JP5486505B2 - Phenol resin mixture, epoxy resin mixture, epoxy resin composition, and cured product - Google Patents

Phenol resin mixture, epoxy resin mixture, epoxy resin composition, and cured product Download PDF

Info

Publication number
JP5486505B2
JP5486505B2 JP2010536675A JP2010536675A JP5486505B2 JP 5486505 B2 JP5486505 B2 JP 5486505B2 JP 2010536675 A JP2010536675 A JP 2010536675A JP 2010536675 A JP2010536675 A JP 2010536675A JP 5486505 B2 JP5486505 B2 JP 5486505B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin mixture
biphenyl
phenol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010536675A
Other languages
Japanese (ja)
Other versions
JPWO2010052877A1 (en
Inventor
一光 白井
克彦 押見
栄一 田中
高男 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2010536675A priority Critical patent/JP5486505B2/en
Publication of JPWO2010052877A1 publication Critical patent/JPWO2010052877A1/en
Application granted granted Critical
Publication of JP5486505B2 publication Critical patent/JP5486505B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、新規なフェノール樹脂混合物、エポキシ樹脂混合物、エポキシ樹脂組成物、及び硬化物に関するものである。   The present invention relates to a novel phenol resin mixture, an epoxy resin mixture, an epoxy resin composition, and a cured product.

エポキシ樹脂組成物は、作業性及びその硬化物の優れた電気特性、耐熱性、耐薬品性、機械的強度、接着性、耐湿性(耐水性)、寸法安定性、光学特性、などの特徴を活かし、電気・電子部品材料、強化繊維複合材料、レジスト材料、光学材料、液晶封止材料、オーバーコート材料、プリプレグ、モールド材料、接着剤、粘着材、塗料などの実に広範な分野で利用されている。
例えば、電気・電子部品材料としては、(1)半導体封止材料、具体的には(a)コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、フリップチップなど用のアンダーフィル、(b)QFP、BGA、CSPなどのICパッケージ類実装時の封止および補強用のアンダーフィルなど、(2)プリント配線板、ビルドアップ積層板などの基板材料、及び多層基版の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、(3)BGA補強用アンダーフィル、異方導電性フィルム、異方性導電性ペーストなどの実装用接着剤などが挙げられる。また、強化繊維複合材料としては車の車体や船舶、航空機の構造材、テニスラケットやゴルフクラブのシャフトなどのレジャー・スポーツ器具用材料、及び燃料電池用セパレータ、などに用いられるCFRPを代表とする構造材料が挙げられる。レジスト材料としてはソルダーレジスト、カラーレジスト、ブラックマトリックスなどが挙げられる。光学材料としてはレンズ用材料などが挙げられる。
近年、電気・電子部品材料の用途においては、電気・電子機器の高性能化に伴って、電気・電子部品の高密度化・高集積化が進められていることや、自動車のエンジン近傍などの高温環境、屋外環境、人体近傍などへの利用分野の拡大化が進められていること、環境対応技術への転換が進められていることから、要求特性が広範囲化かつ高度化している。
例えば半導体封止材料や基板の分野において、エポキシ樹脂に対しては、耐熱性、吸水性、電気絶縁性、低熱膨張率などに加えて、難燃性、耐半田クラック性が求められている。
Epoxy resin composition has excellent workability and excellent electrical properties, heat resistance, chemical resistance, mechanical strength, adhesion, moisture resistance (water resistance), dimensional stability, optical characteristics, etc. Utilized in a wide range of fields such as electrical / electronic component materials, reinforced fiber composite materials, resist materials, optical materials, liquid crystal sealing materials, overcoat materials, prepregs, molding materials, adhesives, adhesives, paints, etc. Yes.
For example, as electrical / electronic component materials, (1) semiconductor sealing materials, specifically (a) potting, dipping, transfer mold sealing, flip-flops for capacitors, transistors, diodes, light emitting diodes, ICs, LSIs, etc. Underfill for chips, etc. (b) Underfill for sealing and reinforcement when mounting IC packages such as QFP, BGA, CSP, etc. (2) Substrate materials such as printed wiring boards and build-up laminates, and Multilayer substrate interlayer adhesives, die bonding agents, semiconductor adhesives such as underfill, (3) BGA reinforcing underfill, anisotropic conductive films, mounting adhesives such as anisotropic conductive paste, etc. Can be mentioned. Reinforcing fiber composite materials are typified by CFRP used in car bodies, ships, aircraft structural materials, materials for leisure and sports equipment such as tennis rackets and golf club shafts, and fuel cell separators. Structural materials are mentioned. Examples of the resist material include a solder resist, a color resist, and a black matrix. Examples of the optical material include lens materials.
In recent years, in the use of electrical / electronic component materials, as electrical / electronic equipment has become more sophisticated, electrical / electronic components have become increasingly dense and highly integrated, Due to the expansion of fields of application to high-temperature environments, outdoor environments, the vicinity of the human body, etc., and the shift to environmentally friendly technologies, the required characteristics have become widespread and sophisticated.
For example, in the fields of semiconductor sealing materials and substrates, epoxy resins are required to have flame resistance and solder crack resistance in addition to heat resistance, water absorption, electrical insulation, low thermal expansion coefficient, and the like.

エポキシ樹脂の難燃性においては、ハロゲン系エポキシ樹脂やリン原子含有エポキシ樹脂などの樹脂自身の難燃化や、三酸化アンチモンなどの難燃剤を併用する難燃化技術が検討されてきた。しかしながら、これらハロゲン又はアンチモンを用いた場合、用いられた物品の廃棄処理が適切に行われないと、ダイオキシンなどの有毒物質の発生に寄与することが指摘されている。こういった経緯から、「ハロゲンフリー・アンチモンフリー・リンフリー」の難燃化技術に対する要求が高まっている。この要求に対して、ハロゲンや難燃剤を使用せずに難燃性を発現するような樹脂骨格が提案されてきている。例えば、フェノール−ビフェニルアラルキル型エポキシ樹脂は、ハロゲンや難燃剤を使用せずに難燃性を発現する樹脂として知られている(特許文献1、特許文献2)。   Regarding the flame retardancy of epoxy resins, flame retarding techniques using flame retardants such as halogen-based epoxy resins and phosphorus atom-containing epoxy resins themselves and flame retardants such as antimony trioxide have been studied. However, when these halogens or antimony are used, it has been pointed out that if the used article is not properly disposed of, it contributes to the generation of toxic substances such as dioxins. For these reasons, there is a growing demand for flame retardant technologies such as “halogen-free, antimony-free, and phosphorus-free”. In response to this requirement, a resin skeleton that exhibits flame retardancy without using halogen or a flame retardant has been proposed. For example, a phenol-biphenyl aralkyl type epoxy resin is known as a resin that exhibits flame retardancy without using a halogen or a flame retardant (Patent Documents 1 and 2).

また、耐半田クラック性に関しては、実装プロセスの変化が影響している。すなわち、半導体の実装方式においては、表面実装方式が一般的になり半導体パッケージも半田リフロー時に直接高温に晒されることが多くなった上、近年の環境問題に対する意識の向上につれ半導体を実装する際に鉛フリー半田を使用する場合が増えている。鉛フリー半田は従来の半田と比較して溶融温度が約20℃高い(約260℃)ため、半田リフロー時にパッケージクラックが生じる可能性は従来よりもはるかに高くなった。また、LSIなどの電子部品を搭載するプリント配線基板において、高密度化・高集積化・小型化の要求はますます高まっており、そのため配線幅を小さくしたり、スルーホール径を小さくしたりして、メッキ厚を薄くすることが必要になっている。しかしながらメッキ厚を薄くした場合、熱衝撃時にクラックが発生する恐れがあり、配線基板には高い耐半田クラック性が要求されている。こういった経緯から、半導体封止材料やプリント配線基板などの半導体周辺の電気・電子材料に用いられるエポキシ樹脂組成物に対して、従来の半田より温度の高い鉛フリー半田においてもその硬化物にクラックが発生しにくい性能が求められている。このクラックは、鉛フリー半田の熱衝撃を受ける際に硬化物に応力が発生することによって生じるものである。その評価指標の一つとして、動的粘弾性試験による貯蔵弾性率を用いることができる。一般的に高温での貯蔵弾性率は、例えば160℃での貯蔵弾性率が100MPa以上ならば、低い方が好ましいことが知られている(特許文献3)。その一方、高温での貯蔵弾性率はガラス転移温度以上においても、ある程度以上、高い方が良いことが知られており、220℃〜260℃での半田リフロー時と−50〜150℃のヒートサイクル試験で、クラックが発生しない高い信頼性を有する樹脂として、220℃での貯蔵弾性率が0.5GPa〜0.9GPaを有するエポキシ樹脂組成物が開示されている(特許文献4)。従って、高温での適度な貯蔵弾性率は、熱衝撃でのクラックの発生を抑えるために、非常に重要と考えられる。   Further, changes in the mounting process have an influence on the solder crack resistance. In other words, in the semiconductor mounting method, the surface mounting method has become common, and the semiconductor package is often directly exposed to high temperatures during solder reflow, and when the semiconductor is mounted as the awareness of environmental problems in recent years has increased. Increasing use of lead-free solder. Since lead-free solder has a melting temperature about 20 ° C. higher than that of conventional solder (about 260 ° C.), the possibility of package cracks during solder reflow is much higher than before. In addition, there is an increasing demand for higher density, higher integration, and miniaturization in printed wiring boards on which electronic components such as LSI are mounted. For this reason, the wiring width is reduced and the through-hole diameter is reduced. Therefore, it is necessary to reduce the plating thickness. However, when the plating thickness is reduced, cracks may occur during thermal shock, and the wiring board is required to have high solder crack resistance. For these reasons, the epoxy resin composition used for electrical and electronic materials around semiconductors such as semiconductor encapsulating materials and printed wiring boards is hardened by lead-free solder, which has a higher temperature than conventional solder. There is a demand for performance that does not easily cause cracks. This crack is caused by the stress generated in the cured product when subjected to the thermal shock of lead-free solder. As one of the evaluation indexes, a storage elastic modulus by a dynamic viscoelasticity test can be used. In general, it is known that the storage elastic modulus at a high temperature is preferably lower if the storage elastic modulus at 160 ° C. is 100 MPa or more (Patent Document 3). On the other hand, it is known that the storage elastic modulus at high temperature should be higher to some extent even at the glass transition temperature or higher. During solder reflow at 220 ° C. to 260 ° C. and heat cycle at −50 to 150 ° C. An epoxy resin composition having a storage elastic modulus at 220 ° C. of 0.5 GPa to 0.9 GPa is disclosed as a highly reliable resin in which cracks do not occur (Patent Document 4). Therefore, an appropriate storage elastic modulus at a high temperature is considered to be very important in order to suppress the occurrence of cracks due to thermal shock.

難燃性に優れるフェノール−ビフェニルアラルキル型エポキシ樹脂としては、例えば市販品に日本化薬株式会社製NC−3000シリーズ等が知られている。このエポキシ樹脂は4,4’−ジメチロールビフェニルにフェノールを反応させ、生成されるビスフェノール化合物を単離して、次いで、単離されたビスフェノール化合物を、エピクロルヒドリンなどでエポキシ化することで製造することができる(例えば特許文献5)。また、上記の4,4’−ジメチロールビフェニルの代わりに、4,4’−ビス(クロロメチル)−ビフェニルを用いる方法も知られている(特許文献6)。
フェノール−ビフェニルアラルキル型エポキシ樹脂に関する近年の開発では、例えば4,4’−ビス(クロロメチル)−ビフェニルなどのビフェニル誘導体を予めオリゴマー化処理したものをフェノール類と縮合させるフェノール樹脂が提案されている(特許文献7)。
また、上記の原料である4,4’−ビス(クロロメチル)−ビフェニルを、ビフェニルのビスクロロメチル化で合成する方法は一般に公知であり、例えば、シクロヘキサン溶媒中で、ビフェニル、パラホルムアルデヒド及び塩化亜鉛を激しく撹拌しながら、塩化水素ガスを導入して反応させることにより、4,4’−ビス(クロロメチル)−ビフェニルを得ることができる(特許文献8、10頁、19〜20欄)。
As a phenol-biphenyl aralkyl type epoxy resin having excellent flame retardancy, for example, NC-3000 series manufactured by Nippon Kayaku Co., Ltd. is known as a commercial product. This epoxy resin can be produced by reacting 4,4′-dimethylolbiphenyl with phenol, isolating the resulting bisphenol compound, and then epoxidizing the isolated bisphenol compound with epichlorohydrin or the like. (For example, Patent Document 5). A method using 4,4′-bis (chloromethyl) -biphenyl instead of the above 4,4′-dimethylolbiphenyl is also known (Patent Document 6).
In recent developments related to phenol-biphenyl aralkyl type epoxy resins, for example, phenol resins in which biphenyl derivatives such as 4,4′-bis (chloromethyl) -biphenyl are previously oligomerized and condensed with phenols have been proposed. (Patent Document 7).
In addition, a method for synthesizing 4,4′-bis (chloromethyl) -biphenyl, which is the above raw material, by bischloromethylation of biphenyl is generally known. For example, biphenyl, paraformaldehyde and chlorinated in a cyclohexane solvent. 4,4′-bis (chloromethyl) -biphenyl can be obtained by introducing hydrogen chloride gas and reacting with vigorous stirring of zinc (Patent Document 8, page 10, columns 19-20).

特開平11−140277号公報JP-A-11-140277 特開平11−140166号公報JP-A-11-140166 特許第4027332号Patent No. 4027332 特開2001−288244号公報JP 2001-288244 A 特許第2952094号公報Japanese Patent No. 2952094 特開2002−338656号公報JP 2002-338656 A 特開2007−254685号公報Japanese Patent Laid-Open No. 2007-254685 特公昭54−929号公報Japanese Patent Publication No.54-929

本発明の目的は、難燃性に優れるフェノール−ビフェニルアラルキル型エポキシ樹脂を用いた硬化物と同等若しくはそれ以上の難燃性を有し、より最適な貯蔵弾性率を有するエポキシ樹脂硬化物、それを得るためのエポキシ樹脂混合物、又は/及びエポキシ樹脂組成物、及びそのエポキシ樹脂のためのフェノール樹脂混合物を提供することである。   An object of the present invention is to provide an epoxy resin cured product having flame retardancy equivalent to or higher than that of a cured product using a phenol-biphenylaralkyl type epoxy resin excellent in flame retardancy, and having a more optimal storage elastic modulus, To provide an epoxy resin mixture, or / and an epoxy resin composition, and a phenol resin mixture for the epoxy resin.

本発明者らは、前期課題を解決するため鋭意研究の結果、意外にも、ビスハロメチルビフェニルを主成分とし、副反応生成物として、トリ及びテトラハロメチルビフェニルを一定量含み、更に、残部、少量のモノハロメチルビフェニル及びビスビフェニリルメタン化合物を含む、ビフェニルのハロメチル化によって得られる反応生成物(混合物)を、単離精製を行うことなく、フェノールと反応させて得られるフェノール樹脂混合物は、上記要求性能を満たすエポキシ樹脂混合物の原料として、非常に好適であることを見出し、本発明を完成した。   As a result of diligent research to solve the above problems, the present inventors surprisingly include bishalomethylbiphenyl as a main component, a certain amount of tri- and tetrahalomethylbiphenyl as side reaction products, and the balance. A phenol resin mixture obtained by reacting a reaction product (mixture) obtained by halomethylation of biphenyl containing a small amount of monohalomethylbiphenyl and bisbiphenylylmethane compound with phenol without isolation and purification is The present invention was completed by finding that it is very suitable as a raw material for an epoxy resin mixture satisfying the above required performance.

即ち、本発明は、
(1) ビフェニルのハロメチル化反応によって得られ、GC−MSでの反応生成物全体に対する割合(GC面積比)で、ビスハロメチルビフェニルを60%以上で、80%より少なく、トリ(ハロメチル)ビフェニル及びテトラ(ハロメチル)ビフェニルを合計で15〜30%及びその他の副生物を残部含む反応生成物と、フェノールとのメチレン架橋反応により得られるフェノール樹脂混合物、
(2) 軟化点が65〜85℃、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量が350〜1200、重量平均分子量が400〜2000、及びOH当量160〜250g/eqである上記(1)に記載のフェノール樹脂混合物、
(3) 上記(1)又は(2)に記載のフェノール樹脂混合物をエポキシ化して得られたエポキシ樹脂混合物、
(4) 軟化点が50〜75℃、ICI粘度が0.02〜0.50Pa・s、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量が400〜1200及び重量平均分子量が800〜2000、エポキシ当量が200〜360g/eqである上記(3)に記載のエポキシ樹脂混合物、
(5) 上記(3)に記載のエポキシ樹脂混合物及び硬化剤を含有するエポキシ樹脂組成物、
(6) 硬化剤の含量が、エポキシ樹脂混合物のエポキシ基1当量に対して、硬化剤の含量が0.7当量〜1.2当量である上記(5)に記載のエポキシ樹脂組成物、
(7) 更に、フィラーを、エポキシ樹脂組成物の総量に対して、50〜90重量%含む上記(6)に記載のエポキシ樹脂組成物、
That is, the present invention
(1) Tri (halomethyl) biphenyl obtained by halomethylation reaction of biphenyl and in a ratio (GC area ratio) to the total reaction product in GC-MS, with bishalomethylbiphenyl being 60% or more and less than 80%. And a reaction product containing a total of 15 to 30% of tetra (halomethyl) biphenyl and the other by-products, and a phenol resin mixture obtained by a methylene crosslinking reaction with phenol,
(2) The above (1), wherein the softening point is 65 to 85 ° C., the number average molecular weight by GPC (gel permeation chromatography) is 350 to 1200, the weight average molecular weight is 400 to 2000, and the OH equivalent is 160 to 250 g / eq. A phenolic resin mixture according to
(3) An epoxy resin mixture obtained by epoxidizing the phenol resin mixture according to (1) or (2) above,
(4) Softening point of 50 to 75 ° C., ICI viscosity of 0.02 to 0.50 Pa · s, number average molecular weight by GPC (gel permeation chromatography) of 400 to 1200, weight average molecular weight of 800 to 2000, epoxy The epoxy resin mixture according to the above (3), wherein the equivalent is 200 to 360 g / eq,
(5) An epoxy resin composition containing the epoxy resin mixture and a curing agent according to (3) above,
(6) The epoxy resin composition according to the above (5), wherein the content of the curing agent is 0.7 equivalent to 1.2 equivalents with respect to 1 equivalent of the epoxy group of the epoxy resin mixture,
(7) Furthermore, the epoxy resin composition as described in said (6) which contains a filler 50 to 90weight% with respect to the total amount of an epoxy resin composition,

(8) 上記(1)に記載のフェノール樹脂混合物をエポキシ化して得られたエポキシ樹脂混合物及び、該エポキシ樹脂混合物のエポキシ基1当量に対して、0.7当量〜1.2当量の硬化剤を含むエポキシ樹脂組成物を硬化させた硬化物、
(9) 上記(1)に記載のフェノール樹脂混合物をエポキシ化して得られたエポキシ樹脂混合物、該エポキシ樹脂混合物のエポキシ基1当量に対して、0.7当量〜1.2当量の硬化剤及びエポキシ樹脂組成物の総量に対して50〜90重量%の無機充填剤を含むエポキシ樹脂組成物を硬化させた硬化物、
(10) ハロゲン化亜鉛の存在下に、ビフェニル、ビフェニル1モルに対して、2〜8当量のホルムアルデヒド類及びハロゲン化水素を、過剰量のハロゲン化水素の存在下に、反応させ、ビフェニルのハロメチル化を行い、GC−MSでの反応生成物全体に対する割合(GC面積比)で、ビスハロメチルビフェニルを60%以上で、80%より少なく、トリ(ハロメチル)ビフェニル及びテトラ(ハロメチル)ビフェニルを合計で15〜30%及びその他の副生物を残部含む反応生成物を得、該反応生成物を精製することなく、フェノールと反応させることを特徴とするフェノール樹脂混合物の製造方法、
(11) 上記(10)の製造方法によって得られたフェノール樹脂混合物を、該フェノール樹脂混合物の水酸基1当量に対して、エピハロヒドリンを0.8〜12当量反応させることを特徴とするエポキシ樹脂混合物の製造方法、
(12) 上記(1)又は(2)に記載のフェノール樹脂混合物を硬化剤として含有するエポキシ樹脂組成物、
に関する。
(8) An epoxy resin mixture obtained by epoxidizing the phenol resin mixture according to (1) above, and a curing agent of 0.7 equivalents to 1.2 equivalents with respect to 1 equivalent of epoxy groups of the epoxy resin mixture. A cured product obtained by curing an epoxy resin composition containing
(9) An epoxy resin mixture obtained by epoxidizing the phenol resin mixture according to (1) above, 0.7 to 1.2 equivalents of a curing agent with respect to 1 equivalent of epoxy groups of the epoxy resin mixture, and Hardened | cured material which hardened the epoxy resin composition containing 50 to 90 weight% of inorganic fillers with respect to the total amount of an epoxy resin composition,
(10) In the presence of zinc halide, 2-8 equivalents of formaldehyde and hydrogen halide are reacted in the presence of an excess amount of hydrogen halide with respect to 1 mol of biphenyl and biphenyl, and halomethyl of biphenyl is reacted. In the ratio (GC area ratio) to the total reaction product in GC-MS, bishalomethylbiphenyl is 60% or more and less than 80%, and tri (halomethyl) biphenyl and tetra (halomethyl) biphenyl are combined. A reaction product containing 15 to 30% and the remainder of other by-products, and reacting with phenol without purifying the reaction product, a method for producing a phenol resin mixture,
(11) An epoxy resin mixture obtained by reacting the phenol resin mixture obtained by the production method of (10) with 0.8 to 12 equivalents of epihalohydrin with respect to 1 equivalent of a hydroxyl group of the phenol resin mixture. Production method,
(12) An epoxy resin composition containing the phenol resin mixture according to (1) or (2) as a curing agent,
About.

本発明により得られるフェノール樹脂混合物は、優れた難燃性及び適度な貯蔵弾性率を有する硬化物を与える、エポキシ樹脂混合物又はエポキシ樹脂組成物のための原料として有用であり、且つ、製造も容易である。また、本発明のエポキシ樹脂混合物又はエポキシ樹脂組成物は、それを硬化した場合、上記の通り、難燃性及び適度な貯蔵弾性率を有する硬化物とすることが出来る。従って、本発明のエポキシ樹脂混合物、又は、本発明のエポキシ樹脂組成物は、半導体封止材料、プリント配線板基板を始めとする広範な用途に利用可能である。   The phenol resin mixture obtained by the present invention is useful as a raw material for an epoxy resin mixture or an epoxy resin composition that gives a cured product having excellent flame retardancy and moderate storage elastic modulus, and is easy to produce. It is. Moreover, when the epoxy resin mixture or epoxy resin composition of this invention hardens | cures, it can be made into the hardened | cured material which has a flame retardance and a moderate storage elastic modulus as above-mentioned. Therefore, the epoxy resin mixture of the present invention or the epoxy resin composition of the present invention can be used in a wide range of applications including semiconductor sealing materials and printed wiring board substrates.

以下、本発明を詳細に説明する。
まず、本発明のフェノール樹脂混合物を得るためのビフェニルのハロメチル化反応について説明する。
ビフェニルのハロメチル化反応は、ビフェニル、ホルムアルデヒド類またはその等価体であるアセタール類(以下これらを合わせて炭素源という)、ハロゲン化水素、触媒及び溶剤を用いてビフェニルのハロメチル化物を得る反応である。反応条件によっては、ビフェニルのハロメチル化物がさらに反応してジアリールメタンを生成することもある。一般的には例えば第5版実験化学講座 13(2)p439(2005)や、SYNTHESIS,1003(1991)に記載のクロロメチル化反応を参照することができる。
Hereinafter, the present invention will be described in detail.
First, the halomethylation reaction of biphenyl for obtaining the phenol resin mixture of the present invention will be described.
The halomethylation reaction of biphenyl is a reaction for obtaining a halomethylated product of biphenyl using biphenyl, formaldehydes or equivalent acetals (hereinafter collectively referred to as carbon source), hydrogen halide, catalyst and solvent. Depending on the reaction conditions, the halomethylated product of biphenyl may further react to produce diarylmethane. In general, for example, reference can be made to the chloromethylation reaction described in, for example, 5th edition Experimental Chemistry Course 13 (2) p439 (2005) and SYNTHESIS, 1003 (1991).

例えば、前記特許文献8(特公昭54−929号公報)によると、ビフェニル、パラホルムアルデヒド、塩化水素ガス、塩化亜鉛、シクロヘキサンを用いたクロロメチル化反応にて、4,4’−ビス(クロロメチル)−1,1’−ビフェニルを製造することができる。また、別の製造方法として例えば特開平9−208506、特開平10−139699号公報、及び特許第3784865号公報に記載の方法を挙げることができる。
本発明におけるハロメチル化反応は、前記の組成、即ち、ビスハロメチルビフェニルを60〜80重量%、トリ(ハロメチル)ビフェニル及びテトラ(ハロメチル)ビフェニルを合計で15〜30%及び残部その他の副生物を含む反応生成物を得ることが出来る方法であれば、前記の何れの方法であっても、また、他の方法であってもよい。
以下、本発明におけるハロメチル化反応につき、最も典型的な例である特許文献8の反応例を例にして説明する。
For example, according to Patent Document 8 (Japanese Patent Publication No. 54-929), 4,4′-bis (chloromethyl) is obtained by a chloromethylation reaction using biphenyl, paraformaldehyde, hydrogen chloride gas, zinc chloride, and cyclohexane. ) -1,1′-biphenyl can be produced. As another production method, for example, the methods described in JP-A-9-208506, JP-A-10-139699, and Japanese Patent No. 3784865 can be exemplified.
The halomethylation reaction in the present invention comprises the above composition, that is, 60 to 80% by weight of bishalomethylbiphenyl, 15 to 30% in total of tri (halomethyl) biphenyl and tetra (halomethyl) biphenyl, and the remaining other by-products. Any method described above may be used as long as the reaction product can be obtained.
Hereinafter, the halomethylation reaction in the present invention will be described with reference to the reaction example of Patent Document 8, which is the most typical example.

ハロメチル化におけるメチル基の炭素源として好ましいものとしては、ホルマリン、パラホルムアルデヒド、メチラール、トリオキサンなどのホルムアルデヒド類が挙げられ、パラホルムアルデヒドが好ましい。
炭素源(例えば特許文献8の反応例においては、ホルムアルデヒド)の仕込み当量は、ビフェニルに対するハロメチル化率(一分子当たりのハロメチル基の数)によって異なるが、ビフェニル1モルに対して、1当量〜15当量が好ましく、1.5当量〜10当量がより好ましく、2当量〜8当量が更に好ましい。1当量以下では、フェノール性水酸基を有するビフェニルとの反応点が不足することがあり、15当量を超えると反応点・架橋点が多すぎて分子量が大きくなりすぎたり、固形分濃度が高まって撹拌状態が悪化したりすることがある。
Preferable examples of the methyl group carbon source in the halomethylation include formaldehyde such as formalin, paraformaldehyde, methylal, and trioxane, with paraformaldehyde being preferred.
The charge equivalent of a carbon source (for example, formaldehyde in the reaction example of Patent Document 8) varies depending on the halomethylation rate (the number of halomethyl groups per molecule) relative to biphenyl, but 1 equivalent to 15 to 1 mole of biphenyl. Equivalents are preferable, 1.5 equivalents to 10 equivalents are more preferable, and 2 equivalents to 8 equivalents are still more preferable. If the amount is less than 1 equivalent, the reaction point with biphenyl having a phenolic hydroxyl group may be insufficient. If the amount exceeds 15 equivalents, the reaction point / cross-linking point is too much and the molecular weight becomes too large, or the solid content concentration is increased and stirred. The condition may worsen.

ハロゲン化のためのハロゲン源としては、ハロゲン化水素又は、反応でハロゲン化水素を発生するものであれば何れも使用可能である。該ハロゲン源としてはハロゲン化水素を用いるのが最も一般的である。ハロゲン化水素として好ましいものとしては、塩化水素、臭化水素、ヨウ化水素が挙げられるが、塩化水素が好ましい。これらのハロゲン化水素はガスの形態で利用できる。ハロゲン化水素をガス形態で用いる場合、ハロゲン化水素以外の原料混合物に対して直接吹き込みによって反応を行うことが出来る。
ハロゲン化水素は、また、水や酢酸、その他の有機溶剤に溶解させ、ハロゲン化水素溶液として使用することもできるが、塩化水素をガス状で用いる方法が、最も好ましい。
ハロメチル化反応においては、前記の組成の反応生成物を得るため、副生成物として観測されるメチレン架橋したジアリールメタンの生成を抑えるのが好ましい。反応系におけるハロゲン化水素の濃度が低い場合にはジアリールメタンが優先して生成することが知られている。該副生成物の生成を抑制するため、ハロゲン化水素の濃度を高めることが好ましい。そのため、塩化水素ガスを反応液中に過剰量導入することが望ましい。塩化水素ガスを過剰量導入する方法としては、加圧条件下又は低温条件下で、塩化水素ガスを導入する方法などが挙げられる。
As the halogen source for the halogenation, any of hydrogen halide and any one that generates hydrogen halide by reaction can be used. As the halogen source, hydrogen halide is most commonly used. Preferred examples of the hydrogen halide include hydrogen chloride, hydrogen bromide, and hydrogen iodide, with hydrogen chloride being preferred. These hydrogen halides can be used in the form of a gas. When hydrogen halide is used in the form of a gas, the reaction can be carried out by directly blowing a raw material mixture other than hydrogen halide.
The hydrogen halide can also be dissolved in water, acetic acid or other organic solvents and used as a hydrogen halide solution, but the method using hydrogen chloride in the form of gas is most preferred.
In the halomethylation reaction, in order to obtain a reaction product having the above composition, it is preferable to suppress the formation of methylene-bridged diarylmethane observed as a by-product. It is known that diarylmethane is preferentially produced when the concentration of hydrogen halide in the reaction system is low. In order to suppress the production of the by-product, it is preferable to increase the concentration of hydrogen halide. Therefore, it is desirable to introduce an excessive amount of hydrogen chloride gas into the reaction solution. Examples of the method of introducing an excessive amount of hydrogen chloride gas include a method of introducing hydrogen chloride gas under a pressurized condition or a low temperature condition.

該反応において、触媒として好ましいものとしては、硫酸、塩化チオニル、オルトリン酸、塩化亜鉛、塩化アルミニウム、塩化鉄、塩化すずなどのFriedel−Crafts型反応触媒、臭化テトラブチルアンモニウム、塩化トリメチルベンジル、塩化セチルピリジニウムなどの4級アンモニウム塩が挙げられる。これらの中で塩化亜鉛、塩化アルミニウム、塩化鉄、塩化すず、臭化テトラブチルアンモニウム、塩化トリメチルベンジル、塩化セチルピリジニウムがより好ましく、安価で取り扱い易いことから塩化亜鉛が特に好ましい。
これらの触媒は単独で用いてもよいが、2種以上を混合して用いることもできる。
触媒の使用量は、特に限定されるものではないが、ビフェニルに対して0.01モル〜3モルの範囲が好ましい。0.1モル〜1モルがより好ましい。
In the reaction, preferred catalysts include sulfuric acid, thionyl chloride, orthophosphoric acid, zinc chloride, aluminum chloride, iron chloride, tin chloride and other Friedel-Crafts type reaction catalysts, tetrabutylammonium bromide, trimethylbenzyl chloride, chloride Quaternary ammonium salts such as cetylpyridinium can be mentioned. Among these, zinc chloride, aluminum chloride, iron chloride, tin chloride, tetrabutylammonium bromide, trimethylbenzyl chloride, and cetylpyridinium chloride are more preferable, and zinc chloride is particularly preferable because it is inexpensive and easy to handle.
These catalysts may be used alone or in combination of two or more.
Although the usage-amount of a catalyst is not specifically limited, The range of 0.01 mol-3 mol with respect to biphenyl is preferable. 0.1 mol-1 mol is more preferable.

該反応に使用される溶剤としては、非反応性の溶媒であれば特に限定はない。好ましい溶媒としては、脂肪族炭化水素溶剤(例えばヘキサン、ヘプタンなどの鎖状アルカン、シクロペンタン、シクロヘキサンなどの環状アルカン、及びケロシン等)、脂肪族カルボン酸溶剤(例えば、蟻酸、酢酸、プロピオン酸など)、芳香環の電子密度の低い芳香族炭化水素溶剤(例えばクロロベンゼン、ニトロベンゼン、オルトジクロロベンゼン、トリクロロベンゼンなど)、脂肪族ハロゲン化炭化水素溶剤(例えばクロロホルム、ジクロロメタン、ジクロロエタン、テトラクロロエタンなどの有機溶剤が挙げられる。
これらの溶剤は単独であっても、また2種以上の混合溶剤であってもよい。溶剤として好ましいものとしては、C5−C6環状アルカンを挙げることができ、最も好ましいものとしては、安価で低沸点であるため除去が容易であるシクロヘキサンが挙げられる。
また、塩化亜鉛を触媒としたときには、1−ペンタノール、1−ヘキサノール、などの脂肪族アルコールや、水を触媒と等モル程度添加添加してもよい。これらの添加は、場合により、触媒の溶解性を高めて反応活性を向上させることが知られている(Bull.Chem.Soc.Jpn.66,3520(1993))。本発明においては特に添加しなくてもよい。
溶剤の使用量は、特に限定されるものではないが固形分の2分の1重量部〜10倍重量部程度が好ましく、8重量部以下がより好ましい。
The solvent used in the reaction is not particularly limited as long as it is a non-reactive solvent. Preferred solvents include aliphatic hydrocarbon solvents (for example, chain alkanes such as hexane and heptane, cyclic alkanes such as cyclopentane and cyclohexane, and kerosene), aliphatic carboxylic acid solvents (for example, formic acid, acetic acid, propionic acid, etc. ), Aromatic hydrocarbon solvents with low electron density in the aromatic ring (eg chlorobenzene, nitrobenzene, orthodichlorobenzene, trichlorobenzene, etc.), aliphatic halogenated hydrocarbon solvents (eg chloroform, dichloromethane, dichloroethane, tetrachloroethane, etc. organic solvents) Is mentioned.
These solvents may be used alone or in combination of two or more. Preferred examples of the solvent include C5-C6 cyclic alkanes, and the most preferred examples include cyclohexane which is inexpensive and has a low boiling point and can be easily removed.
When zinc chloride is used as a catalyst, an aliphatic alcohol such as 1-pentanol or 1-hexanol, or water may be added in an equimolar amount to the catalyst. These additions are known to increase the solubility of the catalyst and improve the reaction activity in some cases (Bull. Chem. Soc. Jpn. 66, 3520 (1993)). In the present invention, it may not be added in particular.
Although the usage-amount of a solvent is not specifically limited, About 1/2 weight part-10 times weight part of solid content are preferable, and 8 weight part or less is more preferable.

反応温度は、通常は使用した溶剤において、許容される温度範囲なら特に限定されない。通常0℃〜100℃であり、好ましくは15〜60℃程度である。室温付近で反応が進行する場合は室温付近が好ましい。
一般に、クロロメチル化反応における副生成物として観測されるメチレン架橋したジアリールメタンは、反応温度が高い場合には優先して生成することが知られているため、こういった副生成物を少なく抑えるためには反応温度を低くするのが好ましい。
反応時間は、特に限定されない。通常6時間〜36時間程度で行うことができる。
仕込み方法については、特に限定されない。好ましい方法としては、ハロゲン化水素以外の原料を最初に仕込み、系内にハロゲン化水素ガスを、反応中、系内のハロゲン化水素酸が過剰に存在する状態を維持するように、吹き込むのが好ましい。ハロゲン化水素としては塩化水素が好ましい。
The reaction temperature is not particularly limited as long as it is within an acceptable temperature range for the solvent used. Usually, it is 0 degreeC-100 degreeC, Preferably it is about 15-60 degreeC. When the reaction proceeds at around room temperature, around room temperature is preferred.
In general, methylene-bridged diarylmethane, which is observed as a by-product in the chloromethylation reaction, is known to be preferentially produced when the reaction temperature is high. Therefore, it is preferable to lower the reaction temperature.
The reaction time is not particularly limited. Usually, it can be performed in about 6 to 36 hours.
The charging method is not particularly limited. As a preferred method, raw materials other than hydrogen halide are charged first, and hydrogen halide gas is blown into the system so as to maintain an excessive amount of hydrohalic acid in the system during the reaction. preferable. As the hydrogen halide, hydrogen chloride is preferred.

本発明においては、上記で得られた反応生成物の組成としては、GC−MS(Gas Chromatograph / Mass Spectrometry)での反応生成物全体(総量)に対する割合(GC面積比:以下特に断らない限り同じ)で、ビスハロメチルビフェニル(好ましくはビスクロロメチルビフェニル)含量が60%以上で、80%より少なく、トリ(ハロメチル)ビフェニル(好ましくはトリ(クロロメチル)ビフェニル)及びテトラ(ハロメチル)ビフェニル(好ましくはテトラ(クロロメチル)ビフェニル)の合計含量が15%〜30%、及びその他の副生物が残部からなる混合物(以下場合により、ハロメチル基を有するビフェニル化合物の混合物とも言う)が好ましい。また、ビスハロメチルビフェニル、トリ(ハロメチル)ビフェニル及びテトラ(ハロメチル)ビフェニルの3者の合計は、75%〜97%が好ましく、80%〜95%がより好ましい。
主成分であるビスハロメチルビフェニルは、4,4’−ビスハロメチルビフェニル及びその位置異性体からなり、ビスハロメチルビフェニルのうち、4,4’−ビスハロメチルビフェニルは、50〜98%程度、好ましくは60〜95%程度を占め、残部がその異性体と考えられる。
In the present invention, the composition of the reaction product obtained above is the same as the ratio (GC area ratio) to the total reaction product (total amount) in GC-MS (Gas Chromatograph / Mass Spectrometry), unless otherwise specified. ) Having a bishalomethylbiphenyl (preferably bischloromethylbiphenyl) content of 60% or more and less than 80%, tri (halomethyl) biphenyl (preferably tri (chloromethyl) biphenyl) and tetra (halomethyl) biphenyl (preferably Is preferably a mixture having a total content of tetra (chloromethyl) biphenyl) of 15% to 30% and the other by-products as the remainder (hereinafter also referred to as a mixture of biphenyl compounds having a halomethyl group). Further, the total of the three of bishalomethylbiphenyl, tri (halomethyl) biphenyl and tetra (halomethyl) biphenyl is preferably 75% to 97%, more preferably 80% to 95%.
The main component, bishalomethylbiphenyl, is composed of 4,4′-bishalomethylbiphenyl and its positional isomers. Among bishalomethylbiphenyl, 4,4′-bishalomethylbiphenyl is about 50 to 98%. Preferably, it occupies about 60 to 95%, and the remainder is considered to be its isomer.

反応生成物中に含まれる主な化合物を、ハロメチル基が、クロロメチル基である場合の化合物で代表して、式で示すと後記表Aに示す通りである。表Aにおける「クロロメチル」基、及び下記説明における「クロロメチル」は、本発明においては何れも「ハロメチル」と読み替えることができる。
式1−3で表される4,4’−ビスクロロメチル−ビフェニルはビスクロロメチルビフェニルにおける主成分であり、ビスクロロメチルビフェニルのうち50〜98%程度、好ましくは60〜98%程度占めると考えられる。ビスクロロメチルビフェニルにおいて、4,4’−ビスクロロメチル−ビフェニル以外の残部は式1−4で表される2,4’−ビスクロロメチル−ビフェニル等の位置異性体と考えられる。
The main compounds contained in the reaction product are represented by the formulas of the compounds in the case where the halomethyl group is a chloromethyl group. The “chloromethyl” group in Table A and the “chloromethyl” in the following description can be read as “halomethyl” in the present invention.
4,4′-bischloromethyl-biphenyl represented by Formula 1-3 is a main component in bischloromethylbiphenyl, and accounts for about 50 to 98%, preferably about 60 to 98% of bischloromethylbiphenyl. Conceivable. In bischloromethylbiphenyl, the remainder other than 4,4′-bischloromethyl-biphenyl is considered to be a positional isomer such as 2,4′-bischloromethyl-biphenyl represented by Formula 1-4.

トリ(クロロメチル)ビフェニル及びテトラ(クロロメチル)ビフェニルとしては、例えば式1−5〜式1−8で表される化合物及び、それらの異性体(置換位置異性体)からなると考えられる。
その他の副生物としては、例えば、モノクロロメチルビフェニル(例えば式1−1及び式1−2で表される化合物など)、ビスビフェニリルメタン(式1−9)、モノクロロメチル−ビスビフェニリルメタン(式1−10で表される化合物など)、ビスクロロメチル−ビスビフェニリルメタン(式1−11で表される化合物など)等を挙げることが出来る。
Tri (chloromethyl) biphenyl and tetra (chloromethyl) biphenyl are considered to be composed of, for example, compounds represented by formula 1-5 to formula 1-8 and isomers thereof (substitution isomers).
Examples of other by-products include monochloromethylbiphenyl (for example, compounds represented by Formula 1-1 and Formula 1-2), bisbiphenylylmethane (Formula 1-9), monochloromethyl-bisbiphenylylmethane ( A compound represented by formula 1-10), bischloromethyl-bisbiphenylylmethane (such as a compound represented by formula 1-11), and the like.

反応生成物の総量に対するビスクロロメチルビフェニルの含量は60%以上で、80%より少なく、65〜75%がより好ましい。
反応生成物の総量に対する、トリ(クロロメチル)ビフェニル及びテトラ(クロロメチル)ビフェニルの合計含量は15〜30%程度であり、好ましくは、15〜25%程度である。トリ(クロロメチル)ビフェニル及びテトラ(クロロメチル)ビフェニルのそれぞれの割合は、反応条件により変わるので一概に言えないが、反応生成物の総量に対するトリクロロメチルビフェニルの含量は5%〜25%程度であり、10%〜20%が好ましい。
反応生成物の総量に対するテトラ(クロロメチル)ビフェニルの含量は、1%〜15%が好ましく、2%〜10%がより好ましい。
上記その他の副生物の中では、通常、モノクロロメチルビフェニルが最も多く、GC−MSでの反応生成物全体に対する割合(GC面積比)(以下特に断らない限り同じ)で、1%〜10%程度である。
The content of bischloromethylbiphenyl with respect to the total amount of the reaction product is 60% or more, less than 80%, and more preferably 65 to 75%.
The total content of tri (chloromethyl) biphenyl and tetra (chloromethyl) biphenyl with respect to the total amount of the reaction product is about 15 to 30%, preferably about 15 to 25%. The proportions of tri (chloromethyl) biphenyl and tetra (chloromethyl) biphenyl vary depending on the reaction conditions and cannot be generally stated. However, the content of trichloromethylbiphenyl with respect to the total amount of the reaction product is about 5% to 25%. 10% to 20% is preferable.
The content of tetra (chloromethyl) biphenyl with respect to the total amount of the reaction product is preferably 1% to 15%, more preferably 2% to 10%.
Of these other by-products, monochloromethylbiphenyl is usually the most common, and the ratio (GC area ratio) to the total reaction product in GC-MS (hereinafter the same unless otherwise specified) is about 1% to 10%. It is.

Figure 0005486505
Figure 0005486505

次に、上記で得られた反応生成物とフェノールとの反応(メチレン架橋反応ともいう)、及び該反応によって得られる本発明のフェノール樹脂混合物について説明する。
メチレン架橋反応は縮合反応であり、上記のようにして得られた反応生成物(前記ハロメチル基を有するビフェニル化合物の混合物)と、フェノールとを縮合するものである。該メチレン架橋反応は酸性条件下、例えば、pH1〜4程度で行うのが好ましい。
例えば、該反応は一般的には第5版実験化学講座 26(2)p142(2005)を参照することができる。
Next, the reaction of the reaction product obtained above with phenol (also referred to as methylene crosslinking reaction) and the phenol resin mixture of the present invention obtained by the reaction will be described.
The methylene crosslinking reaction is a condensation reaction, and the reaction product (mixture of biphenyl compounds having a halomethyl group) obtained as described above is condensed with phenol. The methylene crosslinking reaction is preferably performed under acidic conditions, for example, at a pH of about 1 to 4.
For example, the reaction can generally refer to the 5th edition, Experimental Chemistry Course 26 (2) p142 (2005).

前記の通り、ビフェニルのハロメチル化反応生成物は、混合物であり、本発明においては、該混合物をそのまま、フェノールとのメチレン架橋反応に使用することを特徴とする。従って、通常、ハロメチル化反応で得られる反応液をそのまま用いることができる。
また、必要に応じて、該反応液を、濃縮、希釈、脱気、水洗、中和、濾過などの処理を行ってから、フェノールとの反応の原料として用いることもできる。その場合においても、実質的に前記反応生成物の組成の範囲内であることが好ましい。
通常は、ビフェニルのハロメチル化反応の反応液を、そのまま、次のフェノールとのメチレン架橋反応に使用するのが好ましい。
As described above, the halomethylation reaction product of biphenyl is a mixture, and in the present invention, the mixture is used as it is for a methylene crosslinking reaction with phenol. Therefore, usually, the reaction solution obtained by the halomethylation reaction can be used as it is.
If necessary, the reaction solution can be used as a raw material for the reaction with phenol after being subjected to treatments such as concentration, dilution, degassing, washing with water, neutralization and filtration. Even in that case, it is preferable that it is substantially within the range of the composition of the reaction product.
Usually, it is preferable to use the reaction liquid of the halomethylation reaction of biphenyl as it is for the next methylene crosslinking reaction with phenol.

該メチレン架橋反応は必要に応じて酸触媒を添加することができ、通常、酸触媒の存在下で行うのが好ましい。酸触媒としては、種々のものが使用できるが、例えば硫酸、p−トルエンスルホン酸、シュウ酸、メタンスルホン酸、トリフルオロメタンスルホン酸などの有機あるいは無機酸、塩化亜鉛、塩化アルミニウム、塩化鉄、塩化すずなどのFriedel−Crafts型のルイス酸触媒などが挙げられる。
これら酸触媒の使用量は触媒の種類により異なるが、フェノールに対してモル比で0.001〜10倍の範囲内で添加することができる。好ましくはその量は0.05〜3モル程度である。
本発明の好ましい態様においては、ハロメチル化反応の反応液を、そのまま用いて、引き続き上記縮合反応を行うので、ハロメチル化反応において使用した酸触媒がそのまま使用出来、改めて酸触媒を添加する必要はない。
ビフェニルのハロメチル化反応生成物とフェノールとは、任意の割合で反応させることができる。通常、ビフェニルのハロメチル化反応生成物中のハロメチル基1モルに対して、フェノールを1.5モル〜40モル使用するのが好ましく、より好ましくは、2モル〜10モルである。1.5モル以下だと高分子量化する懸念があり、40モルを超えると釜効率が悪くなってしまうことからである。
フェノールの添加量は、大まかには、ビフェニルのハロメチル化のために加えた、ビフェニル、炭素源及び酸触媒の合計量に対して、0.3〜2倍量(重量割合)であり、好ましくは0.5〜1.5倍量である。
なお、この反応の反応追跡には、ハロメチル基の残存量を分析して、ハロメチル基の消失を確認することが好ましい。また、例えばJIS K7246の記載に準じて全可けん化塩素量を適用することができる。他に、反応性混合物のハロメチル基にマーカーとなる色素等を反応させる前処理を施して分析することで追跡することもできる。
In the methylene crosslinking reaction, an acid catalyst can be added as necessary, and it is usually preferable to carry out in the presence of an acid catalyst. Various acid catalysts can be used. For example, organic or inorganic acids such as sulfuric acid, p-toluenesulfonic acid, oxalic acid, methanesulfonic acid, trifluoromethanesulfonic acid, zinc chloride, aluminum chloride, iron chloride, chloride. Friedel-Crafts type Lewis acid catalyst such as tin.
Although the usage-amount of these acid catalysts changes with kinds of catalyst, it can add within the range of 0.001-10 times by molar ratio with respect to phenol. Preferably, the amount is about 0.05 to 3 moles.
In a preferred embodiment of the present invention, the reaction solution of the halomethylation reaction is used as it is, and then the condensation reaction is performed. Therefore, the acid catalyst used in the halomethylation reaction can be used as it is, and there is no need to add an acid catalyst again. .
Biphenyl halomethylation reaction product and phenol can be reacted in any proportion. Usually, it is preferable to use 1.5 mol-40 mol of phenol with respect to 1 mol of halomethyl groups in the halomethylation reaction product of biphenyl, more preferably 2 mol-10 mol. If the amount is 1.5 mol or less, there is a concern that the molecular weight will increase, and if it exceeds 40 mol, the pot efficiency will deteriorate.
The amount of phenol added is roughly 0.3 to 2 times (by weight) the total amount of biphenyl, carbon source and acid catalyst added for the halomethylation of biphenyl, preferably The amount is 0.5 to 1.5 times.
In order to trace the reaction, it is preferable to confirm the disappearance of the halomethyl group by analyzing the remaining amount of the halomethyl group. For example, the total amount of saponifiable chlorine can be applied according to the description of JIS K7246. In addition, it can also be traced by performing a pretreatment for reacting a dye or the like as a marker to the halomethyl group of the reactive mixture.

メチレン架橋反応(縮合反応)は無溶剤下でも溶剤の存在下でも行うことが出来る。通常は、前記ハロメチル化反応の反応液をそのまま使用することが好ましく、前記ハロメチル化反応の個所で挙げた有機溶媒がそのまま使用出来る。従って、好ましい溶媒も同様に、C5−C6環状アルカンを挙げることができ、最も好ましいものとしては、シクロヘキサンが挙げられる。
溶剤の使用量としてはビフェニルのハロメチル化反応生成物とフェノールの合計重量に対して通常5〜300重量%、好ましくは10〜200重量%である。メチレン架橋反応の反応温度は通常0〜120℃、好ましくは15〜100℃程度である。反応時間は通常1〜10時間である。
The methylene crosslinking reaction (condensation reaction) can be performed in the absence of a solvent or in the presence of a solvent. Usually, the reaction solution of the halomethylation reaction is preferably used as it is, and the organic solvent mentioned in the section of the halomethylation reaction can be used as it is. Therefore, a preferable solvent can similarly mention C5-C6 cyclic alkane, and a cyclohexane is mentioned as the most preferable thing.
The amount of the solvent used is usually 5 to 300% by weight, preferably 10 to 200% by weight, based on the total weight of the biphenyl halomethylation reaction product and phenol. The reaction temperature of the methylene crosslinking reaction is usually 0 to 120 ° C, preferably about 15 to 100 ° C. The reaction time is usually 1 to 10 hours.

メチレン架橋反応は、ハロメチル化反応を行った後に、直接ハロメチル化反応の反応液にフェノールを添加して反応させることが最も簡便である。必要に応じてハロメチル化反応の反応液をフェノール(及び必要により酸触媒及び溶剤の混合物)に加えることもできる。また、必要に応じて、反応生成物の組成が大幅に変わらない範囲で、それらの前後に希釈、脱気、水洗、中和などの操作を行うこともできる。   In the methylene crosslinking reaction, it is most convenient to react by adding phenol to the reaction solution of the halomethylation reaction directly after the halomethylation reaction. If necessary, the reaction solution of the halomethylation reaction can be added to phenol (and optionally a mixture of an acid catalyst and a solvent). Further, if necessary, operations such as dilution, degassing, washing with water and neutralization can be performed before and after the reaction product composition within a range in which the composition of the reaction product is not significantly changed.

縮合反応終了後、中和、水洗などにより酸触媒を除去した後、加熱減圧下で使用した溶剤を除去して、目的のフェノール樹脂混合物を取り出すことができる。加熱減圧下で使用した溶剤と共に、未反応のフェノールを除去することが望ましい。
本発明においては、通常、再結晶処理をせずに、メチレン架橋反応終了後、中和、水洗などにより酸触媒を除去した後、溶媒及び未反応フェノールを除去して得られたフェノール樹脂混合物を、次のエポキシ化反応に持って行くのが好ましい。
メチレン架橋反応終了後の反応液を、溶媒及び未反応フェノールの除去無しに、次のエポキシ化の工程まで引き続き行うこともできるが、この場合は反応で用いられたハロゲン化水素や酸触媒を中和するために水酸化ナトリウム、水酸化カリウムといったアルカリ金属水酸化物などを塩基にて処理する操作が必要となる。また、未反応フェノールがエポキシ化のエピクロルヒドリンなどと反応するため、あまり好ましいとは言えない。
上記のようにして得られた本発明のフェノール樹脂混合物は、フェノールとビフェニルとがメチレン架橋基により連結されたフェノール樹脂混合物(一部にビフェニルどうしがメチレン架橋で連結し、更に、フェノールがビフェニルとメチレン架橋で連結したフェノール樹脂も含む)であり、本発明のエポキシ樹脂混合物の原料として有用であり、次のエポキシ化反応を経てエポキシ樹脂混合物として利用することができる。
After completion of the condensation reaction, the acid catalyst is removed by neutralization, washing with water, etc., and then the solvent used under heating under reduced pressure is removed to take out the desired phenol resin mixture. It is desirable to remove unreacted phenol together with the solvent used under heating and reduced pressure.
In the present invention, the phenol resin mixture obtained by removing the solvent and unreacted phenol after removing the acid catalyst by neutralization, washing with water, etc. after completion of the methylene crosslinking reaction, usually without recrystallization treatment. It is preferable to take it to the next epoxidation reaction.
The reaction solution after completion of the methylene crosslinking reaction can be continued to the next epoxidation step without removing the solvent and unreacted phenol, but in this case, the hydrogen halide and acid catalyst used in the reaction are used in the middle. In order to reconcile, an operation of treating an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide with a base is required. Moreover, since unreacted phenol reacts with epoxidized epichlorohydrin and the like, it cannot be said that it is very preferable.
The phenol resin mixture of the present invention obtained as described above is a phenol resin mixture in which phenol and biphenyl are linked by a methylene crosslinking group (partially biphenyls are linked by methylene crosslinking, and further, phenol is mixed with biphenyl. (Including phenol resins linked by methylene crosslinking), and is useful as a raw material for the epoxy resin mixture of the present invention, and can be used as an epoxy resin mixture through the following epoxidation reaction.

上記のようにして得られた本発明のフェノール樹脂混合物は、軟化点が65〜85℃、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量350〜1200程度、好ましくは400〜1000程度、更に好ましくは450〜950程度、最も好ましくは500〜900程度であり、重量平均分子量が400〜2000程度、好ましくは500〜1700程度、更に好ましくは550〜1600程度、最も好ましくは600〜1000程度である。OH当量は160〜250g/eq程度、好ましくは170〜240g/eq程度、最も好ましくは180〜230g/eq程度である。
本発明のフェノール樹脂混合物の代表的な化合物の化学構造は、ハロメチル化反応の反応生成物の分析結果等から、下記に例示するF2−1〜F2−6等であろうと考えられる。式中におけるnは1〜10程度である。
本発明のフェノール樹脂混合物は、例えば下記例示で明らかな通り、直鎖状分子または分岐状分子の混合物となる。
The phenol resin mixture of the present invention obtained as described above has a softening point of 65 to 85 ° C., a number average molecular weight of about 350 to 1,200, preferably about 400 to 1,000, more preferably by GPC (gel permeation chromatography). Is about 450 to 950, most preferably about 500 to 900, and the weight average molecular weight is about 400 to 2000, preferably about 500 to 1700, more preferably about 550 to 1600, and most preferably about 600 to 1000. The OH equivalent is about 160 to 250 g / eq, preferably about 170 to 240 g / eq, and most preferably about 180 to 230 g / eq.
The chemical structure of a typical compound of the phenol resin mixture of the present invention is considered to be F2-1 to F2-6 and the like exemplified below from the analysis result of the reaction product of the halomethylation reaction. N in the formula is about 1 to 10.
The phenol resin mixture of the present invention is, for example, a mixture of linear molecules or branched molecules as is apparent from the following examples.

(F2−1〜F2−3)

Figure 0005486505
(F2-1 to F2-3)
Figure 0005486505

(F2−4〜F2−6)

Figure 0005486505
(F2-4 to F2-6)
Figure 0005486505

次に、本発明のエポキシ樹脂混合物を得るためのエポキシ化反応について説明する。
本発明のエポキシ樹脂混合物は上記で得られた本発明のフェノール樹脂混合物のエポキシ化物であり、該フェノール樹脂混合物を、常法により、エピハロヒドリンとの反応によって、エポキシ化することによって得ることが出来る。より具体的には、以下の方法が挙げられる。
エポキシ化の好ましい方法としては、本発明のフェノール樹脂混合物を、溶媒の存在下又は不存在下に、アルカリ金属水酸化物の存在下、エピハロヒドリンと反応させ、グリシジルエーテル化する方法を挙げることができる。該方法においては、反応温度は通常10〜100℃程度、好ましくは30〜90℃程度である。 該エピハロヒドリンを用いるエポキシ化反応は、特許3934829号公報に記載されているエポキシ化反応、特開2007−308642号公報に記載されている1段法、フュージョン法が挙げられる。
本発明のエポキシ樹脂を得る反応において、アルカリ金属水酸化物はその水溶液を使用してもよい。その場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に、減圧下または常圧下、連続的に水及びエピハロヒドリンを留出させ、更に分液して水は除去しエピハロヒドリンは反応系内に連続的に戻す方法でもよい。また、本発明においては、前工程までに利用していた触媒が特別に操作をしない限り除去されずに残存していることから、アルカリ金属水酸化物を通常より過剰に仕込んで中和する操作をすることで、円滑に反応を進めることができる。
また、本発明のフェノール樹脂混合物とエピハロヒドリンの混合物に、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、塩化トリメチルベンジルアンモニウム等の4級アンモニウム塩を触媒として添加し、50℃〜150℃で0.5〜8時間反応させて得られるフェノール樹脂のハロヒドリンエーテル化物に、さらにアルカリ金属水酸化物の固体または水溶液を加え、20℃〜120℃で1時間〜10時間反応させ脱ハロゲン化水素(閉環)させる方法でもよい。
Next, the epoxidation reaction for obtaining the epoxy resin mixture of the present invention will be described.
The epoxy resin mixture of the present invention is an epoxidized product of the phenol resin mixture of the present invention obtained above, and can be obtained by epoxidizing the phenol resin mixture by a reaction with epihalohydrin by a conventional method. More specifically, the following method is mentioned.
As a preferable method of epoxidation, a method of reacting the phenol resin mixture of the present invention with an epihalohydrin in the presence or absence of a solvent in the presence of an alkali metal hydroxide to glycidyl ether can be mentioned. . In this method, the reaction temperature is usually about 10 to 100 ° C, preferably about 30 to 90 ° C. Examples of the epoxidation reaction using the epihalohydrin include an epoxidation reaction described in Japanese Patent No. 3934829, a one-step method and a fusion method described in Japanese Patent Application Laid-Open No. 2007-308642.
In the reaction for obtaining the epoxy resin of the present invention, the alkali metal hydroxide may use an aqueous solution thereof. In that case, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system, and water and epihalohydrin are continuously distilled off under reduced pressure or normal pressure, followed by liquid separation to remove the water and remove the epihalohydrin. May be a method of continuously returning to the reaction system. Further, in the present invention, since the catalyst used up to the previous step remains without being removed unless specially operated, an operation of neutralizing the alkali metal hydroxide by adding it more than usual. By doing this, the reaction can proceed smoothly.
Further, a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride or the like is added to the mixture of the phenol resin mixture of the present invention and epihalohydrin as a catalyst, and 0.5 to 50 ° C to 150 ° C To a halohydrin etherified product of a phenol resin obtained by reacting for ~ 8 hours, a solid or aqueous solution of an alkali metal hydroxide is further added and reacted at 20 ° C to 120 ° C for 1 hour to 10 hours to remove hydrogen halide (ring closure). ).

エピハロヒドリンとして好ましいものとしては、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン、β−メチルエピクロロヒドリン、α−メチルエピクロロヒドリン、γ−メチルエピクロロヒドリンが挙げられ、工業的にはエピクロロヒドリンが好ましい。
上記エポキシ化反応に使用するエピハロヒドリンの使用量は、本発明のフェノール樹脂の水酸基1当量に対し通常0.8当量〜12当量、好ましくは0.9当量〜11当量である。この際、反応を円滑に進行させるために、極性溶媒、好ましくはアルコール類(例えば、メタノール、エタノールなどのC1−C4アルコール類)又は、非プロトン性極性溶媒(例えばジメチルスルホン、ジメチルスルホキシド等)を添加して反応を行うことが好ましい。該極性溶媒の使用量は、エピハロヒドリンの量に対し通常2重量%〜150重量%の間で溶媒等の種類等に応じて適宜選択して使用すればよい。例えば、アルコール類を使用する場合、その使用量はエピハロヒドリンの量に対し通常2重量%〜20重量%、好ましくは4重量%〜15重量%である。また非プロトン性極性溶媒を用いる場合はエピハロヒドリンの量に対し通常5重量%〜150重量%、好ましくは10重量%〜140重量%である。
Preferred examples of the epihalohydrin include epichlorohydrin, epibromohydrin, epiiodohydrin, β-methylepichlorohydrin, α-methylepichlorohydrin, γ-methylepichlorohydrin, industrial In particular, epichlorohydrin is preferable.
The usage-amount of the epihalohydrin used for the said epoxidation reaction is 0.8 equivalent-12 equivalent normally with respect to 1 equivalent of hydroxyl groups of the phenol resin of this invention, Preferably it is 0.9 equivalent-11 equivalent. At this time, in order to make the reaction proceed smoothly, a polar solvent, preferably an alcohol (for example, a C1-C4 alcohol such as methanol or ethanol) or an aprotic polar solvent (for example, dimethylsulfone, dimethylsulfoxide, etc.) is used. It is preferable to add and perform the reaction. The amount of the polar solvent used may be appropriately selected depending on the type of solvent, etc., usually between 2 wt% and 150 wt% with respect to the amount of epihalohydrin. For example, when alcohol is used, the amount used is usually 2% to 20% by weight, preferably 4% to 15% by weight, based on the amount of epihalohydrin. Moreover, when using an aprotic polar solvent, it is 5 to 150 weight% normally with respect to the quantity of epihalohydrin, Preferably it is 10 to 140 weight%.

アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムが挙げられ、水酸化ナトリウム、水酸化カリウムが好ましい。   Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide, and sodium hydroxide and potassium hydroxide are preferable.

エポキシ化反応の反応生成物を、水洗後、または水洗無しに加熱減圧下でエピハロヒドリンや溶媒等を除去することにより、本発明のエポキシ樹脂混合物を得ることが出来る。
また、更に加水分解性ハロゲンの少ないエポキシ樹脂混合物とするために、回収したエポキシ樹脂混合物を溶剤、例えばトルエン、メチルイソブチルケトンなどに溶解し、そこに水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて、反応生成物中に含まれる加水分解性ハロゲンと反応させ、加水分解性ハロゲンを除去するのが好ましい。この後処理により、エポキシ環を確実なものにすることも出来る。この後処理におけるアルカリ金属水酸化物の使用量は反応生成物におけるエポキシ基1当量に対して通常0.01当量〜0.3当量、好ましくは0.05当量〜0.2当量である。この後処理の温度は通常50℃〜120℃、反応時間は通常0.5時間〜2時間である。
この後処理後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下に溶剤を留去することにより本発明のエポキシ樹脂混合物が得られる。
The epoxy resin mixture of the present invention can be obtained by removing the epihalohydrin, the solvent, and the like after the epoxidation reaction is washed with water or without washing with water under reduced pressure.
Further, in order to obtain an epoxy resin mixture with less hydrolyzable halogen, the recovered epoxy resin mixture is dissolved in a solvent such as toluene, methyl isobutyl ketone, etc., and alkali metal water such as sodium hydroxide or potassium hydroxide is dissolved therein. It is preferable to add an aqueous solution of an oxide and react with the hydrolyzable halogen contained in the reaction product to remove the hydrolyzable halogen. This post-treatment can also secure the epoxy ring. The amount of alkali metal hydroxide used in this post-treatment is usually 0.01 equivalents to 0.3 equivalents, preferably 0.05 equivalents to 0.2 equivalents, relative to 1 equivalent of epoxy group in the reaction product. The post-treatment temperature is usually 50 ° C. to 120 ° C., and the reaction time is usually 0.5 hours to 2 hours.
After this post-treatment, the produced salt is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin mixture of the present invention.

上記のようにして得られた本発明のエポキシ樹脂混合物は、軟化点が50〜75℃、好ましくは52〜65℃、より好ましくは54〜60℃、ICI粘度0.02〜0.50Pa・s、好ましくは0.04〜0.40Pa・s、より好ましくは0.06〜0.20Pa・s、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量400〜1200程度、好ましくは500〜1000程度、更に好ましくは600〜900程度、最も好ましくは600〜850程度であり、重量平均分子量が800〜2000程度、好ましくは900〜1800程度、更に好ましくは1000〜1600程度、最も好ましくは1000〜1500程度である。エポキシ当量は200〜360g/eq程度、好ましくは230〜340g/eq程度、最も好ましくは250〜310g/eq程度である。
本発明におけるエポキシ樹脂混合物の代表的な化学構造を下記F3−1〜F3−6に例示する。本発明のエポキシ樹脂混合物は、本発明のフェノール樹脂混合物とエピハロヒドリンの反応物であるので、下記例示で明らかな通り、直鎖状分子または分岐状分子の混合物となる。
なお、式中のnは、前記F2−1〜F2−6におけると同じである。
The epoxy resin mixture of the present invention obtained as described above has a softening point of 50 to 75 ° C, preferably 52 to 65 ° C, more preferably 54 to 60 ° C, and an ICI viscosity of 0.02 to 0.50 Pa · s. , Preferably 0.04 to 0.40 Pa · s, more preferably 0.06 to 0.20 Pa · s, number average molecular weight by GPC (gel permeation chromatography) of about 400 to 1200, preferably about 500 to 1000, More preferably, it is about 600 to 900, most preferably about 600 to 850, and the weight average molecular weight is about 800 to 2000, preferably about 900 to 1800, more preferably about 1000 to 1600, and most preferably about 1000 to 1500. is there. The epoxy equivalent is about 200 to 360 g / eq, preferably about 230 to 340 g / eq, and most preferably about 250 to 310 g / eq.
Typical chemical structures of the epoxy resin mixture in the present invention are exemplified in the following F3-1 to F3-6. Since the epoxy resin mixture of the present invention is a reaction product of the phenol resin mixture of the present invention and epihalohydrin, it becomes a mixture of linear molecules or branched molecules as will be apparent from the following examples.
Note that n in the formula is the same as in F2-1 to F2-6.

(F3−1〜F3−3)

Figure 0005486505
(F3-1 to F3-3)
Figure 0005486505

(F3−4〜F3−6)

Figure 0005486505
(F3-4 to F3-6)
Figure 0005486505

次に、本発明のエポキシ樹脂組成物について説明する。
本発明のエポキシ樹脂組成物は、本発明のエポキシ樹脂混合物及び硬化剤を含有すれば、他の任意の添加成分に特に制限はない。
例えば、本発明のエポキシ樹脂組成物において、本発明のエポキシ樹脂混合物の他に、任意添加成分の成分の一つとして、他のエポキシ樹脂を併用することができる。併用する場合、本発明のエポキシ樹脂混合物の全エポキシ樹脂中に占める割合は30重量%以上、100重量%以下が好ましく、より好ましくは40重量%以上、100重量%以下であり、更に好ましくは50重量%以上、100重量%以下である。発明のエポキシ樹脂混合物の特性、特に硬化物における優れた難燃性及び適度な貯蔵弾性率を十分に達成する点からは、発明のエポキシ樹脂混合物が60重量%以上が好ましく、より好ましく70重量%以上であり、更に好ましくは80重量%以上であり、最も好ましくは90重量%以上である。上限は100重量%までである。
Next, the epoxy resin composition of the present invention will be described.
If the epoxy resin composition of this invention contains the epoxy resin mixture and hardening | curing agent of this invention, there will be no restriction | limiting in particular in other arbitrary addition components.
For example, in the epoxy resin composition of the present invention, in addition to the epoxy resin mixture of the present invention, another epoxy resin can be used in combination as one of optional components. When used together, the proportion of the epoxy resin mixture of the present invention in the total epoxy resin is preferably 30% by weight or more and 100% by weight or less, more preferably 40% by weight or more and 100% by weight or less, and still more preferably 50%. % By weight or more and 100% by weight or less. From the viewpoint of sufficiently achieving the characteristics of the epoxy resin mixture of the invention, in particular, excellent flame retardancy in a cured product and adequate storage elastic modulus, the epoxy resin mixture of the invention is preferably 60% by weight or more, more preferably 70% by weight. Or more, more preferably 80% by weight or more, and most preferably 90% by weight or more. The upper limit is up to 100% by weight.

本発明のエポキシ樹脂混合物と併用できる他のエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などが挙げられる。
具体的には、2〜4個の水酸基を有する芳香族化合物のグリシジルエーテル化物{例えばビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレニリデンジフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’−5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシ)エタン};又はフェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とアルデヒド類又はケトン類、又はそれらの反応性誘導体{例えばホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン又はo−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’−ビス(クロロメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1、4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等}との重縮合物のグリシジルエーテル化物及び該重縮合物の変性物のグリシジルエーテル化物;テトラブロモビスフェノールA等のハロゲン化ビスフェノール類又はアルコール類から誘導されるグリシジルエーテル化物;脂環式エポキシ樹脂;グリシジルアミン系エポキシ樹脂;グリシジルエステル系エポキシ樹脂;等の固形または液状エポキシ樹脂が挙げられる。これらは単独で用いてもよく、2種以上併用しても良い。また、これら以外のエポキシ樹脂も併用可能である。
Examples of other epoxy resins that can be used in combination with the epoxy resin mixture of the present invention include novolac type epoxy resins, bisphenol A type epoxy resins, and triphenylmethane type epoxy resins.
Specifically, glycidyl etherified products of aromatic compounds having 2 to 4 hydroxyl groups {for example, bisphenol A, bisphenol F, bisphenol S, fluorenylidene diphenol, terpene diphenol, 4,4'-biphenol, 2, 2'-biphenol, 3,3'-5,5'-tetramethyl- [1,1'-biphenyl] -4,4'-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane 1,1,2,2-tetrakis (4-hydroxy) ethane}; or phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and aldehydes or ketones, or they Reactive derivatives of {e.g. formaldehyde, Cetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone or o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4 , 4′-bis (methoxymethyl) -1,1′-biphenyl, 1,4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene, etc.} Glycidyl etherification product of modified polycondensate; glycidyl etherification product derived from halogenated bisphenols or alcohols such as tetrabromobisphenol A; alicyclic epoxy resin; glycidylamine epoxy resin; glycidyl ester epoxy resin ;etc Solid or liquid epoxy resins. These may be used alone or in combination of two or more. Moreover, epoxy resins other than these can also be used in combination.

本発明のエポキシ樹脂組成物において、本発明のフェノール樹脂混合物を、単独でまたは他の硬化剤と併用して、硬化剤として使用することができる。併用する場合、本発明のフェノール樹脂混合物の全硬化剤中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。上限は100重量%である。
本発明のエポキシ樹脂組成物で使用する硬化剤としては、例えばアミン化合物、酸無水物化合物、アミド化合物、フェノール化合物などが挙げられる。具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、トリフルオロボラン−アミン錯体等のアミン化合物;ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂等のアミド化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物化合物;2〜4個の水酸基を有するフェノール類{ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレニリデンジフェノール、テルペンジフェノール、4,4’−ビフェノール、2,2’−ビフェノール、3,3’−5,5’−テトラメチル−[1,1’−ビフェニル]−4,4’−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン}、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等の1〜2個の水酸基を有するベンゼン又はナフタレンで、アルキル置換を有しても良く、アルキル基としてはC1−C4アルキルが好ましい)とアルデヒド又はケトン{ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン}との重縮合物、又は、上記フェノール類とアルデヒド又はケトンの反応性誘導体{ジシクロペンタジエン、フルフラール、4,4’−ビス(クロロメチル)−1,1’−ビフェニル、4,4’−ビス(メトキシメチル)−1,1’−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等}との重縮合物、及びこれらの重縮合物の変性物、テトラブロモビスフェノールA等、のフェノール化合物;イミダゾール;グアニジン誘導体;などが挙げられるが、これらに限定されるものではない。
これらは単独で用いても良く、2種以上を用いても良い。
これらの硬化剤の中で、フェノール化合物またはアミン化合物が好ましく、フェノール化合物、更にはフェノールアラルキル樹脂、又は本発明のフェノール樹脂混合物が好ましい。最も好ましくはフェノールアラルキル樹脂である。
In the epoxy resin composition of the present invention, the phenol resin mixture of the present invention can be used as a curing agent alone or in combination with other curing agents. When used in combination, the proportion of the phenol resin mixture of the present invention in the total curing agent is preferably 30% by weight or more, particularly preferably 40% by weight or more. The upper limit is 100% by weight.
Examples of the curing agent used in the epoxy resin composition of the present invention include amine compounds, acid anhydride compounds, amide compounds, and phenol compounds. Specific examples include amine compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, trifluoroborane-amine complex; polyamide resins synthesized from dicyandiamide, dimer of linolenic acid and ethylenediamine, etc. Amide compounds; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc. Acid anhydride compounds; phenols having 2 to 4 hydroxyl groups {bisphenol A, bisphenol F, bisphenol S, fluorenylidene diphenol, terpene diphenol, 4,4'-bifu Enol, 2,2′-biphenol, 3,3′-5,5′-tetramethyl- [1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4- Hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane}, phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc. Benzene or naphthalene having a hydroxyl group, which may have an alkyl substitution, and the alkyl group is preferably C1-C4 alkyl) and an aldehyde or ketone (formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p − A polycondensate with droxyacetophenone, o-hydroxyacetophenone}, or a reactive derivative of the above phenols and aldehyde or ketone {dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1 ′ Polycondensates with -biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene, etc.} And modified compounds of these polycondensates, and phenol compounds such as tetrabromobisphenol A; imidazole; guanidine derivatives; and the like, but are not limited thereto.
These may be used alone or in combination of two or more.
Among these curing agents, a phenol compound or an amine compound is preferable, and a phenol compound, further a phenol aralkyl resin, or a phenol resin mixture of the present invention is preferable. Most preferred is phenol aralkyl resin.

本発明のエポキシ樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して、硬化剤のエポキシと反応する活性基当量(フェノール化合物においては水酸基当量、アミン化合物においてはアミノ基当量)で、0.7当量〜1.2当量が好ましい。エポキシ基1当量に対して、硬化剤の活性基当量が0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。   In the epoxy resin composition of the present invention, the amount of the curing agent used is the equivalent of the active group that reacts with the epoxy of the curing agent with respect to 1 equivalent of the epoxy group of the epoxy resin (hydroxyl equivalent in the phenol compound, amino group in the amine compound). Equivalents), preferably 0.7 equivalents to 1.2 equivalents. When the active group equivalent of the curing agent is less than 0.7 equivalent to 1 equivalent of epoxy group, or exceeds 1.2 equivalent, there is a possibility that curing will be incomplete and good cured properties will not be obtained. is there.

本発明のエポキシ樹脂組成物においては、硬化促進剤を使用しても差し支えない。使用できる硬化促進剤の具体例としては、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類;2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等の第3級アミン類;トリフェニルホスフィン等のホスフィン類;オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤は用いなくても良いが、用いる場合は、エポキシ樹脂100重量部に対して0.1重量部〜5.0重量部を、必要に応じて適宜使用することが出来る。   In the epoxy resin composition of the present invention, a curing accelerator may be used. Specific examples of the curing accelerator that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole; 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo Tertiary amines such as (5,4,0) undecene-7; phosphines such as triphenylphosphine; metal compounds such as tin octylate and the like. Although a hardening accelerator does not need to be used, when using, 0.1 weight part-5.0 weight part with respect to 100 weight part of epoxy resins can be used suitably as needed.

本発明のエポキシ樹脂組成物には、必要に応じて無機充填剤(フィラーとも言う)を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の紛体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いても良い。これら無機充填剤の含有量は、エポキシ樹脂組成物の総量に対して0〜95重量%、好ましくは20重量%〜95重量%、より好ましくは50重量%〜95重量%、更に好ましくは70重量%〜95重量%程度、最も好ましくは70重量%〜90重量%である。   An inorganic filler (also referred to as a filler) can be added to the epoxy resin composition of the present invention as necessary. Inorganic fillers include powders such as crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, etc. Examples thereof include, but are not limited to, spherical beads. These may be used alone or in combination of two or more. The content of these inorganic fillers is 0 to 95% by weight, preferably 20% to 95% by weight, more preferably 50% to 95% by weight, still more preferably 70% by weight based on the total amount of the epoxy resin composition. % To about 95% by weight, most preferably 70% to 90% by weight.

更に本発明のエポキシ樹脂組成物には、必要に応じて、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤;カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤;ポリブタジエン、及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネート樹脂(もしくはそのプレポリマー)、シリコーンゲル、シリコーンオイル等の樹脂類;等の添加剤が添加されていてもよい。   Furthermore, in the epoxy resin composition of the present invention, if necessary, a release agent such as silane coupling agent, stearic acid, palmitic acid, zinc stearate, calcium stearate; coloring of carbon black, phthalocyanine blue, phthalocyanine green, etc. Agents: polybutadiene, modified products thereof, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compound, cyanate resin (or prepolymer thereof), silicone gel, silicone oil and other resins Etc. Additives such as may be added.

本発明の好ましいエポキシ樹脂組成物をより具体的に示すと下記の通りである。
(1)本発明のエポキシ樹脂混合物と硬化剤を含み、該エポキシ樹脂のエポキシ基1当量に対して、硬化剤のエポキシ基と反応する活性基当量で0.7〜1.2当量の硬化剤を含み、本発明のエポキシ樹脂混合物を、エポキシ樹脂組成物の総量に対して、4重量%〜80重量%含み、残部が任意の添加成分であるエポキシ樹脂組成物。
(2)任意の添加成分が無機充填剤であり、エポキシ樹脂組成物全量に対して、50重量%〜95重量%、好ましくは70重量%〜90重量%含む上記(1)のエポキシ樹脂組成物。
(3)本発明のエポキシ樹脂混合物と無機充填剤の総量に対し、本発明のエポキシ樹脂混合物が5重量%〜30重量%であり、残部が無機充填剤である上記(2)に記載のエポキシ樹脂組成物。
(4)任意の添加成分が離型剤又はカップリング剤の何れか一方又は両者であり、エポキシ樹脂組成物全量に対して、0.05重量%〜1重量%含む上記(1)〜(3)のエポキシ樹脂組成物。
(5)本発明のエポキシ樹脂混合物が、軟化点が52〜65℃、ICI粘度が0.04〜0.40Pa・s、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量が400〜1200及び重量平均分子量が800〜2000、エポキシ当量が200〜360g/eqである上記(1)〜(4)の何れか一項に記載のエポキシ樹脂組成物。
More specifically, the preferred epoxy resin composition of the present invention is as follows.
(1) The epoxy resin mixture of the present invention and a curing agent, and 0.7 to 1.2 equivalents of the curing agent in terms of active group equivalent to the epoxy group of the curing agent with respect to 1 equivalent of the epoxy group of the epoxy resin. An epoxy resin composition comprising the epoxy resin mixture of the present invention in an amount of 4 to 80% by weight with respect to the total amount of the epoxy resin composition, with the balance being optional additive components.
(2) The epoxy resin composition according to the above (1), wherein the optional additive component is an inorganic filler and contains 50% to 95% by weight, preferably 70% to 90% by weight, based on the total amount of the epoxy resin composition. .
(3) The epoxy according to the above (2), wherein the epoxy resin mixture of the present invention is 5% by weight to 30% by weight and the balance is the inorganic filler with respect to the total amount of the epoxy resin mixture of the present invention and the inorganic filler. Resin composition.
(4) The above-mentioned (1) to (3), wherein the optional additive component is either one or both of a mold release agent and a coupling agent, and 0.05 wt% to 1 wt% with respect to the total amount of the epoxy resin composition ) Epoxy resin composition.
(5) The epoxy resin mixture of the present invention has a softening point of 52 to 65 ° C., an ICI viscosity of 0.04 to 0.40 Pa · s, a number average molecular weight of 400 to 1200 and weight by GPC (gel permeation chromatography). The epoxy resin composition according to any one of (1) to (4), wherein the average molecular weight is 800 to 2000 and the epoxy equivalent is 200 to 360 g / eq.

(6)本発明のエポキシ樹脂混合物が、ビフェニルのハロメチル化反応によって得られ、GC−MSでの反応生成物全体に対する割合(GC面積比)で、ビスハロメチルビフェニルを60%以上で、80%より少なく、トリ(ハロメチル)ビフェニル及びテトラ(ハロメチル)ビフェニルを合計で15〜30%及びその他の副生物を残部含む反応生成物と、フェノールとのメチレン架橋反応により得られるフェノール樹脂混合物を、更に、エポキシ化して得られたエポキシ樹脂混合物である上記(1)〜(5)に記載のエポキシ樹脂組成物。
(7)フェノール樹脂混合物が、軟化点が65〜85℃、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量が350〜1200、重量平均分子量が400〜2000、及びOH当量160〜250g/eqである上記(6)に記載のエポキシ樹脂組成物。
(8)硬化剤がフェノール化合物である上記(1)〜(7)に記載のエポキシ樹脂組成物。
(6) The epoxy resin mixture of the present invention is obtained by a halomethylation reaction of biphenyl, and is a ratio (GC area ratio) to the total reaction product in GC-MS, with bishalomethylbiphenyl being 60% or more and 80%. A phenol resin mixture obtained by a methylene cross-linking reaction of phenol with a reaction product containing less 15 to 30% in total of tri (halomethyl) biphenyl and tetra (halomethyl) biphenyl and the other by-products, The epoxy resin composition according to the above (1) to (5), which is an epoxy resin mixture obtained by epoxidation.
(7) The phenol resin mixture has a softening point of 65 to 85 ° C., a GPC (gel permeation chromatography) number average molecular weight of 350 to 1200, a weight average molecular weight of 400 to 2000, and an OH equivalent of 160 to 250 g / eq. The epoxy resin composition according to (6) above.
(8) The epoxy resin composition according to the above (1) to (7), wherein the curing agent is a phenol compound.

本発明のエポキシ樹脂組成物は、本発明のエポキシ樹脂混合物、硬化剤、及び任意の添加成分を均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。
より具体的には、まず、例えば、本発明のエポキシ樹脂混合物と硬化剤、及び必要により、任意の添加成分(例えば硬化促進剤、無機充填剤、カップリング剤及び離型剤からなる群から選ばれる成分など)とを、例えば、押出機、ニーダ、ロール等を用いて均一になるまで充分に混合して本発明のエポキシ樹脂組成物とする。次いで、得られたそのエポキシ樹脂組成物を溶融後、注型あるいはトランスファー成型機、インジェクション成型機、注型機などを採用して成型し、さらに好ましくはポストキューアーとして80〜200℃で2〜16時間加熱することにより、本発明のエポキシ樹脂組成物の硬化物を得ることができる。
The epoxy resin composition of the present invention can be obtained by uniformly mixing the epoxy resin mixture of the present invention, a curing agent, and optional additive components. The epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method.
More specifically, first, for example, selected from the group consisting of the epoxy resin mixture of the present invention and a curing agent, and if necessary, optional additional components (for example, a curing accelerator, an inorganic filler, a coupling agent, and a release agent). And the like are sufficiently mixed until they become uniform using, for example, an extruder, a kneader, a roll or the like to obtain the epoxy resin composition of the present invention. Next, after the obtained epoxy resin composition is melted, it is molded by using a casting or transfer molding machine, an injection molding machine, a casting machine or the like, and more preferably at 80 to 200 ° C. at 2 to 80 ° C. The cured product of the epoxy resin composition of the present invention can be obtained by heating for 16 hours.

また本発明のエポキシ樹脂組成物を、加熱溶融により低粘度化するか、または、該エポキシ樹脂組成物に溶剤を混合することにより低粘度化して、それをガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱半乾燥して得たプリプレグを熱プレス成型して硬化物を得ることもできる。上記の溶剤としては、トルエン、キシレン等の芳香族系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルイミダゾリジノン等のアミド系溶剤;ジメチルスルホキシド、テトラメチレンスルフォン等のスルフォン系溶剤;N−メチルピロリドン等のラクタム系溶剤;γ−ブチロラクトン等のラクトン系溶剤;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤等の溶剤を挙げることが出来る。   Further, the viscosity of the epoxy resin composition of the present invention is lowered by heating or melting, or the viscosity is lowered by mixing a solvent with the epoxy resin composition, and the resulting mixture is made of glass fiber, carbon fiber, polyester fiber, polyamide. It is also possible to obtain a cured product by hot press molding a prepreg obtained by impregnating a substrate such as fiber, alumina fiber or paper and heating and semi-drying. Examples of the solvent include aromatic solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolide. Amide solvents such as non; Sulfone solvents such as dimethyl sulfoxide and tetramethylene sulfone; Lactam solvents such as N-methylpyrrolidone; Lactone solvents such as γ-butyrolactone; Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, Examples of the solvent include ether solvents such as propylene glycol monomethyl ether monoacetate and propylene glycol monobutyl ether.

上記で使用する溶剤は、単独であっても、また2種以上の混合溶剤であってもよい。また、上記で溶剤を混合する場合、本発明のエポキシ樹脂組成物と該溶剤の混合物の総量に対して、通常10重量%〜70重量%、好ましくは15重量%〜70重量%を占める量を用いる。
上記プリプレグを、所望の形に裁断し、必要により銅箔などと積層後、プレス成型法やオートクレーブ成型法、シートワインディング成型法などの方法で加圧下に加熱硬化させることにより、プリプレグの硬化物、又は該硬化物を有する積層板とすることができる。また、表面に銅箔を重ねてできた積層板に回路を形成し、その上に、上記プリプレグと銅箔を重ねるか、又は、上記プリプレグを有する銅箔等を重ね、回路を形成し、必要に応じて、その操作を繰り返して、多層の回路基板を得ることもできる。
The solvent used above may be a single solvent or a mixed solvent of two or more. In addition, when the solvent is mixed in the above, the amount occupying usually 10 wt% to 70 wt%, preferably 15 wt% to 70 wt% with respect to the total amount of the mixture of the epoxy resin composition of the present invention and the solvent. Use.
The above-mentioned prepreg is cut into a desired shape, and if necessary, laminated with a copper foil or the like, and then cured by heating under pressure by a method such as a press molding method, an autoclave molding method, or a sheet winding molding method, Or it can be set as the laminated board which has this hardened | cured material. In addition, a circuit is formed on a laminated plate made by stacking copper foil on the surface, and the prepreg and copper foil are stacked thereon, or a copper foil having the prepreg is stacked to form a circuit, and necessary Accordingly, the operation can be repeated to obtain a multilayer circuit board.

本発明のエポキシ樹脂組成物で半導体素子(半導体チップ)を封止することによって製造することができる半導体装置としては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。また光半導体分野においては、発光ダイオード(LED)、フォトトランジスタ、CCD(荷電結合素子)、UV−EPROMなどのEPROM等の光半導体素子(半導体チップ)を封止したものが挙げられる。   As a semiconductor device that can be manufactured by sealing a semiconductor element (semiconductor chip) with the epoxy resin composition of the present invention, for example, DIP (dual inline package), QFP (quad flat package), BGA (ball grid array) ), CSP (chip size package), SOP (small outline package), TSOP (thin small outline package), TQFP (think quad flat package), and the like. In the field of optical semiconductors, there are encapsulated optical semiconductor elements (semiconductor chips) such as light emitting diodes (LEDs), phototransistors, CCDs (charge coupled devices), and EPROMs such as UV-EPROMs.

本発明のエポキシ樹脂組成物は、エチレン性不飽和基を有する化合物と混合して光−熱硬化性樹脂組成物としても使用できる。この組成物は、本発明のエポキシ樹脂組成物において、任意の添加成分として、更に、エチレン性不飽和基を有する化合物、好ましくはアルカリ水溶液可溶性樹脂(A)以外に架橋剤(B)、光重合開始剤(C)を含有する。
このような光硬化性樹脂組成物において、本発明のエポキシ樹脂混合物の含有量は内割りで通常1重量%〜50重量%、好ましくは2重量%〜30重量%である。
本発明のエポキシ樹脂混合物を含有する光硬化性樹脂組成物のそれぞれの成分等につき、より具体的に以下に説明する。
The epoxy resin composition of the present invention can be used as a photo-thermosetting resin composition by mixing with a compound having an ethylenically unsaturated group. In the epoxy resin composition of the present invention, the composition further comprises a compound having an ethylenically unsaturated group, preferably a crosslinker (B), photopolymerization, in addition to the alkaline aqueous solution-soluble resin (A), as an optional additive component. Contains initiator (C).
In such a photocurable resin composition, the content of the epoxy resin mixture of the present invention is usually 1% to 50% by weight, preferably 2% to 30% by weight.
Each component of the photocurable resin composition containing the epoxy resin mixture of the present invention will be described more specifically below.

アルカリ水溶液可溶性樹脂(A);例えば分子中に2個以上のエポキシ基を有するエポキシ化合物と分子中にエチレン性不飽和基を有するモノカルボン酸化合物とを反応させて得られるエポキシカルボキシレート化合物と、多塩基酸無水物との反応生成物等であり、具体的にはKAYARAD CCR−1159H、KAYARAD PCR−1169H、KAYARAD TCR−1310H、KAYARAD ZFR−1401H、KAYARAD ZAR−1395H(いずれも日本化薬株式会社製)等が挙げられる。   An aqueous alkali solution-soluble resin (A); for example, an epoxycarboxylate compound obtained by reacting an epoxy compound having two or more epoxy groups in a molecule with a monocarboxylic acid compound having an ethylenically unsaturated group in the molecule; Reaction products with polybasic acid anhydrides, and more specifically, KAYARAD CCR-1159H, KAYARAD PCR-1169H, KAYARAD TCR-1310H, KAYARAD ZFR-1401H, KAYARAD ZAR-1395H (all Nippon Kayaku Co., Ltd.) Manufactured) and the like.

架橋剤(B);エチレン性不飽和基を有する化合物、例えばアクリレート、メタアクリレート化合物等が挙げられ、具体的にはKAYARAD HX−220、KAYARAD HX−620、KAYARAD DPHA、KAYARAD DPCA−60(いずれも日本化薬株式会社製)等が挙げられる。   Crosslinking agent (B); compounds having an ethylenically unsaturated group, such as acrylates and methacrylate compounds, and specific examples include KAYARAD HX-220, KAYARAD HX-620, KAYARAD DPHA, KAYARAD DPCA-60 (all Nippon Kayaku Co., Ltd.).

光重合開始剤(C);例えばベンゾイン類、アセトフェノン類、アントラキノン類、チオキサントン類、ケタール類、ベンゾフェノン類、ホスフィンオキサイド類等が挙げられ、具体的にはKAYACURE DETX−S(日本化薬株式会社製)、イルガキュア 907(チバスペシャリティーケミカル)等が挙げられる。   Photopolymerization initiator (C); for example, benzoins, acetophenones, anthraquinones, thioxanthones, ketals, benzophenones, phosphine oxides, etc., specifically KAYACURE DETX-S (manufactured by Nippon Kayaku Co., Ltd.) ), Irgacure 907 (Ciba Specialty Chemical) and the like.

さらに必要に応じて各種の添加剤、例えば、タルク、硫酸バリウム、水酸化アルミニウム、酸化アルミニウム、シリカ、クレーなどの充填剤;アエロジルなどのチキソトロピー付与剤;フタロシアニンブルー、フタロシアニングリーン、酸化チタンなどの着色剤;シリコーン、フッ素系のレベリング剤や消泡剤;ハイドロキノン、ハイドロキノンモノメチルエーテルなどの重合禁止剤などを組成物の諸性能を高める目的で添加することができる。   Furthermore, various additives, for example, fillers such as talc, barium sulfate, aluminum hydroxide, aluminum oxide, silica and clay; thixotropic agents such as aerosil; coloring such as phthalocyanine blue, phthalocyanine green and titanium oxide Agents; silicones, fluorine-based leveling agents and antifoaming agents; polymerization inhibitors such as hydroquinone and hydroquinone monomethyl ether can be added for the purpose of enhancing various performances of the composition.

光硬化性樹脂組成物は必要に応じて溶剤を含有させることができる。使用可能な溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、グルタル酸ジアルキル、コハク酸ジアルキル、アジピン酸ジアルキル等のエステル類;γ−ブチロラクトン等の環状エステル類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤などが挙げられるが、これらは単独で用いてもよく、2種以上併用してもよい。   The photocurable resin composition can contain a solvent as needed. Usable solvents include, for example, ketones such as acetone, methyl ethyl ketone, and cyclohexanone; aromatic hydrocarbons such as benzene, toluene, xylene, and tetramethylbenzene; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, dipropylene glycol dimethyl ether, Glycol ethers such as dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether; ethyl acetate, butyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, propylene glycol monomethyl ether acetate, glutar Dialkyl acid, dialkyl succinate, dialkyl adipate, etc. Esters; cyclic esters such as γ-butyrolactone; petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, solvent naphtha, etc., but these may be used alone or in combination of two or more. May be.

本発明のエポキシ樹脂混合物を含有する光硬化性樹脂組成物は、電子部品の層間の絶縁材、光部品間を接続する光導波路やプリント基板用のソルダーレジスト、カバーレイ等のレジスト材料として有用である他、カラーフィルター、印刷インキ、封止剤、塗料、コーティング剤、接着剤としても使用できる。   The photo-curable resin composition containing the epoxy resin mixture of the present invention is useful as a resist material such as an insulating material between electronic components, an optical waveguide connecting optical components, a solder resist for printed circuit boards, and a coverlay. Besides, it can also be used as a color filter, printing ink, sealant, paint, coating agent, adhesive.

本発明のエポキシ樹脂混合物を含有する光硬化性樹脂組成物は、紫外線等のエネルギー線照射により硬化させることができる。紫外線等のエネルギー線照射による硬化は常法により行うことができる。例えば紫外線を照射する場合、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、紫外線発光レーザー(エキシマーレーザー等)等の紫外線発生装置を用いれば良い。   The photocurable resin composition containing the epoxy resin mixture of the present invention can be cured by irradiation with energy rays such as ultraviolet rays. Curing by irradiation with energy rays such as ultraviolet rays can be performed by a conventional method. For example, in the case of irradiating ultraviolet rays, an ultraviolet generator such as a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, or an ultraviolet light emitting laser (such as an excimer laser) may be used.

本発明のエポキシ樹脂混合物を含有する光硬化性樹脂組成物は、例えばレジスト膜、ビルドアップ工法用の層間絶縁材や光導波路としてプリント基板、光電子基板や光基板のような電気・電子・光基材に利用される。これらを使用した具体的な物品としては、例えばコンピューター、家電製品、携帯機器等が挙げられる。具体的に例えばプリント基板を構成するプリント配線板を製造する場合は、液状の樹脂組成物を使用する場合、まずプリント配線板にスクリーン印刷法、スプレー法、ロールコート法、静電塗装法、カーテンコート法等の方法により、5〜160μmの膜厚で本発明のエポキシ樹脂を含有する光硬化性樹脂組成物を塗布し、塗膜を通常50〜110℃、好ましくは60〜100℃で乾燥させることにより、塗膜が形成される。その後、ネガフィルム等の露光パターンを形成したフォトマスクを通して塗膜に直接または間接に紫外線等の高エネルギー線を通常10〜2000mJ/cm程度の強さで照射し、未露光部分を後述する現像液を用いて、例えばスプレー、揺動浸漬、ブラッシング、スクラッビング等により現像する。その後、必要に応じてさらに紫外線を照射し、次いで通常100〜200℃、好ましくは140〜180℃の温度で加熱処理をすることにより、金メッキ性に優れ、耐熱性、耐溶剤性、耐酸性、密着性、屈曲性等の諸特性を満足する永久保護膜を有するプリント配線板が得られる。The photocurable resin composition containing the epoxy resin mixture of the present invention is, for example, a resist film, an interlayer insulating material for a build-up method, or an optical waveguide as a printed board, an electric / electronic / optical substrate such as an optoelectronic board or an optical board. Used for materials. Specific articles using these include, for example, computers, home appliances, portable devices, and the like. Specifically, for example, when manufacturing a printed wiring board constituting a printed circuit board, when using a liquid resin composition, first, a screen printing method, a spray method, a roll coating method, an electrostatic coating method, a curtain is applied to the printed wiring board. The photocurable resin composition containing the epoxy resin of the present invention is applied with a film thickness of 5 to 160 μm by a coating method or the like, and the coating film is usually dried at 50 to 110 ° C., preferably 60 to 100 ° C. As a result, a coating film is formed. Thereafter, the coating film is directly or indirectly irradiated with high energy rays such as ultraviolet rays with an intensity of about 10 to 2000 mJ / cm 2 through a photomask having an exposure pattern such as a negative film, and the unexposed portion is described later. Using the liquid, development is performed, for example, by spraying, rocking dipping, brushing, scrubbing, or the like. Thereafter, if necessary, further ultraviolet irradiation is performed, and then heat treatment is usually performed at a temperature of 100 to 200 ° C., preferably 140 to 180 ° C., so that the gold plating property is excellent, and heat resistance, solvent resistance, acid resistance, A printed wiring board having a permanent protective film that satisfies various properties such as adhesion and flexibility can be obtained.

上記の現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム等の無機アルカリ水溶液や、テトラメチルアンモニウムハイドロオキサイド、テトラエチルアンモニウムハイドロオキサイド、テトラブチルアンモニウムハイドロオキサイド、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の有機アルカリ水溶液が使用できる。   Examples of the developer include potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, potassium phosphate, and other inorganic alkaline aqueous solutions, tetramethyl ammonium hydroxide, tetraethyl Organic alkaline aqueous solutions such as ammonium hydroxide, tetrabutylammonium hydroxide, monoethanolamine, diethanolamine, and triethanolamine can be used.

以下、実施例により本発明を更に詳細に説明する。
なお、以下において、樹脂物性は、以下の方法によって測定した。
・軟化点の測定:JIS K−7234に準じた方法で測定
・GC−MS(ガスクロマトグラフィー−マススペクトロメトリー)の測定
モデル:5975 inert MSD (Agilent社製)
カラム:HP−5MS 15m−0.25mm−0.25μm
キャリアガス:ヘリウム 1.0mL/min(Constant flow mode)
オーブン:50℃(2min)−10℃/min−300℃(23min)
インジェクション:1μl、Split(30:1)、300℃
イオンソース:EI
・SEM−EDS(スキャニングエレクトロンマイクロスコピー−エネルギーディスパーブスペクトロスコピー)の測定
モデル:JED−2140(JEOL社製)
加速電圧:20kV
ワーキングディスタンス:10mm
・GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量、重量平均分子量の測定
カラム:昭和電工株式会社製Shodex KF−801、KF−802、KF−802.5、KF−803
カラム温度:40℃
注入量:0.02mL
送液量:1.0mL/min
検出器:RI
溶剤:テトラヒドロフラン
・粘度の測定:ICI粘度計(株式会社コーディックス製)を用いて150℃で測定
・OH当量の測定:OH基1つあたりの化合物の平均質量数であり、JIS K−0070に準じたアセチル化法で測定
・エポキシ当量の測定:エポキシ基1つあたりの化合物の平均質量数であり、JIS K−7236に準じて測定
・DMA(動的粘弾性測定)分析:TA Instruments製DMA2980(動的粘弾性測定機)にて、10Hzの周波数を用いて、Tgと250℃における貯蔵弾性率を測定した。
Hereinafter, the present invention will be described in more detail with reference to examples.
In the following, the physical properties of the resin were measured by the following methods.
・ Measurement of softening point: measured by a method according to JIS K-7234 ・ Measurement of GC-MS (gas chromatography-mass spectrometry) Model: 5975 inert MSD (manufactured by Agilent)
Column: HP-5MS 15m-0.25mm-0.25μm
Carrier gas: Helium 1.0 mL / min (Constant flow mode)
Oven: 50 ° C (2min) -10 ° C / min-300 ° C (23min)
Injection: 1 μl, Split (30: 1), 300 ° C.
Ion source: EI
Measurement model of SEM-EDS (Scanning Electron Microscopy-Energy Disperse Spectroscopy): JED-2140 (manufactured by JEOL)
Acceleration voltage: 20 kV
Working distance: 10mm
Measurement of number average molecular weight and weight average molecular weight by GPC (gel permeation chromatography) Column: Shodex KF-801, KF-802, KF-802.5, KF-803 manufactured by Showa Denko KK
Column temperature: 40 ° C
Injection volume: 0.02 mL
Liquid feeding amount: 1.0 mL / min
Detector: RI
Solvent: Tetrahydrofuran Viscosity measurement: measured at 150 ° C. using an ICI viscometer (Cordix Co., Ltd.) OH equivalent measurement: average mass number of compounds per OH group, according to JIS K-0070 Measured by acetylation method according to the same method. Measurement of epoxy equivalent: Average mass number of the compound per epoxy group, measured according to JIS K-7236, DMA (dynamic viscoelasticity measurement) analysis: DMA 2980 manufactured by TA Instruments (Dynamic viscoelasticity measuring machine) Tg and the storage elastic modulus at 250 ° C. were measured using a frequency of 10 Hz.

実施例1
(1)ビフェニルのクロロメチル化反応
撹拌機、温度計、冷却器を備えたガラス製300mLフラスコに、シクロヘキサン200mL、ビフェニル77.05g、パラホルムアルデヒド33.55g、塩化亜鉛46.38gを仕込んだ。それらを激しく撹拌しながら、その中に、塩化水素ガスを強く吹き込み、均一な溶液になるまで反応させた。その間液温を50℃に保持した。さらに液温を30℃下げて、24時間塩化水素ガスを吹き込み、反応を続け、反応液を得た。
得られた反応液を少量取り、ジクロロメタン溶液としてGC−MS測定を行った。その結果、モノ(クロロメチル)ビフェニル2.5%、ビスクロロメチルビフェニル72.0%、トリ(クロロメチル)ビフェニル14.9%及びテトラ(クロロメチル)ビフェニル5.8%を検出した。また、上記モノ(クロロメチル)ビフェニル以外のその他の副生物として、ペンタ(クロロメチル)ビフェニル0.3%、ビスビフェニリルメタン0.5%、モノクロロメチル−ビスビフェニリルメタン1.1%、ビスクロロメチル−ビスビフェニリルメタン0.6%を検出した。更に化合物を特定出来ない成分を含め、その他の副生物として、2.3%(全てGC面積%)を検出した。
また、反応液をGC−MS測定用のジクロロメタン溶液にした際に生じた不溶解分からは、SEM−EDS(Scanning Electron Microscopy / Energy Dispersive Spectroscopy) を用いた元素分析により亜鉛元素(Zn)が検出された。
Example 1
(1) Chloromethylation reaction of biphenyl Cyclohexane 200 mL, biphenyl 77.05 g, paraformaldehyde 33.55 g, and zinc chloride 46.38 g were charged into a glass 300 mL flask equipped with a stirrer, a thermometer, and a condenser. While vigorously stirring them, hydrogen chloride gas was blown into them vigorously and reacted until a homogeneous solution was obtained. Meanwhile, the liquid temperature was kept at 50 ° C. The liquid temperature was further lowered by 30 ° C., hydrogen chloride gas was blown in for 24 hours, and the reaction was continued to obtain a reaction liquid.
A small amount of the resulting reaction solution was taken and subjected to GC-MS measurement as a dichloromethane solution. As a result, 2.5% mono (chloromethyl) biphenyl, 72.0% bischloromethylbiphenyl, 14.9% tri (chloromethyl) biphenyl, and 5.8% tetra (chloromethyl) biphenyl were detected. Other by-products other than mono (chloromethyl) biphenyl are penta (chloromethyl) biphenyl 0.3%, bisbiphenylylmethane 0.5%, monochloromethyl-bisbiphenylylmethane 1.1%, bis Chloromethyl-bisbiphenylylmethane 0.6% was detected. Furthermore, 2.3% (all GC area%) was detected as other by-products including components for which no compound could be specified.
Also, zinc element (Zn) was detected from elemental analysis using SEM-EDS (Scanning Electron Microscopy / Energy Dispersive Spectroscopy) from the insoluble matter produced when the reaction solution was made into a dichloromethane solution for GC-MS measurement. It was.

(2)クロロメチル化反応生成物とフェノールとの反応
続いて、上記(1)で得られた反応液にフェノール157.77gを加え、室温で2時間撹拌した。反応容器の脱気を行った後、減圧下に、180℃まで10時間かけて昇温し、溶剤のシクロヘキサンと未反応のフェノールを留去した。
その結果、本発明のフェノール樹脂混合物181.5gを得た。該樹脂混合物は、軟化点74.9℃、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量513、重量平均分子量639、OH当量215g/eqであった。
該フェノール樹脂混合物の組成は、上記(1)で得られたビフェニルのクロロメチル化反応生成物の組成より、ビスクロロメチルビフェニル由来成分(前記F2−1)72%、トリクロロメチルビフェニル由来成分(前記F2−2)15%、テトラクロロメチルビフェニル由来成分(前記F2−3)6%、その他成分(前記F2−4、F2−5、F2−6など)7%と推定される。
(2) Reaction of chloromethylation reaction product and phenol Subsequently, 157.77 g of phenol was added to the reaction solution obtained in (1) above, and the mixture was stirred at room temperature for 2 hours. After deaeration of the reaction vessel, the temperature was raised to 180 ° C. over 10 hours under reduced pressure, and the solvent cyclohexane and unreacted phenol were distilled off.
As a result, 181.5 g of the phenol resin mixture of the present invention was obtained. The resin mixture had a softening point of 74.9 ° C., a number average molecular weight of 513 by GPC (gel permeation chromatography), a weight average molecular weight of 639, and an OH equivalent of 215 g / eq.
The composition of the phenol resin mixture is 72% bischloromethylbiphenyl-derived component (F2-1), trichloromethylbiphenyl-derived component (previously described above) than the composition of the chloromethylation reaction product of biphenyl obtained in (1) above. F2-2) is estimated to be 15%, tetrachloromethylbiphenyl-derived component (said F2-3) 6%, and other components (said F2-4, F2-5, F2-6, etc.) 7%.

実施例2
エポキシ樹脂混合物の合成
撹拌機、温度計、冷却器を備えたガラス製300mLフラスコに、実施例1で得られた本発明のフェノール樹脂混合物26.3g、エピクロルヒドリン52.0g、ジメチルスルホキシド8.6g、30重量%水酸化ナトリウム水溶液12.3gを入れ、45℃で1時間撹拌混合した。次いで、そこにフレーク状の水酸化ナトリウム3.95gを分割添加し、45℃で2時間、70℃で1時間撹拌した。得られた反応液に、メチルイソブチルケトンを加えて、希釈した後、水を加えて、液/液分離による水洗を行った。得られた有機層に30重量%水酸化ナトリウム水溶液0.93gを加えて70℃で1時間撹拌した。再度上記と同様に液/液分離による水洗を行った。得られた反応液を濃縮し、本発明のエポキシ樹脂混合物20.5gを得た。
得られた樹脂混合物は、軟化点57.6℃、ICI粘度0.11Pa・s、エポキシ当量292g/eq、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量668、重量平均分子量1187であった。
該エポキシ樹脂混合物の組成は、上記(1)で得られたビフェニルのクロロメチル化反応生成物の組成より、ビスクロロメチルビフェニル由来成分(F3−1)72%、トリクロロメチルビフェニル由来成分(F3−2)15%、テトラクロロメチルビフェニル由来成分(F3−3)6%、その他成分(F3−4、F3−5、F3−6など)7%と推定される。
Example 2
Synthesis of epoxy resin mixture In a glass 300 mL flask equipped with a stirrer, a thermometer, and a condenser, 26.3 g of the phenol resin mixture of the present invention obtained in Example 1, 52.0 g of epichlorohydrin, 8.6 g of dimethyl sulfoxide, 12.3 g of 30% by weight aqueous sodium hydroxide solution was added and mixed with stirring at 45 ° C. for 1 hour. Next, 3.95 g of flaky sodium hydroxide was added in portions, and the mixture was stirred at 45 ° C. for 2 hours and at 70 ° C. for 1 hour. Methyl isobutyl ketone was added to the obtained reaction solution for dilution, and then water was added to perform water washing by liquid / liquid separation. To the obtained organic layer, 0.93 g of a 30 wt% aqueous sodium hydroxide solution was added and stirred at 70 ° C. for 1 hour. Again, water washing by liquid / liquid separation was performed in the same manner as described above. The obtained reaction solution was concentrated to obtain 20.5 g of the epoxy resin mixture of the present invention.
The obtained resin mixture had a softening point of 57.6 ° C., an ICI viscosity of 0.11 Pa · s, an epoxy equivalent of 292 g / eq, a number average molecular weight of 668 by GPC (gel permeation chromatography), and a weight average molecular weight of 1187.
The composition of the epoxy resin mixture is 72% bischloromethylbiphenyl-derived component (F3-1), trichloromethylbiphenyl-derived component (F3-), based on the composition of the biphenyl chloromethylation reaction product obtained in (1) above. 2) It is estimated that 15%, tetrachloromethylbiphenyl-derived component (F3-3) 6%, and other components (F3-4, F3-5, F3-6, etc.) 7%.

実施例3、及び比較例1
難燃性樹脂組成物の調製及びその硬化物の評価
実施例2で得られた本発明のエポキシ樹脂混合物または比較例として日本化薬株式会社製フェノール−ビフェニルアラルキル型エポキシ樹脂NC−3000(軟化点57.4℃、ICI粘度0.08Pa・s、エポキシ当量277g/eq、GPCによる数平均分子量793、重量平均分子量1229)を用いて下記表1に示す組成の難燃性樹脂組成物を調製し、トランスファー成型機にて175℃にて成型し、硬化物を得た。
Example 3 and Comparative Example 1
Preparation of flame retardant resin composition and evaluation of cured product thereof Epoxy resin mixture of the present invention obtained in Example 2 or, as a comparative example, phenol-biphenyl aralkyl type epoxy resin NC-3000 (softening point) manufactured by Nippon Kayaku Co., Ltd. 57.4 ° C., ICI viscosity 0.08 Pa · s, epoxy equivalent 277 g / eq, number average molecular weight 793 by GPC, weight average molecular weight 1229) were used to prepare a flame retardant resin composition having the composition shown in Table 1 below. The cured product was obtained by molding at 175 ° C. using a transfer molding machine.

表1
実施例3 比較例1
エポキシ樹脂 (実施例2のエポキシ樹脂混合物) (NC−3000)
6.17g 6.17g
硬化剤(XLC−3L) 3.6g 3.8g
硬化触媒(TPP) 0.105g 0.105g
フィラー(MSR−2212) 50.2g 51.2g
離型剤(カルナバ1号) 0.18g 0.19g
カップリング剤(KBM−303) 0.20g 0.20g
Table 1
Example 3 Comparative Example 1
Epoxy resin (Epoxy resin mixture of Example 2) (NC-3000)
6.17g 6.17g
Curing agent (XLC-3L) 3.6 g 3.8 g
Curing catalyst (TPP) 0.105 g 0.105 g
Filler (MSR-2212) 50.2 g 51.2 g
Mold release agent (Carnauba No. 1) 0.18 g 0.19 g
Coupling agent (KBM-303) 0.20g 0.20g

(注)
XLC−3L:フェノールアラルキル樹脂、三井化学株式会社製
TPP:トリフェニルホスフィン
MSR−2212:キクロスMSR−2212 株式会社龍森製
カルナバ1号:カルナウバワックス1号 株式会社セラリカ野田製
KBM−303:シランカップリング剤 信越化学工業株式会社製
(note)
XLC-3L: Phenol aralkyl resin, TPP manufactured by Mitsui Chemicals Co., Ltd .: Triphenylphosphine MSR-2212: Cyclos MSR-2212 Carnauba No. 1 manufactured by Tatsumori Co., Ltd. Coupling agent Shin-Etsu Chemical Co., Ltd.

このようにして得られた硬化物に関して、以下に示す方法に基づいて難燃性と250℃における貯蔵弾性率を評価した結果を表2に示す。
・難燃性の測定:難燃性試験はUL−94に準拠して、厚み0.8mmの試験片(硬化物)についてトータル燃焼時間(自己消化するまでの時間)を測定した。
・250℃における貯蔵弾性率の測定:TA Instruments製DMA2980(動的粘弾性測定機)にて、10Hzの周波数を用いて、Tgと250℃における貯蔵弾性率を測定した。
Table 2 shows the results of evaluating the flame retardancy and the storage elastic modulus at 250 ° C. of the cured product thus obtained based on the following method.
-Measurement of flame retardancy: The flame retardancy test was performed according to UL-94, and the total burning time (time until self-digestion) was measured for a test piece (cured product) having a thickness of 0.8 mm.
Measurement of storage elastic modulus at 250 ° C .: Tg and storage elastic modulus at 250 ° C. were measured using DMA 2980 (dynamic viscoelasticity measuring machine) manufactured by TA Instruments using a frequency of 10 Hz.

表2
実施例3 比較例1
トータル燃焼時間(sec) 32(V−0) 35(V−0)
貯蔵弾性率(MPa、250℃) 933 2218
Tg(ガラス転移点:℃) 136 146
Table 2
Example 3 Comparative Example 1
Total combustion time (sec) 32 (V-0) 35 (V-0)
Storage elastic modulus (MPa, 250 ° C.) 933 2218
Tg (glass transition point: ° C.) 136 146

本発明のエポキシ樹脂混合物を含むエポキシ樹脂組成物は、優れた難燃性樹脂として汎用されているNC−3000と難燃性において、同等若しくはそれ以上で、難燃性に優れており、更に、ガラス転移点より高い、250℃という高温における貯蔵弾性率では、NC−3000の2000MPa以上という値に比べて、耐半田クラック性に、好ましいと考えられる500〜1000MPaの範囲内に入ってきており、その点においても優れた性質を有するものであることが判る。
本発明のエポキシ樹脂混合物は、上記の通り優れた性質を有すると共に、ビフェニルから一貫した製造が可能であり、製造も容易である。
The epoxy resin composition containing the epoxy resin mixture of the present invention is excellent in flame retardancy, equivalent to or higher than NC-3000, which is widely used as an excellent flame retardant resin, and moreover, The storage elastic modulus at a high temperature of 250 ° C., which is higher than the glass transition point, is in the range of 500 to 1000 MPa, which is considered preferable for solder crack resistance, compared with the value of NC-3000 of 2000 MPa or more, It can be seen that this also has excellent properties.
The epoxy resin mixture of the present invention has excellent properties as described above, can be produced consistently from biphenyl, and is easy to produce.

実施例4
(1)ビフェニルのクロロメチル化反応
撹拌機、温度計、冷却器を備えたガラス製1000mLフラスコに、シクロヘキサン200mL、ビフェニル154g、パラホルムアルデヒド66g、塩化亜鉛93gを仕込んだ。それらを撹拌しながら、その中に、塩化水素ガスを強く吹き込み、均一な溶液になるまで反応させた。その間30℃に保持した。その後さらに50℃で10時間塩化水素ガスを吹き込み、反応を続け、反応液を得た。
反応液の一部を取り、N,N’−ジメチルホルムアミド溶液としてLC測定を行ったところ、モノクロロメチルビフェニル8.1%、ビスクロロメチルビフェニル68.2%、トリ(クロロメチル)ビフェニルとテトラ(クロロメチル)ビフェニルを合わせて18.2%(LC面積%)を検出した。
(2)クロロメチル化反応生成物とフェノールの反応
続いて、上記(1)で得られた反応液にフェノール301gを加え、70℃で2時間撹拌した。減圧下に、180℃まで昇温しながら、溶剤のシクロヘキサンと未反応のフェノールを留去した。
その結果、本発明のフェノール樹脂混合物329gを得た。
該樹脂混合物は、軟化点79.6℃、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量855、重量平均分子量1332、OH当量196g/eqであった。
該フェノール樹脂混合物の組成は、上記(1)で得られたクロロメチル化反応生成物の組成より、モノクロロメチルビフェニル8%、ビスクロロメチルビフェニル由来成分(F2−1)68%と、トリ(クロロメチル)ビフェニル由来成分(F2−2)及びテトラ(クロロメチル)ビフェニル由来成分(F2−3等)を合わせて18%を含むと推定される。
Example 4
(1) Chloromethylation reaction of biphenyl Cyclohexane 200 mL, biphenyl 154 g, paraformaldehyde 66 g, and zinc chloride 93 g were charged into a glass 1000 mL flask equipped with a stirrer, a thermometer, and a condenser. While stirring them, hydrogen chloride gas was strongly blown into them and reacted until a uniform solution was obtained. Meanwhile, the temperature was maintained at 30 ° C. Thereafter, hydrogen chloride gas was further blown for 10 hours at 50 ° C., and the reaction was continued to obtain a reaction solution.
A part of the reaction solution was taken and subjected to LC measurement as an N, N′-dimethylformamide solution. As a result, 8.1% monochloromethylbiphenyl, 68.2% bischloromethylbiphenyl, tri (chloromethyl) biphenyl and tetra ( Chloromethyl) biphenyl was combined to detect 18.2% (LC area%).
(2) Reaction of chloromethylation reaction product and phenol Subsequently, 301 g of phenol was added to the reaction solution obtained in (1) above, and the mixture was stirred at 70 ° C. for 2 hours. While raising the temperature to 180 ° C. under reduced pressure, the solvent cyclohexane and unreacted phenol were distilled off.
As a result, 329 g of the phenol resin mixture of the present invention was obtained.
The resin mixture had a softening point of 79.6 ° C., a number average molecular weight of 855 by GPC (gel permeation chromatography), a weight average molecular weight of 1332, and an OH equivalent of 196 g / eq.
The composition of the phenol resin mixture is 8% monochloromethylbiphenyl, 68% bischloromethylbiphenyl-derived component (F2-1) and tri (chloro) than the composition of the chloromethylation reaction product obtained in (1) above. It is estimated that 18% is contained in total of the component derived from methyl) biphenyl (F2-2) and the component derived from tetra (chloromethyl) biphenyl (F2-3 etc.).

実施例5
エポキシ樹脂混合物の合成
撹拌機、温度計、冷却器を備えたガラス製1000mLフラスコに、実施例4で得られた本発明のフェノール樹脂混合物196g、エピクロルヒドリン555g、及びメタノール29.6gを入れ混合した。該混合物を70℃で撹拌しながら、フレーク状の水酸化ナトリウム42gを分割添加した。その後70℃でさらに1時間撹拌した。得られた反応液に水150gを添加し混合した後、静置し、2層に分離した下層の水層を除去した。水洗後の反応液から未反応のエピクロルヒドリンを留去した。そこにメチルイソブチルケトンを加えて希釈し、次いで30重量%水酸化ナトリウム水溶液13.3gを加えて70℃で1時間撹拌した。そこに水を加えて、液/液分離による水洗を行った。該水洗後の反応液を濃縮して、本発明のエポキシ樹脂混合物215gを得た。
該エポキシ混合物は、軟化点56.5℃、ICI粘度0.11Pa・s、エポキシ当量264g/eq、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量803、重量平均分子量1419であった。
該エポキシ樹脂混合物の組成は、上記実施例4(1)で得られたクロロメチル化反応生成物の組成より、モノクロロメチルビフェニル由来成分8%、ビスクロロメチルビフェニル由来成分(構造式:F3−1等)68%と、トリ(クロロメチル)ビフェニル由来成分(構造式:F3−2等)及びテトラ(クロロメチル)ビフェニル由来成分(構造式:F3−3等)を合わせて18%を含むと推定される。
Example 5
Synthesis of Epoxy Resin Mixture A glass 1000 mL flask equipped with a stirrer, a thermometer, and a condenser was mixed with 196 g of the phenol resin mixture of the present invention obtained in Example 4, 555 g of epichlorohydrin, and 29.6 g of methanol. While stirring the mixture at 70 ° C., 42 g of flaky sodium hydroxide was added in portions. Thereafter, the mixture was further stirred at 70 ° C. for 1 hour. After adding 150 g of water to the resulting reaction solution and mixing, the mixture was allowed to stand and the lower aqueous layer separated into two layers was removed. Unreacted epichlorohydrin was distilled off from the reaction solution after washing with water. Methyl isobutyl ketone was added thereto for dilution, and then 13.3 g of a 30 wt% aqueous sodium hydroxide solution was added and stirred at 70 ° C. for 1 hour. Water was added thereto, followed by washing with liquid / liquid separation. The reaction solution after washing with water was concentrated to obtain 215 g of the epoxy resin mixture of the present invention.
The epoxy mixture had a softening point of 56.5 ° C., an ICI viscosity of 0.11 Pa · s, an epoxy equivalent of 264 g / eq, a number average molecular weight of 803 by GPC (gel permeation chromatography), and a weight average molecular weight of 1419.
The composition of the epoxy resin mixture was 8% monochloromethylbiphenyl-derived component, bischloromethylbiphenyl-derived component (structural formula: F3-1), based on the composition of the chloromethylation reaction product obtained in Example 4 (1) above. Etc.) and 68% and a component derived from tri (chloromethyl) biphenyl (structural formula: F3-2 etc.) and a component derived from tetra (chloromethyl) biphenyl (structural formula: F3-3 etc.) are estimated to contain 18%. Is done.

実施例6
実施例5で得られた本発明のエポキシ樹脂混合物を、実施例3と同様に、下記表3に示す組成の難燃性樹脂組成物に調製し、トランスファー成型機で成型し、硬化物を得た。
Example 6
In the same manner as in Example 3, the epoxy resin mixture of the present invention obtained in Example 5 was prepared into a flame retardant resin composition having the composition shown in Table 3 below, and molded with a transfer molding machine to obtain a cured product. It was.

表3
実施例6
エポキシ樹脂 (実施例5のエポキシ樹脂混合物)
12g
硬化剤(XLC−3L) 7.7g
硬化触媒(TPP) 0.204g
フィラー(MSR−2212) 100.8g
離型剤(カルナバ1号) 0.36g
カップリング剤(KBM−303) 0.40g
Table 3
Example 6
Epoxy resin (epoxy resin mixture of Example 5)
12g
Curing agent (XLC-3L) 7.7 g
Curing catalyst (TPP) 0.204g
Filler (MSR-2212) 100.8g
Release agent (Carnauba No.1) 0.36g
Coupling agent (KBM-303) 0.40g

得られた硬化物に関して、実施例3に示したと同様にして、難燃性と貯蔵弾性率を測定した。その結果を表4に示す。   With respect to the obtained cured product, flame retardancy and storage modulus were measured in the same manner as shown in Example 3. The results are shown in Table 4.

表4
実施例6
トータル燃焼時間(sec) 35(V−0)
貯蔵弾性率(MPa、250℃) 608
Tg(℃) 145
Table 4
Example 6
Total combustion time (sec) 35 (V-0)
Storage elastic modulus (MPa, 250 ° C.) 608
Tg (° C) 145

実施例7
実施例4と同様にして得られた本発明のフェノール樹脂混合物500gを、メチルイソブチルケトン1000mlに溶解し、不溶解分を濾過した後、そこに水を加えて、液/液分離による水洗を行った。その結果、水酸基(OH)当量204g/eqのフェノール樹脂混合物(EX7PhnolMixという)を得た。
得られたフェノール樹脂混合物を硬化剤として使用して、エポキシ樹脂として、前記日本化薬株式会社製フェノール−ビフェニルアラルキル型エポキシ樹脂NC−3000を用いて、下記表5に示す組成の本発明エポキシ樹脂組成物を調製し、トランスファー成型機で成型し硬化物を得た。
Example 7
500 g of the phenol resin mixture of the present invention obtained in the same manner as in Example 4 was dissolved in 1000 ml of methyl isobutyl ketone, the insoluble matter was filtered, water was added thereto, and water washing was performed by liquid / liquid separation. It was. As a result, a phenol resin mixture (referred to as EX7PhnolMix) having a hydroxyl group (OH) equivalent of 204 g / eq was obtained.
The obtained epoxy resin mixture is used as a curing agent, and the epoxy resin of the present invention having the composition shown in Table 5 below is used as the epoxy resin, using the above-mentioned Nippon Kayaku Co., Ltd. phenol-biphenyl aralkyl epoxy resin NC-3000. A composition was prepared and molded with a transfer molding machine to obtain a cured product.

表5
実施例7
エポキシ樹脂(NC−3000) 18g
硬化剤(EX7PhnolMix) 13.3g
硬化触媒(TPP) 0.45g
フィラー(MSR−2212) 160.8g
離型剤(カルナバ1号) 0.58g
カップリング剤(KBM−303) 0.64g
Table 5
Example 7
Epoxy resin (NC-3000) 18g
Curing agent (EX7PhnolMix) 13.3g
Curing catalyst (TPP) 0.45g
Filler (MSR-2212) 160.8g
Release agent (Carnauba No.1) 0.58g
Coupling agent (KBM-303) 0.64g

得られた硬化物に関して、実施例3に示したと同様にして、難燃性と貯蔵弾性率を測定した。その結果を下記表6に示す。   With respect to the obtained cured product, flame retardancy and storage modulus were measured in the same manner as shown in Example 3. The results are shown in Table 6 below.

表6
実施例7
トータル燃焼時間(sec) 27
貯蔵弾性率(250℃)(MPa) 449
Tg(℃) 147
Table 6
Example 7
Total combustion time (sec) 27
Storage elastic modulus (250 ° C.) (MPa) 449
Tg (° C) 147

実施例8及び比較例2
実施例7で得られた本発明のフェノール樹脂混合物(EX7PhnolMix)を硬化剤として使用し、エポキシ樹脂として前記日本化薬株式会社製フェノール−ビフェニルアラルキル型エポキシ樹脂NC−3000を用いて、下表7に示す組成の本発明エポキシ樹脂組成物(EX8 EPOXY COM)を調製した。
一方比較例2として、硬化剤として、本発明のフェノール樹脂混合物(EX7PhnolMix)の代わりに、日本化薬株式会社製フェノール−ビフェニルアラルキル型フェノール樹脂GPH−65(OH当量199g/eq、軟化点65.1℃)を用いて下記表7に示す比較用エポキシ樹脂組成物(比較例2)(CPA2 EPOXY COM)を調製した。
上記で調製したエポキシ樹脂組成物をロール混練し、評価用のエポキシ樹脂組成物とした。
Example 8 and Comparative Example 2
Using the phenol resin mixture (EX7PhnolMix) of the present invention obtained in Example 7 as a curing agent and using the above-mentioned Nippon Kayaku Co., Ltd. phenol-biphenylaralkyl type epoxy resin NC-3000, the following Table 7 The epoxy resin composition (EX8 EPOXY COM) of the present invention having the composition shown in FIG.
On the other hand, as Comparative Example 2, as a curing agent, instead of the phenol resin mixture of the present invention (EX7 PhnolMix), a phenol-biphenylaralkyl type phenol resin GPH-65 (OH equivalent 199 g / eq, softening point 65. 1 ° C) was used to prepare a comparative epoxy resin composition (Comparative Example 2) (CPA2 EPOXY COM) shown in Table 7 below.
The epoxy resin composition prepared above was roll-kneaded to obtain an epoxy resin composition for evaluation.

表7
EX8 EPOXY COM CPA2 EPOXY COM
エポキシ樹脂(NC−3000) 15g 15g
硬化剤 EX7PhnolMix 11g −
GPH−65 − 10.8g
硬化触媒(TPP) 0.315g 0.405g
フィラー(MSR-2212) 156g 155g
離型剤(カルナバ1号) 0.55g 0.55g
カップリング剤(KBM-303) 0.62g 0.62g
Table 7
EX8 EPOXY COM CPA2 EPOXY COM
Epoxy resin (NC-3000) 15g 15g
Curing agent EX7PhenolMix 11g −
GPH-65-10.8g
Curing catalyst (TPP) 0.315 g 0.405 g
Filler (MSR-2212) 156g 155g
Mold release agent (Carnauba No.1) 0.55g 0.55g
Coupling agent (KBM-303) 0.62g 0.62g

上記で得られたエポキシ樹脂組成物の硬化性の評価として、JSR株式会社製キュラストメータにてトルクの最大値を測定した。
また、流動性の評価として、175℃、成型圧力70kg/cmの条件にてスパイラルフローを測定した(ASTM F3133に準拠)。その結果を、表8に示す。
As evaluation of curability of the epoxy resin composition obtained above, the maximum value of torque was measured with a curast meter manufactured by JSR Corporation.
Further, as an evaluation of fluidity, spiral flow was measured under the conditions of 175 ° C. and a molding pressure of 70 kg / cm 2 (based on ASTM F3133). The results are shown in Table 8.

表8
EX8 EPOXY COM CPA2 EPOXY COM
キュラストトルク(N・m) 10.5 9.3
スパイラルフロー(inch、n=5) 33.5 30.7
ゲルタイム(sec) 29.4 29.6
Table 8
EX8 EPOXY COM CPA2 EPOXY COM
Curast torque (N · m) 10.5 9.3
Spiral flow (inch, n = 5) 33.5 30.7
Gel time (sec) 29.4 29.6

硬化性の指標であるキュラストトルクは、大きいほど強く硬化していることを示すので、実施例8のエポキシ樹脂組成物は、比較例2のエポキシ樹脂組成物より硬化性に優れていることを示している。
また、ゲルタイムが同じエポキシ樹脂組成物においては、流動性の指標であるスパイラルフローが長い方が、流動性が高いことを示すので、実施例8のエポキシ樹脂組成物は、比較例2のエポキシ樹脂組成物に対して流動性に優れていることを示している。
Since the curast torque, which is an index of curability, indicates that the greater the value is, the stronger the cure is, the more the epoxy resin composition of Example 8 is more curable than the epoxy resin composition of Comparative Example 2. Show.
In addition, in the epoxy resin composition having the same gel time, the longer the spiral flow that is the index of fluidity, the higher the fluidity. Therefore, the epoxy resin composition of Example 8 is the epoxy resin of Comparative Example 2. It shows that the composition is excellent in fluidity.

本発明のエポキシ樹脂混合物を含むエポキシ樹脂組成物の硬化物は、難燃性に優れるだけでなく、従来の難燃性エポキシ樹脂硬化物より、250℃における貯蔵弾性率が一定の範囲内において、低下していることから耐半田クラック性にも優れており、本発明のエポキシ樹脂混合物及びそれを含むエポキシ樹脂組成物は半導体封止材料やプリント配線基板などの半導体周辺の電気・電子材料として適している。
また、本発明のフェノール樹脂混合物は、上記優れた性質を有する本発明のエポキシ樹脂混合物のための中間原料であり、且つ、中間体のハロメチルビフェニルを単離精製することなく製造しうることから、製造も容易であり、産業上の有用性は高い。
The cured product of the epoxy resin composition containing the epoxy resin mixture of the present invention is not only excellent in flame retardancy, but also has a storage elastic modulus at 250 ° C. within a certain range as compared with the conventional flame retardant epoxy resin cured product, Since it is reduced, it also has excellent resistance to solder cracks, and the epoxy resin mixture of the present invention and the epoxy resin composition containing it are suitable as electrical and electronic materials around semiconductors such as semiconductor sealing materials and printed wiring boards. ing.
Further, the phenol resin mixture of the present invention is an intermediate raw material for the epoxy resin mixture of the present invention having the above-mentioned excellent properties, and can be produced without isolating and purifying the intermediate halomethylbiphenyl. It is easy to manufacture and has high industrial utility.

Claims (12)

ビフェニルのハロメチル化反応によって得られ、GC−MSでの反応生成物全体に対する割合(GC面積比)で、ビスハロメチルビフェニルを60%以上で、80%より少なく、トリ(ハロメチル)ビフェニル及びテトラ(ハロメチル)ビフェニルを合計で15〜30%及びその他の副生物を残部含む反応生成物と、フェノールとのメチレン架橋反応により得られるフェノール樹脂混合物。   It is obtained by halomethylation reaction of biphenyl, and in a ratio (GC area ratio) to the total reaction product in GC-MS, bishalomethylbiphenyl is 60% or more and less than 80%, and tri (halomethyl) biphenyl and tetra ( A phenol resin mixture obtained by a methylene crosslinking reaction of phenol with a reaction product containing 15 to 30% in total of halomethyl) biphenyl and the other by-products. 軟化点が65〜85℃、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量が350〜1200、重量平均分子量が400〜2000、及びOH当量160〜250g/eqである請求項1に記載のフェノール樹脂混合物。   The phenol according to claim 1, having a softening point of 65 to 85 ° C, a GPC (gel permeation chromatography) number average molecular weight of 350 to 1200, a weight average molecular weight of 400 to 2000, and an OH equivalent of 160 to 250 g / eq. Resin mixture. 請求項1又は2に記載のフェノール樹脂混合物をエポキシ化して得られたエポキシ樹脂混合物。   The epoxy resin mixture obtained by epoxidizing the phenol resin mixture of Claim 1 or 2. 軟化点が50〜75℃、ICI粘度が0.02〜0.50Pa・s、GPC(ゲルパーミエーションクロマトグラフィー)による数平均分子量が400〜1200及び重量平均分子量が800〜2000、エポキシ当量が200〜360g/eqである請求項3に記載のエポキシ樹脂混合物。   Softening point 50-75 ° C., ICI viscosity 0.02-0.50 Pa · s, number average molecular weight by GPC (gel permeation chromatography) 400-1200, weight average molecular weight 800-2000, epoxy equivalent 200 The epoxy resin mixture according to claim 3, which is ˜360 g / eq. 請求項3に記載のエポキシ樹脂混合物及び硬化剤を含有するエポキシ樹脂組成物。   An epoxy resin composition comprising the epoxy resin mixture according to claim 3 and a curing agent. 硬化剤の含量が、エポキシ樹脂混合物のエポキシ基1当量に対して、硬化剤の含量が0.7当量〜1.2当量である請求項5に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 5, wherein the content of the curing agent is 0.7 to 1.2 equivalents with respect to 1 equivalent of epoxy groups in the epoxy resin mixture. 更に、フィラーを、エポキシ樹脂組成物の総量に対して、50〜90重量%含む請求項6に記載のエポキシ樹脂組成物。   Furthermore, the epoxy resin composition of Claim 6 which contains a filler 50 to 90weight% with respect to the total amount of an epoxy resin composition. 請求項1に記載のフェノール樹脂混合物をエポキシ化して得られたエポキシ樹脂混合物及び、該エポキシ樹脂混合物のエポキシ基1当量に対して、0.7当量〜1.2当量の硬化剤を含むエポキシ樹脂組成物を硬化させた硬化物。   An epoxy resin mixture obtained by epoxidizing the phenol resin mixture according to claim 1 and an epoxy resin containing 0.7 to 1.2 equivalents of a curing agent with respect to 1 equivalent of epoxy groups of the epoxy resin mixture. A cured product obtained by curing the composition. 請求項1に記載のフェノール樹脂混合物をエポキシ化して得られたエポキシ樹脂混合物、該エポキシ樹脂混合物のエポキシ基1当量に対して、0.7当量〜1.2当量の硬化剤及びエポキシ樹脂組成物の総量に対して50〜90重量%の無機充填剤を含むエポキシ樹脂組成物を硬化させた硬化物。   An epoxy resin mixture obtained by epoxidizing the phenol resin mixture according to claim 1, 0.7 to 1.2 equivalent of a curing agent and an epoxy resin composition with respect to 1 equivalent of an epoxy group of the epoxy resin mixture. Hardened | cured material which hardened the epoxy resin composition containing 50 to 90 weight% of inorganic fillers with respect to the total amount of. ハロゲン化亜鉛の存在下に、ビフェニル、ビフェニル1モルに対して、2〜8当量のホルムアルデヒド類及びハロゲン化水素を、過剰量のハロゲン化水素の存在下に、反応させ、ビフェニルのハロメチル化を行い、GC−MSでの反応生成物全体に対する割合(GC面積比)で、ビスハロメチルビフェニルを60%以上で、80%より少なく、トリ(ハロメチル)ビフェニル及びテトラ(ハロメチル)ビフェニルを合計で15〜30%及びその他の副生物を残部含む反応生成物を得、該反応生成物を精製することなく、フェノールと反応させることを特徴とするフェノール樹脂混合物の製造方法。   In the presence of zinc halide, 2-8 equivalents of formaldehyde and hydrogen halide are reacted in the presence of an excess amount of hydrogen halide with respect to 1 mol of biphenyl and biphenyl to carry out halomethylation of biphenyl. , In the ratio (GC area ratio) to the total reaction product in GC-MS, the bishalomethylbiphenyl is 60% or more and less than 80%, and the total of tri (halomethyl) biphenyl and tetra (halomethyl) biphenyl is 15 to A method for producing a phenol resin mixture, comprising: obtaining a reaction product containing 30% and the other by-products, and reacting with phenol without purifying the reaction product. 請求項10の製造方法によって得られたフェノール樹脂混合物を、該フェノール樹脂混合物の水酸基1当量に対して、エピハロヒドリンを0.8〜12当量反応させることを特徴とするエポキシ樹脂混合物の製造方法。   A method for producing an epoxy resin mixture, comprising reacting a phenol resin mixture obtained by the production method according to claim 10 with 0.8 to 12 equivalents of epihalohydrin with respect to 1 equivalent of a hydroxyl group of the phenol resin mixture. 請求項1又は2に記載のフェノール樹脂混合物を硬化剤として含有するエポキシ樹脂組成物。   The epoxy resin composition which contains the phenol resin mixture of Claim 1 or 2 as a hardening | curing agent.
JP2010536675A 2008-11-06 2009-10-30 Phenol resin mixture, epoxy resin mixture, epoxy resin composition, and cured product Expired - Fee Related JP5486505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010536675A JP5486505B2 (en) 2008-11-06 2009-10-30 Phenol resin mixture, epoxy resin mixture, epoxy resin composition, and cured product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008285856 2008-11-06
JP2008285856 2008-11-06
JP2010536675A JP5486505B2 (en) 2008-11-06 2009-10-30 Phenol resin mixture, epoxy resin mixture, epoxy resin composition, and cured product
PCT/JP2009/005783 WO2010052877A1 (en) 2008-11-06 2009-10-30 Phenolic resin mixture, epoxy resin mixture, epoxy resin composition, and cured article

Publications (2)

Publication Number Publication Date
JPWO2010052877A1 JPWO2010052877A1 (en) 2012-04-05
JP5486505B2 true JP5486505B2 (en) 2014-05-07

Family

ID=42152691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010536675A Expired - Fee Related JP5486505B2 (en) 2008-11-06 2009-10-30 Phenol resin mixture, epoxy resin mixture, epoxy resin composition, and cured product

Country Status (6)

Country Link
JP (1) JP5486505B2 (en)
KR (1) KR101564957B1 (en)
CN (1) CN102209742B (en)
MY (1) MY153048A (en)
TW (1) TWI530511B (en)
WO (1) WO2010052877A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939521B2 (en) * 2008-12-12 2012-05-30 Jfeケミカル株式会社 Method for producing 4,4'-biphenyldiylmethylene-phenol resin
JP2013237715A (en) * 2012-05-11 2013-11-28 Sumitomo Bakelite Co Ltd Resin composition, prepreg, circuit board, and semiconductor apparatus
TWI666307B (en) * 2015-06-04 2019-07-21 日商住友電木股份有限公司 Resin composition for encapsulation, semiconductor device and structure
JP6708242B2 (en) * 2018-11-14 2020-06-10 日立化成株式会社 Resin composition for mold underfill and electronic component device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143648A (en) * 1994-09-20 1996-06-04 Meiwa Kasei Kk New phenolic novolak condensate
JPH1180047A (en) * 1997-09-12 1999-03-23 Ube Ind Ltd Production of 4,4'-bis(chloromethybiphenyl)
JPH11130706A (en) * 1997-10-31 1999-05-18 Ube Ind Ltd Production of 4,4'-bischloromethylbiphenyl
JP2001040053A (en) * 1999-07-26 2001-02-13 Nippon Kayaku Co Ltd 4,4'-biphenyldiyldimethylene-phenol resin and its production
JP2001064340A (en) * 1999-08-30 2001-03-13 Nippon Kayaku Co Ltd 4,4'-biphenydiyldimethylene-phenolic resin epoxy resin, epoxy resin composition, and its cured product
JP2006124492A (en) * 2004-10-28 2006-05-18 Nippon Kayaku Co Ltd Epoxy resin and phenol resin
WO2006090662A1 (en) * 2005-02-25 2006-08-31 Nippon Kayaku Kabushiki Kaisha Epoxy resin, hardenable resin composition containing the same and use thereof
WO2007063894A1 (en) * 2005-11-30 2007-06-07 Nippon Kayaku Kabushiki Kaisha Phenolic resin, process for production thereof, epoxy resin, and use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140277A (en) * 1997-11-10 1999-05-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device produced by using the composition
WO2007015591A1 (en) * 2005-08-02 2007-02-08 Cheil Industries Inc. Epoxy resin composition for packaging semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143648A (en) * 1994-09-20 1996-06-04 Meiwa Kasei Kk New phenolic novolak condensate
JPH1180047A (en) * 1997-09-12 1999-03-23 Ube Ind Ltd Production of 4,4'-bis(chloromethybiphenyl)
JPH11130706A (en) * 1997-10-31 1999-05-18 Ube Ind Ltd Production of 4,4'-bischloromethylbiphenyl
JP2001040053A (en) * 1999-07-26 2001-02-13 Nippon Kayaku Co Ltd 4,4'-biphenyldiyldimethylene-phenol resin and its production
JP2001064340A (en) * 1999-08-30 2001-03-13 Nippon Kayaku Co Ltd 4,4'-biphenydiyldimethylene-phenolic resin epoxy resin, epoxy resin composition, and its cured product
JP2006124492A (en) * 2004-10-28 2006-05-18 Nippon Kayaku Co Ltd Epoxy resin and phenol resin
WO2006090662A1 (en) * 2005-02-25 2006-08-31 Nippon Kayaku Kabushiki Kaisha Epoxy resin, hardenable resin composition containing the same and use thereof
WO2007063894A1 (en) * 2005-11-30 2007-06-07 Nippon Kayaku Kabushiki Kaisha Phenolic resin, process for production thereof, epoxy resin, and use thereof

Also Published As

Publication number Publication date
KR101564957B1 (en) 2015-11-13
CN102209742A (en) 2011-10-05
KR20110094278A (en) 2011-08-23
WO2010052877A1 (en) 2010-05-14
TW201026737A (en) 2010-07-16
JPWO2010052877A1 (en) 2012-04-05
TWI530511B (en) 2016-04-21
CN102209742B (en) 2013-03-27
MY153048A (en) 2014-12-31

Similar Documents

Publication Publication Date Title
JP5284586B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP6240069B2 (en) Epoxy resin composition, cured product thereof, and curable resin composition
JP5559154B2 (en) Olefin resin, epoxy resin, curable resin composition and cured product thereof
KR101408535B1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
JP5486505B2 (en) Phenol resin mixture, epoxy resin mixture, epoxy resin composition, and cured product
JP6090765B2 (en) Phenol resin, epoxy resin, and curable resin composition
JP5142180B2 (en) Epoxy resin composition and cured product thereof
JP5319289B2 (en) Epoxy resin and method for producing the same, and epoxy resin composition and cured product using the same
JP7185383B2 (en) Curable resin composition and its cured product
WO2023008231A1 (en) Epoxy resin, curable resin composition, and cured products thereof
KR20230161416A (en) Epoxy resin and its production method, curable resin composition, and cured product thereof
TWI659974B (en) Epoxy resin, curable resin composition, and cured product thereof
JP7240989B2 (en) Curable resin composition and its cured product
JP6715249B2 (en) Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
WO2022107678A1 (en) Epoxy resin, curable resin composition, and cured object therefrom
JP5878865B2 (en) Diolefin compound, epoxy resin, curable resin composition and cured product thereof
JP2007204604A (en) Liquid epoxy resin, epoxy resin composition and cured product
WO2015083748A1 (en) Phenolic resin, epoxy resin, epoxy resin composition, and cured product thereof
JP2022147099A (en) Epoxy resin, curable resin composition, and cured product thereof
JP5254036B2 (en) Phenol resin, epoxy resin, curable resin composition, cured product thereof, and method for producing phenol resin
JP2007045978A (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2005139285A (en) Liquid epoxy resin, epoxy resin composition and its cured material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140221

R150 Certificate of patent or registration of utility model

Ref document number: 5486505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees