JP5482132B2 - Differential refractometer - Google Patents

Differential refractometer Download PDF

Info

Publication number
JP5482132B2
JP5482132B2 JP2009261825A JP2009261825A JP5482132B2 JP 5482132 B2 JP5482132 B2 JP 5482132B2 JP 2009261825 A JP2009261825 A JP 2009261825A JP 2009261825 A JP2009261825 A JP 2009261825A JP 5482132 B2 JP5482132 B2 JP 5482132B2
Authority
JP
Japan
Prior art keywords
light
flow cell
parallel light
position detection
differential refractometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009261825A
Other languages
Japanese (ja)
Other versions
JP2011106944A (en
Inventor
崇史 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009261825A priority Critical patent/JP5482132B2/en
Publication of JP2011106944A publication Critical patent/JP2011106944A/en
Application granted granted Critical
Publication of JP5482132B2 publication Critical patent/JP5482132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、屈折率の変化に基づき溶液の濃度を測定する示差屈折率計に関する。特に本発明は液体クロマトグラフ用の検出器として有用である。   The present invention relates to a differential refractometer that measures the concentration of a solution based on a change in refractive index. In particular, the present invention is useful as a detector for liquid chromatography.

物質が溶媒に溶け込むと、一般に溶媒の屈折率は変化する。そのため、液体クロマトグラフではカラムから溶出される成分の汎用的な検出器として、溶媒(以下、参照液という)と、成分が溶けた溶媒(以下、試料液という)の屈折率の差を測定する示差屈折率計が用いられる。示差屈折率計としては、屈折率による反射光強度の変化を検出するフレネル型示差屈折率計と、屈折角の変化を検出する偏向型(ブライス型ともいう)示差屈折率計が知られている。   As a substance dissolves in a solvent, the refractive index of the solvent generally changes. Therefore, in liquid chromatography, as a general-purpose detector for components eluted from a column, the difference in refractive index between a solvent (hereinafter referred to as a reference solution) and a solvent in which the component is dissolved (hereinafter referred to as a sample solution) is measured. A differential refractometer is used. As a differential refractometer, a Fresnel type differential refractometer that detects a change in reflected light intensity due to a refractive index and a deflection type (also referred to as a Bryce type) differential refractometer that detects a change in refraction angle are known. .

通常用いられる偏向型示差屈折率計は、光源部から生成された平行光がフローセルに導入され、フローセルを通過する参照液と試料液の屈折率に応じて平行光の進行方向が偏向され、その偏向の程度を位置検出光センサにより検出する、というものである。フローセルは、石英ガラスなどの透明体の内部に光の進行方向(光軸)に対して傾斜した斜板で仕切られた2つの直角三角形断面を有する流路を設けており、前記2つの流路に試料液と参照液をそれぞれ通過させた状態で平行光を透過させる。透過した平行光の進行方向の角度変化(偏向)の大きさから、屈折率の差の原因である試料液中の試料濃度を求めることができる。偏向型示差屈折率計には、フローセルへの平行光透過のさせ方により、1回透過させるシングルパス方式(たとえば特許文献1の第21図)と、2回透過させるダブルパス方式(たとえば特許文献2の第5図)とがある。   In a normally used deflection type differential refractometer, parallel light generated from a light source is introduced into a flow cell, and the traveling direction of the parallel light is deflected according to the refractive index of the reference liquid and sample liquid passing through the flow cell. The degree of deflection is detected by a position detection light sensor. The flow cell is provided with a flow path having two right-angled triangular sections partitioned by a swash plate inclined with respect to the light traveling direction (optical axis) inside a transparent body such as quartz glass, and the two flow paths The parallel light is transmitted through the sample liquid and the reference liquid respectively. From the magnitude of the change in angle (deflection) in the traveling direction of the transmitted parallel light, the sample concentration in the sample solution that causes the difference in refractive index can be obtained. The deflection-type differential refractometer includes a single-pass method (for example, FIG. 21 of Patent Document 1) that transmits once, and a double-pass method that transmits twice (for example, Patent Document 2), depending on how parallel light is transmitted to the flow cell. Fig. 5).

一般に、光源部と測定セルと受光部とを備えた光学的分析装置に関して良好な感度またはS/N比を得るためには、光源部は、十分量の測定用光量を、測定セルを介して受光部に供給する必要がある。たとえば特許文献2の示差屈折率検出装置では、光源として、タングステンランプに比較して発光出力が劣る発光ダイオードを使用しているが、光源とアパーチャとの間に集光レンズを介在配置することにより光量を高めた後、コリメーターレンズを通ってフローセルに平行光を透過させる構成を開示している。   In general, in order to obtain a good sensitivity or S / N ratio for an optical analyzer having a light source unit, a measurement cell, and a light receiving unit, the light source unit sends a sufficient amount of light for measurement through the measurement cell. It is necessary to supply the light receiving unit. For example, in the differential refractive index detection device disclosed in Patent Document 2, a light emitting diode having a light emission output inferior to that of a tungsten lamp is used as a light source. However, a condensing lens is interposed between the light source and the aperture. After increasing the amount of light, a configuration is disclosed in which parallel light is transmitted to the flow cell through a collimator lens.

示差屈折率計の測定感度向上のために、光源部から生成する平行光をより効率的に受光部に導くための別の方法として、光源部とフローセルとの間に備えたアパーチャの開口部を屈折による平行光の偏向方向と直交する方向に拡大することが考えられる。アパーチャの開口部を偏向方向と直交する方向に拡大すると、受光部にある受光素子面上に結像される照射位置は大きくなるが、受光素子の大きさに限りがある以上、照射位置が受光素子をはみ出す場合、はみ出した部分の平行光がむだになる。偏向型示差屈折率計中の位置検出光センサ10にフローセルを透過した平行光を照射したときの、標準的な照射位置13を図1(a)に示す。図1(a)の状態から、アパーチャを偏向方向と直交する方向に拡大した場合、照射位置13が図1(b)に示す位置まで拡大すると位置検出光センサ10内の受光素子11をはみ出た分の平行光がむだになる。また、当該照射位置まで受光素子を拡大させようとすると、経済的に不利となる。   In order to improve the measurement sensitivity of the differential refractometer, as another method for more efficiently guiding the parallel light generated from the light source unit to the light receiving unit, an aperture opening provided between the light source unit and the flow cell is provided. It is conceivable to expand in a direction orthogonal to the direction of deflection of parallel light due to refraction. When the aperture opening is enlarged in the direction perpendicular to the deflection direction, the irradiation position imaged on the light receiving element surface in the light receiving section increases, but the irradiation position is received as long as the size of the light receiving element is limited. When the element protrudes, the parallel light of the protruding part is wasted. FIG. 1A shows a standard irradiation position 13 when the position detection light sensor 10 in the deflection type differential refractometer is irradiated with parallel light transmitted through the flow cell. When the aperture is expanded in the direction orthogonal to the deflection direction from the state of FIG. 1A, the light receiving element 11 in the position detection light sensor 10 protrudes when the irradiation position 13 expands to the position shown in FIG. Minute parallel light is wasted. Further, it is economically disadvantageous to enlarge the light receiving element to the irradiation position.

照射位置13が図1(b)に示す位置まで拡大した場合、照射位置13を受光素子11に収めるための方法として、アパーチャを通過した平行光に球面レンズを通過させて収束する方法がある。前記方法を用いて収束した照射位置13を模式的に図1(c)に示す。前記方法は照射位置の縦横比を一定のまま収束する方法である。したがって、図1に示す分割型フォトダイオードを位置検出光センサ10として用いた場合、照射位置が平行光の偏向方向側にも収束されるため、照射位置13に占める位置検出光センサ10にある受光素子間ギャップ12の割合が相対的に大きくなる。すなわち、受光素子11に照射する光量が減るので感度(S/N比)低下の一因となる。また、照射位置13の平行光の偏向方向側の長さが受光素子間ギャップ12長さの2倍から3倍程度まで短くなると、2つの受光素子11に光を均等に入れるのが困難となったり、一方の受光素子11に光が入りにくくなるため、測定範囲が狭くなる問題があった。さらに、アパーチャを平行光の偏向方向に広げる場合、平行光がフローセルの有効な導入領域をはみ出すおそれや、受光素子11に結像する照射位置13の位置検出可能な測定範囲が狭くなる問題があった。   When the irradiation position 13 is expanded to the position shown in FIG. 1B, as a method for accommodating the irradiation position 13 in the light receiving element 11, there is a method of allowing the parallel light that has passed through the aperture to pass through a spherical lens and converge. The irradiation position 13 converged using the above method is schematically shown in FIG. The method is a method of converging while maintaining the aspect ratio of the irradiation position constant. Therefore, when the split photodiode shown in FIG. 1 is used as the position detection light sensor 10, the irradiation position is converged also on the side of the parallel light deflection direction. The ratio of the gap 12 between elements becomes relatively large. That is, the amount of light applied to the light receiving element 11 is reduced, which contributes to a decrease in sensitivity (S / N ratio). Further, if the length of the irradiation position 13 on the deflection direction side of the parallel light is shortened from about 2 to about 3 times the length of the gap 12 between the light receiving elements, it becomes difficult to uniformly enter the light into the two light receiving elements 11. In addition, since it is difficult for light to enter one of the light receiving elements 11, there is a problem that the measurement range becomes narrow. Furthermore, when the aperture is expanded in the direction of deflection of the parallel light, there is a problem that the parallel light may protrude from the effective introduction region of the flow cell, and the measurement range in which the position of the irradiation position 13 imaged on the light receiving element 11 can be detected becomes narrow. It was.

特公平7−018791号公報Japanese Examined Patent Publication No. 7-018791 特公平6−017870号公報Japanese Patent Publication No. 6-017870

本発明は、限られた大きさの受光素子を有した位置検出光センサを用いても、平行光を効率的に受光素子まで導き、かつ十分な測定感度および測定範囲を有する示差屈折率計を提供することを目的とする。   The present invention provides a differential refractometer that efficiently guides parallel light to a light receiving element and has sufficient measurement sensitivity and measurement range even when a position detection light sensor having a light receiving element of a limited size is used. The purpose is to provide.

本発明者は、偏向型示差屈折率計において、偏向方向と直交する方向に拡大したアパーチャにより、光源の発光出力を多めに採取する場合、照射位置の偏向方向と直交する方向に収束効果を有するシリンドリカルレンズを使用することにより、限られた大きさの受光素子を有した位置検出光センサを用いても測定感度を損なうことなく十分な測定範囲を有する示差屈折率計が得られることを見いだし、本発明を完成させた。   The present inventor has a convergence effect in a direction perpendicular to the deflection direction of the irradiation position in the deflection type differential refractometer when a large amount of light emission output of the light source is collected by the aperture expanded in the direction perpendicular to the deflection direction. By using a cylindrical lens, it has been found that a differential refractometer having a sufficient measurement range can be obtained without impairing measurement sensitivity even if a position detection optical sensor having a light receiving element of a limited size is used. The present invention has been completed.

すなわち、第一の発明は、
概ね平行光を生成する光源部と、
アパーチャと、
内部が平行光の光軸に対して傾斜した斜板で仕切られた、参照液と試料液を通過させるための二つの中空部を有するフローセルと、
フローセルを透過した平行光の偏向を検出するための位置検出光センサと、
位置検出光センサの出力信号から屈折率を演算する演算部と、
を備えた示差屈折率計において、
位置検出光センサにおける平行光の照射位置を偏向方向と直交する方向に収束可能なシリンドリカルレンズを、アパーチャとフローセルとの間、またはフローセルと位置検出光センサとの間に、さらに備えた、示差屈折率計である。
That is, the first invention is
A light source that generates substantially parallel light;
Aperture,
A flow cell having two hollow portions for allowing a reference solution and a sample solution to pass through, the interior of which is partitioned by a swash plate inclined with respect to the optical axis of parallel light;
A position detection light sensor for detecting the deflection of the parallel light transmitted through the flow cell;
A calculation unit for calculating a refractive index from an output signal of the position detection light sensor;
In a differential refractometer with
Differential refraction, further comprising a cylindrical lens that can converge the irradiation position of parallel light in the position detection light sensor in a direction perpendicular to the deflection direction, between the aperture and the flow cell, or between the flow cell and the position detection light sensor It is a rate meter.

また、第二の発明は、光源部とフローセルと位置検出光センサとが当該順序で概ね直線に配置された、第一の発明に記載の示差屈折率計である。   Moreover, 2nd invention is a differential refractometer as described in 1st invention by which the light source part, the flow cell, and the position detection optical sensor are arrange | positioned in the said order substantially linearly.

また、第三の発明は、
フローセルを透過した平行光を反射し再びフローセルに平行光を透過させるためのミラーをさらに備え、
位置検出光センサが再びフローセルを透過した平行光の偏向を検出するセンサである、第一の発明に記載の示差屈折率計である。
In addition, the third invention,
A mirror for reflecting the parallel light transmitted through the flow cell and transmitting the parallel light through the flow cell again;
The differential refractometer according to the first aspect, wherein the position detection light sensor is a sensor that detects the deflection of the parallel light that has again passed through the flow cell.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の示差屈折率計は、アパーチャを平行光の偏向方向と直交する方向に拡大することで得られた、図1(b)に示す照射位置13を位置検出光センサ10における受光素子11内に収めるために、アパーチャとフローセルとの間、またはフローセルと位置検出光センサとの間にシリンドリカルレンズを備えていることを特徴としている。照射位置13を収束させるには、通常の球面レンズを用いる方法がある。しかしながら、前記方法では収束させる必要がない照射位置13の平行光の偏向方向側も集光してしまう。位置検出光センサ10として図1に示す分割型フォトダイオードを用いる場合、照射位置13が平行光の偏向方向に収束すると、照射位置13に占める前記フォトダイオードの受光素子間ギャップ12の割合が相対的に大きくなるため、感度低下、測定範囲縮小の原因(図1(c)参照)となる。シリンドリカルレンズを用いれば、照射位置13は偏向方向と直交する方向にしか収束しないため、受光素子間ギャップ12の影響を抑えることができる。シリンドリカルレンズを備えることにより得られた照射位置13を模式的に図1(d)に示す。本発明の示差屈折率計におけるシリンドリカルレンズは照射位置13の偏向方向と直交する方向に収束効果を発揮するように設けるため、得られた照射位置13の面積は図1(a)における照射位置13と同等となり、その光量はアパーチャを偏向方向と直交する方向に拡大した図1(b)の照射位置13と同じとなる。また、シリンドリカルレンズによる収束効果は照射位置13の平行光の偏向方向には及ばないため、受光素子間ギャップ12の影響が相対的に大きくなることはなく、測定範囲に悪影響を及ぼすことなく十分な測定感度を得ることが可能となる。   The differential refractometer of the present invention has an irradiation position 13 shown in FIG. 1B obtained by enlarging the aperture in a direction orthogonal to the direction of deflection of parallel light, in the light receiving element 11 in the position detection light sensor 10. In order to accommodate the above, a cylindrical lens is provided between the aperture and the flow cell, or between the flow cell and the position detection light sensor. To converge the irradiation position 13, there is a method using a normal spherical lens. However, the above method also collects the parallel light deflection direction side of the irradiation position 13 that does not need to be converged. When the split type photodiode shown in FIG. 1 is used as the position detection light sensor 10, when the irradiation position 13 converges in the polarization direction of the parallel light, the ratio of the gap 12 between the light receiving elements of the photodiode relative to the irradiation position 13 is relatively. Therefore, the sensitivity is lowered and the measurement range is reduced (see FIG. 1C). If a cylindrical lens is used, the irradiation position 13 converges only in the direction orthogonal to the deflection direction, so that the influence of the gap 12 between the light receiving elements can be suppressed. The irradiation position 13 obtained by providing the cylindrical lens is schematically shown in FIG. Since the cylindrical lens in the differential refractometer of the present invention is provided so as to exhibit a convergence effect in a direction orthogonal to the deflection direction of the irradiation position 13, the area of the irradiation position 13 obtained is the irradiation position 13 in FIG. The amount of light is the same as the irradiation position 13 in FIG. 1B in which the aperture is enlarged in the direction orthogonal to the deflection direction. Further, since the converging effect by the cylindrical lens does not reach the deflection direction of the parallel light at the irradiation position 13, the influence of the gap 12 between the light receiving elements does not become relatively large, and is sufficient without adversely affecting the measurement range. Measurement sensitivity can be obtained.

本発明の示差屈折率計の一態様として、
概ね平行光を生成する光源部と、
アパーチャと、
内部が平行光の光軸に対して傾斜した斜板で仕切られた、参照液と試料液を通過させるための二つの中空部を有するフローセルと、
フローセルを透過した平行光の偏向を検出するための位置検出光センサと、
が当該順序で概ね直線に配置された、いわゆるシングルパス方式の示差屈折率計において、
位置検出光センサにおける平行光の照射位置を偏向方向と直交する方向に収束可能なシリンドリカルレンズを、アパーチャとフローセルとの間またはフローセルと位置検出光センサとの間にさらに備えた、示差屈折率計があげられる。前記態様では、光学系の部品点数が少なく、各構成要素の位置や角度の調整が比較的容易であるという利点を有する。
As one aspect of the differential refractometer of the present invention,
A light source that generates substantially parallel light;
Aperture,
A flow cell having two hollow portions for allowing a reference solution and a sample solution to pass through, the interior of which is partitioned by a swash plate inclined with respect to the optical axis of parallel light;
A position detection light sensor for detecting the deflection of the parallel light transmitted through the flow cell;
Are arranged in a straight line in the order, so-called single-pass differential refractometer,
A differential refractometer further comprising a cylindrical lens capable of converging the irradiation position of parallel light in the position detection light sensor in a direction orthogonal to the deflection direction, or between the aperture and the flow cell or between the flow cell and the position detection light sensor. Can be given. The above-described aspect has an advantage that the number of parts of the optical system is small and the position and angle of each component are relatively easy to adjust.

また、本発明の示差屈折率の別の態様として、
概ね平行光を生成する光源部と、
アパーチャと、
内部が平行光の光軸に対して傾斜した斜板で仕切られた、参照液と試料液を通過させるための二つの中空部を有するフローセルと、
フローセルを透過した平行光を反射し再びフローセルに平行光を透過させるためのミラーと、
再びフローセルを透過した(2回フローセルを透過した)平行光の偏向を検出するための位置検出光センサと、
を備えた、いわゆるダブルパス方式の示差屈折率計において、位置検出光センサにおけるフローセルを透過した平行光の照射位置を偏向方向と直交する方向に収束可能なシリンドリカルレンズを、アパーチャとフローセルとの間またはフローセルと位置検出光センサとの間にさらに備えた、示差屈折率計があげられる。前記態様では、平行光がフローセルを往復するので、屈折率変化による平行光の角度変化が2倍となり感度が向上するという利点を有する。
As another aspect of the differential refractive index of the present invention,
A light source that generates substantially parallel light;
Aperture,
A flow cell having two hollow portions for allowing a reference solution and a sample solution to pass through, the interior of which is partitioned by a swash plate inclined with respect to the optical axis of parallel light;
A mirror for reflecting the parallel light transmitted through the flow cell and transmitting the parallel light again to the flow cell;
A position detection light sensor for detecting the deflection of the parallel light transmitted through the flow cell again (transmitted twice through the flow cell);
A so-called double-pass differential refractometer comprising a cylindrical lens capable of converging the irradiation position of the parallel light transmitted through the flow cell in the position detection light sensor in a direction perpendicular to the deflection direction, or between the aperture and the flow cell. There is a differential refractometer further provided between the flow cell and the position detection optical sensor. In the above aspect, since parallel light reciprocates in the flow cell, there is an advantage that the angle change of the parallel light due to the change in refractive index is doubled and the sensitivity is improved.

本発明の示差屈折率計で用いるシリンドリカルレンズは、少なくとも一方向すなわち照射位置の偏向方向と直交する方向に平行光を収束する効果を有するシリンドリカル面を有するレンズであればよい。シリンドリカルレンズの例として、円柱形からなるシリンドリカルレンズ、円柱を縦に割った形状(かまぼこ状)からなる平凸形のシリンドリカルレンズ、円柱の側面を円形にくり抜いた形状からなるシリンドリカルレンズをあげることができる。また、平行光の偏向方向と、偏向方向と直交する方向に異なる屈折力を有するトーリック面を有したレンズであっても、平行光の偏向方向への屈折力が測定感度や測定範囲に悪影響を及ぼさなければ、本発明の示差屈折率計におけるシリンドリカルレンズとして使用することができる。   The cylindrical lens used in the differential refractometer of the present invention may be any lens having a cylindrical surface that has an effect of converging parallel light in at least one direction, that is, a direction orthogonal to the deflection direction of the irradiation position. Examples of cylindrical lenses include cylindrical lenses that have a cylindrical shape, planoconvex cylindrical lenses that have a vertically divided cylindrical shape (cylindrical shape), and cylindrical lenses that have a shape in which the side surfaces of the cylinder are hollowed out in a circular shape. it can. In addition, even with a lens having a toric surface that has different refractive power in the direction in which the parallel light is deflected and in the direction perpendicular to the direction of deflection, the refractive power in the direction in which the parallel light is deflected adversely affects the measurement sensitivity and measurement range. If it does not reach, it can be used as a cylindrical lens in the differential refractometer of the present invention.

本発明の示差屈折率計において光源部は概ね平行光を生成する必要がある。指向性の良いレーザー光源を使用するときはそのままでもよいが、点光源を使用するときは、点光源からでた光を平行光に変換させる必要がある。平行光への変換方法としては、以下の方法が例示できる。
(1)レンズ付ランプやレンズ付発光ダイオードを用いる方法。
(2)輝度の高い光源と適正に選択されたレンズを組み合わせる方法。
(3)光源から十分離れた位置にフローセルを設置する方法。
In the differential refractometer of the present invention, the light source section needs to generate substantially parallel light. When using a laser light source with good directivity, it may be left as it is, but when using a point light source, it is necessary to convert light emitted from the point light source into parallel light. The following method can be illustrated as a conversion method to parallel light.
(1) A method using a lamp with lens or a light emitting diode with lens.
(2) A method of combining a light source with high brightness and a properly selected lens.
(3) A method of installing the flow cell at a position sufficiently away from the light source.

このうち、本発明の示差屈折率計における平行光への変換方法としては、良質な平行光が得られる(2)の方式が最も好ましい。(2)の方式で用いる光源としては、タングステンランプ、ハロゲン封入タングステンランプ、発光ダイオードが例示できる。なお、本発明の示差屈折率計は、平行光の偏向方向と直交する方向に拡大したアパーチャを用いることができるため、光源部からの平行光をより多く位置検出光センサに照射させることができる。そのため、発光出力が比較的小さい発光ダイオードを光源として適用した場合、特に本発明の効果が発揮される。(2)の方式で使用するレンズの口径はレンズの有効径がアパーチャの透過部を包含するように適宜選択すればよい。また、光源から発した光を有効に利用するためにレンズと光源との距離はなるべく近づけて、有効立体角を広げたほうが好ましい。(2)の方式で使用するレンズは球面レンズのほかに、球面収差を抑えるための非球面レンズや、アクロマティックレンズに代表される貼合せレンズを用いることもできる。なお、本発明における光源部が発する平行光は、概ね平行光であればよく、平行光に対して僅かに収束する光、あるいは僅かに発散する光であってもよい。平行光断面内の光強度分布は、フローセル中の参照液流路や試料液流路の幅方向および前記フローセルを透過した光の偏向方向に対して概ね均一であればよい。また、光強度分布の均一性を改善するために、ビーム変換レンズを使ったり、平行光の強度分布と逆の空間分布を示す吸収特性をもたせたフィルタなどを用いてもよい。   Among these, as the conversion method to parallel light in the differential refractometer of the present invention, the method (2) that can obtain high-quality parallel light is most preferable. Examples of the light source used in the method (2) include a tungsten lamp, a halogen-enclosed tungsten lamp, and a light emitting diode. Since the differential refractometer of the present invention can use an aperture that is enlarged in a direction orthogonal to the direction of parallel light deflection, the position detection light sensor can be irradiated with more parallel light from the light source unit. . Therefore, when the light emitting diode having a relatively small light emission output is applied as the light source, the effect of the present invention is particularly exerted. The diameter of the lens used in the method (2) may be appropriately selected so that the effective diameter of the lens includes the transmission part of the aperture. In order to effectively use the light emitted from the light source, it is preferable that the distance between the lens and the light source be as close as possible to widen the effective solid angle. In addition to the spherical lens, the lens used in the method (2) may be an aspherical lens for suppressing spherical aberration or a bonded lens represented by an achromatic lens. Note that the parallel light emitted from the light source unit in the present invention may be substantially parallel light, and may be light that converges slightly with respect to the parallel light or light that diverges slightly. The light intensity distribution in the parallel light section may be substantially uniform with respect to the width direction of the reference liquid channel and the sample liquid channel in the flow cell and the deflection direction of the light transmitted through the flow cell. In order to improve the uniformity of the light intensity distribution, a beam conversion lens or a filter having an absorption characteristic showing a spatial distribution opposite to the intensity distribution of parallel light may be used.

本発明の示差屈折率計で用いるフローセルの一態様として、試料液と参照液をそれぞれ通過させるための一対の中空部(直角三角形断面をもつ液体流路)をもつフローセルをあげることができる。フローセルの材質は光の透過性と液体に対する耐蝕性を考慮して適宜選択すればよいが、多くの場合、透明な石英ガラスが用いられる。また、光が通過する部分以外の全て、あるいは一部を黒色石英ガラスといった不透明体材料で作ってもよい。フローセルの別の態様として、試料液に溶解した目的成分の広がりを防ぐために、試料液を流す中空部の断面積を参照液を流す中空部の断面積より小さくしたフローセルをあげることができる。   As an embodiment of the flow cell used in the differential refractometer of the present invention, a flow cell having a pair of hollow portions (liquid channels having a right triangle cross section) for allowing a sample solution and a reference solution to pass through can be mentioned. The material of the flow cell may be appropriately selected in consideration of light transmittance and liquid corrosion resistance. In many cases, transparent quartz glass is used. Further, all or a part other than the part through which light passes may be made of an opaque material such as black quartz glass. Another aspect of the flow cell is a flow cell in which the cross-sectional area of the hollow part through which the sample liquid flows is smaller than the cross-sectional area of the hollow part through which the reference liquid flows in order to prevent the target component dissolved in the sample liquid from spreading.

本発明の示差屈折率計で用いる位置検出光センサとしては、図1に示した受光素子が左右に2分割されたフォトダイオードのほかにも、2×2分割されたフォトダイオード、さらに細かく分割されたフォトダイオード、1次元CCDセンサ、および1次元CMOSセンサといったセンサを用いることができる。さらに、2次元CCDセンサ、および2次元CMOSセンサといったセンサも本発明における位置検出光センサとして使用可能である。   As a position detection optical sensor used in the differential refractometer of the present invention, in addition to the photodiode in which the light receiving element shown in FIG. Sensors such as photodiodes, one-dimensional CCD sensors, and one-dimensional CMOS sensors can be used. Furthermore, sensors such as a two-dimensional CCD sensor and a two-dimensional CMOS sensor can also be used as the position detection light sensor in the present invention.

位置検出センサにて検出した平行光は、光源の発光量に変動がなければ、各受光素子に生じる光電流を電流電圧変換回路等を用いて電圧信号に変換した後、差回路を使うことによって、出力として示差屈折率信号を得ることができる。また、差回路と和回路を使って2素子の差信号と和信号を求め、さらに割算回路を使って差信号を和信号で割ることによって、出力として示差屈折率信号を得ることもできる。示差屈折率信号を得る際は、ノイズ信号を抑制するために適宜フィルタ回路を用いることができる。電流電圧変換回路にはノイズやドリフトを減らすため、オフセット電流やバイアス電流が小さい高精度オペアンプを使うのが好ましい。また、アナログ演算回路を用いる代わりに、各受光面から得られた電圧信号を、ΔΣ型AD変換器などのAD変換器でデジタル値に変換し、デジタル回路で割算演算を行ない、示差屈折率信号を得ることができる。AD変換器の前には適宜アンチエリアスフィルタ回路を挿入することができる。また、デジタル値に変換した後、デジタルフィルタを掛けてもよい。   The parallel light detected by the position detection sensor is obtained by converting the photocurrent generated in each light receiving element into a voltage signal using a current-voltage conversion circuit or the like and then using a difference circuit if there is no change in the light emission amount of the light source. The differential refractive index signal can be obtained as an output. Further, a differential refractive index signal can be obtained as an output by obtaining a difference signal and a sum signal of two elements using a difference circuit and a sum circuit, and further dividing the difference signal by the sum signal using a division circuit. When obtaining the differential refractive index signal, a filter circuit can be appropriately used to suppress the noise signal. In order to reduce noise and drift, it is preferable to use a high-precision operational amplifier with a small offset current and bias current for the current-voltage conversion circuit. Also, instead of using an analog arithmetic circuit, the voltage signal obtained from each light receiving surface is converted to a digital value by an AD converter such as a ΔΣ AD converter, and a division operation is performed by the digital circuit to obtain a differential refractive index. A signal can be obtained. An anti-alias filter circuit can be appropriately inserted in front of the AD converter. Further, after conversion to a digital value, a digital filter may be applied.

以下、本発明の示差屈折率計の具体的態様を図2から5を用いて説明する。   Hereinafter, specific embodiments of the differential refractometer of the present invention will be described with reference to FIGS.

図2は、
光源20および球面レンズ30からなる概ね平行光を生成する光源部と、
アパーチャ40と、
内部が平行光の光軸に対して傾斜した斜板で仕切られた、参照液と試料液を通過させるための二つの中空部を有するフローセル50と、
フローセルを透過した平行光の偏向を検出するための位置検出光センサ10と、
が当該順序で概ね直線に配置された、シングルパス方式の示差屈折率計において、シリンドリカルレンズ60を位置検出光センサ10とフローセル50との間に設けた態様を示す。光源20によって発せられた光はその直後に設けた球面レンズ30によって概ね平方光を生成した後、偏向方向と直交する方向に拡大したアパーチャ40を通過させる。アパーチャを通過した平行光は、フローセル50透過後、シリンドリカルレンズ60によって偏向方向と直交する方向に収束させ、位置検出光センサ10に照射する。図3は、図2のうち、シリンドリカルレンズ60をフローセル50のアパーチャ40側に設けた態様を示す。
FIG.
A light source unit configured to generate substantially parallel light including the light source 20 and the spherical lens 30;
Aperture 40,
A flow cell 50 having two hollow parts for allowing the reference liquid and the sample liquid to pass through, the interior of which is partitioned by a swash plate inclined with respect to the optical axis of the parallel light;
A position detection light sensor 10 for detecting the deflection of the parallel light transmitted through the flow cell;
Shows a mode in which a cylindrical lens 60 is provided between the position detection optical sensor 10 and the flow cell 50 in a single-pass differential refractometer arranged in a straight line in this order. The light emitted by the light source 20 generates square light by a spherical lens 30 provided immediately thereafter, and then passes through an aperture 40 expanded in a direction orthogonal to the deflection direction. After passing through the aperture, the parallel light passes through the flow cell 50, is converged in a direction orthogonal to the deflection direction by the cylindrical lens 60, and irradiates the position detection light sensor 10. FIG. 3 shows a mode in which the cylindrical lens 60 is provided on the aperture 40 side of the flow cell 50 in FIG. 2.

図4は、
光源20および球面レンズ30からなる概ね平行光を生成する光源部と、
アパーチャ40と、
内部が平行光の光軸に対して傾斜した斜板で仕切られた、参照液と試料液を通過させるための二つの中空部を有するフローセル50と、
フローセル50を透過した平行光を反射し再びフローセル50に平行光を透過させるためのミラー70と、
再びフローセル50を透過した(2回フローセル50を透過した)平行光の偏向を検出するための位置検出光センサ10と、
を備えた、いわゆるダブルパス方式の示差屈折率計において、シリンドリカルレンズ60を位置検出光センサ10とフローセル50との間に設けた態様を示す。光源20によって発せられた光は偏向方向と直交する方向に拡大したアパーチャ40を通過後、球面レンズ30を通過することで概ね平方光を生成する。球面レンズ30を通過した平行光は、フローセル50透過後、ミラー70によって反射し、再びフローセル50および球面レンズ30を通過する。球面レンズ30を通過した平行光は、シリンドリカルレンズ60を通過することで、さらに偏向方向と直交する方向に収束した後、位置検出光センサ10に照射される。図5は、図4のうち、球面レンズ30を光源20の直後に、シリンドリカルレンズ60をフローセル50のアパーチャ40側に、それぞれ設けた態様を示す。
FIG.
A light source unit configured to generate substantially parallel light including the light source 20 and the spherical lens 30;
Aperture 40,
A flow cell 50 having two hollow parts for allowing the reference liquid and the sample liquid to pass through, the interior of which is partitioned by a swash plate inclined with respect to the optical axis of the parallel light;
A mirror 70 for reflecting the parallel light transmitted through the flow cell 50 and transmitting the parallel light through the flow cell 50 again;
A position detection light sensor 10 for detecting the deflection of parallel light that has passed through the flow cell 50 again (passed through the flow cell 50 twice);
In the so-called double-pass differential refractometer including the above, a mode in which a cylindrical lens 60 is provided between the position detection optical sensor 10 and the flow cell 50 is shown. The light emitted by the light source 20 passes through the spherical lens 30 after passing through the aperture 40 expanded in the direction orthogonal to the deflection direction, thereby generating approximately square light. The parallel light that has passed through the spherical lens 30 passes through the flow cell 50, is reflected by the mirror 70, and passes through the flow cell 50 and the spherical lens 30 again. The parallel light that has passed through the spherical lens 30 passes through the cylindrical lens 60, and further converges in a direction orthogonal to the deflection direction, and is then applied to the position detection light sensor 10. FIG. 5 shows a mode in which the spherical lens 30 is provided immediately after the light source 20 and the cylindrical lens 60 is provided on the aperture 40 side of the flow cell 50 in FIG. 4.

本発明の示差屈折率計は、偏向方向に直交した方向に拡大したアパーチャを通過した平行光をシリンドリカルレンズにより偏向方向に直交した方向に収束させて、位置検出光センサにフローセルを透過した平行光を照射させている。よって、従来と同じ大きさの受光素子を用いた場合は、測定範囲に悪影響を及ぼすことなく、より多くの光量を位置検出光センサの受光素子に照射させることができ、光量が比較的少ない光源であっても、測定感度の高い示差屈折率計を提供することができる。一方、光量が十分な光源を使用した場合は、従来よりも小さな受光素子からなる位置検出光センサを用いることができるため、より安価に示差屈折率計を製造することができる。   The differential refractometer of the present invention converges parallel light that has passed through an aperture expanded in a direction orthogonal to the deflection direction in a direction orthogonal to the deflection direction by a cylindrical lens, and passes through the flow cell to the position detection light sensor. Is irradiated. Therefore, when a light receiving element of the same size as the conventional one is used, more light quantity can be irradiated to the light receiving element of the position detection light sensor without adversely affecting the measurement range, and the light source with relatively little light quantity Even so, it is possible to provide a differential refractometer with high measurement sensitivity. On the other hand, when a light source with a sufficient amount of light is used, a differential refractometer can be manufactured at a lower cost because a position detection optical sensor composed of a light receiving element smaller than the conventional one can be used.

本発明の示差屈折率計における位置検出光センサ10への照射位置13を、従来技術と比較して説明した図である。It is the figure explaining the irradiation position 13 to the position detection optical sensor 10 in the differential refractometer of this invention compared with the prior art. 本発明の示差屈折率計の一態様(シングルパス方式示差屈折率計において、フローセル50と位置検出光センサ10との間にシリンドリカルレンズ60を設けた態様)を示した構成図(側面図)である。FIG. 5 is a configuration diagram (side view) showing an aspect of the differential refractometer of the present invention (an aspect in which a cylindrical lens 60 is provided between the flow cell 50 and the position detection optical sensor 10 in the single-pass differential refractometer). is there. 本発明の示差屈折率計の別の態様(シングルパス方式示差屈折率計において。アパーチャ40とフローセル50との間にシリンドリカルレンズ60を設けた態様)を示した構成図(側面図)である。It is the block diagram (side view) which showed another aspect (The aspect which provided the cylindrical lens 60 between the aperture 40 and the flow cell 50 in the single-pass-type differential refractometer in the differential refractometer of this invention. 本発明の示差屈折率計の別の態様(ダブルパス方式示差屈折率計において、フローセル50と位置検出光センサ10との間にシリンドリカルレンズ60を設けた態様)を示した構成図(側面図)である。FIG. 6 is a configuration diagram (side view) showing another aspect of the differential refractometer of the present invention (an aspect in which a cylindrical lens 60 is provided between the flow cell 50 and the position detection optical sensor 10 in the double-pass differential refractometer). is there. 本発明の示差屈折率計の別の態様(ダブルパス方式示差屈折率計において、アパーチャ40とフローセル50との間にシリンドリカルレンズ60を設けた態様)を示した構成図(側面図)である。It is the block diagram (side view) which showed another aspect (The aspect which provided the cylindrical lens 60 between the aperture 40 and the flow cell 50 in the double pass system differential refractometer) of the differential refractometer of this invention. 実施例1において、本発明のシングルパス方式示差屈折率計(シリンドリカルレンズあり)とシリンドリカルレンズを用いない従来のシングルパス方式示差屈折率計との信号ベースラインの比較を表す図である。In Example 1, it is a figure showing the comparison of the signal base line of the single pass system differential refractometer (with a cylindrical lens) of this invention and the conventional single pass system differential refractometer which does not use a cylindrical lens.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to an Example.

実施例1
図2に示す、シリンドリカルレンズ60をフローセル50と位置検出光センサ10との間に設けたシングルパス方式示差屈折率計と、図2からシリンドリカルレンズ60を除いた従来の示差屈折率計とを用いて、それぞれの信号ベースラインを比較した。測定条件を下記に示す。
Example 1
A single-pass differential refractometer provided with a cylindrical lens 60 between the flow cell 50 and the position detection optical sensor 10 shown in FIG. 2 and a conventional differential refractometer excluding the cylindrical lens 60 from FIG. 2 are used. The signal baselines were compared. The measurement conditions are shown below.

測定条件:
溶離液/試料液:ともに純水
流速:試料液側/参照液側ともに0.2mL/分
カラム:試料液側/参照液側ともにダミーカラムφ0.1×2m×2個直列
ポンプ・カラム・検出器の設定温度:40℃
室内設定温度:25℃
それぞれの示差屈折率計を用いたときの、1分間の信号ベースライン変化を示したクロマトグラムを図6に示す。横軸は時間[分]、縦軸は屈折率単位[RIU]をそれぞれ示す。なお、明確な比較ができるよう縦軸の絶対値はずらしている(出力信号の絶対値に意味はなく、信号の振れ幅が有意な値である)。シリンドリカルレンズをさらに備えた本発明の示差屈折率計は、従来の示差屈折率計と比較してノイズが縮小しており、従来の示差屈折率計よりも高感度な検出が可能であることが確認された。
Measurement condition:
Eluent / sample liquid: both pure water Flow rate: 0.2 ml / min on both sample liquid side / reference liquid side Column: dia. 0.1 × 2m × 2 in series on both sample liquid side / reference liquid side Pump / column / detection Set temperature: 40 ℃
Indoor set temperature: 25 ° C
FIG. 6 shows a chromatogram showing the signal baseline change for 1 minute when each differential refractometer is used. The horizontal axis represents time [minutes], and the vertical axis represents refractive index units [RIU]. Note that the absolute value of the vertical axis is shifted so that a clear comparison can be made (the absolute value of the output signal is meaningless and the amplitude of the signal is a significant value). The differential refractometer of the present invention further provided with a cylindrical lens has reduced noise as compared with the conventional differential refractometer, and can be detected with higher sensitivity than the conventional differential refractometer. confirmed.

10:位置検出光センサ
11:受光素子
12:受光素子間ギャップ
13:照射位置
20:光源
30:球面レンズ
40:アパーチャ
50:フローセル
60:シリンドリカルレンズ
70:ミラー
DESCRIPTION OF SYMBOLS 10: Position detection light sensor 11: Light receiving element 12: Gap between light receiving elements 13: Irradiation position 20: Light source 30: Spherical lens 40: Aperture 50: Flow cell 60: Cylindrical lens 70: Mirror

Claims (3)

平行光を生成する光源部と、アパーチャと、内部が平行光の光軸に対して傾斜した斜板で仕切られた、参照液と試料液を通過させるための二つの中空部を有するフローセルと、フローセルを透過した平行光の偏向を検出するための受光素子を有する位置検出光センサと、位置検出光センサの出力信号から屈折率を演算する演算部と、を備えた示差屈折率計において、アパーチャの開口部が、位置検出光センサにおける受光素子に対し、照射位置が受光素子をはみ出るよう、平行光の偏向方向と直交する方向に拡大しており、
位置検出光センサにおける平行光の照射位置を前記受光素子内に収まるように偏向方向と直交する方向に収束可能なシリンドリカルレンズを、アパーチャとフローセルとの間、またはフローセルと位置検出光センサとの間に、さらに備えた、示差屈折率計。
A light source section that generates parallel light , an aperture, and a flow cell that is partitioned by a swash plate whose interior is inclined with respect to the optical axis of the parallel light, and has two hollow parts for allowing the reference liquid and the sample liquid to pass through; a position detecting optical sensor having a light receiving element for detecting the deflection of the collimated light transmitted through the flow cell, in a differential refractive index meter and a calculator for calculating the refractive index from the output signal of the position detection light sensor, the aperture Is expanded in a direction perpendicular to the direction of deflection of the parallel light so that the irradiation position protrudes from the light receiving element with respect to the light receiving element in the position detection light sensor.
A cylindrical lens that can be converged in a direction orthogonal to the deflection direction so that the irradiation position of the parallel light in the position detection light sensor is within the light receiving element is disposed between the aperture and the flow cell, or between the flow cell and the position detection light sensor. A differential refractometer further provided.
光源部とフローセルと位置検出光センサとが当該順序で概ね直線に配置された、請求項1に記載の示差屈折率計。 The differential refractometer according to claim 1, wherein the light source unit, the flow cell, and the position detection light sensor are arranged in a straight line in the order. フローセルを透過した平行光を反射し再びフローセルに平行光を透過させるためのミラーをさらに備え、位置検出光センサが再びフローセルを透過した平行光の偏向を検出するセンサである、請求項1に記載の示差屈折率計。 The mirror for reflecting the parallel light which permeate | transmitted the flow cell, and permeate | transmitting a parallel light again to a flow cell is further provided, and a position detection light sensor is a sensor which detects the deflection | deviation of the parallel light which permeate | transmitted the flow cell again. Differential refractometer.
JP2009261825A 2009-11-17 2009-11-17 Differential refractometer Active JP5482132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261825A JP5482132B2 (en) 2009-11-17 2009-11-17 Differential refractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261825A JP5482132B2 (en) 2009-11-17 2009-11-17 Differential refractometer

Publications (2)

Publication Number Publication Date
JP2011106944A JP2011106944A (en) 2011-06-02
JP5482132B2 true JP5482132B2 (en) 2014-04-23

Family

ID=44230591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261825A Active JP5482132B2 (en) 2009-11-17 2009-11-17 Differential refractometer

Country Status (1)

Country Link
JP (1) JP5482132B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069527A1 (en) * 2017-10-04 2019-04-11 株式会社島津製作所 Differential refractive index detector
WO2020078574A1 (en) * 2018-10-18 2020-04-23 Polymer Characterization, S.A. Deflection-type refractometer with extended measurement range
CN111337454B (en) * 2020-04-17 2022-09-23 湖南文理学院 Method for rapidly detecting solution concentration based on laser interference technology

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361139A (en) * 1991-06-07 1992-12-14 Shimamura Keiki Seisakusho:Yugen Device for detecting differential refractive index for liquid chromatography
JP3059619B2 (en) * 1993-11-25 2000-07-04 アルプス電気株式会社 Tilt detecting device and input device using the same

Also Published As

Publication number Publication date
JP2011106944A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
CN105784334B (en) Optical-fiber laser beam quality measurement method based on photodetector and CCD camera
US7423756B2 (en) Internally-calibrated, two-detector gas filter correlation radiometry (GFCR) system
CN105571834A (en) Measuring device of quantum efficiency of CCD device
CN103221802A (en) Spectrophotometer
CN102147234A (en) Laser triangulation sensor
WO2016170681A1 (en) Optical measurement device
CN110546487A (en) defect inspection apparatus and defect inspection method
JP2015049168A (en) Gas absorbance measuring device
JP5482132B2 (en) Differential refractometer
US20150177160A1 (en) Non-Imaging Coherent Line Scanner Systems and Methods for Optical Inspection
JP5976750B2 (en) Transparent substrate surface pattern defect measuring device
JP2008064594A (en) Turbidimeter
JP5309785B2 (en) Differential refractometer
KR100474864B1 (en) Method for measuring light transmittance and apparatus therefor
US20070076192A1 (en) Differential refractometer and its adjusting method
IT201900006954A1 (en) DEVICE FOR THE ANALYSIS OF THE GAS COMPOSITION, AND RELATIVE METHOD OF ANALYSIS OF THE GAS COMPOSITION.
US7460235B2 (en) Two-detector gas filter correlation radiometry (GFCR) system using two-dimensional array detection of defocused image and detected-signal summation
KR101911601B1 (en) Optical rangefinder
JPH0617870B2 (en) Differential Refractive Index Detector for Liquid Chromatography
JP2015068754A (en) Detector for liquid chromatograph
JP2009281958A (en) Differential refractometer
CN215953339U (en) Detector of glycosylated hemoglobin analyzer
JP2010025905A (en) Differential refractive index meter
JP2009294112A (en) Differential refractometer
EP3511699B1 (en) Refractometer apparatus and method for optically measuring a refractive index difference

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R151 Written notification of patent or utility model registration

Ref document number: 5482132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151