JP5481154B2 - Electromagnetic applied densitometer - Google Patents

Electromagnetic applied densitometer Download PDF

Info

Publication number
JP5481154B2
JP5481154B2 JP2009240436A JP2009240436A JP5481154B2 JP 5481154 B2 JP5481154 B2 JP 5481154B2 JP 2009240436 A JP2009240436 A JP 2009240436A JP 2009240436 A JP2009240436 A JP 2009240436A JP 5481154 B2 JP5481154 B2 JP 5481154B2
Authority
JP
Japan
Prior art keywords
measured
concentration
microwave
capacitance
densitometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009240436A
Other languages
Japanese (ja)
Other versions
JP2011085550A (en
Inventor
英雄 金塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009240436A priority Critical patent/JP5481154B2/en
Publication of JP2011085550A publication Critical patent/JP2011085550A/en
Application granted granted Critical
Publication of JP5481154B2 publication Critical patent/JP5481154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、静電容量の変化に基づいて被測定液体の濃度を測定する静電容量式濃度計及びマイクロ波の伝播時間遅れに基づいて被測定液体の濃度を測定するマイクロ波式濃度計を有し、特に、被測定液体に気泡が混入した場合の濃度の測定誤差を軽減するように改良した電磁気応用濃度計に関する。   The present invention relates to a capacitance type concentration meter that measures the concentration of a liquid to be measured based on a change in capacitance and a microwave concentration meter that measures the concentration of a liquid to be measured based on a propagation time delay of the microwave. In particular, the present invention relates to an electromagnetic application densitometer improved so as to reduce a measurement error of concentration when bubbles are mixed in a liquid to be measured.

従来、電磁気を応用して液体中の懸濁物質や溶解性物質を含む被測定液体の濃度を測定する方式として、透過光減衰率や散乱光増加率等に基づいて、被測定液体の濃度を測定する光学式濃度計が考案されている。   Conventionally, as a method of measuring the concentration of a liquid to be measured including suspended substances and soluble substances in the liquid by applying electromagnetic, the concentration of the liquid to be measured is determined based on the transmitted light attenuation rate, the scattered light increase rate, etc. An optical densitometer to measure has been devised.

また、静電容量の変化に基づいて被測定液体の濃度を測定する静電容量式濃度計やマイクロ波の伝播時間遅れに基づいて被測定液体の濃度を測定するマイクロ波式濃度計が考案されている。   In addition, a capacitance type densitometer that measures the concentration of the liquid to be measured based on the change in capacitance and a microwave type densitometer that measures the concentration of the liquid to be measured based on the propagation time delay of the microwave have been devised. ing.

図6は従来の静電容量式濃度計の構成図である。図6において、配管1の内部には、電極2と電極2に対向して配置された電極3による電極対が配管1の長手方向に沿って取り付けられている。静電容量測定回路6は、伝送ケーブル4と伝送ケーブル5とを介して電極2と電極3の電極対の電極間に電界を発生させ、電極2と電極3の電極対の電極間に貯まる電荷を測定することにより、被測定流体の濃度に応じた静電容量を得る。静電容量測定回路6で得られた静電容量信号は、濃度演算回路7に入力され、濃度に変換される。   FIG. 6 is a configuration diagram of a conventional capacitance densitometer. In FIG. 6, an electrode pair composed of an electrode 2 and an electrode 3 disposed opposite to the electrode 2 is attached inside the pipe 1 along the longitudinal direction of the pipe 1. The capacitance measuring circuit 6 generates an electric field between the electrodes of the electrode 2 and the electrode 3 via the transmission cable 4 and the transmission cable 5, and charges accumulated between the electrodes of the electrode 2 and the electrode 3. Is measured to obtain a capacitance according to the concentration of the fluid to be measured. The capacitance signal obtained by the capacitance measurement circuit 6 is input to the concentration calculation circuit 7 and converted into a concentration.

この静電容量式濃度計は次の測定原理に基づいている。被測定液体中の懸濁物質または溶解性物質の濃度が変化すると、被測定液体全体としての誘電率が変化する。電極2,3間を通過する被測定液の誘電率が変化すると、電極2,3間の静電容量が変化する。この静電容量の変化に基づき静電容量式濃度計は、濃度の測定を行うことができる。   This capacitance type densitometer is based on the following measurement principle. When the concentration of the suspended substance or soluble substance in the liquid to be measured changes, the dielectric constant of the entire liquid to be measured changes. When the dielectric constant of the liquid to be measured passing between the electrodes 2 and 3 changes, the capacitance between the electrodes 2 and 3 changes. Based on this change in capacitance, the capacitance densitometer can measure the concentration.

図7は従来のマイクロ波式濃度計の構成図である(特許文献1)。マイクロ波式濃度計は、マイクロ波発振器8から発振されたマイクロ波がパワースプリッタ9により基準系経路と、測定系経路とに分配される。   FIG. 7 is a configuration diagram of a conventional microwave densitometer (Patent Document 1). In the microwave densitometer, the microwave oscillated from the microwave oscillator 8 is distributed by the power splitter 9 to the reference system path and the measurement system path.

まず、基準系経路を通るマイクロ波は、伝送ケーブル10を介して位相差測定回路14に入力される。一方、測定系経路を通るマイクロ波は、配管11内に取り付けられたマイクロ波の送信アンテナ12を介して入射する。配管11内を流れる被測定液体中を通過したマイクロ波は、配管11内に対向して取り付けられたマイクロ波の受信アンテナ13で受信され、受信された信号は受信アンテナ13から位相差測定回路14に入力される。   First, the microwave passing through the reference system path is input to the phase difference measurement circuit 14 via the transmission cable 10. On the other hand, the microwave passing through the measurement system path is incident via a microwave transmission antenna 12 mounted in the pipe 11. The microwaves that have passed through the liquid to be measured flowing in the pipe 11 are received by the microwave receiving antenna 13 that is mounted facing the pipe 11, and the received signal is transmitted from the receiving antenna 13 to the phase difference measuring circuit 14. Is input.

また、被測定液体は、濃度ゼロ(又は基準値)の濃度基準用液体と、濃度xの被測定用液体との2種類があり、それぞれ個別に配管に流されて、位相遅れθ1及びθ2が測定される。   There are two types of liquids to be measured: a concentration reference liquid having a zero concentration (or reference value) and a liquid to be measured having a concentration x, and the liquids are individually flowed through the pipes, and phase delays θ1 and θ2 are generated. Measured.

すなわち、位相差測定回路14は、マイクロ波発振器8から伝送ケーブル10等を経由して直接受信するマイクロ波を位相基準とし、これに対して配管11内に濃度の被測定用液体を充填して流したときのマイクロ波の位相遅れθ2を測定し、配管11内に濃度基準用液体(例えば、濃度ゼロとみなせる水道水)を充填して流したときのマイクロ波の位相遅れに起因する位相差θ1を測定し、θ2とθ1とを比較し、位相差Δθ=(θ2−θ1)を求めて濃度演算回路15に送出する。   That is, the phase difference measurement circuit 14 uses the microwave directly received from the microwave oscillator 8 via the transmission cable 10 or the like as a phase reference, and fills the pipe 11 with a liquid to be measured with a concentration. The phase delay θ2 of the microwave when measured by measuring the phase delay θ2 of the microwave when flowing and filling the pipe 11 with a concentration reference liquid (for example, tap water that can be regarded as zero concentration). θ1 is measured, θ2 and θ1 are compared, and a phase difference Δθ = (θ2-θ1) is obtained and sent to the concentration calculation circuit 15.

濃度演算回路15は、この位相差Δθ及び予め校正された検量線に基づいて、被測定用液体の濃度を算出する。   The concentration calculation circuit 15 calculates the concentration of the liquid to be measured based on the phase difference Δθ and a calibration curve calibrated in advance.

このマイクロ波式濃度計は次のような原理に基づいている。すなわち、被測定用液体中の懸濁物質または溶解性物質の濃度が変化すると、被測定液体全体としての誘電率、導電率が変化する。誘電率、導電率が変化すると、被測定用液体中を伝播するマイクロ波の速度が変化する。   This microwave densitometer is based on the following principle. That is, when the concentration of the suspended substance or soluble substance in the liquid to be measured changes, the dielectric constant and conductivity of the entire liquid to be measured change. When the dielectric constant and conductivity change, the speed of the microwave propagating through the liquid to be measured changes.

ここで、マイクロ波式濃度計は、この濃度変化によるマイクロ波の速度変化を位相の変化として測定し、その位相変化の位相差△θが濃度に比例するという原理に基づいて被測定液体の濃度を測定している。   Here, the microwave densitometer measures the change in the microwave velocity due to the change in concentration as a change in phase, and the concentration of the liquid to be measured based on the principle that the phase difference Δθ of the change in phase is proportional to the concentration. Is measuring.

特開2000−258362号公報JP 2000-258362 A

図6に示す従来の静電容量式濃度計においては、被測定流体の誘電率変化を測定する電極対は、電極2と電極3とに示すように、棒状あるいは、平行平板状の電極対を被測定液が流れる測定管内に挿入する形態がとられていた。しかしながら、このような形態では、被測定液が電極対を通過する際に、電極対により被測定液の流れが妨げられるという問題がある。   In the conventional capacitance type densitometer shown in FIG. 6, the electrode pair for measuring the change in the dielectric constant of the fluid to be measured is a rod-like or parallel plate-like electrode pair as shown by the electrode 2 and the electrode 3. It was configured to be inserted into a measurement tube through which the liquid to be measured flows. However, in such a configuration, there is a problem that when the liquid to be measured passes through the electrode pair, the flow of the liquid to be measured is hindered by the electrode pair.

また、静電容量式濃度計における気泡の影響は、例えば、光学式あるいは、超音波式と比較して少ないが、気泡混入による誘電率変化がそのまま濃度指示値に影響を与えるという問題がある。   In addition, although the influence of bubbles in the capacitance type densitometer is less than that of, for example, an optical type or an ultrasonic type, there is a problem that a change in dielectric constant due to mixing of bubbles directly affects the concentration indication value.

さらに、マイクロ波濃度計においては、気泡混入による誘電率の減少によるマイクロ波の伝播時間の減少分に対して、気泡と被測定液の境界面におけるマイクロ波の屈折散乱による伝播時間の増大分が相殺されるため、静電容量式より気泡混入の影響は少ないが、濃度指示値に影響を与えるという問題がある。   Furthermore, in the microwave densitometer, the increase in propagation time due to refraction and scattering of microwaves at the interface between the bubble and the liquid to be measured is smaller than the decrease in propagation time of the microwave due to the decrease in the dielectric constant due to bubble mixing. Since they are canceled out, the influence of air bubbles is less than that of the capacitance type, but there is a problem of affecting the density instruction value.

本発明の課題は、電極対により被測定液の流れが妨げられることなく、気泡の混入による濃度測定値への影響を軽減することができる電磁気応用濃度計を提供することにある。   An object of the present invention is to provide an electromagnetic application densitometer that can reduce the influence on the concentration measurement value due to mixing of bubbles without obstructing the flow of the liquid to be measured by the electrode pair.

上記課題を解決するために、第1の発明は、環状の1対の電極対と、前記電極対の環状内を通過する被測定流体の濃度変化に伴う誘電率変化を前記電極対の電極間の静電容量変化として測定する静電容量測定回路と、マイクロ波発振器から直接受信するマイクロ波を位相基準とし、配管内に前記被測定流体を充填して流したときのマイクロ波の位相遅れと前記配管内に濃度基準用流体を充填して流したときのマイクロ波の位相遅れとの位相差を測定する位相差測定回路と、前記静電容量測定回路からの前記電極対の電極間の静電容量変化に基づき測定された前記被測定流体の濃度測定値と前記位相差測定回路からのマイクロ波の位相差に基づき測定された前記被測定流体の濃度測定値との差により前記被測定流体内の気泡の影響を補正する濃度演算回路とを備えることを特徴とする。   In order to solve the above-mentioned problem, the first invention relates to an annular pair of electrodes and a change in dielectric constant accompanying a change in concentration of a fluid to be measured passing through the annular portion of the pair of electrodes. A capacitance measurement circuit for measuring the capacitance change of the microwave, and a microwave phase delay when the fluid to be measured is filled in the pipe and flowed with the microwave directly received from the microwave oscillator as a phase reference A phase difference measuring circuit for measuring a phase difference from a phase delay of the microwave when the pipe is filled with a concentration reference fluid, and a static electricity between the electrodes of the electrode pair from the capacitance measuring circuit; The measured fluid is determined by a difference between a measured concentration value of the measured fluid measured based on a change in capacitance and a measured concentration value of the measured fluid measured based on the phase difference of the microwave from the phase difference measuring circuit. To correct the effect of air bubbles inside Characterized in that it comprises a calculation circuit.

第1の発明によれば、電極対により被測定液の流れが妨げられることなく、気泡混入による濃度測定値の影響を軽減できる高精度な電磁気応用濃度計を提供できる。   According to the first aspect of the present invention, it is possible to provide a highly accurate electromagnetic applied densitometer that can reduce the influence of the concentration measurement value due to mixing of bubbles without hindering the flow of the liquid to be measured by the electrode pair.

本発明の実施例1の電磁気応用濃度計の構成図である。It is a block diagram of the electromagnetic application densitometer of Example 1 of this invention. 本発明の実施例1の環状電極対を説明する図である。It is a figure explaining the annular electrode pair of Example 1 of this invention. 本発明の実施例1の環状電極対の作用を説明する図である。It is a figure explaining the effect | action of the annular electrode pair of Example 1 of this invention. 本発明の実施例1の気泡混入時の比誘電率変化に基づく濃度指示値とマイクロ波濃度計の濃度指示値の比較グラフである。It is a comparison graph of the density | concentration instruction | indication value based on the dielectric constant change at the time of bubble mixing of Example 1 of this invention, and the density | concentration instruction | indication value of a microwave densitometer. 本発明の実施例2の電磁気応用濃度計の構成図である。It is a block diagram of the electromagnetic application densitometer of Example 2 of this invention. 従来の静電容量形濃度計の構成図である。It is a block diagram of the conventional electrostatic capacitance type densitometer. 従来のマイクロ波濃度計の構成図である。It is a block diagram of the conventional microwave densitometer.

以下、本発明の電磁気応用濃度計の実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of an electromagnetic application densitometer of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施例1の電磁気応用濃度計の構成図である。電磁気応用濃度計は、環状電極21、環状電極22、静電容量測定回路6、マイクロ波発振器17、パワースプリッタ18、伝送ケーブル19、送信アンテナ23、受信アンテナ24、位相差測定回路29、濃度演算回路30を有している。   FIG. 1 is a configuration diagram of an electromagnetic application densitometer according to Embodiment 1 of the present invention. The electromagnetic application densitometer includes an annular electrode 21, an annular electrode 22, a capacitance measuring circuit 6, a microwave oscillator 17, a power splitter 18, a transmission cable 19, a transmitting antenna 23, a receiving antenna 24, a phase difference measuring circuit 29, and a concentration calculation. A circuit 30 is included.

まず、静電容量式濃度測定について説明する。配管16の内部には、環状電極21と環状電極21に対向して配置された環状電極22とによる電極対(第1電極対)が、配管16の長手方向に対して略直交して取り付けられている。   First, capacitance type concentration measurement will be described. Inside the pipe 16, an electrode pair (first electrode pair) including an annular electrode 21 and an annular electrode 22 disposed so as to face the annular electrode 21 is attached substantially perpendicularly to the longitudinal direction of the pipe 16. ing.

静電容量測定回路6は、伝送ケーブル25と伝送ケーブル27とを介して環状電極21と環状電極22との電極対の電極間に電界を発生させ、環状電極21と環状電極22との電極対の電極間に貯まる電荷を測定することにより、被測定流体の濃度に応じた静電容量を得る。静電容量測定回路28で得られた静電容量信号は、濃度演算回路30に入力され、濃度に変換される。   The capacitance measuring circuit 6 generates an electric field between the electrodes of the annular electrode 21 and the annular electrode 22 via the transmission cable 25 and the transmission cable 27, and the electrode pair of the annular electrode 21 and the annular electrode 22. By measuring the charge accumulated between the electrodes, a capacitance corresponding to the concentration of the fluid to be measured is obtained. The capacitance signal obtained by the capacitance measurement circuit 28 is input to the concentration calculation circuit 30 and converted into a concentration.

次にマイクロ波濃度測定について説明する。マイクロ波発振器17から発振されたマイクロ波がパワースプリッタ18により基準系経路と、測定系経路とに分配される。   Next, microwave concentration measurement will be described. The microwave oscillated from the microwave oscillator 17 is distributed by the power splitter 18 to the reference system path and the measurement system path.

まず、基準系経路を通るマイクロ波は、伝送ケーブル19を介して位相差測定回路29に入力される。一方、測定系経路を通るマイクロ波は、配管16内に取り付けられたマイクロ波の送信アンテナ23を介して入射する。配管16内を流れる被測定液体中を通過したマイクロ波は、配管16内に対向して取り付けられたマイクロ波の受信アンテナ24で受信され、受信された信号は受信アンテナ24から位相差測定回路29に入力される。   First, the microwave passing through the reference system path is input to the phase difference measurement circuit 29 via the transmission cable 19. On the other hand, the microwave passing through the measurement system path enters through a microwave transmission antenna 23 attached in the pipe 16. The microwave that has passed through the liquid to be measured flowing in the pipe 16 is received by the microwave receiving antenna 24 that is mounted facing the pipe 16, and the received signal is received from the receiving antenna 24 by the phase difference measuring circuit 29. Is input.

また、被測定液体は、濃度ゼロ(又は基準値)の濃度基準用液体と、濃度xの被測定用液体との2種類があり、それぞれ個別に配管に流されて、位相遅れθ1及びθ2が測定される。   There are two types of liquids to be measured: a concentration reference liquid having a zero concentration (or reference value) and a liquid to be measured having a concentration x, and the liquids are individually flowed through the pipes, and phase delays θ1 and θ2 are generated. Measured.

すなわち、位相差測定回路29は、マイクロ波発振器17から伝送ケーブル19等を経由して直接受信するマイクロ波を位相基準とし、これに対して配管16内に濃度の被測定用液体を充填して流したときのマイクロ波の位相遅れθ2を測定し、配管16内に濃度基準用液体(例えば、濃度ゼロとみなせる水道水)を充填して流したときのマイクロ波の位相遅れに起因する位相差θ1を測定し、θ2とθ1とを比較し、位相差Δθ=(θ2−θ1)を求めて濃度演算回路30に送出する。   That is, the phase difference measuring circuit 29 uses the microwave directly received from the microwave oscillator 17 via the transmission cable 19 or the like as a phase reference, and fills the pipe 16 with a liquid to be measured with a concentration. The phase delay θ2 of the microwave when measured by measuring the phase delay θ2 of the microwave when flowing and filling the pipe 16 with a concentration reference liquid (for example, tap water that can be regarded as zero concentration). θ1 is measured, θ2 and θ1 are compared, and a phase difference Δθ = (θ2-θ1) is obtained and sent to the concentration calculation circuit 30.

濃度演算回路30は、この位相差Δθ及び予め校正された検量線に基づいて、被測定用液体の濃度を算出する。濃度演算回路30は、静電容量変化に基づいて算出した濃度指示値とマイクロ波の位相差に基づいて算出した濃度指示値との間に差がある場合、気泡混入と判断して、気泡の影響を取り除いた濃度を算出する。   The concentration calculation circuit 30 calculates the concentration of the liquid to be measured based on the phase difference Δθ and a calibration curve calibrated in advance. When there is a difference between the concentration instruction value calculated based on the capacitance change and the concentration instruction value calculated based on the phase difference of the microwave, the concentration calculation circuit 30 determines that bubbles are mixed and Calculate the concentration without the influence.

次にこのように構成された実施例1の電磁気応用濃度計の動作を説明する。まず、図2に示す環状電極21,22によって構成された環状電極対の環内を被測定液が通過することにより、静電容量式濃度計の電極対が被測液の流れを妨げる問題を解決することができる。   Next, the operation of the electromagnetic applied densitometer of Example 1 configured as described above will be described. First, there is a problem that the electrode pair of the capacitance type densitometer obstructs the flow of the liquid to be measured when the liquid to be measured passes through the ring of the annular electrode pair constituted by the annular electrodes 21 and 22 shown in FIG. Can be solved.

環状電極対21,22の電極間に電界をかけた場合、環状電極対21,22の断面での電界の流れは、図3に示すようになる。環状電極対21,22の電極の環内に誘電体が満たされた場合、電界の流れに沿って誘電分極が発生するので、環状電極対21,22の電極間の静電容量が変化することになる。すなわち、環状電極21,22の環内においても誘電率変化を検出できることになる。   When an electric field is applied between the electrodes of the annular electrode pair 21, 22, the flow of the electric field in the cross section of the annular electrode pair 21, 22 is as shown in FIG. When a dielectric is filled in the ring of the electrodes of the annular electrode pair 21 and 22, dielectric polarization occurs along the flow of the electric field, so that the capacitance between the electrodes of the annular electrode pair 21 and 22 changes. become. That is, a change in dielectric constant can be detected even in the annular electrodes 21 and 22.

また、環状電極対21,22の電極の環内に誘電体が満たされた場合の電極間の静電容量は、次のように概算される。   The capacitance between the electrodes when the dielectric is filled in the ring of the electrodes of the annular electrode pairs 21 and 22 is estimated as follows.

比誘電率εsの誘電体内における直径a,導線の中心間距離dの平行導線間の単位長さあたりの静電容量C0は、次の式で表わされる。

Figure 0005481154
A capacitance C 0 per unit length between parallel conductors having a diameter a and a distance d between the centers of conductors in a dielectric body having a relative dielectric constant ε s is expressed by the following equation.
Figure 0005481154

D≫d≫aの場合、直径Dの平行円環状電極対の電極間の静電容量Crは、次の式で表わされる。

Figure 0005481154
In the case of D >> d >> a, the capacitance Cr between the electrodes of the parallel annular electrode pair having a diameter D is expressed by the following equation.
Figure 0005481154

D≫d≫aで、平行円環電極対の電極環内に比誘電率εsriの誘電体で満たされ、電極環外に比誘電率εsroの誘電体で満たされる場合、直径Dの平行円環状電極対の電極間の静電容量Crは、次の式で表わされる。

Figure 0005481154
When D >> d >> a and the electrode ring of the parallel ring electrode pair is filled with a dielectric having a relative dielectric constant ε sri and outside the electrode ring is filled with a dielectric having a relative dielectric constant ε sro , the diameter D is parallel. The capacitance Cr between the electrodes of the annular electrode pair is expressed by the following equation.
Figure 0005481154

式3より例えば、D=100mm、d=3mm、a=0.3mmの場合、
電極環外が空気、電極環内が水で満たされている場合の静電容量Crは、約160pFとなる。
From Equation 3, for example, when D = 100 mm, d = 3 mm, and a = 0.3 mm,
The electrostatic capacity Cr when the outside of the electrode ring is filled with air and the inside of the electrode ring is filled with water is about 160 pF.

また、電極環外が空気、電極環内が水に対してエタノール濃度10%(重量)の被測定液で満たされている場合、電極環内の被測定液の比誘電率εsriは、約74.6となるので、静電容量Crは、約150pFとなる。これは、上記形状の環状電極対21,22の電極間の静電容量の変化により濃度を計測できることを示している。 In addition, when the outside of the electrode ring is filled with air to be measured and the liquid to be measured is filled with a measured liquid having an ethanol concentration of 10% (weight) with respect to water, the relative dielectric constant ε sri of the measured liquid in the electrode ring is about Since 74.6, the capacitance Cr is about 150 pF. This indicates that the concentration can be measured by a change in capacitance between the electrodes of the annular electrode pair 21 and 22 having the above-described shape.

また、気泡の混入による測定値への影響は、次の方法により軽減することができる。前述のとおりマイクロ波濃度計は、被測定液に気泡が混入した場合、気泡混入による誘電率の減少によるマイクロ波の伝播時間の減少分に対して、気泡と被測定液の境界面におけるマイクロ波の屈折散乱による伝播時間の増大分が相殺される。   Moreover, the influence on the measurement value by mixing of bubbles can be reduced by the following method. As described above, when bubbles are mixed into the liquid to be measured, the microwave densitometer measures the microwave at the interface between the bubble and the liquid to be measured against the decrease in the propagation time of the microwave due to the decrease in the dielectric constant due to the mixing of bubbles. The increase in propagation time due to the refraction scattering of is canceled out.

このため、気泡混入による誘電率変化が直接、濃度指示値に影響が発生する静電容量式濃度計と異なる濃度指示値を示す。つまり、気泡の形状が同一ならば、静電容量式濃度計とマイクロ波濃度計との濃度指示値の差より一意に気泡混入量が決まる。   For this reason, a change in dielectric constant due to bubble mixing directly indicates a concentration instruction value different from that of a capacitance type densitometer that directly affects the concentration instruction value. That is, if the shape of the bubble is the same, the bubble mixing amount is uniquely determined from the difference in the concentration instruction value between the capacitance densitometer and the microwave densitometer.

このように、実施例1の電磁気応用濃度計によれば、環状電極21と環状電極22とで構成される環状電極対により被測定液の流れを妨げずに静電容量測定による濃度測定を行い、同時にマイクロ波による濃度測定も行い、静電容量測定による濃度測定値とマイクロ波による濃度測定値を比較して気泡混入を検出して、気泡混入による濃度指示値の影響を補正するので、被測定用液体に気泡が混入しても、測定誤差の影響を軽減することができる。   Thus, according to the electromagnetic application densitometer of Example 1, concentration measurement is performed by capacitance measurement without interfering with the flow of the liquid to be measured by the annular electrode pair constituted by the annular electrode 21 and the annular electrode 22. At the same time, the concentration measurement using microwaves is performed, and the concentration measurement value obtained by capacitance measurement is compared with the concentration measurement value obtained by microwave detection to detect bubble contamination and correct the influence of the concentration indication value due to bubble contamination. Even if bubbles are mixed in the measurement liquid, the influence of measurement errors can be reduced.

図4は本発明の実施例1の気泡混入時の比誘電率変化に基づく濃度指示値(理論値)とマイクロ波濃度計の濃度指示値(実測値)との比較グラフであり、横軸は気泡含有率(容量%)を示し、縦軸は濃度指示値を示す。   FIG. 4 is a comparison graph between a concentration indication value (theoretical value) based on a change in relative permittivity when bubbles are mixed in Example 1 of the present invention and a concentration indication value (actual measurement value) of a microwave densitometer, and the horizontal axis is the horizontal axis. The bubble content (volume%) is shown, and the vertical axis shows the concentration indication value.

実際の実験でも、図4に示すように、水に対して体積比で1%の気泡が混入した場合の濃度指示値の変動は、理論値約0.96%から実測値約0.58%となるので、マイクロ波濃度計の方が静電容量濃度計よりも30〜40%少ないという結果が得られている。これにより、マイクロ波濃度計と静電容量濃度計の濃度指示値の差に基づいて気泡混入の影響を補正可能なことが示される。   In an actual experiment, as shown in FIG. 4, the fluctuation of the concentration indication value when air bubbles of 1% in volume ratio with respect to water are mixed is about 0.96% from the theoretical value to about 0.58% actually measured value. Therefore, the result that the microwave densitometer is 30 to 40% less than the capacitance densitometer is obtained. Thereby, it is shown that the influence of mixing of bubbles can be corrected based on the difference between the concentration instruction values of the microwave densitometer and the capacitance densitometer.

図5は本発明の実施例2の電磁気応用濃度計の構成図である。図5に示す実施例2の電磁気応用濃度計は、図1に示す実施例1の電磁気応用濃度計に対して、さらに、環状電極20を追加したものである。   FIG. 5 is a configuration diagram of an electromagnetic application densitometer according to Example 2 of the present invention. The electromagnetic applied densitometer of Example 2 shown in FIG. 5 is obtained by adding an annular electrode 20 to the electromagnetic applied densitometer of Example 1 shown in FIG.

配管16の内部には、環状電極21に対向して環状電極20が配置され、環状電極20と環状電極21とで第2電極対を構成している。環状電極20と環状電極21間の間隔d1と環状電極21と環状電極22間との間隔d2とは、異なる。この間隔d1と間隔d2とを夫々変えて、環状電極21を共用することにより静電容量の異なる2対の環状電極対が構成されている。   An annular electrode 20 is disposed inside the pipe 16 so as to face the annular electrode 21, and the annular electrode 20 and the annular electrode 21 constitute a second electrode pair. An interval d1 between the annular electrode 20 and the annular electrode 21 and an interval d2 between the annular electrode 21 and the annular electrode 22 are different. By changing the distance d1 and the distance d2 to share the annular electrode 21, two annular electrode pairs having different capacitances are formed.

また、伝送ケーブル25,26,27の長さ及び電気的性質は、全て同一性を有するものとする。この場合には、静電容量の異なる2対の環状電極対で測定された静電容量の差を求めることにより、温度による容量変化の影響を排除することができる。これにより、温度の変動を受け難い静電容量式濃度測定が行える。   The lengths and electrical properties of the transmission cables 25, 26, and 27 are all identical. In this case, the influence of the capacitance change due to temperature can be eliminated by obtaining the difference between the capacitances measured by the two pairs of annular electrodes having different capacitances. As a result, it is possible to perform capacitance-type concentration measurement that is less susceptible to temperature fluctuations.

本発明は、濃度計に適用可能である。   The present invention is applicable to a densitometer.

2,3 電極
20,21,22 環状電極
4,5,25,26,27 伝送ケーブル
8,17 マイクロ波発振器
9,18 パワースプリッタ
10,19 マイクロ波送信ケーブル
1,11,16 配管
12,23 送信アンテナ
13,24 受信アンテナ
14,29 位相差測定回路
6,28 静電容量測定回路
7,15,30 濃度演算回路
2,3 electrode 20,21,22 annular electrode 4,5,25,26,27 transmission cable 8,17 microwave oscillator 9,18 power splitter 10,19 microwave transmission cable 1,11,16 pipe 12,23 transmission Antennas 13, 24 Receiving antennas 14, 29 Phase difference measuring circuits 6, 28 Capacitance measuring circuits 7, 15, 30 Density calculation circuit

Claims (1)

環状の1対の電極対と、
前記電極対の環状内を通過する被測定流体の濃度変化に伴う誘電率変化を前記電極対の電極間の静電容量変化として測定する静電容量測定回路と、
マイクロ波発振器から直接受信するマイクロ波を位相基準とし、配管内に前記被測定流体を充填して流したときのマイクロ波の位相遅れと前記配管内に濃度基準用流体を充填して流したときのマイクロ波の位相遅れとの位相差を測定する位相差測定回路と、
前記静電容量測定回路からの前記電極対の電極間の静電容量変化に基づき測定された前記被測定流体の濃度測定値と前記位相差測定回路からのマイクロ波の位相差に基づき測定された前記被測定流体の濃度測定値との差により前記被測定流体内の気泡の影響を補正する濃度演算回路と、
を備えることを特徴とする電磁気応用濃度計。
An annular pair of electrodes;
A capacitance measuring circuit for measuring a change in dielectric constant accompanying a change in concentration of a fluid to be measured passing through the ring of the electrode pair as a capacitance change between the electrodes of the electrode pair;
When the microwave received directly from the microwave oscillator is used as the phase reference, the phase delay of the microwave when the fluid to be measured is filled in and flowed in the pipe, and the concentration reference fluid is filled and flowed in the pipe A phase difference measuring circuit for measuring a phase difference from the phase delay of the microwave of
Measured based on the measured concentration of the fluid to be measured measured based on the capacitance change between the electrodes of the electrode pair from the capacitance measuring circuit and the phase difference of the microwave from the phase difference measuring circuit. A concentration calculation circuit for correcting the influence of bubbles in the measured fluid by the difference from the measured concentration value of the measured fluid;
An electromagnetic application densitometer characterized by comprising:
JP2009240436A 2009-10-19 2009-10-19 Electromagnetic applied densitometer Expired - Fee Related JP5481154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009240436A JP5481154B2 (en) 2009-10-19 2009-10-19 Electromagnetic applied densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009240436A JP5481154B2 (en) 2009-10-19 2009-10-19 Electromagnetic applied densitometer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013262414A Division JP2014052392A (en) 2013-12-19 2013-12-19 Electromagnetic application concentration meter

Publications (2)

Publication Number Publication Date
JP2011085550A JP2011085550A (en) 2011-04-28
JP5481154B2 true JP5481154B2 (en) 2014-04-23

Family

ID=44078588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009240436A Expired - Fee Related JP5481154B2 (en) 2009-10-19 2009-10-19 Electromagnetic applied densitometer

Country Status (1)

Country Link
JP (1) JP5481154B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064013A (en) * 2018-10-18 2020-04-23 Simplex Quantum株式会社 Piping, piping system, and piping management method
CN116539677B (en) * 2023-05-11 2024-02-06 南京钜力智能制造技术研究院有限公司 Capacitive calcium hydroxide online concentration analyzer and concentration analysis method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146141A (en) * 1981-03-04 1982-09-09 Kenseishiya:Kk Air bubble detector
JP3139874B2 (en) * 1993-03-30 2001-03-05 株式会社東芝 Densitometer
JP3629252B2 (en) * 2002-05-17 2005-03-16 東芝Itコントロールシステム株式会社 Microwave concentration measuring device
JP2005030948A (en) * 2003-07-07 2005-02-03 Sony Corp Concentration measuring apparatus, and concentration measuring method
JP4171811B2 (en) * 2003-07-30 2008-10-29 保佑 若林 Dielectric constant alcohol concentration meter
JP2005083821A (en) * 2003-09-05 2005-03-31 Toshiba Corp Microwave densitometer
JP2007526462A (en) * 2004-03-05 2007-09-13 アジレント・テクノロジーズ・インク Non-contact detection cell with reduced detection channel cross section
JP2008122204A (en) * 2006-11-10 2008-05-29 Hitachi High-Tech Science Systems Corp Medical photometer

Also Published As

Publication number Publication date
JP2011085550A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
CN100439870C (en) A method and flow meter for determining the flow rates of a multiphase fluid
RU2418269C2 (en) Method and apparatus for tomographic measurement of multiphase flow
RU2499229C2 (en) Method and apparatus for determining composition and flow rate of wet gas
CA2891325C (en) A method and apparatus for multiphase flow measurements in the presence of pipe-wall deposits
US9588071B2 (en) Multiphase meter
US10359372B2 (en) Conductivity measurements
EP2350575A1 (en) Viscous fluid flow measurement using a differential pressure measurement and a sonar measured velocity
EA039878B1 (en) Void fraction calibration method
Takamoto et al. New measurement method for very low liquid flow rates using ultrasound
Munasinghe et al. Ultrasonic-based sensor fusion approach to measure flow rate in partially filled pipes
JP5481154B2 (en) Electromagnetic applied densitometer
US11959785B2 (en) System and method for measuring a multiphase flow by measuring density and electrical impedance for correcting the measurement due to effect of deposits on inner surface of pipe walls
JP2014052392A (en) Electromagnetic application concentration meter
JP5282955B2 (en) Ultrasonic flow meter correction method and ultrasonic flow meter
RU2351900C2 (en) Rate-of-flow indicator of liquid mediums in pipelines
KR102088845B1 (en) Method for measuring flow rate of ultrasonic flow meter including recessed ultrasonic transducer
JP5924556B2 (en) Multiphase flow meter
JP4304197B2 (en) Substance measuring device
JP2005083821A (en) Microwave densitometer
JP2003307502A (en) Substance quantity measuring device
JP2005156316A (en) Microwave density meter
JP2006029935A (en) Microwave-type densitometer
JP2001255285A (en) Microwave type concentration meter
JP2001242099A (en) Microwave type concentration meter
JP2016065766A (en) Microwave densitometer and measurement tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

LAPS Cancellation because of no payment of annual fees