JP5484921B2 - RRO measuring device chuck runout accuracy measuring jig and runout accuracy judging method - Google Patents

RRO measuring device chuck runout accuracy measuring jig and runout accuracy judging method Download PDF

Info

Publication number
JP5484921B2
JP5484921B2 JP2010006402A JP2010006402A JP5484921B2 JP 5484921 B2 JP5484921 B2 JP 5484921B2 JP 2010006402 A JP2010006402 A JP 2010006402A JP 2010006402 A JP2010006402 A JP 2010006402A JP 5484921 B2 JP5484921 B2 JP 5484921B2
Authority
JP
Japan
Prior art keywords
measurement
measurement surface
wheel
chuck
rro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010006402A
Other languages
Japanese (ja)
Other versions
JP2011145183A (en
Inventor
英美 一瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010006402A priority Critical patent/JP5484921B2/en
Publication of JP2011145183A publication Critical patent/JP2011145183A/en
Application granted granted Critical
Publication of JP5484921B2 publication Critical patent/JP5484921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Balance (AREA)

Description

本発明は、ホイールのRRO測定装置のチャックの心振れ精度測定治具および心振れ精度判定方法に関する。 The present invention relates to a chuck runout accuracy measuring jig and a runout accuracy determining method of a wheel RRO measuring apparatus.

自動車の走行時の振動を抑え、乗り心地を向上させるために、タイヤとホイールを組み付けてタイヤ組立体を組み立てるときには、一般に、タイヤのRFV(ラジアルフォースバリエーション)の1次成分の最大位置とホイールのRRO(ラジアルランアウト)の最小位置を位相合わせして組み付ける。   When assembling a tire assembly by assembling a tire and a wheel in order to suppress vibration during driving and improve the ride comfort, generally, the maximum position of the primary component of the tire RFV (Radial Force Variation) and the wheel Assemble the RRO (radial run out) minimum position in phase.

ホイールのRROはRRO測定装置を用いて測定される。このRRO測定装置には、測定誤差が許容範囲にあるか否かの定期的な校正用の測定が行われる。従来の校正用の測定について図6〜図8を参照して説明すると、先ずRRO測定装置50の回転軸(ホイール支持部56)の心振れのうち、ホイール支持部56の軸方向と直交する方向の成分に関する心振れの測定については、図6に示すように、ホイール支持部56の下方の小径部54aの周面にマグネスケールMの先端を側方から当接させ、不図示の駆動装置を作動させてホイール支持部56を回転させる。そして、1回転毎のマグネスケールMの変位量の最大値と最小値により変位幅を算出し、これを所定回数実施し、変位幅の平均値が所定の閾値以下であるか否かにより、ホイール支持部56の軸方向と直交する方向の成分に関するホイール支持部56の心振れの合否を判定する。   The RRO of the wheel is measured using an RRO measuring device. In this RRO measuring apparatus, a measurement for regular calibration is performed to determine whether or not the measurement error is within an allowable range. The conventional calibration measurement will be described with reference to FIG. 6 to FIG. 8. First, the direction orthogonal to the axial direction of the wheel support 56 among the runout of the rotation shaft (wheel support 56) of the RRO measurement device 50. As shown in FIG. 6, the tip of the magnescale M is brought into contact with the peripheral surface of the small-diameter portion 54a below the wheel support 56 from the side as shown in FIG. Actuate to rotate the wheel support 56. Then, the displacement width is calculated by the maximum value and the minimum value of the displacement amount of the magnescale M for each rotation, and this is performed a predetermined number of times. Depending on whether or not the average value of the displacement width is equal to or less than a predetermined threshold value, the wheel A determination is made as to whether or not the wheel runout of the wheel support 56 is related to a component in a direction orthogonal to the axial direction of the support 56.

また、ホイール支持部56の軸方向の成分の振れの測定については、図7に示すように、ホイール支持部56の上面にマグネスケールMの先端を上方から当接させ、不図示の駆動装置を作動させてホイール支持部56を回転させる。そして、1回転毎のマグネスケールMの変位量の最大値と最小値により変位幅を算出し、これを所定回数実施し、変位幅の平均値が所定の閾値以下であるか否かにより、軸方向の成分に関するホイール支持部56の心振れの合否を判定する。   Further, as shown in FIG. 7, the measurement of the axial component shake of the wheel support 56 is performed by bringing the tip of the magnescale M into contact with the upper surface of the wheel support 56 from above, and using a drive device (not shown). Actuate to rotate the wheel support 56. Then, the displacement width is calculated from the maximum value and the minimum value of the displacement amount of the magnescale M per rotation, and this is performed a predetermined number of times, and whether or not the average value of the displacement width is equal to or less than a predetermined threshold value A determination is made as to whether or not the center shake of the wheel support portion 56 regarding the direction component is acceptable.

チャック64の心振れの測定は、図8に示すように、チャック64によりドーナツ円盤形のマスタリングRの円孔R1をチャッキングしたうえで、マスタリングRの周面にマグネスケールMの先端を側方から当接させ、不図示の駆動装置を作動させてホイール支持部56を回転させる。そして、1回転毎に位相角度0度、90度、180度、270度におけるマグネスケールMの変位量の最大値と最小値により変位幅を算出し、これを所定回数実施し、変位幅の平均値が所定の閾値以下であるか否かにより、チャック64の心振れの合否を判定する。   As shown in FIG. 8, the center runout of the chuck 64 is measured by chucking the circular hole R1 of the doughnut disk-shaped mastering R with the chuck 64 and then laterally placing the tip of the magnescale M on the peripheral surface of the mastering R. The wheel support 56 is rotated by operating a driving device (not shown). Then, the displacement width is calculated from the maximum value and the minimum value of the displacement amount of the magnescale M at the phase angle of 0 degree, 90 degrees, 180 degrees, and 270 degrees every rotation, and this is performed a predetermined number of times, and the average of the displacement widths is calculated. Whether or not the center shake of the chuck 64 is acceptable is determined based on whether or not the value is equal to or less than a predetermined threshold value.

上記3つの測定項目について、測定結果がすべて閾値以下であった場合には、RRO測定装置50は測定誤差が許容範囲にあると判断されてそのままホイールのRROの測定に供され、測定結果が一つでも閾値を越えていた場合には、RRO測定装置50の校正を行う。   For all three measurement items, if the measurement results are all equal to or less than the threshold value, the RRO measurement device 50 determines that the measurement error is within the allowable range and is directly used for measuring the RRO of the wheel. If the threshold value is exceeded, the RRO measuring device 50 is calibrated.

また、ホイールバランス測定装置へのホイールの取り付け技術に関するものとして特許文献1に記載のものが挙げられる。特許文献1には、ホイールをチャック装置を用いて取り付け、回転バランスの調整として、回転軸とディスクホイール取付け台およびセンタシャフトの心出しを調整することが記載されている。   Moreover, the thing of patent document 1 is mentioned as a thing regarding the attachment technique of the wheel to a wheel balance measuring apparatus. Patent Document 1 describes that a wheel is attached using a chuck device, and the centering of a rotating shaft, a disk wheel mounting base, and a center shaft is adjusted as adjustment of rotation balance.

特開平7−174656号公報JP 7-174656 A

図6〜8で説明した前記3つの測定項目のうちで図8のチャック64の心振れの測定においては、マスタリングRの周面上の1周線のみの変位幅によって合否を判定していることから、回転軸と平行な軸振れ(同心度)の現象については解析できるが、回転軸に対して傾斜する偏倚を伴う軸振れ(偏倚度)の現象については解析できない。後者の軸振れの現象は主に、ホイールWのハブ孔W1の内周面との繰り返しの係合による突起部63の外側面の摩耗や各突起部63を作動させる駆動部の摩耗などに起因する。   Among the three measurement items described with reference to FIGS. 6 to 8, in the measurement of the runout of the chuck 64 in FIG. 8, pass / fail is determined based on the displacement width of only one circumference on the peripheral surface of the mastering R. Therefore, the phenomenon of shaft runout (concentricity) parallel to the rotation axis can be analyzed, but the phenomenon of shaft runout (bias) with a tilt inclined with respect to the rotation axis cannot be analyzed. The latter phenomenon of shaft runout is mainly caused by wear of the outer surface of the projection 63 due to repeated engagement with the inner peripheral surface of the hub hole W1 of the wheel W, wear of the drive unit that operates each projection 63, and the like. To do.

そのため従来の校正測定方法では正確な校正を行えないおそれがあり、例えば再公表特許WO2006/027960号に記載された手法を用いてタイヤとホイールを組み立てる場合、タイヤのRFVの1次成分の最大位置とホイールのRROの最小位置の位相合わせ、またはタイヤの静的アンバランスの軽点位置とホイールの静的アンバランスの重点位置の位相合わせのいずれかを行うときに誤差が生じ、組み立て後の最終的なホイールバランス測定時に大きなアンバランスが生じて、その補正のためのウェイトをホイールに多く取り付ける必要が生じるなどのおそれがあった。   Therefore, there is a possibility that accurate calibration cannot be performed with the conventional calibration measurement method. For example, when a tire and a wheel are assembled using the technique described in the re-published patent WO2006 / 027960, the maximum position of the primary component of the RFV of the tire Error occurs when either phasing the minimum position of the wheel and RRO of the wheel or phasing the light spot position of the static unbalance of the tire and the emphasis position of the static unbalance of the wheel. There is a risk that a large unbalance occurs during typical wheel balance measurement, and it is necessary to attach a large number of weights for correction to the wheel.

特許文献1の技術においても、チャック装置自体の調整は行わないため、回転バランスの調整が不十分となるおそれがある。   Even in the technique of Patent Document 1, since adjustment of the chuck device itself is not performed, there is a possibility that the adjustment of the rotation balance becomes insufficient.

本発明は、以上のような課題を解消するために創作されたものであり、RRO測定装置のチャックの偏倚度も測定可能なRRO測定装置のチャックの心振れ精度測定治具および心振れ精度判定方法を提供することを目的としている。 The present invention was created in order to solve the above-described problems, and a jig for measuring the run-out accuracy of the chuck of the RRO measurement device capable of measuring the deviation degree of the chuck of the RRO measurement device and determining the run-out accuracy. It aims to provide a method.

本発明は、前記課題を解決するため、駆動装置に接続された回転軸と、前記回転軸の上部に設けられ、ホイールのディスク裏面を当接させるホイール支持部と、同心状に拡径しホイールのハブ孔の周壁を押圧して把持するチャックとを備えた載置部と、ホイールのリムの周面に当接させる測定子と、を備えて構成されるRRO測定装置の前記チャックの心振れ精度を測定する治具であって、前記チャックにより把持されホイールのハブ孔に倣った円孔が中央に開設され裏面が前記ホイール支持部に当接する円盤部と、この円盤部に連接して形成される円筒部とから構成され、ホイールのアウト側のリムの位置に対応した前記円筒部の基端側の周面と、ホイールのイン側のリムの位置に対応した前記円筒部の先端側の周面に、それぞれ前記測定子を当接させる基端測定面、先端測定面が形成され、前記基端測定面および先端測定面は、それぞれ、ホイールのリム基準径にて形成された第1測定面と、アルミホイールのRROの閾値の径にて形成された第2測定面と、鉄製ホイールのRROの閾値の径にて形成された第3測定面とから構成されることを特徴とする。 In order to solve the above-mentioned problems, the present invention provides a rotating shaft connected to a driving device, a wheel support portion provided on an upper portion of the rotating shaft and abutting against a disk back surface of the wheel, and a concentrically enlarged diameter wheel. Runout of the chuck of the RRO measuring apparatus comprising: a mounting portion including a chuck that presses and grips the peripheral wall of the hub hole of the hub; and a measuring element that contacts the peripheral surface of the rim of the wheel. It is a jig for measuring accuracy , and is formed by connecting a circular part that is held by the chuck and follows the hub hole of the wheel in the center and the back surface is in contact with the wheel support part. A peripheral surface of the cylindrical portion corresponding to the position of the rim on the out side of the wheel, and a distal end side of the cylindrical portion corresponding to the position of the rim on the in side of the wheel. the peripheral surface, said measurement respectively Proximal measurement plane is brought into contact and is distal measurement plane is formed, the proximal measuring surface and distal measuring surface, respectively, a first measuring surface formed by a rim reference diameter of the wheel, aluminum wheels RRO It is characterized by comprising a second measurement surface formed with a threshold diameter and a third measurement surface formed with an RRO threshold diameter of the iron wheel .

当該精度測定治具によれば、ホイールのアウト側のリムに相当する基端測定面およびホイールのイン側のリムに相当する先端測定面からなる互いに離間した2つの測定面を備えることから、チャックの軸の同心度に加えて、チャックの軸線に対する偏倚度も解析できる。   According to the accuracy measurement jig, the chuck includes two measurement surfaces that are separated from each other, which includes a base end measurement surface corresponding to the rim on the out side of the wheel and a tip measurement surface corresponding to the rim on the in side of the wheel. In addition to the concentricity of the axis, the degree of deviation with respect to the axis of the chuck can also be analyzed.

そして、当該精度測定治具によれば、測定レンジの違いによる測定子の異常を高精度で知ることができる。 And according to the said precision measurement jig | tool, abnormality of the measuring element by the difference in a measurement range can be known with high precision.

また、本発明は、ホイールのハブ孔をチャックにより把持し、RROを測定するRRO測定装置の精度を測定する治具であって、前記チャックにより把持されホイールのハブ孔に倣った円孔が中央に開設された円盤部と、この円盤部に連接して形成される円筒部とから構成され、ホイールのアウト側のリムの位置に対応した前記円筒部の基端側の周面と、ホイールのイン側のリムの位置に対応した前記円筒部の先端側の周面に、それぞれRRO測定装置の測定子を当接させる基端測定面、先端測定面が形成されている精度測定治具を用いたRRO測定装置の前記チャックの心振れ精度判定方法であって、前記チャックにより前記精度測定治具を把持し、前記測定子を前記基端測定面および先端測定面に当接させて前記精度測定治具を回転させ、予め設定した位相角度毎に前記基端測定面の変位および先端測定面の変位を複数回測定し、その測定結果から、位相角度毎の全測定回数に関する前記基端測定面と前記先端測定面との差の平均であるデータD2と、位相角度毎の全測定回数に関する前記基端測定面と先端測定面との変位の平均をデータD1としたときの当該データD1のバラツキ幅であるデータD5と、を算出し、前記データD2を基準値S1と比較することによりチャックの軸線に対する偏倚度を判定し、前記データD5を基準値S2と比較することによりチャックの同心度を判定することを特徴とする。 Further, the present invention is a jig for measuring the accuracy of an RRO measuring device that measures the RRO by gripping the hub hole of the wheel with a chuck, and the circular hole that is gripped by the chuck and follows the hub hole of the wheel is in the center. And a cylindrical portion formed to be connected to the disk portion, the peripheral surface of the proximal end side of the cylindrical portion corresponding to the position of the rim on the outer side of the wheel, and the wheel Use an accuracy measurement jig in which a proximal measurement surface and a distal measurement surface are formed on the circumferential surface on the distal end side of the cylindrical portion corresponding to the position of the in-side rim, respectively, with which the probe of the RRO measurement device is brought into contact. A method of determining the accuracy of the runout of the chuck of the RRO measuring apparatus, wherein the accuracy measurement jig is held by the chuck and the measuring element is brought into contact with the base end measurement surface and the tip end measurement surface. Rotate the jig Measure the displacement of the proximal measurement surface and the displacement of the distal measurement surface several times for each preset phase angle, and from the measurement results, the proximal measurement surface and the distal measurement surface for the total number of measurements for each phase angle, Data D2 that is an average of the difference between the data D1, and data D5 that is a variation width of the data D1 when the average of the displacement between the proximal measurement surface and the distal measurement surface with respect to the total number of measurements for each phase angle is defined as data D1 , And a deviation degree with respect to the chuck axis is determined by comparing the data D2 with a reference value S1, and a concentricity of the chuck is determined by comparing the data D5 with a reference value S2. To do.

当該精度判定方法によれば、ホイールのアウト側のリムに相当する基端測定面およびホイールのイン側のリムに相当する先端測定面からなる互いに離間した2つの測定面を備えることから、チャックの同心度とチャックの軸線に対する偏倚度の各良否判定を高精度で行える。   According to the accuracy determination method, the chuck includes two measurement surfaces that are separated from each other, including a base end measurement surface corresponding to the rim on the out side of the wheel and a tip measurement surface corresponding to the rim on the in side of the wheel. Each pass / fail judgment of the concentricity and the degree of deviation with respect to the axis of the chuck can be performed with high accuracy.

また、本発明は、全位相角度における基端測定面の変位のバラツキ幅のデータD3が2箇所以上で基準値S3を超えたとき、または全位相角度における先端測定面の変位のバラツキ幅のデータD4が2箇所以上で基準値S4を超えたとき、前記測定子に異常があると判定することを特徴とする。   Further, according to the present invention, when the variation width data D3 of the displacement of the proximal end measurement surface at all phase angles exceeds the reference value S3 at two or more locations, or the variation width data of the displacement of the distal measurement surface at all phase angles. When D4 exceeds the reference value S4 at two or more locations, it is determined that the probe has an abnormality.

当該精度判定方法によれば、突発的な外的要因を除外して、高精度に測定子の異常を知ることができる。   According to the accuracy determination method, it is possible to know abnormalities of the probe with high accuracy by excluding sudden external factors.

また、本発明は、前記基端測定面および先端測定面は、それぞれ、ホイールのリム基準径にて形成された第1測定面と、アルミホイールのRROの閾値の径にて形成された第2測定面と、鉄製ホイールのRROの閾値の径にて形成された第3測定面とから構成され、これら第1測定面、第2測定面、第3測定面のそれぞれにおいて、前記データD2を基準値S1と比較することによりチャックの軸線に対する偏倚度を判定し、前記データD5を基準値S2と比較することによりチャックの同心度を判定することを特徴とする。   Further, according to the present invention, the proximal end measurement surface and the distal end measurement surface are respectively formed with a first measurement surface formed with a wheel rim reference diameter and a second RRO diameter with an aluminum wheel. It is composed of a measurement surface and a third measurement surface formed with the diameter of the RRO threshold of the iron wheel, and the data D2 is used as a reference for each of the first measurement surface, the second measurement surface, and the third measurement surface. The degree of deviation with respect to the axis of the chuck is determined by comparing with the value S1, and the concentricity of the chuck is determined by comparing the data D5 with the reference value S2.

当該精度判定方法によれば、測定レンジの違いによる測定子の異常を高精度で知ることができる。   According to the accuracy determination method, the abnormality of the probe due to the difference in the measurement range can be known with high accuracy.

本発明によれば、タイヤのRFVの1次成分の最大位置とホイールのRROの最小位置の位相合わせ、またはタイヤの静的アンバランスの軽点位置とホイールWの静的アンバランスの重点位置の位相合わせの何れかを選択する際の過誤を低減できる。そして、組み立て後の最終的なホイールバランス測定時に大きなアンバランスが測定され、補正のためにウェイトをホイールに多く取り付けるという事態も回避され、コスト的、外観品質的な不具合も低減される。   According to the present invention, the phase alignment of the maximum position of the primary component of the tire RFV and the minimum position of the RRO of the wheel, or the light spot position of the tire static unbalance and the weighted position of the static unbalance of the wheel W An error in selecting any one of the phase alignments can be reduced. In addition, a large unbalance is measured at the time of final wheel balance measurement after assembly, and a situation in which a large number of weights are attached to the wheel for correction is avoided, and problems in terms of cost and appearance quality are reduced.

本発明に係る精度測定治具を用いたRRO測定装置の精度測定状態を示す側面図である。It is a side view which shows the precision measurement state of the RRO measuring apparatus using the precision measurement jig | tool which concerns on this invention. RRO測定装置の側断面図であり、チャックが閉じた状態を示す。It is a sectional side view of a RRO measuring device, and shows the state where a chuck was closed. RRO測定装置の側断面図であり、チャックが開いた状態を示す。It is a sectional side view of a RRO measuring device, and shows the state where a chuck opened. RRO測定装置の部分平面図である。It is a partial top view of a RRO measuring device. RRO測定装置によるホイールのRRO測定状態を示す側面図である。It is a side view which shows the RRO measurement state of the wheel by a RRO measuring device. RRO測定装置の回転軸の軸方向と直交する方向の成分に関する心振れの測定状態を示す側面図である。It is a side view which shows the measurement state of the run-out regarding the component of the direction orthogonal to the axial direction of the rotating shaft of a RRO measuring apparatus. RRO測定装置の回転軸の軸方向の成分に関する心振れの測定状態を示す側面図である。It is a side view which shows the measurement state of the runout regarding the component of the axial direction of the rotating shaft of a RRO measuring apparatus. 従来のチャックの心振れの測定状態を示す側面図である。It is a side view which shows the measurement state of the run-out of the conventional chuck | zipper. 第1測定面の位相角度0度における測定結果例を示すデータ表である。It is a data table which shows the example of a measurement result in phase angle 0 degree of the 1st measurement surface. 第1測定面、第2測定面、第3測定面の各位相角度毎のデータD1とそのバラツキ幅であるデータD5を示すデータ表である。It is a data table which shows data D1 for each phase angle of the 1st measurement surface, the 2nd measurement surface, and the 3rd measurement surface, and data D5 which is the variation width. 第1測定面、第2測定面、第3測定面の各位相角度毎のデータD3、D4を示すデータ表である。It is a data table which shows the data D3 and D4 for every phase angle of a 1st measurement surface, a 2nd measurement surface, and a 3rd measurement surface.

図2、図3を参照して、RRO測定装置50は、サーボモータなどの不図示の駆動装置に接続した回転軸51と、この回転軸51の上部に設けられ、ホイールW(図5)を載置する円筒状の載置部52とを備える。載置部52は、下端の下蓋体53と、下蓋体53の上面の周縁に液密に嵌着された円筒状のシリンダチューブ54と、シリンダチューブ54の上端に液密に嵌着された上蓋体55と、上蓋体55の上部に外装されたホイール支持部56と、下蓋体53、シリンダチューブ54、上蓋体55の三者によって形成されるシリンダ室80内を昇降するピストン57と、ピストン57に連接され、上蓋体55に形成された開孔58およびホイール支持部56に形成された開孔59を挿通して上部外方に延出するピストンロッド60と、上蓋体55の上面とホイール支持部56の下面(裏面)との間においてピストンロッド60の軸線に対して放射状に形成された複数の摺動凹部61に内挿されて径方向に移動するガイド部62(図4も参照)と、各ガイド部62の内側端に形成される突起部63よりなるチャック64と、ガイド部62に形成されたガイド孔65に挿通されるガイドピン66と、ガイドピン66とガイド部62間に介設されたばね部材67と、を備えた構成からなる。   2 and 3, the RRO measuring device 50 is provided with a rotating shaft 51 connected to a driving device (not shown) such as a servo motor, and an upper portion of the rotating shaft 51. A wheel W (FIG. 5) is provided. And a cylindrical mounting portion 52 to be mounted. The mounting portion 52 is liquid-tightly fitted to the lower lid 53 at the lower end, the cylindrical cylinder tube 54 fitted in a liquid-tight manner to the periphery of the upper surface of the lower lid 53, and the upper end of the cylinder tube 54. An upper lid body 55, a wheel support portion 56 externally mounted on the upper portion of the upper lid body 55, and a piston 57 that moves up and down in a cylinder chamber 80 formed by the lower lid body 53, the cylinder tube 54, and the upper lid body 55. A piston rod 60 connected to the piston 57 and extending outwardly through the opening 58 formed in the upper lid body 55 and the opening 59 formed in the wheel support portion 56; and the upper surface of the upper lid body 55 And a guide portion 62 (see FIG. 4) that moves in the radial direction by being inserted into a plurality of sliding recesses 61 that are formed radially with respect to the axis of the piston rod 60 between the wheel support portion 56 and the lower surface (back surface) of the wheel support portion 56. Each) A chuck 64 formed of a protrusion 63 formed at the inner end of the guide portion 62, a guide pin 66 inserted through a guide hole 65 formed in the guide portion 62, and interposed between the guide pin 66 and the guide portion 62. And a spring member 67.

シリンダ室80の下壁を形成する下蓋体53には、ピストン57を挟みシリンダ室80の下方側のエア室に連通する給排気用の通路68が開設され、シリンダ室80の側壁を形成するシリンダチューブ54には、ピストン57を挟みシリンダ室80の上方側のエア室に連通する給排気用の通路69が開設されている。通路69は下蓋体53を通って大気に臨む。また、ガイド部62のガイド孔65の基端側には排気用の貫通孔70が形成されている。   The lower lid 53 that forms the lower wall of the cylinder chamber 80 is provided with a supply / exhaust passage 68 that communicates with the air chamber below the cylinder chamber 80 with the piston 57 interposed therebetween, thereby forming a side wall of the cylinder chamber 80. The cylinder tube 54 is provided with a supply / exhaust passage 69 communicating with the air chamber above the cylinder chamber 80 with the piston 57 interposed therebetween. The passage 69 passes through the lower lid 53 and faces the atmosphere. An exhaust through hole 70 is formed on the proximal end side of the guide hole 65 of the guide portion 62.

ピストンロッド60は、ピストン57の上面から延設する大径部60aと、大径部60aの上端から上方に向けて漸次縮径に形成されるテーパ部60bと、テーパ部60bの上端から延設する小径部60cと、小径部60cの上端に形成される先端大径部60dと、先端大径部60dの上端から上方に向けて漸次縮径に形成される円錐台部60eと、を有した形状からなる。チャック64の突起部63の内周面63aはピストンロッド60の小径部60cと同径の円弧面として形成され、内周面63aの下部にはピストンロッド60のテーパ部60bに対向するテーパ面63bが形成されている。   The piston rod 60 includes a large-diameter portion 60a extending from the upper surface of the piston 57, a tapered portion 60b formed with a gradually decreasing diameter from the upper end of the large-diameter portion 60a, and an extended end from the upper end of the tapered portion 60b. A small-diameter portion 60c, a tip large-diameter portion 60d formed at the upper end of the small-diameter portion 60c, and a truncated cone portion 60e formed with a gradually reduced diameter from the upper end of the tip large-diameter portion 60d upward. It consists of a shape. An inner peripheral surface 63a of the protrusion 63 of the chuck 64 is formed as an arc surface having the same diameter as the small diameter portion 60c of the piston rod 60, and a tapered surface 63b facing the tapered portion 60b of the piston rod 60 is formed below the inner peripheral surface 63a. Is formed.

図2に示すように、ピストンロッド60が下方に後退した状態では、ばね部材67の弾発力により各ガイド部62が内側に押圧され、隣接する突起部63同士が当接し、各突起部63の内周面63aとテーパ面63bとがピストンロッド60の小径部60cとテーパ部60bとに接面し、突起部63の外周面とピストンロッド60の先端大径部60dの外周面とが滑らかに連なった状態となっている。そして、通路68を介してエアがシリンダ室80に供給されると、図3に示すようにピストン57が上昇し、ピストンロッド60のテーパ部60bがばね部材67の弾発力に抗して突起部63のテーパ面63bを押圧することにより、チャック64が同心状に拡径される。   As shown in FIG. 2, in a state where the piston rod 60 is retracted downward, the guide portions 62 are pressed inward by the elastic force of the spring member 67, the adjacent protrusions 63 come into contact with each other, and the protrusions 63. The inner peripheral surface 63a and the tapered surface 63b of the piston rod 60 are in contact with the small diameter portion 60c and the tapered portion 60b of the piston rod 60, and the outer peripheral surface of the projection 63 and the outer peripheral surface of the tip large diameter portion 60d of the piston rod 60 are smooth. It is in a state linked to. Then, when air is supplied to the cylinder chamber 80 through the passage 68, the piston 57 rises as shown in FIG. 3, and the taper portion 60b of the piston rod 60 projects against the elastic force of the spring member 67. By pressing the tapered surface 63b of the portion 63, the diameter of the chuck 64 is increased concentrically.

RRO測定装置50でホイールWのRROを測定するときは、図5に示すように、先ずホイールWのハブ孔W1をピストンロッド60の先端大径部60dに通してホイール支持部56上にホイールWのディスク裏面W2を当接させる。そして、図3で説明したように通路68を介してエアをシリンダ室80に供給することにより、ピストン57が上昇してチャック64が同心状に拡径し、図5に示すように、ホイールWはハブ孔W1の周壁が各突起部63の外周面に押圧されることで強固に把持され、載置部52と同軸に一体となる。この状態でホイールWのアウト側、イン側の各リムW3の周面に測定子W4、W5を当接させ、不図示の駆動装置により回転軸51を介して載置部52を回転させ、ホイールWのRROを測定する。   When the RRO of the wheel W is measured by the RRO measuring device 50, as shown in FIG. 5, first, the hub hole W1 of the wheel W is passed through the large diameter portion 60d of the piston rod 60 and the wheel W on the wheel support portion 56. The disc back surface W2 is brought into contact. Then, as described with reference to FIG. 3, by supplying air to the cylinder chamber 80 through the passage 68, the piston 57 rises and the chuck 64 expands concentrically, and as shown in FIG. Is firmly gripped when the peripheral wall of the hub hole W1 is pressed against the outer peripheral surface of each projection 63, and is integrated with the mounting portion 52 coaxially. In this state, the measuring elements W4 and W5 are brought into contact with the peripheral surfaces of the rim W3 on the out side and the in side of the wheel W, and the mounting portion 52 is rotated via the rotating shaft 51 by a driving device (not shown). Measure RRO of W.

RRO測定装置50の校正用の測定は、ホイール支持部56の軸方向と直交する方向の成分に関するホイール支持部56の心振れ、ホイール支持部56の軸方向の成分に関するホイール支持部56の心振れおよびチャック64の心振れの3項目について実施する。このうち、先の2項目の測定については例えば背景技術で説明した手順(図6、図7の測定方法)と同様の手順により測定を行う。   The measurement for calibration of the RRO measuring device 50 is performed by the runout of the wheel support 56 relating to the component in the direction orthogonal to the axial direction of the wheel support 56 and the runout of the wheel support 56 relating to the axial component of the wheel support 56. The three items of the runout of the chuck 64 are performed. Among these, for the measurement of the previous two items, for example, the measurement is performed by the same procedure as the procedure described in the background art (measurement method of FIGS. 6 and 7).

チャック64の心振れの測定には、図8に示したマスタリングRの代わりに、図1に示すように、本発明に係る精度測定治具としてのマスタリム90が用いられる。マスタリム90の構成は、ホイールWのディスク面W6(図5参照)に相当する円盤部91と、ホイールWのリムW3(図5参照)に相当し、前記円盤部91に連なる円筒部92とからなる。円盤部91の中央にはホイールWのハブ孔W1(図5参照)に相当する円孔93が形成されている。そして、円盤部91寄りに位置する円筒部92の基端側の周面には基端測定面40が形成され、円筒部92の先端側の周面には先端測定面41が形成されている。基端測定面40の形成位置はホイールWのアウト側(図5における上側)のリムW3の位置にほぼ対応しており、先端測定面41の形成位置はホイールWのイン側(図5における下側)のリムW3の位置にほぼ対応している。   For measuring the runout of the chuck 64, a master rim 90 as an accuracy measuring jig according to the present invention is used as shown in FIG. 1 instead of the mastering R shown in FIG. The configuration of the master rim 90 includes a disk portion 91 corresponding to the disk surface W6 (see FIG. 5) of the wheel W, and a cylindrical portion 92 corresponding to the rim W3 (see FIG. 5) of the wheel W and connected to the disk portion 91. Become. A circular hole 93 corresponding to the hub hole W1 (see FIG. 5) of the wheel W is formed in the center of the disk portion 91. A proximal end measurement surface 40 is formed on the peripheral surface on the proximal end side of the cylindrical portion 92 located near the disk portion 91, and a distal end measurement surface 41 is formed on the peripheral surface on the distal end side of the cylindrical portion 92. . The formation position of the base end measurement surface 40 substantially corresponds to the position of the rim W3 on the out side (the upper side in FIG. 5) of the wheel W, and the formation position of the front end measurement surface 41 is the in side (the lower side in FIG. 5). Side) of the rim W3.

本実施形態では、基端測定面40、先端測定面41の両測定面について、それぞれの端部から等間隔で順に形成される第1測定面a、第2測定面b、第3測定面cから構成している。最も端部寄りに位置する各第1測定面a(RRO:0.0)の直径はホイールW(マスタリム90)のリム基準径となるように高精度に製作され、その内側の各第2測定面b(RRO:0.3)は、アルミホイールのRROの閾値となる直径であって、例えば前記リム基準径より0.3mm分大きい直径として高精度に製作され、最内側の各第3測定面c(RRO:0.5)は、鉄製ホイールのRROの閾値となる直径であって、例えば前記リム基準径より0.5mm分大きい直径として高精度に製作されている。   In the present embodiment, the first measurement surface a, the second measurement surface b, and the third measurement surface c are formed sequentially at equal intervals from the respective end portions of the measurement surfaces of the proximal measurement surface 40 and the distal measurement surface 41. Consists of. The diameter of each first measurement surface a (RRO: 0.0) located closest to the end is manufactured with high accuracy so as to be the rim reference diameter of the wheel W (master rim 90), and each second measurement inside the first measurement surface a (RRO: 0.0). The surface b (RRO: 0.3) is a diameter that is a threshold value of the RRO of the aluminum wheel, and is manufactured with high accuracy, for example, a diameter that is 0.3 mm larger than the rim reference diameter. The surface c (RRO: 0.5) is a diameter that is a threshold value of the RRO of the iron wheel, and is manufactured with high accuracy, for example, a diameter that is larger by 0.5 mm than the rim reference diameter.

チャック64の心振れの測定は、先ずマスタリム90の円孔93をピストンロッド60の先端大径部60dに通してホイール支持部56上にマスタリム90の円盤部裏面91aを接面させる。そして、図3で説明したように、通路68よりシリンダ室80にエアを供給することによりピストン57を上昇させ、チャック64を拡径させて、図1に示すようにマスタリム90の円孔93の周壁に突起部63の外周面を押圧させ、マスタリム90を把持状態とする。この状態でマスタリム90の円筒部92の各一対の第1測定面a、第2測定面b、第3測定面cのいずれかにマグネスケール等の測定子W4,W5を当接させ、ある位置を周上の位相角度0度の位置として、不図示の駆動装置(サーボモータ)により載置部52を回転させ、第1測定面a、第2測定面b、第3測定面cの位相角度0度、90度、180度、270度の振れ量をそれぞれ同複数回、例えば10回測定する。   In measuring the runout of the chuck 64, first, the circular hole 93 of the master rim 90 is passed through the large diameter portion 60d of the piston rod 60, and the disk portion rear surface 91a of the master rim 90 is brought into contact with the wheel support portion 56. Then, as described in FIG. 3, by supplying air from the passage 68 to the cylinder chamber 80, the piston 57 is raised and the chuck 64 is expanded in diameter, so that the circular hole 93 of the master rim 90 is formed as shown in FIG. The outer peripheral surface of the protrusion 63 is pressed against the peripheral wall, and the master rim 90 is held. In this state, measuring elements W4 and W5 such as a magnescale are brought into contact with any one of the pair of first measuring surface a, second measuring surface b, and third measuring surface c of the cylindrical portion 92 of the master rim 90, and a certain position. Is set to a position with a phase angle of 0 degrees on the circumference, and the mounting portion 52 is rotated by a driving device (servo motor) (not shown), and the phase angles of the first measurement surface a, the second measurement surface b, and the third measurement surface c The shake amounts of 0 degree, 90 degrees, 180 degrees, and 270 degrees are measured the same plurality of times, for example, 10 times.

RROの測定子W4,W5による測定結果は制御装置100に送信されて、図9〜図11のように解析され、その解析結果は表示装置101に表示され、解析結果に許容範囲外のデータがあった場合には警報装置102が作動し、RRO測定装置50が正常ではない旨(RRO測定装置50に校正チェックが必要である旨)を作業者に通報する。   The measurement results of the RRO probe W4 and W5 are transmitted to the control device 100 and analyzed as shown in FIGS. 9 to 11, and the analysis results are displayed on the display device 101. The analysis results include data outside the allowable range. If there is, the alarm device 102 is activated to notify the operator that the RRO measuring device 50 is not normal (the RRO measuring device 50 needs a calibration check).

図9は第1測定面aの位相角度0度における測定結果例を示すデータ表であり、基端測定面40の第1測定面aの変位の測定データ値A、先端測定面41の第1測定面aの変位の測定データ値B、両測定データ値の平均値C、両測定データ値A,Bの差(差分値)Dの4項目についての、測定回数10回分のデータと、4項目の各10回分の平均値と、前記両測定データ値A,Bのバラツキ幅とを示している。単位はミリメートルである。ここで、平均値Cの10回分の平均(位相角度毎の全測定回数に関する基端測定面40と先端測定面41との変位の平均)をデータD1、差Dの10回分の平均をデータD2、測定データ値Aのバラツキ幅(測定データ値Aの最大値と最小値の差)をデータD3、測定データ値Bのバラツキ幅(測定データ値Bの最大値と最小値の差)をデータD4とする。RRO測定装置50の良否の判定基準は、例えばデータD2の許容値(基準値S1)を0.07mmに設定し、計測結果がこの0.07mmの基準値S1を越えたときにはチャック64が回転軸の軸線方向に対して偏倚(傾斜)しているものとして、前記したように警報装置102を作動させ、チャック64の確認を促す。なお、図9ではデータD2が基準値S1以下の0.018mmに収まった場合を示している。   FIG. 9 is a data table showing an example of measurement results at a phase angle of 0 degree on the first measurement surface a, the measurement data value A of the displacement of the first measurement surface a of the proximal measurement surface 40, and the first of the distal measurement surface 41. Measurement data value B of displacement of measurement surface a, average value C of both measurement data values, difference between both measurement data values A and B (difference value) D, data for 10 times of measurement and 4 items The average value for each 10 times and the variation width of the two measurement data values A and B are shown. The unit is millimeter. Here, the average of the average value C for 10 times (the average of the displacement of the base end measurement surface 40 and the tip end measurement surface 41 with respect to the total number of measurements for each phase angle) is the data D1, and the average of the difference D for 10 times is the data D2. The variation width of the measurement data value A (difference between the maximum value and the minimum value of the measurement data value A) is data D3, and the variation width of the measurement data value B (difference between the maximum value and the minimum value of the measurement data value B) is data D4. And For example, the RRO measuring device 50 has a pass / fail judgment standard in which the allowable value (reference value S1) of the data D2 is set to 0.07 mm, and when the measurement result exceeds the 0.07 mm reference value S1, the chuck 64 is rotated. As described above, the alarm device 102 is actuated to prompt the chuck 64 to be confirmed. FIG. 9 shows the case where the data D2 is within 0.018 mm which is equal to or less than the reference value S1.

第1測定面aの位相角度90度、180度、270度の位置の測定についても同様に行い、さらに残りの第2測定面b、第3測定面cにおいても同様にしてそれぞれ位相角度0度、90度、180度、270度の位置の測定を行う。そして、第1測定面a、第2測定面b、第3測定面cの各位相角度毎の前記データD1とそのバラツキ幅(データD1の最大値と最小値の差)であるデータD5を抽出する。その抽出結果を示した表が図10である。そして、RRO測定装置50の良否の判定基準として、例えば図10におけるデータD5の許容値(基準値S2)を0.07mmに設定し、計測結果がこの0.07mmの基準値S2を越えたときにはチャック64の回転軸に対する同心度に狂いが生じているものとして、前記したように警報装置102を作動させ、チャック64の確認を促す。なお、図10では第1測定面a、第2測定面b、第3測定面cの各データD5が、それぞれ基準値S2以下の0.016mm、0.035mm、0.022mmに収まった場合を示している。   The measurement at the positions of the phase angle 90 degrees, 180 degrees, and 270 degrees on the first measurement surface a is performed in the same manner, and the phase angle 0 degree is similarly applied to the remaining second measurement surface b and third measurement surface c. , 90 degrees, 180 degrees, and 270 degrees are measured. Then, the data D1 for each phase angle of the first measurement surface a, the second measurement surface b, and the third measurement surface c and the data D5 that is the variation width (difference between the maximum value and the minimum value of the data D1) are extracted. To do. A table showing the extraction results is shown in FIG. Then, for example, when the RRO measuring apparatus 50 determines whether or not the acceptable value (reference value S2) of the data D5 in FIG. 10 is 0.07 mm and the measurement result exceeds the 0.07 mm reference value S2. Assuming that the concentricity with respect to the rotation axis of the chuck 64 is out of order, the alarm device 102 is operated as described above to prompt confirmation of the chuck 64. In FIG. 10, the data D5 of the first measurement surface a, the second measurement surface b, and the third measurement surface c are within 0.016 mm, 0.035 mm, and 0.022 mm, which are less than the reference value S2, respectively. Show.

また、第1測定面a、第2測定面b、第3測定面cの各位相角度毎の前記データD3、D4を抽出する。その抽出結果を示した表が図11である。本実施形態では、全位相角度における基端測定面40の変位のバラツキ幅のデータD3が2箇所以上で基準値S3を超えたとき、または全位相角度における先端測定面41の変位のバラツキ幅のデータD4が2箇所以上で基準値S4を超えたとき、前記測定子W4、W5に異常があると判定する。   Further, the data D3 and D4 for each phase angle of the first measurement surface a, the second measurement surface b, and the third measurement surface c are extracted. FIG. 11 is a table showing the extraction results. In the present embodiment, when the variation width data D3 of the displacement of the proximal measurement surface 40 at all phase angles exceeds the reference value S3 at two or more locations, or the variation width of the displacement of the distal measurement surface 41 at all phase angles. When the data D4 exceeds the reference value S4 at two or more locations, it is determined that the measuring elements W4 and W5 are abnormal.

例えば、図11において、基端測定面40の第1測定面aに関する4つのデータD3(符号D31、D32、D33、D34を付してあるもの)のうちで2つ以上のデータD3が基準値S3(例えば0.007mm)を越えた場合、測定子W4に異常があると判定し、前記したように警報装置102を作動させ、RRO測定子W4の確認・補修を促す。基端測定面40の第2測定面b、第3測定面cについてもそれぞれ同様である。また、先端測定面41の第1測定面aに関する4つのデータD4(符号D41、D42、D43、D44を付してあるもの)のうちで2つ以上のデータD4が基準値S4(例えば0.007mm)を越えた場合、測定子W5に異常があると判定し、前記したように警報装置102を作動させ、RRO測定子W5の確認・補修を促す。先端測定面41の第2測定面b、第3測定面cについてもそれぞれ同様である。なお、通常、基準値S3と基準値S4は同じ数値である。   For example, in FIG. 11, two or more data D3 among the four data D3 (the reference numerals D31, D32, D33, and D34 are attached) regarding the first measurement surface a of the base end measurement surface 40 are reference values. When S3 (for example, 0.007 mm) is exceeded, it is determined that the probe W4 is abnormal, the alarm device 102 is operated as described above, and confirmation / repair of the RRO probe W4 is urged. The same applies to the second measurement surface b and the third measurement surface c of the base end measurement surface 40. Of the four data D4 related to the first measurement surface a of the tip measurement surface 41 (the ones with the symbols D41, D42, D43, and D44), two or more data D4 have a reference value S4 (for example, 0. 0). 007 mm), it is determined that the probe W5 is abnormal, the alarm device 102 is activated as described above, and confirmation / repair of the RRO probe W5 is urged. The same applies to the second measurement surface b and the third measurement surface c of the tip measurement surface 41. Normally, the reference value S3 and the reference value S4 are the same numerical value.

このように、本実施形態において、「データD3が2箇所以上で基準値S3を越えたとき」または「データD4が2箇所以上で基準値S4を越えたとき」とは、第1測定面a、第2測定面b、第3測定面cのそれぞれにおいて適用されるものであって、基端測定面40の第1測定面a、第2測定面b、第3測定面cの全12箇所のデータD3のうちの2箇所以上が基準値S3を越えること、または先端測定面41の第1測定面a、第2測定面b、第3測定面cの全12箇所のデータD4のうちの2箇所以上が基準値S4を越えることを必ずしも意味するものではない。例えば、基端測定面40の第1測定面aにおいてデータD3が1つだけ基準値S3を越え、同様に基端測定面40の第2測定面b、第3測定面cにおいてもそれぞれデータD3が1つだけ基準値S3を越えているような場合は、警報装置102は作動させない。   Thus, in this embodiment, “when the data D3 exceeds the reference value S3 at two or more locations” or “when the data D4 exceeds the reference value S4 at two or more locations” , Applied to each of the second measurement surface b and the third measurement surface c, all 12 locations of the first measurement surface a, the second measurement surface b, and the third measurement surface c of the proximal measurement surface 40. 2 or more of the data D3 exceeds the reference value S3, or the data D4 of all 12 locations of the first measurement surface a, the second measurement surface b, and the third measurement surface c of the tip measurement surface 41. It does not necessarily mean that two or more places exceed the reference value S4. For example, only one data D3 exceeds the reference value S3 on the first measurement surface a of the base end measurement surface 40, and similarly, data D3 on the second measurement surface b and the third measurement surface c of the base end measurement surface 40, respectively. If only one exceeds the reference value S3, the alarm device 102 is not activated.

以上のように、チャック64により把持されホイールWのハブ孔W1に倣った円孔93が中央に開設された円盤部91と、この円盤部91に連接して形成される円筒部92とから構成され、ホイールWのアウト側のリムW3の位置に対応した円筒部92の基端側の周面と、ホイールWのイン側のリムW3の位置に対応した円筒部92の先端側の周面に、それぞれRRO測定装置50の測定子W4、W5を当接させる基端測定面40、先端測定面41が形成されている精度測定治具(マスタリム90)によれば、ホイールWのアウト側のリムW3に相当する基端測定面40およびホイールWのイン側のリムW3に相当する先端測定面41からなる互いに離間した2つの測定面を備えることから、チャック64の軸の同心度に加えて、チャック64の軸線に対する偏倚度も解析できる測定治具となる。   As described above, the disk portion 91 is formed in the center by the circular hole 93 that is gripped by the chuck 64 and follows the hub hole W1 of the wheel W, and the cylindrical portion 92 that is formed to be connected to the disk portion 91. To the peripheral surface on the proximal end side of the cylindrical portion 92 corresponding to the position of the rim W3 on the out side of the wheel W and the peripheral surface on the distal end side of the cylindrical portion 92 corresponding to the position of the rim W3 on the in side of the wheel W. According to the accuracy measurement jig (master rim 90) on which the proximal end measurement surface 40 and the distal end measurement surface 41 with which the measuring elements W4 and W5 of the RRO measurement device 50 abut, respectively, are formed, the rim on the out side of the wheel W In addition to the concentricity of the shaft of the chuck 64, the measurement surface includes two measurement surfaces that are spaced apart from each other, which includes a proximal measurement surface 40 corresponding to W3 and a distal measurement surface 41 corresponding to an inward rim W3 of the wheel W. Chuck 6 Also a measurement jig can be analyzed biasing of the relative to the axis.

また、RRO測定装置50の精度判定方法として、チャック64によりマスタリム90を把持し、測定子W4、W5を基端測定面40および先端測定面41に当接させて、載置部52を回転させることによりマスタリム90を回転させ、予め設定した位相角度毎(本実施形態では、0度、90度、180度、270度)に基端測定面40の変位および先端測定面41の変位を複数回測定し、その測定結果から、位相角度毎の全測定回数に関する基端測定面40と先端測定面41との差の平均であるデータD2と、位相角度毎の全測定回数に関する基端測定面40と先端測定面41との変位の平均をデータD1としたときの当該データD1のバラツキ幅であるデータD5と、を算出し、データD2を基準値S1と比較することによりチャックの軸線に対する偏倚度を判定し、データD5を基準値S2と比較することによりチャックの同心度を判定する方法とすれば、チャック64の同心度とチャック64の軸線に対する偏倚度の各良否判定を高精度で行える。   Further, as an accuracy determination method of the RRO measuring apparatus 50, the master rim 90 is gripped by the chuck 64, the measuring elements W4 and W5 are brought into contact with the proximal end measuring surface 40 and the distal end measuring surface 41, and the mounting portion 52 is rotated. Thus, the master rim 90 is rotated, and the displacement of the proximal measurement surface 40 and the displacement of the distal measurement surface 41 are changed a plurality of times for each preset phase angle (0, 90, 180, and 270 degrees in this embodiment). Based on the measurement results, data D2 that is the average of the difference between the base measurement surface 40 and the tip measurement surface 41 for the total number of measurements for each phase angle, and the base measurement surface 40 for the total number of measurements for each phase angle. And the data D5, which is the variation width of the data D1 when the average of the displacement between the tip and the tip measurement surface 41 is defined as data D1, and comparing the data D2 with the reference value S1, By determining the degree of deviation with respect to the line and comparing the data D5 with the reference value S2, the determination of the concentricity of the chuck 64 and the degree of deviation with respect to the axis of the chuck 64 is high. It can be done with accuracy.

したがって、本発明に係る精度測定治具(マスタリム90)または精度判定方法によれば、RRO測定装置50が高精度に維持されることから、このRRO測定装置50により測定されるホイールWのRROの最小位置の精度が向上する。これにより、タイヤのRFVの1次成分の最大位置とホイールWのRROの最小位置の位相合わせ、またはタイヤの静的アンバランスの軽点位置とホイールWの静的アンバランスの重点位置の位相合わせの何れかを選択する際の過誤を低減できる。そして、組み立て後の最終的なホイールバランス測定時に大きなアンバランスが測定され、補正のためにウェイトをホイールに多く取り付けるという事態も回避され、コスト的、外観品質的な不具合も低減される。   Therefore, according to the accuracy measuring jig (master rim 90) or the accuracy determining method according to the present invention, the RRO measuring device 50 is maintained with high accuracy, so that the RRO of the wheel W measured by the RRO measuring device 50 is maintained. The accuracy of the minimum position is improved. Thereby, the phase alignment of the maximum position of the primary component of the RFV of the tire and the minimum position of the RRO of the wheel W, or the phase alignment of the light spot position of the static unbalance of the tire and the priority position of the static unbalance of the wheel W is achieved. It is possible to reduce errors in selecting either of the above. In addition, a large unbalance is measured at the time of final wheel balance measurement after assembly, and a situation in which a large number of weights are attached to the wheel for correction is avoided, and problems in terms of cost and appearance quality are reduced.

また、本発明に係る精度測定治具(マスタリム90)において、基端測定面40および先端測定面41を、それぞれ、ホイールWのリム基準径にて形成された第1測定面aと、アルミホイールのRROの閾値の径にて形成された第2測定面bと、鉄製ホイールのRROの閾値の径にて形成された第3測定面cとから構成すれば、或いはこれら第1測定面a、第2測定面b、第3測定面cのそれぞれにおいて、データD2を基準値S1と比較することによりチャック64の軸線に対する偏倚度を判定し、データD5を基準値S2と比較することによりチャック64の同心度を判定する精度判定方法とすれば、測定レンジの違いによる測定子W4、W5の異常を知ることができる。   Further, in the accuracy measuring jig (master rim 90) according to the present invention, the base end measuring surface 40 and the tip measuring surface 41 are respectively formed with a first measuring surface a formed with a rim reference diameter of the wheel W and an aluminum wheel. The second measurement surface b formed with the diameter of the RRO threshold value and the third measurement surface c formed with the diameter of the RRO threshold value of the steel wheel, or these first measurement surfaces a, In each of the second measurement surface b and the third measurement surface c, the deviation degree with respect to the axis of the chuck 64 is determined by comparing the data D2 with the reference value S1, and the chuck 64 is determined by comparing the data D5 with the reference value S2. If the accuracy determination method is used to determine the concentricity, the abnormalities of the measuring elements W4 and W5 due to the difference in the measurement range can be known.

つまり、マスタリム90の各第1測定面a、第2測定面b、第3測定面cはマスタ部材としていずれも高精度に製作されたものであるから、もし第1測定面aの偏倚度および同心度が正常と判定されたならば、残りの第2測定面b、第3測定面cも正常と判定される筈であるが、測定子W4、W5のセンサ部の精度が測定レンジによって狂いが生じているような場合には、例えば、アルミホイールのRROの閾値の径にて形成された第2測定面bの測定レンジでは偏倚度および同心度が正常と判定されても、鉄製ホイールのRROの閾値の径にて形成された第3測定面cの測定レンジでは異常と判定される事象も生じ得る。したがって、このように第1測定面a、第2測定面b、第3測定面cの互いの正常、異常の判定結果が異なる場合には、チャック64の狂いではなく、測定レンジの違いにより測定子W4、W5の測定機能に狂いが生じているものと判断することができる。   That is, since each of the first measurement surface a, the second measurement surface b, and the third measurement surface c of the master rim 90 is manufactured with high accuracy as a master member, the degree of deviation of the first measurement surface a and If the concentricity is determined to be normal, the remaining second measurement surface b and third measurement surface c should be determined to be normal, but the accuracy of the sensor portions of the measuring elements W4 and W5 varies depending on the measurement range. In such a case, for example, even if the deviation and the concentricity are determined to be normal in the measurement range of the second measurement surface b formed with the diameter of the RRO threshold of the aluminum wheel, An event determined to be abnormal may occur in the measurement range of the third measurement surface c formed with the RRO threshold diameter. Accordingly, when the normal measurement results and the abnormal determination results of the first measurement surface a, the second measurement surface b, and the third measurement surface c are different as described above, the measurement is not performed by the chuck 64 but by the difference in the measurement range. It can be determined that the measurement functions of the children W4 and W5 are out of order.

測定子W4、W5の異常を判定する別の方法としては、前記したように、全位相角度における基端測定面40の変位のバラツキ幅のデータD3が2箇所以上で基準値S3を超えたとき、または全位相角度における先端測定面の変位のバラツキ幅のデータD4が2箇所以上で基準値S4を超えたときに測定子W4、W5に異常があるとすることができる。データD3が1箇所のみ基準値S3を超えたとき、またはデータD4が1箇所のみ基準値S3を越えた場合を異常の判定基準とすると、突発的な外的要因も反映されかねないのに対し、2箇所以上を異常の判定基準とすることで、突発的な外的要因を除外して、高精度に測定子W4、W5の異常を知ることができる。   As another method for determining the abnormality of the probe W4, W5, as described above, when the data D3 of the variation width of the displacement of the base end measurement surface 40 at all the phase angles exceeds the reference value S3 at two or more locations. Alternatively, when the data D4 of the variation width of the displacement of the tip measurement surface at all the phase angles exceeds the reference value S4 at two or more locations, it can be assumed that the measuring elements W4 and W5 are abnormal. If the data D3 exceeds the reference value S3 at only one location, or if the data D4 exceeds the reference value S3 at only one location, the abnormal judgment criterion may reflect an unexpected external factor. By using two or more locations as abnormality determination criteria, sudden external factors can be excluded and abnormalities in the measuring elements W4 and W5 can be known with high accuracy.

以上、本発明の好適な実施形態について説明した。説明した実施形態では2つの測定子W4、W5を用いてそれぞれ基端測定面40、先端測定面41を測定しているが、例えば1つの測定子W4で基端測定面40と先端測定面41の両方を測定する態様にしても差し支えない。   The preferred embodiments of the present invention have been described above. In the described embodiment, the proximal end measurement surface 40 and the distal end measurement surface 41 are measured using two measuring elements W4 and W5, respectively. However, for example, the proximal end measurement surface 40 and the distal end measurement surface 41 are measured with one measuring element W4. There is no problem even if both are measured.

40 基端測定面
41 先端測定面
50 RRO測定装置
64 チャック
90 マスタリム(精度測定治具)
91 円盤部
92 円筒部
93 円孔
a 第1測定面
b 第2測定面
c 第3測定面
W ホイール
W1 ハブ孔
W3 リム
W4、W5 測定子
40 base end measurement surface 41 tip measurement surface 50 RRO measurement device 64 chuck 90 master rim (accuracy measurement jig)
91 disk part 92 cylindrical part 93 circular hole a 1st measurement surface b 2nd measurement surface c 3rd measurement surface W wheel W1 hub hole W3 rim W4, W5 measuring element

Claims (4)

駆動装置に接続された回転軸と、
前記回転軸の上部に設けられ、ホイールのディスク裏面を当接させるホイール支持部と、同心状に拡径しホイールのハブ孔の周壁を押圧して把持するチャックとを備えた載置部と、
ホイールのリムの周面に当接させる測定子と、
を備えて構成されるRRO測定装置の前記チャックの心振れ精度を測定する治具であって、
前記チャックにより把持されホイールのハブ孔に倣った円孔が中央に開設され裏面が前記ホイール支持部に当接する円盤部と、この円盤部に連接して形成される円筒部とから構成され、
ホイールのアウト側のリムの位置に対応した前記円筒部の基端側の周面と、ホイールのイン側のリムの位置に対応した前記円筒部の先端側の周面に、それぞれ前記測定子を当接させる基端測定面、先端測定面が形成され
前記基端測定面および先端測定面は、それぞれ、ホイールのリム基準径にて形成された第1測定面と、アルミホイールのRROの閾値の径にて形成された第2測定面と、鉄製ホイールのRROの閾値の径にて形成された第3測定面とから構成されることを特徴とするRRO測定装置のチャックの心振れ精度測定治具。
A rotating shaft connected to the drive device;
A mounting portion provided at an upper portion of the rotating shaft, and provided with a wheel support portion that contacts the disk back surface of the wheel, and a chuck that concentrically expands the diameter and presses and grips the peripheral wall of the wheel hub hole;
A probe that contacts the peripheral surface of the rim of the wheel;
A jig for measuring the runout accuracy of the chuck of an RRO measuring device configured to include:
A circular hole that is gripped by the chuck and that follows the hub hole of the wheel is formed in the center, and a back surface is configured to contact the wheel support portion, and a cylindrical portion that is formed to be connected to the disk portion.
The peripheral surface of the proximal end side of the cylindrical portion corresponding to the position of the out-side of the rim of the wheel, the peripheral surface of the distal end side of the cylindrical portion corresponding to the position of the in-side of the rim of the wheel, each said feeler A base end measurement surface and a tip measurement surface to be contacted are formed ,
The base end measurement surface and the front end measurement surface are respectively a first measurement surface formed with a wheel rim reference diameter, a second measurement surface formed with an aluminum wheel RRO threshold diameter, and an iron wheel. A jig for measuring the runout accuracy of a chuck of an RRO measuring apparatus, comprising a third measuring surface formed with a diameter of a threshold value of RRO .
ホイールのハブ孔をチャックにより把持し、RROを測定するRRO測定装置の精度を測定する治具であって、
前記チャックにより把持されホイールのハブ孔に倣った円孔が中央に開設された円盤部と、この円盤部に連接して形成される円筒部とから構成され、
ホイールのアウト側のリムの位置に対応した前記円筒部の基端側の周面と、ホイールのイン側のリムの位置に対応した前記円筒部の先端側の周面に、それぞれRRO測定装置の測定子を当接させる基端測定面、先端測定面が形成されている精度測定治具を用いたRRO測定装置の前記チャックの心振れ精度判定方法であって、
前記チャックにより前記精度測定治具を把持し、前記測定子を前記基端測定面および先端測定面に当接させて前記精度測定治具を回転させ、
予め設定した位相角度毎に前記基端測定面の変位および先端測定面の変位を複数回測定し、
その測定結果から、位相角度毎の全測定回数に関する前記基端測定面と前記先端測定面との差の平均であるデータD2と、位相角度毎の全測定回数に関する前記基端測定面と先端測定面との変位の平均をデータD1としたときの当該データD1のバラツキ幅であるデータD5と、を算出し、
前記データD2を基準値S1と比較することによりチャックの軸線に対する偏倚度を判定し、前記データD5を基準値S2と比較することによりチャックの同心度を判定することを特徴とするRRO測定装置のチャックの心振れ精度判定方法。
A jig for measuring the accuracy of an RRO measuring device that grips a hub hole of a wheel with a chuck and measures RRO,
It is composed of a disk part that is gripped by the chuck and is formed in the center with a circular hole that follows the hub hole of the wheel, and a cylindrical part that is formed to be connected to this disk part,
The RRO measuring device has a peripheral surface on the base end side of the cylindrical portion corresponding to the position of the rim on the out side of the wheel and a peripheral surface on the front end side of the cylindrical portion corresponding to the position of the rim on the in side of the wheel, respectively. A method of determining the runout accuracy of the chuck of the RRO measurement device using an accuracy measurement jig on which a base end measurement surface with which a probe is brought into contact and a tip measurement surface is formed ,
The accuracy measuring jig is gripped by the chuck, the measuring element is brought into contact with the base end measuring surface and the tip measuring surface, and the accuracy measuring jig is rotated,
Measure the displacement of the proximal measurement surface and the displacement of the distal measurement surface several times for each preset phase angle,
From the measurement results, data D2 that is the average of the difference between the proximal measurement surface and the distal measurement surface for the total number of measurements for each phase angle, and the proximal measurement surface and the distal measurement for the total number of measurements for each phase angle. Data D5, which is a variation width of the data D1 when the average displacement with respect to the surface is data D1,
An RRO measuring apparatus characterized in that a deviation degree with respect to an axis of the chuck is determined by comparing the data D2 with a reference value S1, and a concentricity of the chuck is determined by comparing the data D5 with a reference value S2. Chuck runout accuracy judgment method.
全位相角度における基端測定面の変位のバラツキ幅のデータD3が2箇所以上で基準値S3を超えたとき、または全位相角度における先端測定面の変位のバラツキ幅のデータD4が2箇所以上で基準値S4を超えたとき、前記測定子に異常があると判定することを特徴とする請求項2に記載のRRO測定装置のチャックの心振れ精度判定方法。 When the variation width data D3 of the displacement of the base end measurement surface at all phase angles exceeds the reference value S3 at two or more locations, or when the variation width data D4 of the displacement of the tip measurement surface at all phase angles is two or more locations. when it exceeds the reference value S4, the chuck runout accuracy determination method of the RRO measurement apparatus according to claim 2, characterized in that determining that there is an abnormality in the measuring element. 前記基端測定面および先端測定面は、それぞれ、ホイールのリム基準径にて形成された第1測定面と、アルミホイールのRROの閾値の径にて形成された第2測定面と、鉄製ホイールのRROの閾値の径にて形成された第3測定面とから構成され、
これら第1測定面、第2測定面、第3測定面のそれぞれにおいて、前記データD2を基準値S1と比較することによりチャックの軸線に対する偏倚度を判定し、前記データD5を基準値S2と比較することによりチャックの同心度を判定することを特徴とする請求項2に記載のRRO測定装置のチャックの心振れ精度判定方法。
The base end measurement surface and the front end measurement surface are respectively a first measurement surface formed with a wheel rim reference diameter, a second measurement surface formed with an aluminum wheel RRO threshold diameter, and an iron wheel. And a third measurement surface formed with a diameter of a threshold value of RRO,
In each of the first measurement surface, the second measurement surface, and the third measurement surface, the deviation from the chuck axis is determined by comparing the data D2 with the reference value S1, and the data D5 is compared with the reference value S2. chuck runout accuracy determination method of the RRO measurement apparatus according to claim 2, characterized in that determining the concentricity of the chuck by.
JP2010006402A 2010-01-15 2010-01-15 RRO measuring device chuck runout accuracy measuring jig and runout accuracy judging method Active JP5484921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010006402A JP5484921B2 (en) 2010-01-15 2010-01-15 RRO measuring device chuck runout accuracy measuring jig and runout accuracy judging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006402A JP5484921B2 (en) 2010-01-15 2010-01-15 RRO measuring device chuck runout accuracy measuring jig and runout accuracy judging method

Publications (2)

Publication Number Publication Date
JP2011145183A JP2011145183A (en) 2011-07-28
JP5484921B2 true JP5484921B2 (en) 2014-05-07

Family

ID=44460166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006402A Active JP5484921B2 (en) 2010-01-15 2010-01-15 RRO measuring device chuck runout accuracy measuring jig and runout accuracy judging method

Country Status (1)

Country Link
JP (1) JP5484921B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630300A (en) * 2013-11-20 2014-03-12 山东永泰化工有限公司 Detection method and detection system for tire hub goodness of fit
US10302532B2 (en) * 2016-10-03 2019-05-28 Akron Special Machinery, Inc. Test wheel for use in a tire analysis machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802311B2 (en) * 2001-09-28 2011-10-26 本田技研工業株式会社 Measuring device for static balance of rotating body
JP4190431B2 (en) * 2004-01-23 2008-12-03 本田技研工業株式会社 Measuring device for static balance of rotating body
JP4152917B2 (en) * 2004-05-12 2008-09-17 本田技研工業株式会社 Wheel balance dynamic measuring device calibration method and wheel balance dynamic measuring device calibration master wheel
JP4369983B1 (en) * 2008-07-25 2009-11-25 株式会社神戸製鋼所 Master tire and inspection method of tire uniformity testing machine using the master tire

Also Published As

Publication number Publication date
JP2011145183A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
US8250915B1 (en) Tire changer with actuated load roller
US9834047B2 (en) Tire changer and method of measuring force variations
US6523408B1 (en) Wheel balancer system with improved matching capabilities
CN107074049A (en) Apparatus and method for wheel rim to be locked to turntable
US9267860B2 (en) Tire balance measuring device
US8770022B2 (en) Method and system for determining non-uniformity characteristics of a vehicle tire and rim
JP5484921B2 (en) RRO measuring device chuck runout accuracy measuring jig and runout accuracy judging method
JP2006308320A (en) Tire compound measuring device
EP2479549B1 (en) Flaw Detection Testing Device For Hub Unit
JP6822994B2 (en) Bearing adjustment support device and bearing adjustment support method
JP2868535B2 (en) Wheel runout measuring device
JP2003004597A (en) Uniformity of wheeled tyre and/or dynamic balancing test device
JP4152917B2 (en) Wheel balance dynamic measuring device calibration method and wheel balance dynamic measuring device calibration master wheel
JP4162555B2 (en) Uniformity and / or dynamic balance testing equipment for wheeled tires
JP2008281468A (en) Angle indexing accuracy measuring device and method
JP2006208205A (en) Tire holding system
JP3213102B2 (en) Tire balance measuring method and tire balance measuring device using the measuring method
US6581463B1 (en) Wheel shim apparatus and method
JP6798862B2 (en) Tire dynamic balance and uniformity measuring device
JP2002267561A (en) Uniformity and/or dynamic balance tester for tire
JP2010101764A (en) Wheel rigidity measuring instrument and wheel rigidity measuring method
JP3802827B2 (en) How to correct weight imbalance of tires with wheels
JP4193054B2 (en) Ball groove measuring method and measuring apparatus
CN117553658A (en) Automatic measuring device for parallelism of locomotive brake disc
EP1418011A1 (en) A method for the assembly of a motor-vehicle wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

R150 Certificate of patent or registration of utility model

Ref document number: 5484921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150