JP5487494B2 - 分子認識素子及び該分子認識素子を用いたバイオセンサ並びに該バイオセンサを用いた測定方法。 - Google Patents
分子認識素子及び該分子認識素子を用いたバイオセンサ並びに該バイオセンサを用いた測定方法。 Download PDFInfo
- Publication number
- JP5487494B2 JP5487494B2 JP2008219371A JP2008219371A JP5487494B2 JP 5487494 B2 JP5487494 B2 JP 5487494B2 JP 2008219371 A JP2008219371 A JP 2008219371A JP 2008219371 A JP2008219371 A JP 2008219371A JP 5487494 B2 JP5487494 B2 JP 5487494B2
- Authority
- JP
- Japan
- Prior art keywords
- molecular recognition
- recognition element
- biosensor
- substrate
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Description
また、測定物質の周期的変動を連続的にモニターするために生体内、汚染された水質(湖、池、下水道、海等)に配置・測定することができなかった。
今後バイオセンサが利用される分野として注目されている生体内例えば、血液、腸特に小腸、胃等などの病巣部位で特定的に発現しているタンパク質等(測定物質)の検出には従来公知のバイオセンサは用いることができない。
しかし、上記バイオセンサでは再利用が可能ではない。また、本発明のバイオセンサは、ナノ粒子又は金属タンパク質を用いるので、上記バイオセンサとはバイオセンサの原理が異なる。
しかし、上記バイオセンサは、分子認識素子と測定物質の接触効率を向上させるものであり、分子認識素子が測定物質と結合したとしてもその結合変化が十分に信号として検出できない。さらに、バイオセンサの再理由に関しては何も開示されていない。
以上により、本件発明を完成するに至った。
「1.測定物質を認識する認識部位と、該認識部位に接続されたリンカーと、該リンカーの任意の位置に結合されたナノ粒子又は金属タンパク質を少なくとも備え、前記認識部位にて測定物質を認識してコンホメーション変化を発生することを特徴とする分子認識素子。
2.前記認識部位を、複数個有することを特徴とする前項1に記載の分子認識素子。
3.(1)測定物質を認識する認識部位と、該認識部位に接続されたリンカーと、該リンカーの任意の位置に結合されたナノ粒子又は金属タンパク質を少なくとも備え、前記認識部位にて測定物質を認識してコンホメーション変化を発生する分子認識素子と、
(2)該分子認識素子を直接的又は間接的に固定化するための基板と、
(3)該コンホメーション変化による物理的変化を検出する手段と、
を含むことを特徴とするバイオセンサ。
4.(1)測定物質を認識する認識部位と、該認識部位に接続されたリンカーと、該リンカーの任意の位置に結合されたナノ粒子又は金属タンパク質を少なくとも備え、前記認識部位にて測定物質を認識してコンホメーション変化を発生する分子認識素子と、
(2)該分子認識素子を直接的又は間接的に固定化するための基板と、
(3)該コンホメーション変化による物理的変化を検出する手段と、
(4)物理的刺激を該基板に印加する手段と、
を含むことを特徴とするバイオセンサ。
5.さらに、(5)前記コンホメーション変化による物理的変化の信号を記録する手段及び測定環境外に送信する手段の少なくとも一方を含むことを特徴とする前項3又は4に記載のバイオセンサ。
6.前記物理的刺激を基板に印加する手段により、前記測定物質を分子認識素子から放出させることを特徴とする前項3〜5のいずれか1に記載のバイオセンサ。
7.前記測定物質を分子認識素子から放出させることによりバイオセンサの再利用が可能であることを特徴とする前項6に記載のバイオセンサ。
8.前記認識部位を、複数個有することを特徴とする前項3〜7のいずれか1に記載のバイオセンサ。
9.前記検出手段は、前記分子認識素子に結合したナノ粒子又は金属タンパク質と前記基板間の距離の変化を信号に変換して検出する手段であることを特徴とする前項3〜8のいずれか1に記載のバイオセンサ。
10.前記測定物質を分子認識素子から放出する手段は、前記基板を振動させることにより前記分子認識素子に振動を伝えて測定物質を放出させることを特徴とする前項6〜9のいずれか1に記載のバイオセンサ。
11.前記測定物質を分子認識素子から放出する手段は、前記分子認識素子自身を振動させて測定物質を放出させることを特徴とする前項6〜9のいずれか1に記載のバイオセンサ。
12.前記測定物質を分子認識素子から放出する手段は、前記分子認識素子のコンホメーションを変化させて測定物質を放出させることを特徴とする前項6〜9のいずれか1に記載のバイオセンサ。
13.(1)基板に固定化されておりかつナノ粒子又は金属タンパク質を備える分子認識素子の認識部位に測定物質を認識させる工程と、
(2)該分子認識素子が測定物質を認識することにより発生するコンホメーション変化による物理的変化を検出する工程と、
を含むことを特徴とする測定物質の測定方法。
14.(1)基板に固定化されておりかつナノ粒子又は金属タンパク質を備える分子認識素子の認識部位に測定物質を認識させる工程と、
(2)該分子認識素子が測定物質を認識することにより発生するコンホメーション変化による物理的変化を検出する工程と、
(3)該基板に物理的刺激を印加することにより前記測定物質を分子認識素子から放出する工程と、
を含むことを特徴とする測定物質の測定方法。
15.前記検出手段は、前記分子認識素子に結合したナノ粒子又は金属タンパク質と前記基板間の距離の変化を信号に変換して検出する方法であることを特徴とする前項13又は14に記載の測定物質の測定方法。
16.前記測定物質を分子認識素子から放出する手段は、前記基板を振動させることにより前記分子認識素子に振動を伝えて測定物質を放出させるこ方法であることを特徴とする前項13〜15のいずれか1に記載の測定物質の測定方法。
17.前記測定物質を分子認識素子から放出する手段は、前記分子認識素子自身を振動させて測定物質を放出させる方法であることを特徴とする前項13〜15のいずれか1に記載の測定物質の測定方法。
18.前記測定物質を分子認識素子から放出する手段は、前記分子認識素子のコンホメーションを変化させて測定物質を放出させる方法であることを特徴とする前項13〜15のいずれか1に記載の測定物質の測定方法。」
本発明の「分子認識素子」は、測定物質を認識する認識部位と、該認識部位に接続されたリンカーと、該リンカーの任意の位置に結合されたナノ粒子又は金属タンパク質を少なくとも備える。なお、該分子認識素子は、測定物質を認識してコンホメーション変化を起こすものであれば特に限定されない。分子認識素子の例としては、人工的に創製したペプチド、天然由来のタンパク質又はその断片、抗体又はその断片、ペプチド等が挙げられる。
分子認識素子が熱スイッチングタンパク質(thermally switching protein)である場合には、温度検知ヘリカルコイルドコイルタンパク質であり、例えば、TipA(好適にはTipA8)、コラーゲン、ミオシン、CC1等である。
分子認識素子が感光性タンパク質である場合には、ロドプシンファミリータンパク質(好適にはバクテリオロドプシン)、クリプトクロム等である。
ここで、コンホメーション変化とは、分子認識素子が測定物質を認識している場合に、認識していない場合と比較して、基板表面との間の空間的位置、特に距離が変化することを意味する。
本発明の「ナノ粒子又は金属タンパク質」は、分子認識素子に結合できるものであれば特に限定されない。
ナノ粒子の好適な大きさは、分子認識素子の大きさによって適宜選択されるが、好適には、直径が100マイクロメートル以下、好ましくは500ナノメートル以下、より好ましくは50ナノメートル以下、特に好ましくは10ナノメートル以下である。さらに、ナノ粒子は自体公知の磁性体粒子又は金属粒子であっても良い。なお、磁性体粒子自体は、磁性材料そのものを粒子状にしたものでも、ポリエスチレン等のポリマーに磁性材料を含浸させたものでもよい(非特許文献:Anal Bioanal Chem (2006) 384: 601-619)。
また、ナノ粒子と分子認識素子の結合方法は、特に限定されないが、化学修飾、吸着、アミノ酸配列(ヒスチジンタグ)の利用が挙げられる。何らかの結合様式により、結合が可能であればよく、限定されない。
金属タンパク質は、例えば、フェリチン、ヘモグロビン、ミオグロビン、オキシドレダクターゼ、デヒドロゲナーゼ、オキシゲナーゼ等が挙げられる。また、金属タンパク質と分子認識素子の結合方法は、特に限定されないが、分子認識素子上のシステイン(チオール)に結合したマレイミド官能基を介して分子認識素子と共有的に結合するのが好ましい。
この他、磁性タンパク質の利用をすることができる。
本発明の「測定物質」は、分子認識素子に特異的に認識されるものであれば特に限定されない。例えば、生体分子を含む有機分子および無機分子がある。具体的には、環境汚染物質(例えば、農薬、殺虫剤、毒等)、治療的分子(例えば、低分子量薬)、生体分子(例えば、タンパク質、ペプチド、核酸、脂質、糖、ホルモン、サイトカイン、膜抗原、受容体(例えば、神経細胞の、ホルモンの、栄養素の、または細胞表面の受容体)、並びにそれらのリガンド、断片、全細胞(原核細胞、真核細胞を含み、哺乳類の腫瘍細胞を含む)、ウイルス(レトロウイルス、ヘルペスウイルス、アデノウイルス、レンチウイルス等)、並びに胞子であってよい。特に好ましい測定物質は、生体中の病変部位で特定的に発現する微量タンパク質特にヒト疾患腸管関連因子であるTNFα、IL-12、IL-6、血管内皮増殖因子(VEGF)等である。
本発明は、分子認識素子が測定物質を認識することで起こるコンホメーション変化による物理的変化を高感度、特異的に信号に変換することを特徴とするバイオセンサに関する(図1B参照)。ここで、「コンホメーション変化による物理的変化を信号に変換する」とは、分子認識素子のコンホメーション変化を電気(電荷、電位、電流)量、磁気量、光量、熱量の変化として検出することを意味する。また、「信号」とは、電気(電荷、電位、電流)量、磁気量、光量、熱量の変化を意味する。
さらに、本発明のバイオセンサは、公知のバイオセンサとは異なり、物理的刺激を基板に加えることにより、測定物質を認識している分子認識素子のコンホメーション変化を起こし、該測定物質を放出させ、洗浄工程を必要としない再利用可能なバイオセンサである(図1A参照)。
特に、分子認識素子は測定物質を認識するとコンホメーション変化を起こし、結果として、ナノ粒子又は金属タンパク質と基板間の空間的位置変化、特に距離が変化する。よって、該変化が電気(電荷、電位、電流)量、磁気量、光量、熱量の変化として検出することができる。
(1)測定物質を認識する認識部位と、該認識部位に接続されたリンカーと、該リンカーの任意の位置に結合されたナノ粒子又は金属タンパク質を少なくとも備え、前記認識部位にて測定物質を認識してコンホメーション変化を発生する分子認識素子と、
(2)該分子認識素子を直接的又は間接的に固定化するための基板と、
(3)該コンホメーション変化による物理的変化を検出する手段と、
を含むことを特徴とするバイオセンサである。
また、本発明のバイオセンサは、
(1)測定物質を認識する認識部位と、該認識部位に接続されたリンカーと、該リンカーの任意の位置に結合されたナノ粒子又は金属タンパク質を少なくとも備え、前記認識部位にて測定物質を認識してコンホメーション変化を発生する分子認識素子と、
(2)該分子認識素子を直接的又は間接的に固定化するための基板と、
(3)該コンホメーション変化による物理的変化を検出する手段と、
(4)物理的刺激を該基板に印加する手段と、
を含むことを特徴とするバイオセンサである。
(1)基板に磁性体を備え、該磁性体と対に磁体を設け、該磁体のN,S極を交互に変更させることで該基板を振動させる手段、
(2)基板に+あるいは−の電荷を帯電させた帯電部位を備え、該帯電部位と対になるように電極を設け、該電極を+,−に交互に変更させることで該基板を振動させる手段、
(3)基板に、温度により変形する変形部位を備え、該変形部位に接するようにペルチェ素子を設け、該ペルチェ素子を冷・暖に交互に変更させることで該基板を振動させる手段、
(4)分子認識素子に磁性体ナノ粒子が結合しており、基板に磁体を設け、該磁体のN,S極を交互に変更させることで該磁体と該磁性体ナノ粒子との間に引力、反発力を働かせる手段、
(5)分子認識素子に金属ナノ粒子が結合しており、該基板に電極を設け、該電極を+,−に交互に変更させることで該電極と金属ナノ粒子との間で引力、反発力を働かせる手段、
(6)分子認識素子に磁性体ナノ粒子が結合しており、該基板にコイルを設け、該コイルから磁界を発生させることで該基板と金属ナノ粒子との間で引力、反発力を働かせる手段。
また、分子認識素子を間接的に基板に固定する場合には、ガラス、シリコン、プラスチック、PMMA、シリコン樹脂等が挙げられる。合成樹脂など絶縁性のある材料であり、任意の厚さで形成され、分子認識素子を固定した導電性及び/又は磁気性材料の担体を安定的に固定化でき、分子認識素子のコンホメーション変化による物理的変化に影響を与えない材料ならなんでもよい。
加えて、適した形態の例としては、箔、ワイヤー、ウェハ、チップ等であるが、特に限定されない。
固定化技術には一般に下記の方法が知られている。
タンパク質である酵素は、反応性に富んだアミノ酸残基やイオン性のアミノ酸残基、疎水性領域を持つ。これらのうち酵素活性を失活させないように、酵素を不溶性の担体に結合させる方法が担体結合法である。担体結合法には、下記(a)共有結合法、(b)イオン結合法、(c)物理的吸着法、(d)生化学的特異結合法などがある。
共有結合法は、担体と酵素の結合により酵素反応中に酵素の離脱がないこと、酵素が担体の表面にあるため基質との接触が容易であること、酵素と担体の強い結合のため、酵素の失活をもたらすタンパク質の構造変化をある程度制限し、熱安定性を増すことできることが特徴である。
(b) イオン結合法
操作が比較的簡単で担体の再生が可能なことから、有用な固定化法の1つとして用いられている。
(c)物理的吸着法
酵素を修飾することなく固定化できることから、有用な固定化法の一つとして用いられている。
(d)生化学的特異結合法
種々の補酵素類は、酵素のエフェクターやインヒビターとともにアフィニティークロマトグラフィーのリガンドとして用いられている。このようなリガンドと酵素の結合が強い場合において酵素の固定化法として用いることができる。
2つ以上の官能基をもつ試薬と酵素とを反応させると、酵素分子間で架橋されて水に不溶な巨大分子となる。架橋剤としては、グルタルアルデヒド、トルエンジイソシアネートなどが一般に用いられる。
単一の酵素だけでなく複数の酵素や微生物菌体、動植物細胞などを同じ手法で固定化でき、また、固定化操作中に酵素の修飾が起こりにくく、自然な状態を保ったまま固定化できることなどが特徴である。包括法には、下記(a) 格子型、(b) マイクロカプセル型などがある。
網目構造をもつ高分子ゲルの格子に、生体触媒を固定化する方法である。担体はさまざまな形状に成形できる場合が多い。近年、固定化微生物菌体を利用した単一反応や、多段階反応の研究が進むにつれ、本法の重要性が増している。代表的な方法には、ポリアクリルアミドによる包括、アルギン酸カルシウムによる包括、κ-カラギーナンによる包括、光架橋性樹脂プレポリマーやウレタンプレポリマーなどの合成プレポリマーを使った包括法などが知られている。特に光架橋性樹脂プレポリマーやウレタンプレポリマーは、酵素だけでなく微生物菌体や細胞内オルガネラの固定化に用いられる。
(b)マイクロカプセル型
生体においては、大部分の酵素は、細胞膜やオルガネラ膜のような一種の半透膜に包まれて存在し、一連の反応を効率的に行えるように組織化されている。同様に、生体触媒を天然高分子や合成高分子の膜で包み込む方法がマイクロカプセル型である。本法には、相分離法、界面重合法、水中乾燥法などがある。
相分離法は、乳化剤を含む有機溶媒に酵素液を乳化させ、水不溶性の高分子(たとえばコロジオン)を加えて水溶液を包含したカプセルを作らせ、有機溶媒は溶解するが高分子を溶解しない溶媒、次いで水に懸濁することによって安定なマイクロカプセルを得る方法である。
界面重合法は、例えば親水性の1,6-ヘキサメチレンジアミンと酵素を、乳化剤を含む有機溶媒中に乳化させ、これに疎水性のセバコイルクロリドを加えて水と有機溶媒の界面で重合させ、生成したナイロンによって酵素溶液を包括する方法である。
水中乾燥法は、ポリマーの有機溶媒溶液に酵素水溶液を加えて撹拌し、w/o型の一次乳化液を作らせ、これを、非イオン性界面活性剤を含むw/o/w型の二次乳化液とする。これを30〜40℃で撹拌するとポリマーを溶解している有機溶媒が徐々に水に溶け、さらに蒸発するので、次第にポリマーが酵素溶液のまわりに析出しマイクロカプセルを生成する方法である。
上記(1)〜(3)の方法を組み合わせた方法も存在する。すなわち架橋法と包括法の組み合わせ、イオン結合法と包括法の組み合わせ、共有結合法と包括法の組み合わせ、物理的吸着法やイオン結合法と架橋法の組み合わせなどがある。
また、共有結合で分子を固定化できるため、担体から固定化した分子の脱離も少なく、操作も簡便でコスト面にも優れることから、固定化担体への分子認識素子の固定化法として有用であると考える。さらに、プラズマ重合法を用いた固定化法(WO 01/33227 A1)が挙げられる。
図2に示すバイオセンサでは、基板1を振動させる方法として、該基板1に磁性体2を備え、該磁性体2と対に磁体3を設け、該磁体3のN,S極を交互に変更させるように構成されている。
上記構成において、該磁体3をN,S極を交互に変更させることで該磁体3と該磁性体2との間に引力、反発力が働き該基板1を振動させる。該振動が分子認識素子に伝わり、測定物質を放出させる。
図3に示すバイオセンサでは、基板1を振動させる方法として、該基板1に+あるいは−の電荷を帯電させた帯電部位4(基板自体を帯電部位(電極)としても良い)を備え、該帯電部位4(基板)と対になるように電極5を設け、該電極5を+,−に交互に変更させるように構成されている。
上記構成において、該電極5を+,−に交互に変更させることで該電極5と該帯電部位4(基板)との間で引力、反発力が働き該基板1を振動させる。該振動が分子認識素子に伝わり、測定物質を放出させる。
図4に示すバイオセンサでは、基板1を振動させる方法として、該基板1に温度により変形する変形部位6を備え、該変形部位6に接するようにペルチェ素子7を設け、該ペルチェ素子7を冷・暖に交互に変更させるように構成されている。
上記構成において、該ペルチェ素子7を冷・暖に交互に変更させることで該変形部位6が反ったり,戻ったりする変形力が働き該基板1を振動させる。該振動が分子認識素子に伝わり、測定物質を放出させる。
図5に示すバイオセンサでは、分子認識素子自身を振動させる方法として、該基板1に磁体8を設け、該磁体8のN,S極を交互に変更させるように構成されている。なお、分子認識素子のナノ粒子は磁性体ナノ粒子15である。
上記構成において、該磁体8のN,S極を交互に変更させることで該磁体8と該ナノ粒子との間に引力、反発力が働き、該分子認識自身が振動して、測定物質を放出させる。
図6に示すバイオセンサでは、分子認識素子自身を振動させる方法として、該基板1に電極9を設け、該電極9を+,−に交互に変更させるように構成されている。なお、分子認識素子のナノ粒子は金属粒子16である。
上記構成において、該電極9を+,−に交互に変更させることで該電極9と金属ナノ粒子との間で引力、反発力が働き、該分子認識自身が振動して、測定物質を放出させる。
図7に示すバイオセンサでは、分子認識素子自身を振動させる方法として、該基板1にコイル10を設け、該コイルから磁界を発生させるように構成されている。なお、分子認識素子のナノ粒子は磁性体ナノ粒子15である。
上記構成において、該コイルから磁界を発生させることで該基板と磁性体ナノ粒子との間で引力、反発力が働き、該分子認識自身が振動して、測定物質を放出させる。
これにより、本発明のバイオセンサは、分子認識素子が測定物質を認識することで起こるコンホメーション変化による物理的変化による信号が発生した時間と測定環境内位置のデータを受信可能及び/又は記録可能である。
また、「信号を送信する手段」とは、分子認識素子が測定物質を認識した瞬間の信号を測定環境外に無線等を利用して送信できる手段を意味する。このような信号を送信できる手段は、公知の飲み込み型胃カメラカプセルが連続的に胃の内部の写真及びカプセルの位置情報を送信できる手段を利用できる。この場合には、環境外に送信データを受信できる受信装置が必要となる。
また、「信号を記録する手段」とは、分子認識素子が測定物質を認識した瞬間の信号をセンサ内に記録できる手段を意味する。このような信号を記録できる手段は、公知のメモリー装置を利用できる。
本発明の分子認識素子の創製方法は上記示した方法を利用することができる。例えば、測定物質がタンパク質である場合を例に示す。
測定物質の表面に出ていると推定されるアミノ酸配列を1又は2以上を選択する。該選択したアミノ酸配列は、好ましくは10〜40、15〜35、20〜30アミノ酸数が好ましい。次に、該選択したアミノ酸配列を固相合成法等で合成する。合成したペプチドを適当な担体に固定して、ファージディスプレイ法等によって、該選択したアミノ酸配列を特異的に認識するアミノ酸配列を選抜する。次に、選抜したアミノ酸配列を固相合成法等で合成し、分子認識素子とする。なお、選抜したアミノ酸配列が2箇所以上なら、各選抜したアミノ酸配列をペプチド(好適には、グリシン等のアミノ酸)リンカー等で結合して分子認識素子とすることができる。
本発明のバイオセンサの作製方法を以下に示す。しかしながら、本発明のバイオセンサの構成を成すことができる方法であれば、下記方法に限定されない。
(1)ナノ粒子又は金属タンパク質を分子認識素子に結合させる工程
上記作製方法で得られた分子認識素子に、ナノ粒子又は金属タンパク質を結合させる。結合方法は、化学修飾、ヒスチジンタグ(なお、ニトリロトリ酢酸錯体を介しても良い)等を使用することができる。
(2)ナノ粒子又は金属タンパク質が結合した分子認識素子を基板に固定化する工程
1.分子認識素子を直接的に基板に固定する場合には、伝導性及び/又は磁気性の材料を基板とする。なお、固定化する方法は、上述の方法のいずれかを使用することができる。
2.分子認識素子を間接的に基板に固定する場合には、ガラス、シリコン。合成樹脂等を基板とする。分子認識素子を固定化した伝導性及び/又は磁気性担体を基板に固定化する。なお、固定化する方法は、上述の方法のいずれかを使用することができる。
異なる測定物質を認識する分子認識素子を基板に固定する場合には、各分子認識素子を伝導性及び/又は磁気性担体に固定するのが良い。また、どの分子認識素子が測定物質と認識したかを特定するために、各基盤と測定素子間を配線で連結すれば良い(参照:図8)。
(3)物理的刺激を基板に加える手段を基板に備える工程
磁性体、帯電部位、変形部位、磁体、電極、発光体を基板の表面又は周辺に配置する。なお、基板そのものに埋め込んでも良い。配置、埋め込み方法は、当業者の公知の方法を利用することができる。さらに、必要に応じて、磁性体と対になる磁体、帯電部位と対になる電極、変形部位となるペルチェ素子を設けることができる。
さらに好適には、測定素子、各基板と測定素子間を連結する配線、磁性体、帯電部位、変形部位、信号を増幅する素子、記録素子(メモリー)、信号を送信する素子及び/又は電極を基板の表面又は周辺に配置することができる。配置方法は、当業者の公知の方法を利用することができる。
測定方法を以下に示す。
本発明のバイオセンサを試料と接触させる。分子認識素子を有する基板表面に試料を添加することもできるが、好適には、バイオセンサ自身を試料である測定環境内に導入する。ここで、分子認識素子が試料中の測定物質を認識することでコンホメーション変化による物理的変化が起こる。該物理的変化が各信号(ナノ粒子又は金属タンパク質と基板間の距離の変化により生じる電荷量、磁気量、光量、熱量の変化)に変換される。各信号が配線を通して測定素子に到達する。該測定素子が各信号を認識することにより、分子認識素子のコンホメーション変化を検出することができる。さらに、分子認識素子が測定物質を認識した瞬間及び/又は測定環境内位置データを測定環境外にある受信装置に送信することができる。なお、各信号の強弱は、分子認識素子が測定物質を認識した量と相関すると考えられる。
また、物理的刺激を基板に加える。これにより、分子認識素子は振動することにより、コンホメーション変化が起こり、測定物質を放出する。なお、物理的刺激は、無線等を利用することにより、測定環境外から操作することができる。
本発明のバイオセンサの応用例を以下に示す。
カプセル型の本発明のバイオセンサを喉から飲み込む。バイオセンサは生体内を循環し、腸管に到達する。ここで、測定環境外部から無線等の操作により、分子認識素子を有する基板表面と測定環境内が接触するようにする。バイオセンサは測定を開始し、病変部位で特異的に発現するタンパク質(測定物質)を認識する。分子認識素子が測定物質を認識した瞬間及び/又は小腸での位置のデータを測定環境外にある受信装置に送信する。これにより、腸管内の病変部位を正確に検出することができる。次に、物理的刺激を基板に加える。よって、分子認識素子は振動することにより、コンホメーションの変化が起こり、測定物質を放出する。これにより、バイオセンサは再利用可能となり、さらに測定を継続することができる。
Amino acid sequence (sTNFRSF1A:配列番号1)
MDSVCPQGKYIHPQNNSICCTKCHKGTYLYNDCPGPGQDTDCRECESGSFTASENHLRHCLSCSKCRKEMGQVEISSCTVDRDTVCGCRKNQYRHYWSENLFQCFNCSLCLNGTVHLSCQEKQNTVCTCHAGFFLRENECVSCSNCKKSLECTKLCLPQIEN
次に、HBS-EP(0.01 M HEPES pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20)で希釈した各濃度のTNFα(3 AU、10 AU、30 AU、50 AU、100 AU)を流速20マイクロリットル/分、20℃でセンサーチップ上に結合させた。続いて、3 AU、10 AU、30 AU、50 AU、100 AU濃度のTNF-αをBiacore2000装置(ビアコア社製)を用いて測定した(図9)。
さらに、該分子認識素子は、測定物質であるTNFαの濃度に依存して検出できることが明らかになった。この結果から、該分子認識素子は濃度依存的に測定物質の検出ができることが確認された。従って、ナノ粒子又は金属タンパク質が結合した分子認識素子は、さらに特異的、高感度で測定物質を検出することができると考えられる。また、分子認識素子のアミノ酸配列をコンピュターモデリングソフト等で改良することで、測定物質の認識に適した分子認識素子を創製することができる。
配列番号4:GPGSGRGWVEICAADDYGRCLGPGSGGPGSGNECDIARMWEWECFERLGPGSGGPGSG
GST 融合タンパク質発現用プラスミドベクター(pGEX-6P-1)に配列番号4に記載のアミノ酸配列をコードする遺伝子を導入し、タンパク質大量発現用宿主株{ BL21(DE3)}を形質転換した。該形質転換した菌体を培養し、対数増殖期にIPTGを添加してタンパク質の発現を誘導した。培養した菌体を超音波破砕した後、可溶性画分をグルタチオンカラムを用いてアフィニティー精製した。VEGF認識ペプチドが合成されていることを確認した。
以上により、血管内皮増殖因子(VEGF)を認識する分子認識素子の認識部位を得ることができた。さらに、測定物質を認識する複数の部位をリンカー等で適度な物理的空間を保持するように結合することで、より測定物質の認識能が高い分子認識素子の認識部位が得られた。
AUTOLAB社製SPR装置を用いて1/1000に希釈した直径10nmの磁気ナノビーズ(FeroTec社製メディカル用磁性粒子キット)をSPRチップ上に滴下し、磁石を近づけることでシグナルの変化を測定した(図11)。
さらに、SPR基板上に磁場を与えないときは、磁場を与える前と同じシグナルに戻ることから、図1Aの構造を有する分子認識素子は、被測定物質を認識した後に、磁場の影響により、被測定物質を放出することができると考えられる。これにより、バイオセンサの再利用も可能となると考えられる。
(1)バイオセンサの作製方法
SPR表面の金薄膜に1mg/mL Thiol-dPEG4 acidで処理する。次に、SPR表面上のカルボキシル基をNHS(N-ヒドロキシスクシンイミド)/EDC(カルボジイミド)溶液で活性化した後に、VEGF認識ペプチドをSPR表面上に固定化する。さらに、磁気ナノビーズを固定化したVEGF認識ペプチドに固定化させる。
(2)上記バイオセンサを用いて被測定物質の測定方法
VEGFを上記バイオセンサで自体公知の方法で測定する。さらに測定した後に、磁界をSPR表面上に加えることで、分子認識素子の磁気ナノビーズの挙動により、VEGFを解離させる。これにより、バイオセンサの再利用が可能であると考えられる。
2:磁性体
3:磁体
4:帯電部位
5:電極
6:変形部位
7:ペルテェ素子
8:磁体
9:電極
10:コイル
11:測定物質
12:担体
13:配線回路
14:分子認識素子
15:磁性体ナノ粒子
16:金属粒子
17:磁石
Claims (4)
- (1)測定物質を認識する認識部位と、該認識部位に接続されたリンカーと、該リンカーの任意の位置に結合された磁性体粒子を少なくとも備え、前記認識部位にて測定物質を認識してコンホメーション変化を発生する分子認識素子と、
(2)該分子認識素子を直接的又は間接的に固定化するための基板と、
(3)該コンホメーション変化による光量を検出する装置と、
(4)磁力を該基板に印加する装置と、
を含むバイオセンサであって、
ここで、該磁力を基板に印加することにより、該測定物質を分子認識素子から放出させ
ることができることを特徴とするバイオセンサ。
- 前記分子認識素子は、2種以上の測定物質の認識部位を有することを特徴とする請求項1に記載のバイオセンサ。
- さらに、(5)前記コンホメーション変化による物理的変化の信号を記録する手段及び測定環境外に送信する手段の少なくとも一方を含むことを特徴とする請求項1又は2に記載のバイオセンサ。
- 前記光量を検出する装置は、前記分子認識素子に結合した磁性体粒子と前記基板間の距離の変化を信号に変換して検出する装置であることを特徴とする請求項1〜3のいずれか1に記載のバイオセンサ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008219371A JP5487494B2 (ja) | 2006-08-30 | 2008-08-28 | 分子認識素子及び該分子認識素子を用いたバイオセンサ並びに該バイオセンサを用いた測定方法。 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006234687 | 2006-08-30 | ||
JP2006234687 | 2006-08-30 | ||
JP2006234688 | 2006-08-30 | ||
JP2006234688 | 2006-08-30 | ||
JP2008219371A JP5487494B2 (ja) | 2006-08-30 | 2008-08-28 | 分子認識素子及び該分子認識素子を用いたバイオセンサ並びに該バイオセンサを用いた測定方法。 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007224935A Division JP2008083042A (ja) | 2006-08-30 | 2007-08-30 | 分子認識素子及び該分子認識素子を用いたバイオセンサ並びに該バイオセンサを用いた測定方法。 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008292505A JP2008292505A (ja) | 2008-12-04 |
JP5487494B2 true JP5487494B2 (ja) | 2014-05-07 |
Family
ID=40167322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008219371A Expired - Fee Related JP5487494B2 (ja) | 2006-08-30 | 2008-08-28 | 分子認識素子及び該分子認識素子を用いたバイオセンサ並びに該バイオセンサを用いた測定方法。 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5487494B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112012010273A2 (pt) * | 2009-10-30 | 2018-03-20 | Medtech Detect Llc | composição, dispositivo, método e artigo para detecção de um analito em uma amostra por leitura óptica colorimétrica, e, uso da composição |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1183521B1 (en) * | 1999-05-14 | 2014-03-19 | Brandeis University | Aptamer-based detection |
EP1649066A4 (en) * | 2003-07-11 | 2006-10-11 | Surromed Inc | MULTIPLEX ASSAY BASED ON MOLECULAR TAGS FOR THE DETECTION OF PATHOGENS |
-
2008
- 2008-08-28 JP JP2008219371A patent/JP5487494B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008292505A (ja) | 2008-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Camarero et al. | Chemoselective attachment of biologically active proteins to surfaces by expressed protein ligation and its application for “protein chip” fabrication | |
Whitcombe et al. | The rational development of molecularly imprinted polymer-based sensors for protein detection | |
Alarcón-Correa et al. | Self-assembled phage-based colloids for high localized enzymatic activity | |
Gori et al. | Screening complex biological samples with peptide microarrays: the favorable impact of probe orientation via chemoselective immobilization strategies on clickable polymeric coatings | |
Ogorzalek et al. | Molecular-level insights into orientation-dependent changes in the thermal stability of enzymes covalently immobilized on surfaces | |
CN102313725A (zh) | 一种溶菌酶分子印迹-量子点纳米荧光探针的制备方法 | |
Liu et al. | Enzyme-powered hollow nanorobots for active microsampling enabled by thermoresponsive polymer gating | |
EP2220495A1 (en) | Sensors employing combinatorial artificial receptors | |
CN103348244B (zh) | 与苯基硼酸基特异性结合的寡肽序列 | |
Wada et al. | Design and construction of glutamine binding proteins with a self-adhering capability to unmodified hydrophobic surfaces as reagentless fluorescence sensing devices | |
Chen et al. | Non-autofluorescence detection of H5N1 virus using photochemical aptamer sensors based on persistent luminescent nanoparticles | |
Silva et al. | Imprinted hydrogel nanoparticles for protein biosensing: a review | |
Lanphere et al. | Triggered assembly of a DNA-based membrane channel | |
Guo et al. | Acceleration of biomolecule enrichment and detection with rotationally motorized opto-plasmonic microsensors and the working mechanism | |
Jarocka et al. | A biosensor based on electroactive dipyrromethene-Cu (II) layer deposited onto gold electrodes for the detection of antibodies against avian influenza virus type H5N1 in hen sera | |
EP2046816A1 (en) | Cysteine-tagged staphylococcal protein g variant | |
JP2009075100A (ja) | 分子認識素子及び該分子認識素子を用いたバイオセンサ並びに該バイオセンサを用いた測定方法。 | |
Bernhard et al. | Electrical sensing of phosphonates by functional coupling of phosphonate binding protein PhnD to solid-state nanopores | |
JP5487494B2 (ja) | 分子認識素子及び該分子認識素子を用いたバイオセンサ並びに該バイオセンサを用いた測定方法。 | |
JP2008083042A (ja) | 分子認識素子及び該分子認識素子を用いたバイオセンサ並びに該バイオセンサを用いた測定方法。 | |
JP2004347317A (ja) | タンパク質アレイ及びその作製方法 | |
KR100877187B1 (ko) | 질병마커 인지 에피토프와 연결된 단백질 나노입자를포함하는 진단용 단백질 칩과 그의 초고감도 검출 방법 | |
Madrid et al. | Biosensors and nanobiosensors | |
JP3937020B2 (ja) | 表面プラズモン共鳴抗体アレイセンサ作製用基板及びその作製方法 | |
Vranken et al. | In situ monitoring and optimization of CuAAC-mediated protein functionalization of biosurfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080905 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100804 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130319 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130722 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130919 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5487494 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |