JP5483520B2 - Dephosphorization method for hot metal - Google Patents

Dephosphorization method for hot metal Download PDF

Info

Publication number
JP5483520B2
JP5483520B2 JP2008206252A JP2008206252A JP5483520B2 JP 5483520 B2 JP5483520 B2 JP 5483520B2 JP 2008206252 A JP2008206252 A JP 2008206252A JP 2008206252 A JP2008206252 A JP 2008206252A JP 5483520 B2 JP5483520 B2 JP 5483520B2
Authority
JP
Japan
Prior art keywords
slag
dephosphorization
hot metal
fluorine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008206252A
Other languages
Japanese (ja)
Other versions
JP2010043298A (en
Inventor
陵平 鈴木
修也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008206252A priority Critical patent/JP5483520B2/en
Publication of JP2010043298A publication Critical patent/JP2010043298A/en
Application granted granted Critical
Publication of JP5483520B2 publication Critical patent/JP5483520B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、混銑車で溶銑を脱りん処理する方法に関するものである。   The present invention relates to a method for dephosphorizing hot metal with a kneading vehicle.

溶銑予備処理の一貫として、混銑車中で溶銑を脱りん処理することは広く行なわれているが、スロッピングが発生し易いという危険がある。というのも、混銑車に溶銑を供給したときのフリーボード(溶銑湯面より上の空間高さ)はせいぜい1m程度であり、転炉のフリーボード(8m程度)に比べて遥かに短いからである。そのうえ、混銑車に設けられた溶銑の受け口(スラグの排出口を兼ねる)が小さいため、混銑車内のスラグを完全に排出することは難しい。特に、受け口周辺にスラグが付着して凝固すると、受け口の開口径が一層小さくなり、次チャージに際して、混銑車内への溶銑の供給作業に不都合を生じる。   As part of the hot metal pretreatment, dephosphorizing hot metal in a kneading vehicle is widely performed, but there is a risk that slopping is likely to occur. This is because the free board (space height above the hot metal surface) when the hot metal is supplied to the kneading car is about 1m at most, which is much shorter than the free board of the converter (about 8m). is there. In addition, since the hot metal receiving port (also serving as the slag discharge port) provided in the chaotic vehicle is small, it is difficult to completely discharge the slag in the chaotic vehicle. In particular, when slag adheres to the periphery of the receiving port and solidifies, the opening diameter of the receiving port is further reduced, which causes inconvenience in the work of supplying molten iron into the kneading vehicle during the next charging.

溶銑脱りん方法としては、例えば、特許文献1に、脱りん処理後のスラグの塩基度とT.Fe濃度を所定の範囲とし、処理終点温度を所定の温度以上とすることにより、Mnの歩留まりを確保しつつ、脱りん効率高める技術が開示されている。ここでは、脱りん処理を行なう容器として、混銑車(トーピードカー)や取鍋(装入鍋)、転炉型容器が例示されているが、実施例で実際に用いている脱燐処理容器は、転炉型容器である。   As a hot metal dephosphorization method, for example, Patent Document 1 discloses basicity of slag after dephosphorization treatment and T.W. A technique for increasing the dephosphorization efficiency while ensuring the yield of Mn by setting the Fe concentration in a predetermined range and setting the processing end point temperature to a predetermined temperature or higher is disclosed. Here, as a container for performing the dephosphorization process, a chaotic car (torpedo car), a ladle (charging pot), and a converter type container are exemplified, but the dephosphorization process container actually used in the examples is: It is a converter type vessel.

一方、製鋼における要求品質が高いときには、転炉においても溶銑中の残存りんを更に低下させる必要があり、脱りん目的で、CaOの滓化性を改善するために、蛍石が添加される。そのため、転炉スラグにも蛍石が多く含まれていることがある。ところが、転炉由来のスラグのうち、フッ素溶出が多いスラグについては、土壌への流出が環境に悪影響を及ぼすという観点から、路盤材やセメント原料としての再利用における障害となっている。
特開2007−262575号公報
On the other hand, when the required quality in steelmaking is high, it is necessary to further reduce the residual phosphorus in the molten iron in the converter, and fluorite is added to improve the hatchability of CaO for the purpose of dephosphorization. Therefore, converter slag may contain a lot of fluorite. However, among the slag derived from converters, slag with a large amount of fluorine elution is an obstacle to reuse as roadbed material and cement raw material from the viewpoint that the outflow to the soil adversely affects the environment.
JP 2007-262575 A

本発明は、この様な状況に鑑みてなされたものであり、その目的は、フッ素を含有する転炉由来のスラグを資源として再利用できる方法を提供することにある。具体的には、混銑車で溶銑を脱りん処理するにあたり、フッ素を含有する転炉由来のスラグを脱りん剤の一部として利用しつつ、脱りん処理時のスロッピング発生を抑制し、脱りん処理後における混銑車からのスラグの排出性を改善し、しかも排出されるスラグを地球環境に悪影響を及ぼすことなく再利用可能なものとすることができる溶銑の脱りん処理方法を提供することにある。   This invention is made | formed in view of such a condition, The objective is to provide the method which can reuse the slag derived from the converter containing a fluorine as a resource. Specifically, when dephosphorizing hot metal with a kneading vehicle, the slag derived from the converter containing fluorine is used as a part of the dephosphorizing agent, while suppressing the occurrence of slopping during the dephosphorization treatment, To provide a dephosphorization method for hot metal that can improve the slag discharge from a chaotic car after phosphorus treatment and can be reused without adversely affecting the global environment. It is in.

上記課題を達成することのできた本発明に係る溶銑の脱りん処理方法は、処理容器として混銑車を用い、フッ素を含有する転炉由来のスラグを配合した脱りん剤を用いて脱りん処理を行なうにあたり、前記転炉由来のスラグとしてフッ素を0.1%(質量%の意味。以下、成分について同じ。)以上含有するものを用い、前記脱りん剤としてCaO源と酸化鉄を含むものを用い、脱りん処理後のスラグの塩基度を2.1〜3.0、脱りん処理後のスラグに含まれるフッ素を0.01〜0.13%とする点に要旨を有する。   The hot metal dephosphorization processing method according to the present invention, which was able to achieve the above object, uses a kneading vehicle as a processing container, and performs dephosphorization processing using a dephosphorization agent containing slag derived from a converter containing fluorine. In carrying out the above, the converter-derived slag containing at least 0.1% (meaning mass%, hereinafter the same applies to the components) of fluorine is used, and the dephosphorizing agent contains a CaO source and iron oxide. The basic point is that the basicity of the slag after the dephosphorization treatment is 2.1 to 3.0, and the fluorine contained in the slag after the dephosphorization treatment is 0.01 to 0.13%.

本発明によれば、混銑車で行なう溶銑の脱りん剤の一部としてフッ素含有転炉由来スラグを利用しているため、従来では処分に困っていたフッ素含有転炉スラグを新たな資源として再利用できる。また、フッ素含有転炉スラグを脱りん剤として利用する際に、脱りん処理後のスラグの塩基度を適切な範囲とすることによって、脱りん処理時におけるスロッピングの発生を防止でき、しかも脱りん処理後に混銑車からスラグを容易に排出できるようになる。また、脱りん処理後のスラグの塩基度と、該スラグに含まれるフッ素量を適切な範囲に調整することで、排出されたスラグのフッ素溶出が抑えられ、環境庁告示46号で規定されている方法で測定されたフッ素溶出量の基準を満足するものとなり、再利用可能な資源となる。   According to the present invention, since the fluorine-containing converter-derived slag is used as a part of the hot metal dephosphorizing agent used in the kneading car, the fluorine-containing converter slag, which has been difficult to dispose of in the past, is reused as a new resource. Available. In addition, when using fluorine-containing converter slag as a dephosphorizing agent, by making the basicity of the slag after the dephosphorization process within an appropriate range, it is possible to prevent the occurrence of slopping during the dephosphorization process. Slag can be easily discharged from the chaotic car after the phosphorus treatment. In addition, by adjusting the basicity of the slag after dephosphorization and the amount of fluorine contained in the slag to an appropriate range, the elution of fluorine in the discharged slag can be suppressed. Satisfying the standard for the elution amount of fluorine measured by this method, it becomes a reusable resource.

本発明者らは、転炉から排出されるスラグのなかでもフッ素を多く含むスラグ(具体的には、フッ素含有量が0.1%以上のスラグ)を資源として再利用するために鋭意検討を重ねてきた。その結果、混銑車内で溶銑を脱りん処理する際に用いる脱りん剤に高フッ素含有スラグを適切に配合すれば、高フッ素含有スラグが脱りん剤として作用して有効利用できるほか、脱りん処理後に排出されるスラグを新たな資源として再利用できることを見出し、本発明を完成した。具体的には、転炉由来のスラグとしてフッ素を0.1%以上含有するものを用い、脱りん剤としてCaO源と酸化鉄を含むものを用い、該脱りん剤に配合するフッ素含有転炉由来スラグの量を制御することにより、脱りん処理後のスラグの塩基度と、該スラグに含まれるフッ素量を適切な範囲に調整すれば、スロッピングを発生させることなく混銑車内で脱りん処理でき、しかも脱りん処理後のスラグ排出性を改善できること、また脱りん処理したときに副生するスラグは、フッ素の溶出が抑えられているため、該スラグを例えば路盤材等の素材として有効活用できることを見出した。以下、本発明について、詳細に説明する。   The present inventors have intensively studied to reuse slag containing a large amount of fluorine (specifically, slag having a fluorine content of 0.1% or more) among slag discharged from a converter as a resource. It has been repeated. As a result, if a high fluorine content slag is properly blended with the dephosphorization agent used when dephosphorizing hot metal in a kneading vehicle, the high fluorine content slag can be used effectively as a dephosphorization agent. The present invention was completed by finding that slag discharged later can be reused as a new resource. Specifically, a converter containing 0.1% or more of fluorine as slag derived from a converter, a catalyst containing a CaO source and iron oxide as a dephosphorization agent, and a fluorine-containing converter blended in the dephosphorizer By controlling the amount of slag derived, adjusting the basicity of the slag after dephosphorization and the amount of fluorine contained in the slag to an appropriate range, the dephosphorization treatment in the chaotic vehicle without causing slopping In addition, it can improve the slag discharge after dephosphorization treatment, and the slag produced as a by-product when dephosphorization treatment suppresses the elution of fluorine, so that the slag can be effectively used as a material for roadbed materials, for example. I found out that I can do it. Hereinafter, the present invention will be described in detail.

本発明では、溶銑の脱りん処理容器として混銑車を用い、脱りん剤にフッ素を0.1%以上含有する転炉由来のスラグを配合するところに特徴がある。脱りん剤に高フッ素含有転炉由来スラグを配合することで、従来は廃棄処分することが困難であった高フッ素含有スラグを資源として再利用できる。本発明では、特に転炉由来のスラグに含まれるフッ素が0.1%以上のスラグを資源として再利用できる。フッ素含有量の多い転炉由来のスラグは、環境に悪影響を及ぼすことから処理が困難であったが、本発明によれば、フッ素含有量の多い転炉由来のスラグを脱りん剤に配合して利用することでフッ素濃度が希釈され、フッ素含有量を低減できる。   The present invention is characterized in that a kneading vehicle is used as a hot metal dephosphorization treatment container, and slag derived from a converter containing 0.1% or more of fluorine is blended in the dephosphorization agent. By blending the high fluorine content converter-derived slag with the dephosphorization agent, the high fluorine content slag, which has been difficult to dispose of in the past, can be reused as a resource. In the present invention, in particular, slag containing 0.1% or more of fluorine contained in converter-derived slag can be reused as a resource. Slag derived from a converter with a high fluorine content has been difficult to treat because it adversely affects the environment, but according to the present invention, a slag derived from a converter with a high fluorine content is added to the dephosphorizing agent. The fluorine concentration is diluted and the fluorine content can be reduced.

転炉由来のスラグは、そのフッ素量を公知の方法によって測定し、必要に応じて濃度別に分別したものを用いればよい。スラグに含まれるフッ素量は、例えば、本出願人が特願2007−287758号で提案した方法で分析してもよい。ここで、本出願人が提案した分析方法について説明する。   The converter-derived slag may be obtained by measuring the amount of fluorine by a known method and separating the slag according to the concentration if necessary. The amount of fluorine contained in the slag may be analyzed, for example, by the method proposed by the present applicant in Japanese Patent Application No. 2007-287758. Here, the analysis method proposed by the applicant will be described.

まず、転炉から採取したスラグを、ミル(例えば、島津製のオートマティックディスクミル「OD−10A型」)を用いて粉砕し、スラグの95%以上が球換算直径で50μm以下となるように調整する。スラグの95%以上を球換算直径で50μm以下とすることで、試料(ブリケット)表面を平滑にすることができる。   First, slag collected from the converter is pulverized using a mill (for example, Shimadzu automatic disc mill “OD-10A type”), and adjusted so that 95% or more of the slag has a sphere equivalent diameter of 50 μm or less. To do. By setting 95% or more of the slag to 50 μm or less in terms of a sphere, the surface of the sample (briquette) can be smoothed.

次に、粉砕されたスラグを60〜70g計量し、計量したスラグを試料作製用の鋼製円筒内に充填する。上記円筒のサイズは、直径35mm、高さ10mm、厚さ0.5mmであり、スラグの充填密度は約2.8g/cm3である。なお、粉砕したスラグにはバインダーを添加しないことが必要である。バインダーを添加すると、分析値に誤差が生じるためである。 Next, 60 to 70 g of the pulverized slag is weighed, and the weighed slag is filled into a steel cylinder for sample preparation. The cylinder has a diameter of 35 mm, a height of 10 mm, a thickness of 0.5 mm, and a slag filling density of about 2.8 g / cm 3 . In addition, it is necessary not to add a binder to the pulverized slag. This is because if the binder is added, an error occurs in the analysis value.

次いで、スラグを充填した円筒を、油圧プレス装置(例えば、島津製のオートマティックサンプラー「SPA−10型」)を用いて筒軸方向に圧縮する。プレスの条件は、圧力30t/cm2以上で20秒以上加えるものとし、得られた試料厚みが2〜4mmとなるように成形する。なお、圧力を過剰に加えると、試料厚みが2mmを下回り、波打ち易くなるので平坦な試料表面を得ることができなくなる。そこでプレス圧力は40t/cm2以下とすることが好ましい。また、プレス時間をかけ過ぎても同様に試料厚みが2mmを下回るので、プレス時間は40秒以内とすることが好ましい。 Next, the cylinder filled with the slag is compressed in the cylinder axis direction using a hydraulic press device (for example, an automatic sampler “SPA-10 type” manufactured by Shimadzu Corporation). The pressing is performed at a pressure of 30 t / cm 2 or more for 20 seconds or more, and the resulting sample is molded so that the thickness of the sample is 2 to 4 mm. If the pressure is excessively applied, the sample thickness will be less than 2 mm and it will be easy to corrugate, making it impossible to obtain a flat sample surface. Therefore, the pressing pressure is preferably 40 t / cm 2 or less. Moreover, since the sample thickness is similarly less than 2 mm even if it takes too much pressing time, it is preferable that the pressing time is within 40 seconds.

上記の粉砕条件およびプレス条件にしたがって試料を作製すれば、試料表面の凹凸を平坦に、具体的には、最大高さ(Ry)を0.05mm以下にすることができる。   If the sample is prepared according to the above pulverization conditions and press conditions, the unevenness of the sample surface can be made flat, specifically, the maximum height (Ry) can be 0.05 mm or less.

ここで、試料表面の凹凸を測定できる装置について説明する。図1は光切断法によって試料表面の凹凸を測定する装置の原理図である。同図において、10はスポット光を出射するレーザーポインタであり、出射されたスポット光は試料表面11で反射し、レンズ12を通過してPSD(Position Sensitive Detector)13上に結像するようになっている。A点で反射したスポット光はPSD13のA′点に結像され、B点で反射したスポット光は同じくB′点で結像され、C点で反射した場合には同じくC′点で結像される。PSD13はスポット光が当たると、光量に応じた電圧を発生し、スポット位置から離れた点の電位は膜材質の抵抗によって低下するため、PSD13の両端に発生する電圧の比に基づき、結像点の位置情報を求めることができる。今、測定したい点がA点であると、三角測量の原理を利用して試料表面11のA点の高さを求めることができる。   Here, the apparatus which can measure the unevenness | corrugation of a sample surface is demonstrated. FIG. 1 is a principle diagram of an apparatus for measuring unevenness of a sample surface by a light cutting method. In the figure, reference numeral 10 denotes a laser pointer that emits spot light. The emitted spot light is reflected by the sample surface 11 and passes through a lens 12 to form an image on a PSD (Position Sensitive Detector) 13. ing. Spot light reflected at point A is imaged at point A ′ of PSD 13, spot light reflected at point B is also imaged at point B ′, and when reflected at point C, it is also imaged at point C ′. Is done. The PSD 13 generates a voltage corresponding to the amount of light when it hits the spot light, and the potential at a point away from the spot position is lowered by the resistance of the film material. Therefore, based on the ratio of the voltages generated at both ends of the PSD 13, the imaging point Position information can be obtained. If the point to be measured is point A, the height of point A on the sample surface 11 can be obtained using the principle of triangulation.

次に、上記条件でプレスして得られた試料について蛍光X線分析を行い、フッ素量を測定する。X線照射条件は、電圧を40〜50kV、電流を40〜50mAに設定した。   Next, fluorescent X-ray analysis is performed on the sample obtained by pressing under the above conditions, and the amount of fluorine is measured. The X-ray irradiation conditions were set such that the voltage was 40-50 kV and the current was 40-50 mA.

フッ素量を測定した転炉由来のスラグは、(a)脱りん処理後のスラグの塩基度が2.1〜3.0、(b)脱りん処理後のスラグに含まれるフッ素が0.01〜0.13%となるように、脱りん剤に配合する。   The slag derived from the converter for which the amount of fluorine was measured had (a) a basicity of slag after dephosphorization treatment of 2.1 to 3.0, and (b) fluorine contained in the slag after dephosphorization treatment was 0.01. It mix | blends with a dephosphorizing agent so that it may become -0.13%.

脱りん剤は、溶銑を脱りん処理するときに通常用いられるものを使用すればよく、CaO源と酸化鉄を含むものを使用すればよい。CaO源とは、CaOまたはCaOを生成可能なCa化合物を指す。即ち、CaO源として、例えば、生石灰や石灰石、消石灰、ドロマイト、CaCO3やCa(OH)2、CaMgO2などを用いることができる。一方、酸化鉄としては、鉄鉱石やミルスケールなどを用いればよい。この酸化鉄に含まれる酸素が、固体酸素として作用する。 What is necessary is just to use what is normally used when dephosphorizing hot metal, and what contains a CaO source and iron oxide should just be used for a dephosphorizing agent. The CaO source refers to CaO or a Ca compound capable of generating CaO. That is, as the CaO source, for example, quick lime, limestone, slaked lime, dolomite, CaCO 3 , Ca (OH) 2 , CaMgO 2 and the like can be used. On the other hand, as iron oxide, iron ore or mill scale may be used. The oxygen contained in this iron oxide acts as solid oxygen.

[(a)脱りん処理後のスラグの塩基度]
脱りん処理後のスラグの塩基度が2.1未満では、脱りん処理時にスロッピングが発生して非常に危険であるし、脱りん処理が中断されると生産効率が低下する。即ち、転炉のように、内容積の大きい容器を脱りん処理容器として用いると、フリーボードが高いためスロッピングは発生しないが、混銑車は内容積が小さいため、フリーボードが低く、スロッピングが発生し易い。そのため混銑車内で脱りん処理する場合は、スロッピングが発生しないように注意を払う必要がある。従って本発明では、脱りん処理後のスラグの塩基度を2.1以上とする。好ましくは2.2以上、より好ましくは2.3以上とする。しかし脱りん処理後のスラグの塩基度が、3.0を超えると、スラグに溶解しないCaOが増加してスラグの粘性が高くなる。そのため、脱りん処理後に混銑車からスラグを完全に排出できず、混銑車内壁面にスラグが付着したままとなり、歩留まりが悪くなる。また、受け口周辺にスラグが付着して凝固すると、受け口の開口径が一層小さくなり、次チャージに際して、混銑車内への溶銑の供給作業に不都合を生じる。
[(A) Basicity of slag after dephosphorization]
If the basicity of the slag after the dephosphorization process is less than 2.1, slapping occurs during the dephosphorization process, which is very dangerous. If the dephosphorization process is interrupted, the production efficiency is lowered. That is, if a container with a large internal volume is used as a dephosphorization processing container, such as a converter, the freeboard is high and no slapping occurs. However, the kneading vehicle has a small internal volume, so the freeboard is low and the slopping is performed. Is likely to occur. Therefore, when dephosphorizing in a chaotic vehicle, it is necessary to pay attention not to cause slopping. Therefore, in the present invention, the basicity of the slag after the dephosphorization treatment is set to 2.1 or more. Preferably it is 2.2 or more, More preferably, it is 2.3 or more. However, if the basicity of the slag after dephosphorization exceeds 3.0, CaO that does not dissolve in the slag increases and the viscosity of the slag increases. For this reason, the slag cannot be completely discharged from the kneading vehicle after the dephosphorization process, and the slag remains attached to the inner wall surface of the kneading vehicle, resulting in poor yield. Further, when slag adheres to the periphery of the receiving port and solidifies, the opening diameter of the receiving port becomes further smaller, which causes inconvenience in the operation of supplying molten iron into the kneading vehicle at the time of the next charging.

しかもスラグの塩基度が高くなり過ぎると、脱りん処理後に排出されたスラグに含まれるフッ素が、スラグから溶出し易くなる。即ち、脱りん処理後のスラグの塩基度が3.0以下の場合には、スラグの主要鉱物相の組成が2CaO・SiO2となり、この2CaO・SiO2が、フッ素が溶け出す液のpHを上昇させてスラグから溶出してくるフッ素の平衡値を下げる結果、フッ素の溶出量を低減できる。しかし、スラグの塩基度が3.0を超えて高くなり過ぎると、スラグの主要鉱物相の組成が2CaO・SiO2とならないため、スラグに含まれるフッ素が溶出し易くなり、スラグを資源として再利用できなくなる。従って脱りん処理後のスラグの塩基度は3.0以下とする。好ましくは2.9以下、より好ましくは2.8以下とする。なお、スラグの塩基度は、スラグに含まれるCaO量とSiO2量の比(CaO/SiO2)で算出した値である。 Moreover, if the basicity of the slag becomes too high, the fluorine contained in the slag discharged after the dephosphorization process is likely to elute from the slag. That is, when the basicity of the slag after dephosphorization is 3.0 or less, the composition of the main mineral phase of the slag becomes 2CaO · SiO 2 , and this 2CaO · SiO 2 has the pH of the liquid from which fluorine dissolves. As a result of raising and lowering the equilibrium value of fluorine eluted from the slag, the amount of fluorine eluted can be reduced. However, if the basicity of the slag becomes too high exceeding 3.0, the composition of the main mineral phase of the slag does not become 2CaO · SiO 2 , so the fluorine contained in the slag is likely to elute, and the slag is reused as a resource. It becomes unavailable. Accordingly, the basicity of the slag after the dephosphorization treatment is set to 3.0 or less. Preferably it is 2.9 or less, more preferably 2.8 or less. The basicity of the slag is a value calculated by the ratio (CaO / SiO 2 ) between the CaO amount and the SiO 2 amount contained in the slag.

[(b)脱りん処理後のスラグに含まれるフッ素量]
脱りん処理後のスラグに含まれるフッ素が0.01%未満では、フッ素量不足となり、CaOの滓化が促進されず、溶銑を充分に脱りんできない。従って脱りん処理後のフッ素は0.01%以上とする。好ましくは0.03%以上であり、より好ましくは0.05%以上である。しかし脱りん処理後のスラグに含まれるフッ素が0.13%を超えると、スラグからフッ素が溶出し易くなり、地球環境へ悪影響を及ぼすため資源として再利用できない。従って脱りん処理後のフッ素は0.13%以下とする。好ましくは0.11%以下、より好ましくは0.09%以下である。脱りん処理後のスラグに含まれるフッ素量は、例えば、上記本出願人が特願2007−287758号で提案した分析方法によって測定すればよい。
[(B) Fluorine content in slag after dephosphorization]
If the fluorine contained in the slag after the dephosphorization treatment is less than 0.01%, the amount of fluorine is insufficient, the hatching of CaO is not promoted, and the hot metal cannot be sufficiently dephosphorized. Therefore, the fluorine after the dephosphorization treatment is 0.01% or more. Preferably it is 0.03% or more, More preferably, it is 0.05% or more. However, if the fluorine content in the slag after dephosphorization exceeds 0.13%, it will be easy to elute the fluorine from the slag, and it will have an adverse effect on the global environment, so it cannot be reused as a resource. Therefore, the fluorine after the dephosphorization treatment is 0.13% or less. Preferably it is 0.11% or less, More preferably, it is 0.09% or less. The amount of fluorine contained in the slag after the dephosphorization treatment may be measured by, for example, the analysis method proposed by the applicant in Japanese Patent Application No. 2007-287758.

脱りん剤に転炉由来のスラグを配合する際には、配合する転炉由来のスラグに応じて、CaO源と酸化鉄を低減すればよい。脱りん処理後におけるスラグの塩基度と、該スラグに含まれるフッ素量が上記範囲を満足するように脱りん剤に配合する転炉由来のスラグ量は、後記する実施例で詳述する手順で決定すればよい。   When blending the converter-derived slag with the dephosphorizing agent, the CaO source and iron oxide may be reduced in accordance with the converter-derived slag to be blended. The basicity of the slag after the dephosphorization treatment and the amount of slag derived from the converter to be blended with the dephosphorization agent so that the fluorine content contained in the slag satisfies the above range are the procedures detailed in the examples described later. Just decide.

転炉由来のスラグを配合した脱りん剤は、キャリアガスとして例えば酸素ガスを用い、浸漬ランスによる溶銑中へのインジェクションにより供給する方法や、溶銑の上方から転炉由来のスラグを配合した塊状の脱りん剤を供給する方法が採用できる。   The dephosphorizing agent blended with converter-derived slag is, for example, oxygen gas as a carrier gas, supplied by injection into hot metal with a dipping lance, or a lump of blended slag derived from converter from above the hot metal. A method of supplying a dephosphorizing agent can be employed.

脱りん処理は、常法に従って、気体酸素を供給しつつ行なう。気体酸素としては、酸素ガスの他、酸素含有ガスを用いることができる。気体酸素は、上吹きランスによる上吹きや溶銑中へのインジェクション、或いは底吹きなど任意の方法により溶銑中へ供給すればよい。   The dephosphorization process is performed while supplying gaseous oxygen according to a conventional method. As gaseous oxygen, oxygen-containing gas can be used in addition to oxygen gas. The gaseous oxygen may be supplied into the hot metal by any method such as top blowing with a top blowing lance, injection into the hot metal, or bottom blowing.

脱りん処理は、1280℃程度以上で行なうことが推奨される。本発明で脱りん処理容器として用いる混銑車では、気体酸素による加熱は行なえるものの、加熱能力が低いため、脱りん処理が終了するまでの間に溶銑の温度はある程度低下する。そこで、脱りん処理が終了するまでの間の温度低下を見込んで、混銑車へ供給する時点での溶銑温度は1300℃以上とすることが好ましい。より好ましくは1320℃以上、更に好ましくは1350℃以上である。   It is recommended that the dephosphorization process be performed at about 1280 ° C. or higher. In the kneading vehicle used as the dephosphorization processing container in the present invention, although heating with gaseous oxygen can be performed, the heating capacity is low, so that the temperature of the hot metal decreases to some extent until the dephosphorization processing is completed. Therefore, it is preferable that the hot metal temperature at the time of supplying to the kneading vehicle is 1300 ° C. or higher in consideration of a temperature decrease until the dephosphorization process is completed. More preferably, it is 1320 degreeC or more, More preferably, it is 1350 degreeC or more.

混銑車内で溶銑を脱りん処理した後は、混銑車内から溶銑を排出し、次いでスラグを排出する。本発明によれば、脱りん処理後のスラグの塩基度を適切な範囲に調整しているため、混銑車の内壁面にスラグが付着することなく、混銑車内のスラグを排出することができる。   After the hot metal is dephosphorized in the chaotic vehicle, the hot metal is discharged from the chaotic vehicle, and then the slag is discharged. According to the present invention, since the basicity of the slag after the dephosphorization process is adjusted to an appropriate range, the slag in the chaotic vehicle can be discharged without adhering to the inner wall surface of the chaotic vehicle.

また、排出されたスラグは、塩基度とフッ素含有量が上記範囲に調整されているため、スラグからのフッ素の溶出が抑制されている。即ち、スラグから溶出するフッ素量を、環境庁告示46号に規定されている方法に従って測定した場合であっても、環境庁告示46号に「土壌の汚染に係る環境基準」として規定されている基準(フッ素量が0.8mg/L以下)を満足している。本発明において脱りん処理して副生するスラグは、上記基準を満たしているため、このスラグは例えば路盤材やセメントの原料等の素材として再利用可能となる。   Moreover, since the basicity and fluorine content of the discharged slag are adjusted to the above ranges, elution of fluorine from the slag is suppressed. That is, even if the amount of fluorine eluted from the slag is measured according to the method specified in the Environment Agency Notification No. 46, it is specified in the Environment Agency Notification No. 46 as “Environmental Standards Concerning Soil Contamination”. The standard (fluorine content is 0.8 mg / L or less) is satisfied. In the present invention, the slag produced as a by-product after the dephosphorization treatment satisfies the above-mentioned criteria, so that this slag can be reused as a raw material such as a roadbed material or a cement raw material.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

混銑車に溶銑を供給し、次いでキャリアガスとして酸素ガスを用い、浸漬ランスによる溶銑中へのインジェクションにより転炉由来のスラグを配合した脱りん剤を供給し、溶銑の脱りん処理を行なった。   Hot metal was supplied to the kneading wheel, oxygen gas was used as a carrier gas, and a dephosphorizing agent containing slag derived from the converter was supplied by injection into the hot metal with a dipping lance to perform dephosphorization of the hot metal.

溶銑は、[C]を4%、[Si]を0.20%、[Mn]を0.30%、[P]を0.120%含有しており、脱りん処理前の溶銑の温度は約1360℃である。脱りん処理は、溶銑の目標[P]量を0.010〜0.030%として行なった。   The hot metal contains 4% of [C], 0.20% of [Si], 0.30% of [Mn], and 0.120% of [P], and the temperature of the hot metal before dephosphorization is About 1360 ° C. The dephosphorization process was performed with the target amount [P] of hot metal set as 0.010 to 0.030%.

脱りん剤は、石灰と酸化鉄の混合物を用いた。脱りん剤に含まれる石灰と酸化鉄の組成を下記表1に示す。   As a dephosphorizing agent, a mixture of lime and iron oxide was used. The composition of lime and iron oxide contained in the dephosphorizing agent is shown in Table 1 below.

Figure 0005483520
Figure 0005483520

転炉由来のスラグとしては、転炉で吹錬を行なった後のスラグを分取したものを用いた。分取したスラグを本出願人が特願2007−287758号で提案したスラグ分別方法に従って分析し、フッ素含有量が0.1%以上のものを用いた。フッ素含有量が0.1%未満のスラグは、フッ素の溶出が少ないため、そのまま資源として利用すればよい。なお、転炉は、容量は250トンの上吹き型転炉である。   As the slag derived from the converter, one obtained by fractionating slag after blowing in the converter was used. The fractionated slag was analyzed according to the slag fractionation method proposed by the present applicant in Japanese Patent Application No. 2007-287758, and one having a fluorine content of 0.1% or more was used. Since slag having a fluorine content of less than 0.1% has little fluorine elution, it can be used as it is as a resource. The converter is a top blow type converter with a capacity of 250 tons.

脱りん剤に配合する転炉由来のスラグ量は、脱りん処理後に排出されるスラグの塩基度が2.1〜3.0で、該スラグに含まれるフッ素が0.01〜0.13%となるように、次の手順で決定した。   The amount of slag derived from the converter to be blended with the dephosphorizing agent is such that the basicity of the slag discharged after the dephosphorization treatment is 2.1 to 3.0, and the fluorine contained in the slag is 0.01 to 0.13%. It was determined according to the following procedure.

《脱りん剤に配合する転炉由来スラグ量の決定手順》
転炉由来のスラグに含まれるフッ素量、脱りん剤に含まれるSiO2量、脱りん処理後に排出されるスラグの塩基度をパラメータとして、4元連立一次方程式による計算を行ない、脱りん処理後のスラグに含まれるSiO2量と、該スラグの塩基度を算出する。算出された脱りん処理後のスラグに含まれるSiO2量と、該スラグの塩基度のうち、実際に操業できる条件を選択する。このとき、脱りん処理後のスラグの塩基度が2.1〜3.0の範囲で、該スラグに含まれるフッ素が0.01〜0.13%となるようにする。
《Procedure for determining the converter-derived slag amount to be added to the dephosphorizing agent》
Calculating by quaternary linear equation using the amount of fluorine contained in the slag derived from the converter, the amount of SiO 2 contained in the dephosphorization agent, and the basicity of the slag discharged after the dephosphorization treatment as parameters. The amount of SiO 2 contained in the slag and the basicity of the slag are calculated. Of the calculated amount of SiO 2 contained in the slag after the dephosphorization treatment and the basicity of the slag, conditions for actual operation are selected. At this time, the basicity of the slag after the dephosphorization treatment is in the range of 2.1 to 3.0, and the fluorine contained in the slag is set to 0.01 to 0.13%.

4元連立一次方程式による計算は、次の手順で行った。まず、操業実績から求められる脱りん処理中における温度低下量ΔT(ΔT=脱りん処理前の溶銑の温度−脱りん処理後の溶銑の温度)を従属変数(目的変数)とし、脱りん剤に含まれる石灰量、脱りん剤に含まれる酸化鉄量、脱りん剤に配合する転炉スラグ量、および気酸原単位、脱りん処理前の溶銑の[Si]濃度、脱りん処理前の溶銑の[Mn]濃度、目標とする脱硫率[脱硫率=ln(Sf/Si)]の7つを独立変数(説明変数)として重回帰を実施し、説明変数の係数を求める。なお、気酸原単位とは、脱りん処理時に使用した気体酸素量(Nm3)を脱りん処理した溶銑量(tp;ton pigmetall)で割った値である。脱りん処理時に使用した気体酸素量は、オリフィスで測定した酸素流量を積算して求めた。lnは自然対数、Siは脱りん処理前の溶銑の[S]量、Sfは脱りん処理後の溶銑の[S]量、を夫々示している。 The calculation by the quaternary simultaneous linear equation was performed by the following procedure. First, the amount of temperature decrease ΔT (ΔT = temperature of hot metal before dephosphorization treatment−temperature of hot metal after dephosphorization treatment) required during the dephosphorization treatment determined from operational results is defined as a dependent variable (target variable). The amount of lime contained, the amount of iron oxide contained in the dephosphorization agent, the amount of converter slag added to the dephosphorization agent, and the basic unit of gas acid, [Si] concentration of hot metal before dephosphorization, hot metal before dephosphorization Multiple regression is carried out using seven of the [Mn] concentration and the target desulfurization rate [desulfurization rate = ln (S f / S i )] as independent variables (explanatory variables) to obtain the coefficients of the explanatory variables. The gas acid basic unit is a value obtained by dividing the amount of gaseous oxygen (Nm 3 ) used at the time of dephosphorization by the amount of hot metal (tp; ton pigmetall) obtained by dephosphorization. The amount of gaseous oxygen used at the time of dephosphorization was obtained by integrating the oxygen flow rate measured at the orifice. In represents a natural logarithm, S i represents the amount of hot metal before dephosphorization, and S f represents the amount of hot metal after dephosphorization.

脱りん処理前の溶銑の温度、脱りん処理前の溶銑の[Si]量、脱りん処理前の溶銑の[Mn]量、脱りん処理前の溶銑の[S]量、脱りん処理後の溶銑の目標[S]量、脱りん処理後の溶銑の目標温度を入力し、「脱りん処理後の溶銑の目標[S]量」を「脱りん処理後の溶銑の実際の[S]量」、「脱りん処理後の溶銑の目標温度」を「脱りん処理後の溶銑の実際の温度」とすれば以下の式(1)が作成できる。
a×TCaO+b×TFeO+c×TO+d×TLDS=ΔT+α ・・・(1)
Hot metal temperature before dephosphorization, [Si] amount of hot metal before dephosphorization, [Mn] amount of hot metal before dephosphorization, [S] amount of hot metal before dephosphorization, Enter the target [S] amount of hot metal and the target temperature of hot metal after dephosphorization, and set the target [S] amount of hot metal after dephosphorization to the actual [S] amount of hot metal after dephosphorization. If the “target temperature of hot metal after dephosphorization” is set to “actual temperature of hot metal after dephosphorization”, the following equation (1) can be created.
a × T CaO + b × T FeO + c × T O + d × T LDS = ΔT + α (1)

(1)式の左辺のうち、aは石灰の原単位、bは酸化鉄の原単位、cはO(酸素)の原単位、dは転炉スラグ(LDS)の原単位[kg/tp]を示しており、TCaO,TFeO,TO,TLDSは、夫々、石灰(CaO)、酸化鉄(FeO)、酸素(O)、転炉スラグ(LDS)について重回帰で求めた係数を示している。左辺の値は、温度低下量(ΔT)[℃/kg/tp]と定数αの和と等しくなる。αは、溶銑成分等の脱りん処理条件で決まる定数であり、溶銑成分、必要脱S率から算出される温度分である。αは、下記式から算出できる。下記式中、a1〜a3は、夫々の成分の脱硫率に対する溶銑温度係数である。
α=脱りん処理前の溶銑のSi量×a1+脱りん処理前の溶銑のMn量×a2+ln(Sf/Si)×a3
Of the left side of the formula (1), a is a basic unit of lime, b is a basic unit of iron oxide, c is a basic unit of O (oxygen), and d is a basic unit of converter slag (LDS) [kg / tp]. T CaO , T FeO , T O , and T LDS are coefficients obtained by multiple regression for lime (CaO), iron oxide (FeO), oxygen (O), and converter slag (LDS), respectively. Show. The value on the left side is equal to the sum of the temperature drop (ΔT) [° C./kg/tp] and the constant α. α is a constant determined by the dephosphorization treatment conditions such as the hot metal component, and is a temperature calculated from the hot metal component and the necessary desulfurization rate. α can be calculated from the following equation. In the following formulas, a1 to a3 are hot metal temperature coefficients for the desulfurization rates of the respective components.
α = Si amount of hot metal before dephosphorization × a1 + Mn amount of hot metal before dephosphorization × a2 + ln (S f / S i ) × a3

次いで、同様に、操業実績より脱りん率[脱りん率=ln(Pf/Pi)]を従属変数(目的変数)とし、気酸原単位、転炉スラグ中の酸素量(以下、固酸原単位1、KO1と呼ぶことがある。)、酸化鉄中の酸素量(以下、固酸原単位2、KO2と呼ぶことがある。)、1/(脱りん処理後の溶銑の目標温度+273)、脱りん処理前の溶銑のSi量を独立変数(説明変数)として重回帰を行ない、説明変数の係数を求める。 Next, similarly, the dephosphorization rate [dephosphorization rate = ln (P f / P i )] is defined as a dependent variable (objective variable) based on the operation results, and the amount of oxygen in the gas acid basic unit and converter slag (hereinafter referred to as the solid amount). Acid basic unit 1, sometimes referred to as KO1), oxygen content in iron oxide (hereinafter sometimes referred to as solid acid basic unit 2, KO2), 1 / (target temperature of hot metal after dephosphorization treatment) +273) Multiple regression is performed with the amount of Si in the hot metal before dephosphorization as an independent variable (explanatory variable), and the coefficient of the explanatory variable is obtained.

脱りん処理前の溶銑Si量、脱りん処理前の溶銑のP量、脱りん処理後の溶銑の目標P量、脱りん処理後の溶銑の目標温度を入力し、「脱りん処理後の溶銑の目標P量」を「脱りん処理後の溶銑の実際のP量」、「脱りん処理後の溶銑の目標温度」を「脱りん処理後の溶銑の実際の温度」とすれば、以下の式(2)が作成できる。
b×XFeO×PKO2+d×XLDS×PKO1+c×PO=ln(Pf/Pi)+β ・・・(2)
Enter the amount of molten iron Si before dephosphorization, the amount of molten iron before dephosphorization, the target amount of molten iron after dephosphorization, and the target temperature of molten iron after dephosphorization. If the "target P amount" is "actual P amount of hot metal after dephosphorization" and "target temperature of hot metal after dephosphorization" is "actual temperature of hot metal after dephosphorization" Equation (2) can be created.
b × X FeO × P KO2 + d × X LDS × P KO1 + c × P O = ln (P f / P i ) + β (2)

(2)式の左辺のうち、bは酸化鉄の原単位、dは転炉スラグの原単位、cはO(酸素)の原単位[kg/tp]、XLDSは転炉スラグの気酸換算濃度、XFeOは酸化鉄の気酸換算濃度[Nm3/kg]、PKO1は転炉スラグ原単位の重回帰係数、PKO2は酸化鉄源単位の重回帰係数、POは気酸原単位の重回帰係数であり、ln(Pf/Pi)、βは溶銑成分等の脱りん処理条件で決まる定数である。 Of the left side of equation (2), b is a basic unit of iron oxide, d is a basic unit of converter slag, c is a basic unit of O (oxygen) [kg / tp], and X LDS is a gas acid of converter slag. Equivalent concentration, X FeO is the gas oxide equivalent concentration of iron oxide [Nm 3 / kg], P KO1 is the multiple regression coefficient of the converter slag basic unit, P KO2 is the multiple regression coefficient of the iron oxide source unit, P O is the gaseous acid It is a multiple regression coefficient of basic unit, and ln (P f / P i ) and β are constants determined by dephosphorization processing conditions such as hot metal components.

また、各剤のSiO2量、CaO量に基づいて、以下の式(3)、式(4)を作成できる。
b×XSFeO+d×XSLDS=ST−SO ・・・(3)
ここで、bは酸化鉄の原単位、dは転炉スラグの原単位[kg/tp]、XSFeOは酸化鉄中のSiO2量、XSLDSは転炉スラグ中のSiO2量、SOは各剤以外に起因するSiO2量[kg/t]、STは脱りん処理後のスラグ中のSiO2量[kg/t]である。
a×XCCaO+d×XCLDS=CT−CO ・・・(4)
ここで、aは石灰の原単位、bは酸化鉄の原単位、dは転炉スラグの原単位[kg/tp]、XCCaOは石灰中のCaO濃度、XCFeOは酸化鉄中のCaO濃度、XCLDSは転炉スラグ中のCaO濃度、COは各剤以外に起因するCaO量[kg/t]、CTは脱りん処理後のスラグ中のCaO量[kg/t]である。
Further, SiO 2 amount of each agent, based on the amount of CaO, the following equation (3), can create a formula (4).
b × X SFeO + d × X SLDS = S T −S O (3)
Here, b is the basic unit of iron oxide, d is the basic unit of the converter slag [kg / tp], X SFeO the SiO 2 content in the iron oxide, X SLDS the SiO 2 amount of BOF slag, S O the amount of SiO 2 due to addition each dosage [kg / t], is S T is the amount of SiO 2 in the slag after the dephosphorization treatment [kg / t].
a × X CCaO + d × X CLDS = C T −C O (4)
Here, a basic unit of lime, b is the basic unit of iron oxide, d is the basic unit of the converter slag [kg / tp], X CCaO the CaO concentration in lime, X CFeO the CaO concentration in the iron oxide , X CLDS the CaO concentration of the converter slag, C O is CaO amount due to other than the agent [kg / t], C T is the amount of CaO in the slag after the dephosphorization treatment [kg / t].

このようにして4つの連立一次方程式[式(1)〜式(4)]を立てた。ここで、C/S=C/Sおよび各剤のSiO2量[式(3)の左辺]を決めてやれば式(1)〜式(4)を解くことにより、石灰、酸化鉄、転炉スラグの原単位と気酸原単位Oが求まる。 In this way, four simultaneous linear equations [Expression (1) to Expression (4)] were established. Here, if C T / S T = C / S and the amount of SiO 2 of each agent [the left side of the formula (3)] are determined, by solving the formulas (1) to (4), lime, iron oxide Then, the basic unit of converter slag and the basic unit of gas-acid O are obtained.

しかし、C/Sと各剤のSiO2量を単一の値としたのでは、溶銑のSi濃度等の条件によっては各剤の使用原単位がマイナスとなったり、通常ではあり得ないほど多量の値となることがある。このため、C/Sと各剤SiO2量は単一の目標値とするのでは無く、ある範囲内を動くパラメータとしてそれぞれのC/S、各剤のSiO2の時の各剤の原単位を求め、常識的な値であり、且つ処理時間等が最も条件の良い値をガイダンス値として採用する仕組みとした。 However, if C / S and the amount of SiO 2 in each agent are set to a single value, depending on conditions such as the Si concentration of the hot metal, the basic unit of use of each agent may be negative, or it may not be normal. May be the value of. For this reason, the amount of C / S and each agent SiO 2 is not set as a single target value, but as a parameter that moves within a certain range, each C / S and each agent basic unit at the time of SiO 2 of each agent Therefore, a value that is a common sense value and that has the best processing time and the like is adopted as a guidance value.

以上の手順によって、脱りん剤に配合する転炉由来スラグ量を決定することができる。   The converter-derived slag amount to be blended with the dephosphorizing agent can be determined by the above procedure.

次に、実施例のうち、表3のNo.19の場合について脱りん剤に配合する転炉由来スラグ量を決定する手順を具体的に説明する。脱りん剤に含まれる石灰と酸化鉄の組成を下記表2に示す。また、転炉由来のスラグの組成を下記表2に併せて示す。   Next, among the examples, No. 1 in Table 3 was used. The procedure for determining the converter-derived slag amount to be blended with the dephosphorizing agent in the case of 19 will be specifically described. The composition of lime and iron oxide contained in the dephosphorizing agent is shown in Table 2 below. The composition of the slag derived from the converter is also shown in Table 2 below.

Figure 0005483520
Figure 0005483520

脱りん処理中の溶銑温度の低下量から、下記式(a)が導かれる[上記(1)式に相当]。
−2.4×a−3.7×b+16×c−1.9×d=(脱りん処理後の目標温度−脱りん処理前の温度)−161×[Si]−38×[Mn]+ln(Sf/Si)−9.6 ・・・(a)
脱りん処理前の温度を1340℃、脱りん処理後の目標温度を1300℃、脱りん処理後の目標S量(Sf)を0.003%とした場合は、上記(a)式は、下記(b)式となる。
−2.4×a−3.7×b+16×c−1.9×d=−132 ・・・(b)
The following formula (a) is derived from the amount of decrease in hot metal temperature during the dephosphorization treatment [corresponding to the above formula (1)].
−2.4 × a−3.7 × b + 16 × c−1.9 × d = (target temperature after dephosphorization process−temperature before dephosphorization process) −161 × [Si] −38 × [Mn] + ln (S f / S i ) −9.6 (a)
When the temperature before dephosphorization is 1340 ° C., the target temperature after dephosphorization is 1300 ° C., and the target S amount after dephosphorization (S f ) is 0.003%, the above equation (a) is The following equation (b) is obtained.
-2.4 * a-3.7 * b + 16 * c-1.9 * d = -132 (b)

次に、各剤、気体酸素等の脱りん率から下記(c)式が導かれる[上記(2)式に相当]。
0.03×b+0.01×d+0.14×c=ln(Pf/Pi)+1.33×[Si]−21100/(脱りん処理後の溶銑の目標温度+273)+13.3 ・・・(c)
脱りん処理前のP量(Pi)を0.12%、脱りん処理後のP量(Pe)を0.015%、脱りん処理後の目標温度を1300℃とした場合は、上記(c)式は、下記(d)式となる。
0.03×b+0.01×d+0.14×c=2.05 ・・・(d)
Next, the following equation (c) is derived from the dephosphorization rate of each agent, gaseous oxygen, etc. [corresponding to the above equation (2)].
0.03 × b + 0.01 × d + 0.14 × c = ln (P f / P i ) + 1.33 × [Si] -21100 / (target temperature of hot metal after dephosphorization process +273) +13.3 ... (C)
When the amount of P before dephosphorization (P i ) is 0.12%, the amount of P after dephosphorization (P e ) is 0.015%, and the target temperature after dephosphorization is 1300 ° C. The expression (c) becomes the following expression (d).
0.03 × b + 0.01 × d + 0.14 × c = 2.05 (d)

次に、脱りん処理後のスラグの塩基度を、2.1〜3.0にしなければならないため、投入した各剤のトータルCaO量、投入した各剤および反応生成物のトータルSiO2量をそれぞれ下記式(e)、式(f)で表す。式(f)中、「[Si]/100×WHM×1000×(60/28)/WHM」は、溶銑中のSiが酸化されて発生するSiO2量を意味する。
T=0.909×a+0.444×d ・・・(e)
T=0.032×b+0.115×d+[Si]/100×WHM×1000×(60/28)/WHM ・・・(f)
脱りん処理前の[Si]が0.2%、処理溶銑量が290tpの場合は、上記(f)式は、下記(g)式となる。
T=0.032×b+0.115×d+4.3 ・・・(g)
となる。
Next, since the basicity of the slag after dephosphorization must be 2.1 to 3.0, the total amount of CaO of each added agent, the total amount of SiO 2 of each added agent and reaction product is determined. Represented by the following formula (e) and formula (f), respectively. In the formula (f), “[Si] / 100 × W HM × 1000 × (60/28) / W HM ” means the amount of SiO 2 generated by oxidation of Si in the hot metal.
C T = 0.909 × a + 0.444 × d (e)
S T = 0.032 × b + 0.115 × d + [Si] / 100 × W HM × 1000 × (60/28) / W HM (f)
When [Si] before dephosphorization is 0.2% and the amount of molten iron is 290 tp, the above equation (f) becomes the following equation (g).
S T = 0.032 × b + 0.115 × d + 4.3 (g)
It becomes.

ここで、塩基度を
T/ST=2.1〜3.0
とするため、
T/ST=(0.909×a+0.444×d)/(0.032×b+0.115×d+4.3)=2.1〜3.0 ・・・(h)
ここで、脱りん処理後のスラグの塩基度が3.0の場合は、式(h)は、下記式(i)となる。
0.909×a−0.096×b+0.099×d=12.9 ・・・(i)
Here, the basicity is expressed as C T / S T = 2.1 to 3.0.
To
C T / S T = (0.909 × a + 0.444 × d) / (0.032 × b + 0.115 × d + 4.3) = 2.1 to 3.0 (h)
Here, when the basicity of the slag after the dephosphorization treatment is 3.0, the formula (h) becomes the following formula (i).
0.909 × a−0.096 × b + 0.099 × d = 12.9 (i)

次に、脱りん処理後の全スラグ中のフッ素濃度を0.13%以下にしなければならないことから、転炉スラグ中のフッ素濃度を[F]とした場合、d×[F]がインプットフッ素量となる。脱りん処理中には、おおよそ30%のフッ素が気化するため、脱りん処理後のスラグ中のフッ素量は下記(j)式となる。
T=0.7×d×[F] ・・・(j)
脱りん処理後のスラグ量は、
T=a+b+d+[Si]/100×WHM×1000×(60/28)/WHM ・・・(k)
従って、脱りん処理後のスラグ中のフッ素量は、
T/ST=〔0.7×d×[F]〕/〔a+b+d+[Si]/100×WHM×1000×(60/28)/WHM〕×100≦0.13 ・・・(l)
転炉スラグ中のフッ素濃度[F]を0.5%、脱りん処理後のスラグ中のフッ素量を0.03%とした場合、上記(l)式は、
0.10×a+0.10×b−0.25×d=−0.43 ・・・(m)
Next, since the fluorine concentration in the total slag after dephosphorization must be 0.13% or less, when the fluorine concentration in the converter slag is [F], d × [F] is the input fluorine. Amount. During the dephosphorization process, approximately 30% of the fluorine is vaporized, so the amount of fluorine in the slag after the dephosphorization process is expressed by the following equation (j).
F T = 0.7 × d × [F] (j)
The amount of slag after dephosphorization is
S T = a + b + d + [Si] / 100 × W HM × 1000 × (60/28) / W HM (k)
Therefore, the amount of fluorine in the slag after dephosphorization is
F T / S T = [0.7 × d × [F]] / [a + b + d + [Si] / 100 × W HM × 1000 × (60/28) / W HM ] × 100 ≦ 0.13 ( l)
When the fluorine concentration [F] in the converter slag is 0.5% and the fluorine content in the slag after the dephosphorization treatment is 0.03%, the above formula (l) is
0.10 × a + 0.10 × b−0.25 × d = −0.43 (m)

上記式(b)、式(d)、式(i)、式(m)から、4連連立一次方程式を解くと、
a=17、b=32.3、d=5.0、c=4.8、
となる。これらの値をもとに行なった実施例が、表1のNo.19である。
From the above formula (b), formula (d), formula (i), and formula (m), solving the four simultaneous linear equations,
a = 17, b = 32.3, d = 5.0, c = 4.8,
It becomes. Examples carried out based on these values are shown in Table 1. 19.

脱りん処理時における混銑車内でのスロッピング発生の有無を観察した。スロッピングの発生の有無は、フリーボード(溶銑の上方の空間)の変化が1m以下であった場合をスロッピング無し(合格;○)と判定し、フリーボードの変化が1mを超えた場合をスロッピング有り(不合格;×)と判定した。スロッピングの有無と判定結果を下記表3〜表7に示す。   The presence or absence of slopping in a chaotic vehicle during dephosphorization was observed. The presence or absence of slopping is determined when the change in the free board (space above the hot metal) is 1 m or less is judged as no slopping (passed; ○), and the change in the free board exceeds 1 m. It was determined that there was slopping (failed; x). The presence or absence of slopping and the determination results are shown in Tables 3 to 7 below.

脱りん処理後、混銑車から溶銑を排出し、次いでスラグを排出した。脱りん処理した溶銑に含まれるりん量は、発光分光分析装置(島津製、「PDA−5500II(装置名)」)で測定した。測定結果を下記表3〜表7に示す。   After dephosphorization, the hot metal was discharged from the kneading car, and then the slag was discharged. The amount of phosphorus contained in the dephosphorized hot metal was measured with an emission spectroscopic analyzer (manufactured by Shimadzu, “PDA-5500II (device name)”). The measurement results are shown in Tables 3 to 7 below.

また、脱りん処理後に混銑車からスラグを排出するときの排出性を調べた。スラグの排出性は、脱りん処理前後における混銑車の質量を測定し、混銑車の質量の増加分が、混銑車に付着したスラグ量と考え、スラグ付着の有無によって評価した。混銑車の質量は、溶銑を供給する前に1回目の測定を行ない、次いで混銑車に溶銑を供給して脱りん処理を行ない、脱りん処理した溶銑を排出した後、スラグを排出してから2回目の測定を行なった。1回目と2回目の質量の差が−10トンから+10トンの範囲である場合は、混銑車にスラグ付着が無いと評価し、合格(○)と判定した。質量の差が前記範囲を外れる場合は、混銑車にスラグ付着が有ると評価し、不合格(×)と判定した。スラグ付着の有無と判定結果を下記表3〜表7に示す。   In addition, the exhaustability when slag was discharged from a chaotic car after dephosphorization was investigated. Slag discharge was measured by measuring the mass of the chaotic vehicle before and after the dephosphorization process, and considering the increase in the mass of the chaotic vehicle as the amount of slag adhering to the chaotic vehicle. The mass of the kneading car is measured before the hot metal is supplied, then the hot metal is supplied to the kneading car, the dephosphorization process is performed, the dephosphorized hot metal is discharged, and the slag is discharged. A second measurement was performed. When the difference in mass between the first time and the second time was in the range of −10 ton to +10 ton, it was evaluated that there was no slag adhesion on the kneading vehicle, and it was determined to be a pass (◯). When the difference in mass deviated from the above range, it was evaluated that there was slag adhesion on the chaotic vehicle, and it was determined as rejected (x). The presence or absence of slag adhesion and the determination results are shown in Tables 3 to 7 below.

次に、脱りん処理後に、混銑車から排出したスラグの塩基度と、該スラグに含まれるフッ素量を測定した。スラグの塩基度とスラグに含まれるフッ素量は、蛍光X線分析装置(理学製、「サイマルテックス12型(装置名)」)で測定した。測定したスラグの塩基度とスラグに含まれるフッ素量を下記表3〜表7に示す。   Next, after the dephosphorization treatment, the basicity of the slag discharged from the kneading vehicle and the amount of fluorine contained in the slag were measured. The basicity of the slag and the amount of fluorine contained in the slag were measured with a fluorescent X-ray analyzer (manufactured by Rigaku Corporation, “Simultex 12 type (device name)”). Tables 3 to 7 show the measured basicity of slag and the amount of fluorine contained in the slag.

また、脱りん処理後に、混銑車から排出したスラグについて、スラグからのフッ素溶出量を環境庁告示46号に規定されている方法に従って測定した。具体的には、pHを5.8〜6.3に調製した水の中に、粒子径が2mm以下となるように粉砕したスラグ粉末を所定量入れて6時間浸透した後、水中に溶け出したフッ素量(フッ素溶出量)を分析した。単位はmg/Lである。   Moreover, the fluorine elution amount from slag was measured according to the method prescribed | regulated to Environment Agency Notification No. 46 about the slag discharged | emitted from the chaotic vehicle after the dephosphorization process. Specifically, a predetermined amount of slag powder pulverized so as to have a particle diameter of 2 mm or less is put in water adjusted to pH 5.8 to 6.3, and after infiltrating for 6 hours, it is dissolved in water. The amount of fluorine (fluorine elution amount) was analyzed. The unit is mg / L.

表3〜表7から次のように考察できる。No.1〜30は、いずれも本発明で規定する要件を満足する例であり、混銑車内で脱りん処理を行なってもスロッピングは発生せず、溶銑のりん量を0.015%以下に脱りんできた。また、脱りん処理に副生したスラグは、混銑車からの排出性が良好であった。また、副生したスラグの塩基度が2.1〜3.0、該スラグに含まれるフッ素が0.01〜0.13%に制御されているため、スラグからのフッ素溶出量を0.8mg/L以下に抑えることができた。従って本発明によれば、高フッ素含有転炉由来スラグを新たな資源として再利用できる。   Table 3 to Table 7 can be considered as follows. No. Nos. 1 to 30 are examples that satisfy the requirements stipulated in the present invention. No slopping occurs even when dephosphorization is performed in a kneading vehicle, and the phosphorus content of hot metal is reduced to 0.015% or less. did it. In addition, the slag produced as a by-product in the dephosphorization treatment was excellent in discharging from a chaotic vehicle. Moreover, since the basicity of the slag produced as a by-product is 2.1 to 3.0 and the fluorine contained in the slag is controlled to 0.01 to 0.13%, the amount of fluorine eluted from the slag is 0.8 mg. / L or less. Therefore, according to the present invention, the high fluorine content converter-derived slag can be reused as a new resource.

No.31〜90は、本発明で規定する要件を外れる例である。No.31〜48は、脱りん処理で副生するスラグの塩基度が2.1を下回っているため、脱りん処理時にスロッピングが発生した。また、No.37〜39、No.46〜48は、脱りん処理で副生するスラグに含まれるフッ素が0.13%を超えているため、該スラグからのフッ素溶出量が多くなり、このままでは資源として再利用できない。   No. 31 to 90 are examples that deviate from the requirements defined in the present invention. No. In Nos. 31 to 48, since the basicity of slag produced as a by-product in the dephosphorization treatment was less than 2.1, slapping occurred during the dephosphorization treatment. No. 37-39, no. In Nos. 46 to 48, fluorine contained in the slag produced as a by-product in the dephosphorization process exceeds 0.13%, so that the amount of fluorine eluted from the slag increases and cannot be reused as resources.

No.49〜75は、脱りん処理で副生するスラグの塩基度が3.0を超えているため、混銑車からのスラグ排出性が悪かった。また、No.55〜57、No.64〜66、No.73〜75は、脱りん処理で副生するスラグに含まれるフッ素が0.13%を超えているため、該スラグからのフッ素溶出量が多くなり、このままでは資源として再利用できない。なお、No.54、62、63、71、72は、脱りん処理で副生するスラグに含まれるフッ素が0.01〜0.13%の範囲に制御できているが、塩基度が3.0を超えているため、スラグからのフッ素溶出量が多くなり、このままでは資源として再利用できない。   No. In Nos. 49 to 75, since the basicity of slag produced as a by-product in the dephosphorization process exceeded 3.0, the slag discharge from the chaotic vehicle was poor. No. 55-57, no. 64-66, no. In 73 to 75, since the fluorine contained in the slag by-produced by the dephosphorization process exceeds 0.13%, the amount of elution of fluorine from the slag increases and cannot be reused as resources. In addition, No. 54, 62, 63, 71 and 72 can control the fluorine contained in the slag produced as a by-product in the dephosphorization process to a range of 0.01 to 0.13%, but the basicity exceeds 3.0. As a result, the amount of fluorine eluted from the slag increases and cannot be reused as it is.

No.76〜87は、脱りん処理で副生するスラグに含まれるフッ素が0.13%を超えているため、該スラグからのフッ素溶出量が多くなり、このままでは資源として再利用できない。No.88〜90は、脱りん剤に転炉スラグを配合していない例であり、脱りん処理で副生するスラグに含まれるフッ素が0%となっているため、溶銑の脱りんが不充分である。   No. Nos. 76 to 87 contain 0.13% of fluorine contained in the slag produced as a by-product in the dephosphorization treatment, so that the amount of fluorine eluted from the slag increases and cannot be reused as resources. No. Nos. 88 to 90 are examples in which converter slag is not blended in the dephosphorizing agent, and the fluorine contained in the slag by-produced by the dephosphorization treatment is 0%, so the dephosphorization of the hot metal is insufficient. is there.

Figure 0005483520
Figure 0005483520

Figure 0005483520
Figure 0005483520

Figure 0005483520
Figure 0005483520

Figure 0005483520
Figure 0005483520

Figure 0005483520
Figure 0005483520

図1は、試料表面の凹凸を測定する装置の原理図である。FIG. 1 is a principle diagram of an apparatus for measuring unevenness of a sample surface.

Claims (1)

混銑車で溶銑を脱りん処理する方法であって、
フッ素を含有する転炉由来のスラグを配合した脱りん剤を用いて脱りん処理を行なうにあたり、
前記転炉由来のスラグとしてフッ素を0.1%(質量%の意味。以下、成分について同じ。)以上含有するもの、および前記脱りん剤としてCaO源と酸化鉄を含むものを、前記転炉由来のスラグ、前記脱りん剤に含まれる石灰、前記脱りん剤に含まれる酸化鉄が下記式(1)〜式(4)を満足するように用い、
脱りん処理後のスラグに含まれるフッ素を0.01〜0.13%とし、且つ
脱りん処理後のスラグの塩基度を2.1〜3.0とすることによって脱りん処理時におけるスロッピングの発生を防止することを特徴とする溶銑の脱りん処理方法。
−2.4×a−3.7×b+16×c−1.9×d=(脱りん処理後の溶銑の目標温度(℃)−脱りん処理前の溶銑の温度(℃))−161×[Si]−38×[Mn]+ln(S f /S i )−9.6 ・・・(1)
0.03×b+0.01×d+0.14×c=ln(P f /P i )+1.33×[Si]−21100/(脱りん処理後の溶銑の目標温度(℃)+273)+13.3 ・・・(2)
2.1≦(0.909×a+0.444×d)/[0.032×b+0.115×d+[Si]/100×W HM ×1000×(60/28)/W HM ]≦3.0 ・・・(3)
〔0.7×d×[F]〕/〔a+b+d+[Si]/100×W HM ×1000×(60/28)/W HM 〕×100≦0.13 ・・・(4)
上記式(1)〜式(4)において、
aは脱りん剤に含まれる石灰の原単位(kg/tp)、
bは脱りん剤に含まれる酸化鉄の原単位(kg/tp)、
cは気酸原単位(Nm 3 /tp)、
dは転炉由来のスラグの原単位(kg/tp)、
[Si]は脱りん処理前の溶銑のSi濃度(質量%)、
[Mn]は脱りん処理前の溶銑のMn濃度(質量%)、
i は脱りん処理前の溶銑のS濃度(質量%)、
f は脱りん処理後の溶銑の目標S濃度(質量%)、
ln(S f /S i )は目標とする脱硫率(%)、
i は脱りん処理前の溶銑のP濃度(質量%)、
f は脱りん処理後の溶銑の目標P濃度(質量%)、
ln(P f /P i )は目標とする脱りん率(%)、
HM は処理溶銑量(tp)、
[F]は転炉由来のスラグ中のフッ素濃度(質量%)
を夫々示す。
A method of dephosphorizing hot metal with a chaotic vehicle,
In carrying out dephosphorization treatment using a dephosphorizing agent containing slag derived from a converter containing fluorine,
Fluorine 0.1% as slag from said converter (meaning mass%. Hereinafter, the same. For component) also contains more, and those containing CaO source and iron oxide wherein the dephosphorization agent, the rolling The slag derived from the furnace, the lime contained in the dephosphorizing agent, and the iron oxide contained in the dephosphorizing agent are used so as to satisfy the following formulas (1) to (4) :
Slopping during dephosphorization by setting the fluorine contained in the slag after dephosphorization to 0.01 to 0.13% and the basicity of the slag after dephosphorization to 2.1 to 3.0 A method for dephosphorizing hot metal, which is characterized by preventing generation of hot metal.
−2.4 × a−3.7 × b + 16 × c−1.9 × d = (target temperature of hot metal after dephosphorization treatment (° C.) − Temperature of hot metal before dephosphorization treatment (° C.)) − 161 × [Si] −38 × [Mn] + ln (S f / S i ) −9.6 (1)
0.03 × b + 0.01 × d + 0.14 × c = ln (P f / P i ) + 1.33 × [Si] -21100 / (target temperature of hot metal after dephosphorization (° C.) + 273) +13.3 ... (2)
2.1 ≦ (0.909 × a + 0.444 × d) / [0.032 × b + 0.115 × d + [Si] / 100 × W HM × 1000 × (60/28) / W HM ] ≦ 3.0 ... (3)
[0.7 × d × [F]] / [a + b + d + [Si] / 100 × W HM × 1000 × (60/28) / W HM ] × 100 ≦ 0.13 (4)
In the above formulas (1) to (4),
a is the basic unit of lime contained in the dephosphorization agent (kg / tp),
b is the basic unit of iron oxide (kg / tp) contained in the dephosphorizing agent,
c is gas acid basic unit (Nm 3 / tp),
d is the basic unit of slag derived from the converter (kg / tp),
[Si] is the Si concentration (mass%) of the hot metal before dephosphorization,
[Mn] is the Mn concentration (mass%) of the hot metal before dephosphorization treatment,
S i is the S concentration (mass%) of the hot metal before dephosphorization,
S f is the target S concentration (mass%) of hot metal after dephosphorization,
ln (S f / S i ) is the target desulfurization rate (%),
P i is dephosphorization process P concentration before the hot metal (mass%),
P f is the target P concentration (mass%) of hot metal after dephosphorization,
ln (P f / P i ) is the target dephosphorization rate (%),
W HM is the amount of treated hot metal (tp),
[F] is the fluorine concentration (mass%) in the converter-derived slag
Respectively.
JP2008206252A 2008-08-08 2008-08-08 Dephosphorization method for hot metal Expired - Fee Related JP5483520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008206252A JP5483520B2 (en) 2008-08-08 2008-08-08 Dephosphorization method for hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008206252A JP5483520B2 (en) 2008-08-08 2008-08-08 Dephosphorization method for hot metal

Publications (2)

Publication Number Publication Date
JP2010043298A JP2010043298A (en) 2010-02-25
JP5483520B2 true JP5483520B2 (en) 2014-05-07

Family

ID=42014899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206252A Expired - Fee Related JP5483520B2 (en) 2008-08-08 2008-08-08 Dephosphorization method for hot metal

Country Status (1)

Country Link
JP (1) JP5483520B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987676B (en) * 2017-02-13 2018-11-13 唐山不锈钢有限责任公司 A kind of converter basicity dynamic control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194005A (en) * 1984-03-14 1985-10-02 Sumitomo Metal Ind Ltd Pretreatment of molten iron with converter slag
JP4422318B2 (en) * 2000-11-02 2010-02-24 新日本製鐵株式会社 Hot metal dephosphorization method with little refractory damage
JP3987704B2 (en) * 2001-10-18 2007-10-10 新日本製鐵株式会社 Hot phosphorus dephosphorization method
JP3952846B2 (en) * 2002-05-16 2007-08-01 Jfeスチール株式会社 Method for producing low phosphorus hot metal
JP5272378B2 (en) * 2007-11-05 2013-08-28 Jfeスチール株式会社 Hot metal dephosphorization method

Also Published As

Publication number Publication date
JP2010043298A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP6314484B2 (en) Hot metal dephosphorization method
JP5338056B2 (en) Stainless steel refining method
KR102214879B1 (en) Slag analysis method and molten iron refining method
JPWO2020129887A1 (en) Estimating method and estimation device for the amount of residual slag in the furnace
JP5211786B2 (en) Blowing control method and method for producing low phosphorus hot metal using the blowing control method
WO2014112521A1 (en) Molten iron pre-treatment method
JP5343506B2 (en) Hot phosphorus dephosphorization method
JP5483520B2 (en) Dephosphorization method for hot metal
JP5061545B2 (en) Hot metal dephosphorization method
JP5533058B2 (en) Blowing method, blowing system, low phosphorus hot metal manufacturing method, and low phosphorus hot metal manufacturing apparatus
JP4743072B2 (en) Method for improving slag evacuation after dephosphorization and method for dephosphorizing hot metal using the slag
JP5333542B2 (en) Desulfurization method for molten steel and molten iron alloy
JP5790607B2 (en) Hot metal dephosphorization method, hot metal dephosphorization system, low phosphorus hot metal manufacturing method and low phosphorus hot metal manufacturing apparatus
JP5136980B2 (en) Method for producing hot metal dephosphorization slag
JP4977863B2 (en) Hot metal desulfurization treatment method
JP5412994B2 (en) How to remove hot metal
JP2011246765A (en) Method of reduction-refining molten steel
JP3950261B2 (en) Secondary refining method for molten steel
JP5447006B2 (en) Hot phosphorus dephosphorization method
JP5673485B2 (en) Hot metal decarburization blowing method
JP7348519B2 (en) Method of dephosphorizing hot metal
JP2011012286A (en) Method for dephosphorizing molten iron
JP5768721B2 (en) Dephosphorization blowing method for hot metal
JP7082321B2 (en) Dephosphorization method of hot metal
JP2014031562A (en) Dephosphorization processing method of hot pig iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140214

R150 Certificate of patent or registration of utility model

Ref document number: 5483520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees