JP5486858B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP5486858B2
JP5486858B2 JP2009161003A JP2009161003A JP5486858B2 JP 5486858 B2 JP5486858 B2 JP 5486858B2 JP 2009161003 A JP2009161003 A JP 2009161003A JP 2009161003 A JP2009161003 A JP 2009161003A JP 5486858 B2 JP5486858 B2 JP 5486858B2
Authority
JP
Japan
Prior art keywords
core
gas
guide tube
spiral pipe
inflow guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009161003A
Other languages
Japanese (ja)
Other versions
JP2011017466A (en
Inventor
俊洋 立川
健二 関谷
宏則 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2009161003A priority Critical patent/JP5486858B2/en
Publication of JP2011017466A publication Critical patent/JP2011017466A/en
Application granted granted Critical
Publication of JP5486858B2 publication Critical patent/JP5486858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/028Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of at least one medium being helically coiled, the coils having a conical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、複数枚の金属プレートからなるコアを有する熱交換器に関する。   The present invention relates to a heat exchanger having a core made of a plurality of metal plates.

下記の特許文献1あるいは特許文献2にプレート形の熱交換器が開示されている。この種の熱交換器のコアは、複数枚の金属プレートを重ね合わせ、各プレート間に、高温ガスが流れる第1流路と、冷却用媒体が流れる第2流路とが交互に形成されている。このコアはハウジングの内部に収容されている。   The following Patent Document 1 or Patent Document 2 discloses a plate-type heat exchanger. The core of this type of heat exchanger is formed by stacking a plurality of metal plates and alternately forming a first flow path through which high-temperature gas flows and a second flow path through which a cooling medium flows between the plates. Yes. This core is accommodated inside the housing.

前記ハウジングの流入側の端部にガス流入口が形成されている。ハウジングの流出側の端部にガス流出口が形成されている。ガス流入口からハウジングの内部に流入した高温ガスは、前記コアの第1流路を流れたのち、ガス流出口からハウジングの外部に流出する。前記コアの第2流路には冷却水などの冷却用媒体が供給され、この冷却媒体と前記ガスとの間で熱交換が行われることによって、高温ガスが冷却されるようになっている。   A gas inlet is formed at the end of the housing on the inflow side. A gas outlet is formed at the end on the outflow side of the housing. The hot gas flowing into the housing from the gas inlet flows through the first flow path of the core and then flows out of the housing from the gas outlet. A cooling medium such as cooling water is supplied to the second flow path of the core, and heat exchange is performed between the cooling medium and the gas, whereby the high-temperature gas is cooled.

特開2000−320986号公報JP 2000-320986 A 特開2006−177637号公報Japanese Patent Laid-Open No. 2006-177637

前記したように複数の金属プレートを積層してなるコアを有する熱交換器では、ガス流入口からハウジングの内部に数百℃を越える高温ガスが流入することがある。この高温ガスがコアの端に触れると、金属プレートの一部が局部的に高温となり。その場合、高温となった金属プレートの一部に熱応力による過剰な変形が発生し、この変形がコアに悪影響を与えることが考えられる。特に、コアの各部において冷却媒体の流速等を十分均一にすることが難しいコアの場合には、比較的高温となりやすい部分に高温ガスが触れることによってコアの一部がさらに高温となりやすい。   As described above, in a heat exchanger having a core formed by stacking a plurality of metal plates, a high-temperature gas exceeding several hundred degrees Celsius may flow into the housing from the gas inlet. When this hot gas touches the end of the core, part of the metal plate becomes locally hot. In this case, it is considered that excessive deformation due to thermal stress occurs in a part of the metal plate that has become high temperature, and this deformation adversely affects the core. In particular, in the case of a core in which it is difficult to make the flow rate of the cooling medium sufficiently uniform in each part of the core, a part of the core is likely to be further heated by contact with a portion where the temperature is likely to be relatively high.

従って本発明の目的は、ガス流入口から流入する高温のガスによってコアの一部が変形することを抑制できる熱交換器を提供することにある。   Therefore, the objective of this invention is providing the heat exchanger which can suppress that a core part deform | transforms with the high temperature gas which flows in from a gas inflow port.

本発明の熱交換器は、複数のプレートを互いに重ねることによって構成され、これらプレート間に高温ガスが流れる第1流路と冷却用媒体が流れる第2流路とを形成してなるコアと、前記コアを収容するコア収容部と該コア収容部に連通するガス流入口およびガス流出口を有しかつ前記ガス流入口から前記コア収容部に向って流路断面積が増加する流入案内筒を有するハウジングと、前記流入案内筒の内側に該流入案内筒の内面に沿って配置された予冷却器とを具備している。   The heat exchanger of the present invention is configured by stacking a plurality of plates, and a core formed with a first flow path through which a high-temperature gas flows and a second flow path through which a cooling medium flows between these plates; An inflow guide tube having a core housing portion that houses the core, a gas inlet and a gas outlet communicating with the core housing portion, and a flow passage cross-sectional area increases from the gas inlet toward the core housing portion. And a precooler disposed along the inner surface of the inflow guide tube inside the inflow guide tube.

本発明では、前記予冷却器は前記流入案内筒の内面に沿って前記ガス流入口から前記コア収容部に向って径が増加するよう螺旋形に巻かれた第1のスパイラルパイプを有し、この第1のスパイラルパイプ内に前記冷却用媒体が流れるようにしている。また前記第1のスパイラルパイプの内側に配置された第2のスパイラルパイプを有し、この第2のスパイラルパイプ内に前記冷却用媒体が流れるようにし、第2のスパイラルパイプが前記ガス流入口から流入案内筒に流入するガスの流れを横切るよう前記第1のスパイラルパイプに対し横向きに配置されている In the present invention, the precooler has a first spiral pipe wound in a spiral shape so that its diameter increases from the gas inlet toward the core housing portion along the inner surface of the inflow guide tube, The cooling medium flows in the first spiral pipe. A second spiral pipe disposed inside the first spiral pipe, wherein the cooling medium flows in the second spiral pipe, and the second spiral pipe is connected to the gas inlet. The first spiral pipe is disposed transversely so as to cross the gas flow flowing into the inflow guide tube .

また、前記流入案内筒と前記コア収容部との間に、パンチングメタルからなる流通抑制部材が配置されていてもよい。前記流入案内筒の下部に、前記ガス流入口から流入するガスが前記コアの下部に向かうことを抑制する整流板が設けられていてもよい。   Further, a flow restriction member made of punching metal may be disposed between the inflow guide tube and the core housing portion. A rectifying plate may be provided at a lower portion of the inflow guide tube so as to suppress a gas flowing in from the gas inlet from being directed to a lower portion of the core.

本発明によれば、ガス流入口から流入案内筒を通ってコアに向う高温ガスが、流入案内筒の内面に沿って配置されたスパイラルパイプなどからなる予冷却器によって冷却され、ある程度温度が低下した状態でコアに接する。このため金属プレートからなるコアの一部が高温となることを回避でき、コアの一部が変形することを抑制できる。   According to the present invention, the high-temperature gas from the gas inlet through the inflow guide tube toward the core is cooled by the precooler including the spiral pipe disposed along the inner surface of the inflow guide tube, and the temperature is lowered to some extent. In contact with the core. For this reason, it can avoid that a part of core which consists of metal plates becomes high temperature, and can suppress that a part of core deform | transforms.

本発明において、前記ガス流入口からコア収容部に向って流路断面がテーパ状に増加する流入案内筒の内面に沿って螺旋形に成形されたスパイラルパイプが配置されている場合には、流入案内筒の内側の空間に所望の長さを有するスパイラルパイプをコンパクトに収納することができ、しかも流入案内筒の内面に沿って流れる高温ガスをこのスパイラルパイプ内を流れる冷却用媒体によって効果的に冷却することができる。   In the present invention, when a spiral pipe formed in a spiral shape is disposed along the inner surface of the inflow guide cylinder whose flow path cross section increases in a taper shape from the gas inlet toward the core housing portion, A spiral pipe having a desired length can be stored compactly in the space inside the guide tube, and the high-temperature gas flowing along the inner surface of the inflow guide tube can be effectively absorbed by the cooling medium flowing in the spiral pipe. Can be cooled.

本発明の1つの実施形態に係る熱交換器の斜視図。1 is a perspective view of a heat exchanger according to one embodiment of the present invention. 図1に示された熱交換器の一部を切欠いて内部を示す斜視図。FIG. 2 is a perspective view showing the inside by cutting out a part of the heat exchanger shown in FIG. 1. 図1に示された熱交換器の一部を切欠いて示す側面図。The side view which cuts and shows a part of heat exchanger shown by FIG. 前記熱交換器の一部を切欠いて示す平面図。The top view which notches and shows a part of said heat exchanger. 前記熱交換器の正面図。The front view of the said heat exchanger. 前記熱交換器の第1のスパイラルパイプと第2のスパイラルパイプの斜視図。The perspective view of the 1st spiral pipe and 2nd spiral pipe of the said heat exchanger. 前記熱交換器のコアの一部を断面で表わして下側から見た斜視図。The perspective view which represented a part of core of the said heat exchanger in the cross section, and was seen from the bottom. 前記コアを構成するプレート対を一部切欠いて上側から見た斜視図。FIG. 3 is a perspective view of a pair of plates constituting the core, partly cut away and viewed from above.

以下に本発明の実施形態について、図1から図8を参照して説明する。
図1は本発明の1つの実施形態に係る熱交換器10を示している。この熱交換器10はハウジング11を備えている。図2はハウジング11の一部を切欠いて熱交換器10の内部を示している。ハウジング11の内部に熱交換用のコア12が収容されている。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 8.
FIG. 1 shows a heat exchanger 10 according to one embodiment of the present invention. The heat exchanger 10 includes a housing 11. FIG. 2 shows the inside of the heat exchanger 10 with a part of the housing 11 cut away. A heat exchange core 12 is accommodated in the housing 11.

図3は熱交換器10の側面図、図4は熱交換器10の平面図、図5は熱交換器10の正面図である。ハウジング11はステンレス鋼などの金属板からなり、コア12を収容するコア収容部15と、コア収容部15の一端側(ガス流入側)に形成された流入案内筒16と、コア収容部15の他端側(ガス流出側)に形成された流出案内筒17などを有している。コア収容部15は、左右一対の側板20,21と、底板22と、上板23などからなり、四角い箱形に形成されている。   3 is a side view of the heat exchanger 10, FIG. 4 is a plan view of the heat exchanger 10, and FIG. 5 is a front view of the heat exchanger 10. The housing 11 is made of a metal plate such as stainless steel, and includes a core accommodating portion 15 that accommodates the core 12, an inflow guide tube 16 that is formed on one end side (gas inflow side) of the core accommodating portion 15, and the core accommodating portion 15. It has an outflow guide tube 17 formed on the other end side (gas outflow side). The core housing portion 15 includes a pair of left and right side plates 20 and 21, a bottom plate 22, an upper plate 23 and the like, and is formed in a square box shape.

流入案内筒16の端部にガス流入口30とフランジ31が形成されている。この流入案内筒16は、断面が円形のガス流入口30から四角形のコア収容部15に向って、流路断面の形状が円形から四角形に変化し、かつ、ガス流入口30からコア収容部15に向って流路断面積が増加するようなテーパ形状をなしている。この流入案内筒16は、フランジ31を介してガス流通管35(図1に示す)に接続され、ガス流通管35から送られる高温ガスG1が流入案内筒16を通ってハウジング11の内部のコア12に供給されるようになっている。   A gas inlet 30 and a flange 31 are formed at the end of the inflow guide tube 16. The inflow guide tube 16 has a cross-sectional shape that changes from a circular shape to a quadrangular shape from the gas inlet 30 having a circular cross section toward the quadrangular core housing portion 15. A taper shape is formed such that the cross-sectional area of the flow path increases toward the surface. The inflow guide tube 16 is connected to a gas flow pipe 35 (shown in FIG. 1) via a flange 31, and the hot gas G1 sent from the gas flow pipe 35 passes through the inflow guide tube 16 and is a core inside the housing 11. 12 is supplied.

ハウジング11の他端側に設けられた流出案内筒17に、ガス流出口40とフランジ41が形成されている。流出案内筒17は、断面が四角形のコア収容部15から円形のガス流出口40に向って、流路断面の形状が四角形から円形に変化し、かつ、コア収容部15からガス流出口40に向って流路断面積が減少する逆テーパ形状をなしている。この流出案内筒17は、フランジ41を介してガス流通管45(図1に示す)に接続され、熱交換後のガスG2がガス流通管45に排出されるようになっている。   A gas outlet 40 and a flange 41 are formed in the outflow guide tube 17 provided on the other end side of the housing 11. The outflow guide tube 17 has a cross-sectional shape that changes from a quadrilateral to a circular gas outlet 40 from the quadrangular core housing part 15 toward the circular gas outlet 40, and from the core accommodating part 15 to the gas outlet 40. It has a reverse taper shape in which the cross-sectional area of the flow path decreases. The outflow guide cylinder 17 is connected to a gas flow pipe 45 (shown in FIG. 1) via a flange 41 so that the gas G2 after heat exchange is discharged to the gas flow pipe 45.

流入案内筒16の内側に予冷却器50が配置されている。予冷却器50は、第1のスパイラルパイプ51と第2のスパイラルパイプ52とを含んでいる。図6は、第1のスパイラルパイプ51と第2のスパイラルパイプ52を示している。これら第1のスパイラルパイプ51と第2のスパイラルパイプ52は、それぞれ、ステンレス鋼等の耐腐食性を有する金属パイプ材を螺旋形に巻くことによってコイル状に形成されている。   A precooler 50 is disposed inside the inflow guide tube 16. The precooler 50 includes a first spiral pipe 51 and a second spiral pipe 52. FIG. 6 shows a first spiral pipe 51 and a second spiral pipe 52. Each of the first spiral pipe 51 and the second spiral pipe 52 is formed in a coil shape by winding a metal pipe material having corrosion resistance such as stainless steel in a spiral shape.

第1のスパイラルパイプ51は流入案内筒16の内面16aに沿って配置されている。流入案内筒16はガス流入口30からコア収容部15に向って流路断面積が増加するテーパ状をなしている。このため第1のスパイラルパイプ51は、流入案内筒16の内面16aに沿って、ガス流入口30側の小径側端部51aからコア収容部15側の大径側端部51bに向って、径が増加するように螺旋形に巻かれた形状をなしている。   The first spiral pipe 51 is disposed along the inner surface 16 a of the inflow guide tube 16. The inflow guide tube 16 has a tapered shape in which the cross-sectional area of the flow path increases from the gas inlet 30 toward the core housing portion 15. Therefore, the first spiral pipe 51 has a diameter along the inner surface 16a of the inflow guide tube 16 from the small-diameter end 51a on the gas inlet 30 side toward the large-diameter end 51b on the core housing portion 15 side. The shape is wound in a spiral so as to increase.

第2のスパイラルパイプ52は第1のスパイラルパイプ51の内側に配置されている。第2のスパイラルパイプ52は第1のスパイラルパイプ51の内側に収容できる大きさであり、ほぼ円筒コイル状に巻かれている。これらスパイラルパイプ51,52の内部に冷却水Wが流されるようになっている。   The second spiral pipe 52 is disposed inside the first spiral pipe 51. The second spiral pipe 52 has a size that can be accommodated inside the first spiral pipe 51 and is wound in a substantially cylindrical coil shape. The cooling water W is caused to flow inside the spiral pipes 51 and 52.

第1のスパイラルパイプ51の流入側の端部に継手55が設けられている。第1のスパイラルパイプ51はこの継手55を介して冷却水供給管56(図1に示す)に接続されている。冷却水供給管56は冷却水Wを供給する機能を有している。第1のスパイラルパイプ51の流出側の端部に継手60が設けられている。この継手60に第1の中継管61の一端が接続されている。   A joint 55 is provided at the end of the first spiral pipe 51 on the inflow side. The first spiral pipe 51 is connected to a cooling water supply pipe 56 (shown in FIG. 1) through the joint 55. The cooling water supply pipe 56 has a function of supplying the cooling water W. A joint 60 is provided at the end on the outflow side of the first spiral pipe 51. One end of the first relay pipe 61 is connected to the joint 60.

第2のスパイラルパイプ52の流入側の端部に継手65が設けられている。この継手65は、第1の中継管61の他端に接続されている。すなわち第1のスパイラルパイプ51と第2のスパイラルパイプ52とが第1の中継管61を介して互いに連通している。第2のスパイラルパイプ52の流出側の端部に継手66が設けられている。この継手66に第2の中継管67の一端が接続されている。   A joint 65 is provided at the end of the second spiral pipe 52 on the inflow side. The joint 65 is connected to the other end of the first relay pipe 61. That is, the first spiral pipe 51 and the second spiral pipe 52 communicate with each other via the first relay pipe 61. A joint 66 is provided at the end on the outflow side of the second spiral pipe 52. One end of a second relay pipe 67 is connected to the joint 66.

冷却水供給管56から第1のスパイラルパイプ51に供給された冷却水Wは、第1のスパイラルパイプ51の内部を流れたのち、第1の中継管61を通って第2のスパイラルパイプ52に流入し、第2のスパイラルパイプ52の内部を流れてから第2の中継管67に流入する。これらのスパイラルパイプ51,52を備えた予冷却器50によって、流入案内筒16の内部を流れる高温ガスG1の温度を、このガスG1がコア12に到達する前に下げることができる。   The cooling water W supplied from the cooling water supply pipe 56 to the first spiral pipe 51 flows through the inside of the first spiral pipe 51 and then passes through the first relay pipe 61 to the second spiral pipe 52. It flows in the second spiral pipe 52 and then flows into the second relay pipe 67. The precooler 50 including the spiral pipes 51 and 52 can lower the temperature of the hot gas G1 flowing inside the inflow guide tube 16 before the gas G1 reaches the core 12.

図3と図4に示されるように、コア収容部15と流入案内筒16との間に、例えばパンチングメタルからなる流通抑制部材70が設けられている。この流通抑制部材70は、流入案内筒16からコア12に向う高温ガスG1の全量が通過するように、コア収容部15と流入案内筒16との間の流路断面の全体をカバーしている。流通抑制部材70の透過率(パンチングメタルの開口率)は例えば20〜40%であるが、この値は必要に応じて設定される。   As shown in FIGS. 3 and 4, a flow restriction member 70 made of, for example, a punching metal is provided between the core housing portion 15 and the inflow guide tube 16. The flow suppressing member 70 covers the entire flow path cross section between the core housing portion 15 and the inflow guide tube 16 so that the entire amount of the hot gas G1 from the inflow guide tube 16 toward the core 12 passes. . The transmittance (opening ratio of the punching metal) of the flow suppressing member 70 is, for example, 20 to 40%, but this value is set as necessary.

ガス流入口30の下部にステンレス鋼等の金属からなる整流板71が配置されている。図3と図4に示されるように整流板71は、ガス流入口30からコア収容部15に向って延びている。図5に示すように整流板71はガス流入口30の内周面に沿って円弧状に形成され、ガス流入口30の最下部の両側に例えば90°〜180°の角度範囲θにわたって設けられている。この整流板71は、ガス流入口30から流入した高温ガスG1がコア12の下部12aに向かうことを抑制する機能を有している。   A rectifying plate 71 made of a metal such as stainless steel is disposed below the gas inlet 30. As shown in FIGS. 3 and 4, the rectifying plate 71 extends from the gas inlet 30 toward the core housing portion 15. As shown in FIG. 5, the rectifying plate 71 is formed in an arc shape along the inner peripheral surface of the gas inlet 30, and is provided on both sides of the lowermost portion of the gas inlet 30 over an angle range θ of, for example, 90 ° to 180 °. ing. The rectifying plate 71 has a function of suppressing the high temperature gas G <b> 1 flowing from the gas inlet 30 from moving toward the lower portion 12 a of the core 12.

以下にコア12の詳細について、図2と図7および図8を参照して説明する。
コア12は、上下一対の金属製の基板80,81(図2,図7に示す)と、これら基板80,81間に設けられた複数個(例えば数十個)のプレート対82とを備えている。プレート対82は、ステンレス鋼などの金属からなる第1プレート83と第2プレート84を厚さ方向に重ねることによって構成されている。
Details of the core 12 will be described below with reference to FIGS. 2, 7, and 8.
The core 12 includes a pair of upper and lower metal substrates 80 and 81 (shown in FIGS. 2 and 7) and a plurality of (for example, several tens) plate pairs 82 provided between the substrates 80 and 81. ing. The plate pair 82 is configured by stacking a first plate 83 and a second plate 84 made of a metal such as stainless steel in the thickness direction.

図8は2個のプレート対82が重なった状態を示している。第1プレート83と第2プレート84は、それぞれ波形に成形された波形部83a,84aを有している。一方の波形部83aの山と谷は、他方の波形部84aの山と谷に対し交差する方向に延びている。これら第1プレート83と第2プレート84とからなるプレート対82を、基板80,81間に複数個(例えば数十個)重ね、第1プレート83の波形部83aと第2プレート84の波形部84aとの接点がろう付けされている。プレート対82の周縁部にはスペーサ部材85が設けられている。   FIG. 8 shows a state in which two plate pairs 82 are overlapped. The first plate 83 and the second plate 84 have corrugated portions 83a and 84a that are shaped into corrugations, respectively. The peaks and valleys of one corrugated portion 83a extend in a direction intersecting the peaks and valleys of the other corrugated portion 84a. A plurality of (for example, several tens) plate pairs 82 composed of the first plate 83 and the second plate 84 are stacked between the substrates 80 and 81, and the corrugated portion 83 a of the first plate 83 and the corrugated portion of the second plate 84 are stacked. The contact with 84a is brazed. A spacer member 85 is provided on the peripheral edge of the plate pair 82.

図7に示すように、第1プレート83と第2プレート84を重ねた状態において、それぞれの第1プレート83の波形部83aと第2プレート84の波形部84aとの間に第1流路91が形成されている。これら第1流路91の流入側開口部91a(図2,図8に示す)は、ハウジング11内の流入側に開口し、ガス流入口30と連通している。ガス流入口30からハウジング11内に流入した高温ガスG1は、これら流入側開口部91aから第1流路91に流入することができる。   As shown in FIG. 7, in a state where the first plate 83 and the second plate 84 are overlapped, the first flow path 91 is provided between the corrugated portion 83a of the first plate 83 and the corrugated portion 84a of the second plate 84. Is formed. An inflow side opening 91 a (shown in FIGS. 2 and 8) of these first flow paths 91 opens to the inflow side in the housing 11 and communicates with the gas inlet 30. The high-temperature gas G1 that has flowed into the housing 11 from the gas inlet 30 can flow into the first flow path 91 from these inflow side openings 91a.

第1流路91の流出側開口部91bは、ハウジング11内の流出側に開口し、ガス流出口40と連通している。流出側開口部91bからハウジング11内の流出側に流出したガスは、ガス流出口40からガス流通管45に向かって流れる。   The outflow side opening 91 b of the first flow path 91 opens to the outflow side in the housing 11 and communicates with the gas outlet 40. The gas flowing out from the outflow side opening 91b to the outflow side in the housing 11 flows from the gas outlet 40 toward the gas circulation pipe 45.

互いに隣り合うプレート対82間に第2流路92が形成されている。図7に示されるように第2流路92は、各プレート83,84の一端側に形成された貫通孔95を介して、冷媒流入口96と連通している。冷媒流入口96は筒形をなし、基板80に固定されている。冷媒流入口96の上端部はハウジング11の外部に突出し、継手97が設けられている。この継手97に、前記第2の中継管67の他端が接続されている。   A second flow path 92 is formed between adjacent plate pairs 82. As shown in FIG. 7, the second flow path 92 communicates with the refrigerant inlet 96 through a through hole 95 formed on one end side of each of the plates 83 and 84. The refrigerant inlet 96 has a cylindrical shape and is fixed to the substrate 80. An upper end portion of the refrigerant inlet 96 projects to the outside of the housing 11, and a joint 97 is provided. The other end of the second relay pipe 67 is connected to the joint 97.

第2流路92の流出側は、各プレート83,84の他端側に形成された貫通孔100(図8に示す)を介して、冷媒流出口101(図2等に示す)と連通している。冷媒流出口101は筒形をなし、基板80に固定されている。冷媒流出口101の上端部はハウジング11の外部に突出し、継手102が設けられている。この継手102は、冷媒流出管103(図1に示す)に接続されている。   The outflow side of the second flow path 92 communicates with the refrigerant outlet 101 (shown in FIG. 2 and the like) through a through hole 100 (shown in FIG. 8) formed on the other end side of each of the plates 83 and 84. ing. The refrigerant outlet 101 has a cylindrical shape and is fixed to the substrate 80. The upper end of the refrigerant outlet 101 protrudes outside the housing 11 and is provided with a joint 102. The joint 102 is connected to a refrigerant outflow pipe 103 (shown in FIG. 1).

以下に前記構成の熱交換器10の作用について説明する。
熱交換器10の上流側に接続されたガス流通管35から、例えば数百℃の高温ガスG1がハウジング11のガス流入口30に供給される。この明細書で言う「高温ガス」とは、冷却を必要とする温度のガスという意味であるから、ガスの温度は百℃以下であってもよく、具体的な温度は問わない。
The operation of the heat exchanger 10 having the above configuration will be described below.
From the gas flow pipe 35 connected to the upstream side of the heat exchanger 10, for example, a high-temperature gas G 1 of several hundred degrees C. is supplied to the gas inlet 30 of the housing 11. The term “hot gas” used in this specification means a gas having a temperature that requires cooling, and therefore the gas temperature may be 100 ° C. or less, and the specific temperature is not limited.

ガス流入口30から流入した高温ガスG1は、流入案内筒16を通る際に第1のスパイラルパイプ51と第2のスパイラルパイプ52に触れる。そののち、このガスG1が流通抑制部材(パンチングメタル)70を通過する。流通抑制部材70を通過したガスG1はコア12に到達し、コア12の流入側開口部91aから第1流路91に流入する。第1流路91に流入したガスは波形部83a,84aの間で乱流を生じながら、流出側開口部91bからガス流出口40を経てガス流通管45へと流れる。   The hot gas G1 flowing in from the gas inlet 30 touches the first spiral pipe 51 and the second spiral pipe 52 when passing through the inflow guide tube 16. Thereafter, the gas G1 passes through the flow suppressing member (punching metal) 70. The gas G1 that has passed through the flow suppression member 70 reaches the core 12 and flows into the first flow path 91 from the inflow side opening 91a of the core 12. The gas that has flowed into the first flow path 91 flows from the outflow side opening portion 91b to the gas circulation pipe 45 through the gas outlet port 40 while generating turbulent flow between the corrugated portions 83a and 84a.

一方、冷却媒体として機能する冷却水Wが、冷却水供給管56から継手55を経て第1のスパイラルパイプ51に供給される。第1のスパイラルパイプ51の内部を流れた冷却水Wは、第1の中継管61を通って第2のスパイラルパイプ52に供給される。第2のスパイラルパイプ52の内部を流れた冷却水Wは、第2の中継管67と冷媒流入口96を通って、コア12の第2流路92に流れ込む。第2流路92に流入した冷却水Wは、波形部83a,84aの間で乱流を生じながら、冷媒流出口101と継手102を経て冷媒流出管103へと流れる。   On the other hand, the cooling water W that functions as a cooling medium is supplied from the cooling water supply pipe 56 to the first spiral pipe 51 through the joint 55. The cooling water W that has flowed through the first spiral pipe 51 is supplied to the second spiral pipe 52 through the first relay pipe 61. The cooling water W that has flowed through the second spiral pipe 52 flows into the second flow path 92 of the core 12 through the second relay pipe 67 and the refrigerant inlet 96. The cooling water W that has flowed into the second flow path 92 flows to the refrigerant outlet pipe 103 via the refrigerant outlet 101 and the joint 102 while generating turbulent flow between the corrugated portions 83a and 84a.

このように、ガス流通管35からハウジング11の内部に導入された高温ガスG1がコア12の第1流路91を流れるとともに、冷却水供給管56からコア12の第2流路92に供給された冷却水Wが第2流路92を流れることにより、プレート83,84を介して高温ガスG1と冷却水Wとの間で熱交換がなされ、高温ガスG1が冷却される。熱交換が行われて温度が低下したガスG2は、熱交換器10の下流側に接続されたガス流通管45に流出する。   As described above, the high temperature gas G1 introduced into the housing 11 from the gas flow pipe 35 flows through the first flow path 91 of the core 12 and is supplied from the cooling water supply pipe 56 to the second flow path 92 of the core 12. When the cooling water W flows through the second flow path 92, heat exchange is performed between the high temperature gas G1 and the cooling water W via the plates 83 and 84, and the high temperature gas G1 is cooled. The gas G <b> 2 whose temperature has decreased due to heat exchange flows out to the gas flow pipe 45 connected to the downstream side of the heat exchanger 10.

ガス流入口30から流入案内筒16を通ってコア12に向う高温ガスG1は、コア12に向って流路断面積が増加する流入案内筒16の内面16aに沿って層流を生じるため、流入案内筒16の内面16a付近では、内面16aから離れた位置よりも高温ガスG1が早く流れる傾向がある。しかもコア12の上下方向に多数の第2流路92が並んでいるため、コア12の下部12aに近くなるほど、冷媒流入口96から流入した冷却水の流速が圧力損失等によって遅くなる傾向がある。このためコア12の下部12a付近の温度が高くなりやすい。   The hot gas G1 that flows from the gas inlet 30 through the inflow guide tube 16 toward the core 12 generates a laminar flow along the inner surface 16a of the inflow guide tube 16 in which the flow path cross-sectional area increases toward the core 12, so In the vicinity of the inner surface 16a of the guide tube 16, the high temperature gas G1 tends to flow faster than the position away from the inner surface 16a. In addition, since a large number of second flow paths 92 are arranged in the vertical direction of the core 12, the flow rate of the cooling water flowing in from the refrigerant inlet 96 tends to become slower due to pressure loss or the like as it approaches the lower portion 12a of the core 12. . For this reason, the temperature in the vicinity of the lower portion 12a of the core 12 tends to increase.

本願の熱交換器10では、流入案内筒16内を流れる高温ガスG1と、スパイラルパイプ51,52内の冷却水Wとの間で熱交換が行なわれるため、高温ガスG1がコア12に到達する前にこのガスG1の温度をある程度下げることができる。流入案内筒16の内面16a付近では高温ガスG1が層流を生じて比較的高速で移動するが、流入案内筒16の内面16aに沿って第1のスパイラルパイプ51が配置されているため、流入案内筒16の内面16a付近を流れる高温ガスG1の温度を効果的に下げることができる。流入案内筒16の中央付近を流れる高温ガスG1は、第1のスパイラルパイプ51の内側に配置されている第2のスパイラルパイプ52に接することによって冷却される。   In the heat exchanger 10 of the present application, heat exchange is performed between the high temperature gas G1 flowing in the inflow guide tube 16 and the cooling water W in the spiral pipes 51 and 52, so that the high temperature gas G1 reaches the core 12. The temperature of the gas G1 can be lowered to some extent before. In the vicinity of the inner surface 16a of the inflow guide tube 16, the hot gas G1 generates a laminar flow and moves at a relatively high speed. However, since the first spiral pipe 51 is disposed along the inner surface 16a of the inflow guide tube 16, the inflow The temperature of the hot gas G1 flowing in the vicinity of the inner surface 16a of the guide tube 16 can be effectively lowered. The hot gas G <b> 1 flowing near the center of the inflow guide tube 16 is cooled by contacting the second spiral pipe 52 disposed inside the first spiral pipe 51.

また、流入案内筒16の下部に整流板71が設けられているため、流入案内筒16を通る高温ガスG1がコア12の下部12aに向うことを整流板71によって抑制することができる。しかも流入案内筒16とコア収容部15との間にパンチングメタル等からなる流通抑制部材70が配置されているため、流入案内筒16からコア12に向う高温ガスG1の圧力が均等化されてコア12に到達する。これらの理由により、コア12の下部12a付近の温度が局部的に高くなることが抑制され、比較的変形が生じやすいといわれるコア12の下部12a付近の熱応力による変形等を防止できるものである。   Further, since the rectifying plate 71 is provided at the lower part of the inflow guide tube 16, the rectifying plate 71 can prevent the high temperature gas G <b> 1 passing through the inflow guide tube 16 from moving toward the lower part 12 a of the core 12. In addition, since the flow suppressing member 70 made of punching metal or the like is disposed between the inflow guide tube 16 and the core housing portion 15, the pressure of the high-temperature gas G1 from the inflow guide tube 16 toward the core 12 is equalized. 12 is reached. For these reasons, the temperature in the vicinity of the lower portion 12a of the core 12 is suppressed from becoming locally high, and deformation caused by thermal stress in the vicinity of the lower portion 12a of the core 12 that is said to be relatively easily deformed can be prevented. .

以上述べたように、ガス流入口30から流入案内筒16内に流入した高温ガスG1は、最初に第1のスパイラルパイプ51と第2のスパイラルパイプ52に接し、冷却水Wとの熱交換がなされる。このためスパイラルパイプ51,52がかなり高温になる可能性がある。しかし本実施形態のスパイラルパイプ51,52は、いずれも1本の金属パイプ材を螺旋形に成形した一体物であって、ろう付け等の接合部が存在せず、しかも螺旋形に巻かれているためコイルばねのようにある程度撓むことができる。このためスパイラルパイプ51,52が高温ガスG1に触れて熱応力が生じても、スパイラルパイプ51,52自身が撓むことによって応力を逃がすことができ、応力集中による塑性変形や損傷を生じることを回避できるものである。   As described above, the high-temperature gas G1 flowing into the inflow guide tube 16 from the gas inlet 30 first comes into contact with the first spiral pipe 51 and the second spiral pipe 52, and heat exchange with the cooling water W is performed. Made. For this reason, there is a possibility that the spiral pipes 51 and 52 become considerably hot. However, each of the spiral pipes 51 and 52 of this embodiment is an integrated body formed by spirally forming one metal pipe material, and there is no joint portion such as brazing, and the spiral pipes 51 and 52 are spirally wound. Therefore, it can be bent to some extent like a coil spring. For this reason, even if the spiral pipes 51 and 52 come into contact with the high temperature gas G1 and a thermal stress is generated, the spiral pipes 51 and 52 themselves can be bent and the stress can be released, and plastic deformation and damage due to the stress concentration can occur. It can be avoided.

なお本発明を実施するに当たって、例えばコアを収容するハウジングの形状や構成をはじめとして、コアを構成するプレートの具体的な態様や、予冷却器を構成するスパイラルパイプ等の具体的な形状や構成、配置等を適宜に変形して実施できることは言うまでもない。また冷却用媒体として冷却水以外の流体が使用されてもよい。   In practicing the present invention, for example, the shape and configuration of the housing that accommodates the core, the specific form of the plate constituting the core, the specific shape and configuration of the spiral pipe constituting the precooler, etc. Needless to say, the arrangement and the like can be modified as appropriate. A fluid other than cooling water may be used as the cooling medium.

10…熱交換器
11…ハウジング
12…コア
15…コア収容部
16…流入案内筒
30…ガス流入口
40…ガス流出口
50…予冷却器
51…第1のスパイラルパイプ
52…第2のスパイラルパイプ
70…流通抑制部材(パンチングメタル)
71…整流板
83,84…プレート
91…第1流路
92…第2流路
DESCRIPTION OF SYMBOLS 10 ... Heat exchanger 11 ... Housing 12 ... Core 15 ... Core accommodating part 16 ... Inflow guide pipe | tube 30 ... Gas inflow port 40 ... Gas outflow port 50 ... Precooler 51 ... 1st spiral pipe 52 ... 2nd spiral pipe 70 ... Distribution control member (punching metal)
71 ... Rectifying plate 83, 84 ... Plate 91 ... First flow path 92 ... Second flow path

Claims (3)

複数のプレートを互いに重ねることによって構成され、これらプレート間に高温ガスが流れる第1流路と冷却用媒体が流れる第2流路とを形成してなるコアと、
前記コアを収容するコア収容部と該コア収容部に連通するガス流入口およびガス流出口を有しかつ前記ガス流入口から前記コア収容部に向って流路断面積が増加する流入案内筒を有するハウジングと、
前記流入案内筒の内側に配置された予冷却器とを具備し、
前記予冷却器は、前記流入案内筒の内面に沿って前記ガス流入口から前記コア収容部に向って径が増加するよう螺旋形に巻かれ前記冷却用媒体が流される第1のスパイラルパイプと、該第1のスパイラルパイプの内側に配置され前記冷却用媒体が流される第2のスパイラルパイプとを有し、かつ、
前記第2のスパイラルパイプが、前記ガス流入口から流入案内筒に流入するガスの流れを横切るよう前記第1のスパイラルパイプに対し横向きに配置されたことを特徴とする熱交換器。
A core formed by stacking a plurality of plates and forming a first flow path through which a high-temperature gas flows and a second flow path through which a cooling medium flows;
An inflow guide tube having a core housing portion that houses the core, a gas inlet and a gas outlet communicating with the core housing portion, and a flow passage cross-sectional area increases from the gas inlet toward the core housing portion. A housing having
; And a precooler which is placed on the inside of the inflow guide tube,
The precooler is spirally wound along the inner surface of the inflow guide tube from the gas inflow port toward the core housing portion so that the diameter increases, and the first spiral pipe through which the cooling medium flows. A second spiral pipe disposed inside the first spiral pipe and through which the cooling medium flows, and
The heat exchanger, wherein the second spiral pipe is disposed laterally with respect to the first spiral pipe so as to cross a gas flow flowing into the inflow guide tube from the gas inlet .
前記流入案内筒と前記コア収容部との間に、パンチングメタルからなる流通抑制部材が配置されていることを特徴とする請求項に記載の熱交換器。 The heat exchanger according to claim 1 , wherein a flow suppressing member made of a punching metal is disposed between the inflow guide tube and the core housing portion. 前記流入案内筒の下部に、前記ガス流入口から流入するガスが前記コアの下部に向かうことを抑制する整流板が設けられていることを特徴とする請求項に記載の熱交換器。 2. The heat exchanger according to claim 1 , wherein a rectifying plate is provided at a lower portion of the inflow guide tube to suppress a gas flowing in from the gas inlet toward the lower portion of the core.
JP2009161003A 2009-07-07 2009-07-07 Heat exchanger Active JP5486858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009161003A JP5486858B2 (en) 2009-07-07 2009-07-07 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161003A JP5486858B2 (en) 2009-07-07 2009-07-07 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2011017466A JP2011017466A (en) 2011-01-27
JP5486858B2 true JP5486858B2 (en) 2014-05-07

Family

ID=43595393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161003A Active JP5486858B2 (en) 2009-07-07 2009-07-07 Heat exchanger

Country Status (1)

Country Link
JP (1) JP5486858B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041355U (en) * 1990-04-20 1992-01-08
JP4229559B2 (en) * 2000-01-21 2009-02-25 本田技研工業株式会社 Heat exchange device for multi-cylinder internal combustion engine
JP2002008117A (en) * 2000-06-23 2002-01-11 Norio Watanabe Automatic vending machine
DE10247837A1 (en) * 2002-10-14 2004-04-22 Behr Gmbh & Co. Automotive exhaust assembly heat exchanger has fluid-filled pipes linked by a funnel-shaped head piece and surrounded by a supplementary jacket
JP2006177637A (en) * 2004-12-24 2006-07-06 Nhk Spring Co Ltd Plate assembly for heat exchanger

Also Published As

Publication number Publication date
JP2011017466A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP2010048536A (en) Heat exchanger
WO2008029639A1 (en) Corrugated heat exchanger tube for hot water supply
WO2007108240A1 (en) Heat exchanger
JP5420970B2 (en) Heat exchanger
WO2018116370A1 (en) Heat exchange device
JPWO2016190445A1 (en) Heat exchanger tank structure and manufacturing method thereof
JP4916857B2 (en) Pressure resistant heat exchanger
JP6116951B2 (en) Header plateless heat exchanger
JP2010121925A (en) Heat exchanger
JP2017106648A (en) Heat exchanger
JP5903911B2 (en) Heat exchanger
JP5486858B2 (en) Heat exchanger
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JP2008190787A (en) Spiral tube and heat exchanger using the same
JP7244440B2 (en) Header plateless heat exchanger
CN104981678B (en) Gas heat-exchanger, the especially gas heat-exchanger for the exhaust of engine
JP2017003260A (en) Heat exchanger
JP4414197B2 (en) Double tube heat exchanger
JPH11183062A (en) Double piped heat exchanger
JP2005147570A (en) Double pipe type heat exchanger
JP6408855B2 (en) Heat exchanger
JP4414196B2 (en) Double tube heat exchanger
JP6429122B2 (en) Heat exchanger and intermediate plate for heat exchanger
JP4414198B2 (en) Double tube heat exchanger
JP6398469B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140224

R150 Certificate of patent or registration of utility model

Ref document number: 5486858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250