactless power supply system
JP5307073B2 (en) Contactless power receiving system and contactless power transmission system
JP5282068B2 (en) Receiving side equipment of resonance type non-contact power feeding system
JP5427105B2 (en) Resonant contactless power supply system
JP5499186B2 (en) Resonant contactless power supply system
JP2012034468A (en) Resonance type non-contact power feeding system for vehicle
JP5285418B2 (en) Resonant non-contact power supply device
US9649946B2 (en) Vehicle and contactless power supply system for adjusting impedence based on power transfer efficiency
JP5826547B2 (en) Power supply side equipment and resonance type non-contact power supply system
US10052963B2 (en) Contactless power transfer system and method of controlling the same
WO2012073349A1 (en) Wireless power-transfer equipment and method for controlling vehicle and wireless power-transfer system
WO2012165242A1 (en) Contactless electricity supply device
WO2015076290A1 (en) Non-contact electric power transmission and reception system
JP5488723B2 (en) Resonant contactless power supply system
JP2014121142A (en) Power transmission apparatus and non-contact power transmission device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

LAPS Cancellation because of no payment of annual fees