JP2003307502A - Substance quantity measuring device - Google Patents

Substance quantity measuring device

Info

Publication number
JP2003307502A
JP2003307502A JP2002113330A JP2002113330A JP2003307502A JP 2003307502 A JP2003307502 A JP 2003307502A JP 2002113330 A JP2002113330 A JP 2002113330A JP 2002113330 A JP2002113330 A JP 2002113330A JP 2003307502 A JP2003307502 A JP 2003307502A
Authority
JP
Japan
Prior art keywords
substance
pipe
microwave
measured
transmitting antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002113330A
Other languages
Japanese (ja)
Other versions
JP4028284B2 (en
Inventor
Kazuhiro Watanabe
一弘 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002113330A priority Critical patent/JP4028284B2/en
Publication of JP2003307502A publication Critical patent/JP2003307502A/en
Application granted granted Critical
Publication of JP4028284B2 publication Critical patent/JP4028284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substance quantity measuring device causing no attenuation of a microwave even for a pipe with a large diameter, and being little affected by bubble, deposit and sticking matter in the pipe. <P>SOLUTION: Since at least a transmission antenna 12 is arranged in fluid by a measuring object substance in the pipe 11 by a support member 14 among the transmission antenna 12 and receiving antennas 13 and 17 for constituting a microwave propagation passage, a distance from the receiving antennas 13 and 17 can be shortened, and influence such as bubble reservoir and deposit easily generated in an inner wall part of the pipe 11 is reduced so that a physical quantity can be accurately measured. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波の伝播
時間、または位相遅れの差を測定することによって被測
定対象の濃度等の物理量を測定するマイクロ波による物
質量測定装置 に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave substance amount measuring apparatus for measuring a physical amount such as a concentration of an object to be measured by measuring a difference in propagation time or a phase delay of microwaves.

【0002】[0002]

【従来の技術】従来、液体中の懸濁物質の濃度測定を行
なう計器として、超音波の減衰率を測定して濃度を求め
る超音波式濃度計や、光を用いて透過光減衰率や散乱光
増加率等を測定して濃度を求める光学式濃度計等が多く
用いられている。
2. Description of the Related Art Conventionally, as an instrument for measuring the concentration of a suspended substance in a liquid, an ultrasonic densitometer for determining the concentration by measuring the attenuation factor of an ultrasonic wave, or a transmitted light attenuation factor or scattering using light Optical densitometers and the like are often used to determine the density by measuring the rate of increase in light.

【0003】ところが、超音波式濃度計では、液体中に
気泡が混入している場合に、その影響を大きく受けて測
定誤差が増大するという問題があった。また、後者の光
学式濃度計では、光を入射或いは受光する光学窓に汚れ
が付着すると、その影響を大きく受けて、やはり、測定
誤差が増大していた。
However, the ultrasonic densitometer has a problem that when air bubbles are mixed in the liquid, the influence of the air bubbles greatly affects the measurement error. Further, in the latter optical densitometer, when dirt adheres to the optical window that receives or receives light, the dirt is greatly affected and the measurement error also increases.

【0004】そこで、最近では、気泡や汚れの影響を受
け難い濃度計として、マイクロ波式濃度計が開発され、
実用化されるようになってきている。
Therefore, recently, a microwave type densitometer has been developed as a densitometer which is hardly affected by bubbles and dirt.
It is becoming practical.

【0005】図5は、このマイクロ波式濃度計の制御構
成を示すブロック図である。同図において、流体の流通
する配管1に、マイクロ波送信アンテナ2とマイクロ波
受信アンテナ3とを、直径方向に互いに対向した状態で
配置している。
FIG. 5 is a block diagram showing the control arrangement of this microwave densitometer. In the figure, a microwave transmitting antenna 2 and a microwave receiving antenna 3 are arranged in a pipe 1 through which a fluid flows so as to face each other in a diametrical direction.

【0006】マイクロ波送信アンテナ2には、パワース
プリッター4を介してマイクロ波発信器5が接続されて
おり、このマイクロ波発信機5からマイクロ波が供給さ
れる。また、マイクロ波受信アンテナ3は、伝播時間測
定回路6を介して濃度演算回路7に接続されている。さ
らに、パワースプリッター4の出力側は伝播時間測定回
路6の入力側に接続されている。
A microwave transmitter 5 is connected to the microwave transmitting antenna 2 via a power splitter 4, and a microwave is supplied from the microwave transmitter 5. Further, the microwave receiving antenna 3 is connected to the concentration calculating circuit 7 via the propagation time measuring circuit 6. Further, the output side of the power splitter 4 is connected to the input side of the propagation time measuring circuit 6.

【0007】したがって、マイクロ波の通過経路は、パ
ワースプリッター4を経てマイクロ波送信アンテナ2か
ら送信され、配管1内の流体を伝播してマイクロ波受信
アンテナ3に受信され、伝播時間測定回路6に導入され
る第1の経路と、パワースプリッター4から伝播時間測
定回路6に導入される第2の経路との2系統となる。
Therefore, the microwave passage is transmitted from the microwave transmitting antenna 2 through the power splitter 4, propagates through the fluid in the pipe 1 and is received by the microwave receiving antenna 3, and is transmitted to the propagation time measuring circuit 6. There are two systems, the first route introduced and the second route introduced from the power splitter 4 to the propagation time measuring circuit 6.

【0008】伝播時間測定回路6からの出力を受けた濃
度演算回路7は、第1経路からのマイクロ波の伝搬時間
または位相遅れと、第2経路からのマイクロ波に対する
伝播時間または位相遅れとから、その伝搬時間の差また
は位相差を求める。
The concentration calculation circuit 7, which receives the output from the propagation time measuring circuit 6, calculates the propagation time or phase delay of the microwave from the first path and the propagation time or phase delay of the microwave from the second path. , Find the difference in their propagation times or the phase difference.

【0009】このマイクロ波式濃度計では、マイクロ波
発信器5からパワースプリッター4を経由して直接受信
するマイクロ波に対する、配管1内の測定物質中を伝搬
してくるマイクロ波の位相遅れθ2と、配管1内に基準
流体、例えば、濃度ゼロとみなせる水道水を充填して測
定対象液と同じ条件で測定した時のマイクロ波の位相遅
れθ1とを比較する。そして、その位相差Δθ=(θ2
-θ1)から、図6に示す検量線8を用いて測定対象液
の濃度を求める。
In this microwave densitometer, the phase delay θ2 of the microwave propagating through the substance to be measured in the pipe 1 with respect to the microwave directly received from the microwave oscillator 5 via the power splitter 4 is obtained. A comparison is made with the phase delay θ1 of the microwave when the pipe 1 is filled with a reference fluid, for example, tap water that can be regarded as having a zero concentration and measured under the same conditions as the liquid to be measured. Then, the phase difference Δθ = (θ2
From -θ1), the concentration of the liquid to be measured is obtained using the calibration curve 8 shown in FIG.

【0010】具体的には、その測定対象液の濃度Xは下
記式(1)による演算を行なうことによって求められ
る。
Specifically, the concentration X of the liquid to be measured can be calculated by the following equation (1).

【0011】X=aΔθ+b………(1) なお、aは検量線の傾き、bは検量線の切片で、通常は
b=0である。
X = aΔθ + b (1) where a is the slope of the calibration curve, b is the intercept of the calibration curve, and usually b = 0.

【0012】また、実際には、マイクロ波式濃度計によ
る濃度測定にあたっては、基準となる純水を先に通して
予め位相を測っておき、その後、被測定物質を通して前
記の基準位相と比較することによって測定される。
Further, in actuality, in the concentration measurement by a microwave type densitometer, pure water as a reference is first passed through to measure the phase in advance, and then the measured substance is compared with the above reference phase. It is measured by

【0013】このような従来のマイクロ波式濃度計は、
マイクロ波の減衰率を測定する方式ではなく、位相差を
測定する方式であり、また、マイクロ波を入射或いは受
波する窓部が透明である必要はない。このため、気泡や
汚れの影響を受け難く、しかも連続的に濃度を測定でき
るという利点を持っている。
Such a conventional microwave densitometer is
This is not a method of measuring the attenuation rate of microwaves but a method of measuring a phase difference, and it is not necessary that the window portion that receives or receives microwaves be transparent. Therefore, it has an advantage that it is not easily affected by bubbles and dirt and that the concentration can be continuously measured.

【0014】このようなマイクロ波式濃度計において、
濃度演算を行なうための伝播時間は、マイクロ波発振部
5からの送信用ケーブル9および受信用ケーブル10の
長さや、ケーブルを構成する部材のサイズおよび材質等
によっても変化する。しかし、これらについては機器ご
とに初期調整することによって測定への影響を排除する
ことができる。
In such a microwave densitometer,
The propagation time for calculating the concentration also changes depending on the lengths of the transmission cable 9 and the reception cable 10 from the microwave oscillating unit 5, the size and material of the members forming the cable, and the like. However, it is possible to eliminate the influence on the measurement by making an initial adjustment for each device.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、このマ
イクロ波式濃度計では、濃度測定の際に、上記以外の要
因により位相の指示が変化したり、測定が不安定となる
場合がある。
However, in this microwave densitometer, when measuring the concentration, there are cases where the indication of the phase changes or the measurement becomes unstable due to factors other than the above.

【0016】その原因の一つは、配管1内を流れる被測
定物質内のガス、すなわち、気泡等が配管1の特定の箇
所に溜り、この箇所を伝搬するマイクロ波により測定さ
れるマイクロ波が干渉されて測定誤差を生ずるという問
題が起きている。
One of the causes is that the gas in the substance to be measured flowing in the pipe 1, that is, bubbles or the like is accumulated in a specific portion of the pipe 1 and the microwave measured by the microwave propagating in this portion is generated. There is a problem of being interfered with and causing a measurement error.

【0017】また、配管1の底部における被測定物質の
堆積、例えば、汚泥の沈降等や、配管1の内壁部への付
着等によっても同様の問題が生じていた。
The same problem also occurs due to the accumulation of the substance to be measured at the bottom of the pipe 1, for example, the sludge settling, the adhesion to the inner wall of the pipe 1, and the like.

【0018】さらに、昨今は配管1の大口径化が進んで
おり、従来のように配管壁面に送信用および受信用のア
ンテナを固定している場合、配管の口径が300mm以上
と大きくなると、マイクロ波の伝播距離が長くなり減衰
する。特に、配管内部の流体が導電性を有する場合に
は、マイクロ波の減衰が著しく、感度が低下してしま
う。
Further, recently, the diameter of the pipe 1 is becoming larger, and when the transmitting and receiving antennas are fixed to the wall surface of the pipe as in the conventional case, if the diameter of the pipe becomes larger than 300 mm, the micro The propagation distance of the wave becomes long and attenuates. In particular, when the fluid inside the pipe has conductivity, the microwave is significantly attenuated and the sensitivity is lowered.

【0019】本発明の目的は、配管が大口径化してもマ
イクロ波が減衰せず、配管内の気泡や沈殿物および付着
物による影響を受け難い物質量測定装置を提供すること
にある。
It is an object of the present invention to provide a substance amount measuring apparatus in which microwaves are not attenuated even when the diameter of the pipe is increased, and which is not easily affected by bubbles, precipitates and deposits in the pipe.

【0020】[0020]

【課題を解決するための手段】請求項1に記載の本発明
による物質量測定装置は、送信アンテナからマイクロ波
を送信し、受信アンテナとの間に位置する被測定物質を
伝播したマイクロ波の伝播時間または位相遅れから被測
定物質の物理量を測定するものであって、被測定物質を
流すための配管と、この配管内に設置された支持部材に
支持され、かつ前記被測定物質中において所定距離を保
って対向配置されたマイクロ波送信アンテナ及び受信ア
ンテナとを備えたことを特徴とする。
A substance amount measuring device according to the present invention as set forth in claim 1 transmits a microwave from a transmitting antenna and transmits a microwave from a substance to be measured located between the transmitting antenna and the receiving antenna. A physical quantity of a substance to be measured is measured from a propagation time or a phase delay, which is supported by a pipe for flowing the substance to be measured and a supporting member installed in the pipe, and which is predetermined in the substance to be measured. It is characterized by comprising a microwave transmitting antenna and a microwave transmitting antenna which are arranged to face each other while keeping a distance.

【0021】請求項2に記載の本発明は、被測定物質を
流すための配管と、この配管内に設置された支持部材に
支持され、かつ前記被測定物質中に設置されたマイクロ
波送信アンテナと、前記配管内壁に取り付けられたマイ
クロ波受信アンテナとを備えたことを特徴とする。
According to a second aspect of the present invention, there is provided a microwave transmitting antenna which is supported by a pipe for flowing a substance to be measured and a support member installed in the pipe and which is installed in the substance to be measured. And a microwave receiving antenna attached to the inner wall of the pipe.

【0022】請求項3に記載の本発明は、被測定物質を
流すための配管と、この配管内に設置された支持部材に
支持され、かつ前記被測定物質中に設置されたマイクロ
波送信アンテナと、このマイクロ波送信アンテナと対向
し、配管内に生じる気泡や堆積物の影響を受け難い位置
に設置された第1の受信アンテナと、前記送信アンテナ
と対向し、前記気泡や堆積物による影響を比較的受け易
い位置に設置された第2の受信アンテナとを備えたこと
を特徴とする。
According to a third aspect of the present invention, there is provided a microwave transmitting antenna which is supported by a pipe for flowing a substance to be measured and a support member installed in the pipe and which is installed in the substance to be measured. And a first receiving antenna that is installed at a position facing the microwave transmitting antenna and is not easily affected by bubbles or deposits generated in the pipe, and facing the transmitting antenna, and is affected by the bubbles or deposits. And a second receiving antenna installed at a position relatively easy to receive.

【0023】請求項4に記載の本発明では、第1及び第
2の受信アンテナが、送信アンテナと共に支持部材に取
り付けられていることを特徴とする。
The present invention according to claim 4 is characterized in that the first and second receiving antennas are attached to the supporting member together with the transmitting antennas.

【0024】請求項5に記載の本発明では、第1の受信
アンテナは送信アンテナと共に支持部材に取り付けら
れ、第2の受信アンテナは配管内壁に取り付けられてい
ることを特徴とする。
The present invention according to claim 5 is characterized in that the first receiving antenna is attached to the support member together with the transmitting antenna, and the second receiving antenna is attached to the inner wall of the pipe.

【0025】請求項6に記載の本発明では、第1及び第
2の受信アンテナが、配管内壁の互いに異なる位置に取
り付けられていることを特徴とする。
The present invention according to claim 6 is characterized in that the first and second receiving antennas are mounted at different positions on the inner wall of the pipe.

【0026】請求項7に記載の本発明では、送信アンテ
ナと、第1および第2の受信アンテナとの距離を互いに
同一距離としたことを特徴とする。
The present invention according to claim 7 is characterized in that the distance between the transmitting antenna and the first and second receiving antennas is the same.

【0027】請求項8に記載の本発明では、支持部材
は、金属、または強度の高い合成樹脂、或いはセラミッ
ク等で形成されていることを特徴とする。
According to the present invention of claim 8, the supporting member is formed of metal, synthetic resin having high strength, ceramic or the like.

【0028】これらの発明では、マイクロ波伝播経路を
構成する送信アンテナ及び受信アンテナのうち、少なく
とも送信アンテナを支持部材によって配管内の被測定物
質による流体中に設置しているので、受信アンテナとの
距離を短くすることができ、かつ配管内壁部分に生じや
すい気泡や堆積物などの影響が少なくなり正確に物理量
を測定することができる。
In these inventions, at least the transmitting antenna among the transmitting antenna and the receiving antenna which constitute the microwave propagation path is installed in the fluid of the substance to be measured in the pipe by the supporting member, so that the receiving antenna The distance can be shortened, and the influence of bubbles, deposits, etc., which are likely to occur on the inner wall of the pipe, is reduced, and the physical quantity can be measured accurately.

【0029】[0029]

【発明の実施の形態】以下、本発明による物質量測定装
置の一実施の形態を図1を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a substance amount measuring apparatus according to the present invention will be described below with reference to FIG.

【0030】図1は本実施の形態における配管内部の断
面構成を示した模式図である。この物質量測定装置は、
汚泥や紙パルプなどの繊維質、コーヒ、澱粉質等の懸濁
物が混入している被測定物質の物理量、例えば懸濁物濃
度などを測定するものである。
FIG. 1 is a schematic diagram showing a cross-sectional structure of the inside of the pipe in the present embodiment. This substance amount measuring device,
The physical quantity of the substance to be measured, for example, the concentration of the suspended matter, which is mixed with the suspended matter such as fibrous substances such as sludge and paper pulp, coffee, and starch, is measured.

【0031】図には、被検出物質が流れる配管11内
に、マイクロ波伝播回経路を形成する送信アンテナ12
及び受信アンテナ13が対向配置された状態が示されて
いる。これら送信アンテナ12及び受信アンテナ13と
してはモノポールアンテナを用いている。これら各アン
テナ12、13は、配管11内において、被測定物質の
流れ方向と交差して設けられた支持部材14に取り付け
られている。この支持部材14は金属または強度の高い
合成樹脂やセラミックにより、棒状或いは板状に形成さ
れている。
In the figure, a transmission antenna 12 forming a microwave propagation path is formed in a pipe 11 through which a substance to be detected flows.
Also, a state in which the receiving antenna 13 is arranged so as to face each other is shown. A monopole antenna is used as the transmitting antenna 12 and the receiving antenna 13. Each of these antennas 12 and 13 is attached to a support member 14 provided inside the pipe 11 so as to intersect the flow direction of the substance to be measured. The support member 14 is formed of a metal, a synthetic resin having high strength, or a ceramic in a rod shape or a plate shape.

【0032】送信アンテナ12および受信アンテナ13
は、それぞれ保護部材15で覆われ、被測定物質の流れ
から保護されている。この保護部材15には、被測定物
質によって性質変化の影響を受け難い合成樹脂部材を用
いる。この性質変化の影響を受け難い合成樹脂部材と
は、被測定物質の温度範囲で熱変形しない耐熱性の材質
からなる部材であり、また、被測定物質が酸性もしくは
アルカリ性である場合には、強い耐酸性ないし耐アルカ
リ性の材質からなる部材である。
Transmitting antenna 12 and receiving antenna 13
Are covered with a protective member 15 and are protected from the flow of the substance to be measured. As the protective member 15, a synthetic resin member that is not easily affected by the property change due to the substance to be measured is used. The synthetic resin member that is not easily affected by this property change is a member made of a heat resistant material that is not thermally deformed in the temperature range of the measured substance, and when the measured substance is acidic or alkaline, it is strong. A member made of an acid-resistant or alkali-resistant material.

【0033】送信アンテナ12及び受信アンテナ13に
対する回路構成は、図5で示したものと基本的に同じで
ある。すなわち、送信アンテナ12に対しては、パワー
スプリッター4を介してマイクロ波発信器5が接続さ
れ、このマイクロ波発信器5からマイクロ波が供給され
る。また、受信アンテナ13は、伝播時間測定回路6を
介して濃度演算回路7に接続されている。さらに、パワ
ースプリッター4の出力側は伝播時間測定回路6の入力
側に接続されている。
The circuit configurations for the transmitting antenna 12 and the receiving antenna 13 are basically the same as those shown in FIG. That is, the microwave antenna 5 is connected to the transmitting antenna 12 via the power splitter 4, and the microwave is supplied from the microwave oscillator 5. The receiving antenna 13 is also connected to the concentration calculating circuit 7 via the propagation time measuring circuit 6. Further, the output side of the power splitter 4 is connected to the input side of the propagation time measuring circuit 6.

【0034】そして、マイクロ波発信器5からパワース
プリッター4を経由して直接伝播時間測定回路7に入力
されるマイクロ波に対する、配管1内の被測定物質中を
伝搬してくるマイクロ波の位相遅れθ2と、配管1内に
基準流体を充填して同じ条件で測定した時のマイクロ波
の位相遅れθ1とを比較し、その位相差Δθ=(θ2-
θ1)から、図6に示す検量線8を用いて測定対象液の
濃度を求める。
Then, the phase delay of the microwave propagating through the substance to be measured in the pipe 1 with respect to the microwave input directly from the microwave oscillator 5 to the propagation time measuring circuit 7 via the power splitter 4. θ2 is compared with the phase delay θ1 of the microwave when the pipe 1 is filled with the reference fluid and measured under the same conditions, and the phase difference Δθ = (θ2--
From θ1), the concentration of the liquid to be measured is obtained using the calibration curve 8 shown in FIG.

【0035】ここで、上記実施の形態では、マイクロ波
伝播経路を構成する送信アンテナ12と受信アンテナ1
3を支持部材14に取り付け、配管11内を流れる被測
定物質中に設置しているので、送信アンテナ12と受信
アンテナ13との対向距離を最適な値に任意に設定でき
る。
Here, in the above-mentioned embodiment, the transmitting antenna 12 and the receiving antenna 1 which constitute the microwave propagation path.
Since 3 is attached to the support member 14 and installed in the substance to be measured flowing in the pipe 11, the facing distance between the transmitting antenna 12 and the receiving antenna 13 can be arbitrarily set to an optimum value.

【0036】すなわち、図5で示した、従来の配管1の
内壁に送信アンテナ2と受信アンテナ3を取り付ける構
造では、これらアンテナ2、3間の対向距離は配管の直
径によって決まるため、直径が300mm以上に大きく
なると、アンテナ2、3間の対向距離が長くなり、マイ
クロ波が減衰して感度が低下してしまう。
That is, in the structure shown in FIG. 5 in which the transmitting antenna 2 and the receiving antenna 3 are attached to the inner wall of the conventional pipe 1, the facing distance between the antennas 2 and 3 is determined by the diameter of the pipe, and therefore the diameter is 300 mm. When it is larger than the above, the facing distance between the antennas 2 and 3 becomes long, the microwave is attenuated, and the sensitivity is lowered.

【0037】これに対し、上記実施の形態では、送信ア
ンテナ12と受信アンテナ13とを支持部材14に取り
付けたことにより、アンテナ12、13間の対向距離
を、配管の直径に影響されることなく、最適な値に任意
に設定できる。このため、充分な測定感度を維持し、高
い測定精度が得られる。
On the other hand, in the above embodiment, the transmitting antenna 12 and the receiving antenna 13 are attached to the supporting member 14, so that the facing distance between the antennas 12 and 13 is not affected by the diameter of the pipe. , Can be arbitrarily set to the optimum value. Therefore, sufficient measurement sensitivity can be maintained and high measurement accuracy can be obtained.

【0038】また、被測物質によっては配管内に気泡溜
りが生じたり、長期間の使用等によって配管11の内壁
に物質が堆積したり付着したりして、測定性能に影響を
与えることが考えられる。しかし、配管11内における
これらの発生部位は予め想定できるため、支持部材14
に取り付けた送信アンテナ12と受信アンテナ13と
を、想定される発生部位を避けた任意の位置に設置する
ことにより、これらの影響を排除することができる。
Further, it is considered that depending on the substance to be measured, air bubbles may be generated in the pipe, or the substance may be deposited or adhered to the inner wall of the pipe 11 due to long-term use or the like, which may affect the measurement performance. To be However, since these generation sites in the pipe 11 can be assumed in advance, the support member 14
These influences can be eliminated by installing the transmitting antenna 12 and the receiving antenna 13 attached to the above-mentioned apparatus at arbitrary positions avoiding the assumed generation site.

【0039】例えば、気泡溜りは配管11内部の頂部に
集中するし、堆積物は配管12の底部に生じる。すなわ
ち、多くは配管11の上下内壁面に接する部分に生じる
ので、支持部材14に取り付けた送信アンテナ12及び
受信アンテナ13を、配管12内の断面中央部に近い被
測定物質中に設置すれば、配管12内に発生する気泡や
堆積物、付着物の影響を殆ど受けずに良好な測定結果を
得ることができる。
For example, the bubble pool is concentrated on the top of the pipe 11, and the deposit is generated on the bottom of the pipe 12. That is, since most of them are generated in the portions in contact with the upper and lower inner wall surfaces of the pipe 11, if the transmitting antenna 12 and the receiving antenna 13 attached to the supporting member 14 are installed in the substance to be measured near the center of the cross section in the pipe 12, A good measurement result can be obtained with almost no influence of air bubbles, deposits, and adherents generated in the pipe 12.

【0040】また、送信アンテナ12および受信アンテ
ナ13は、被測定物質による性質変化の影響を受け難い
保護部材15で覆われているため、被測定物質中に設置
されていても、この被測定物質から確実に保護され、各
アンテナ12、13の寿命は大幅に長くなる。
Further, since the transmitting antenna 12 and the receiving antenna 13 are covered with the protective member 15 which is not easily affected by the property change due to the substance to be measured, even if the substance to be measured is installed in the substance to be measured. The antennas 12 and 13 are reliably protected from damage and the life of each antenna 12 and 13 is significantly extended.

【0041】上記実施の形態では、マイクロ波伝播経路
を形成する送信アンテナ12と受信アンテナ13とをそ
れぞれ支持部材14に取り付けているが、送信アンテナ
12だけを支持部材に取り付け、受信アンテナ13は、
配管11の内壁に取り付けてもよい。このとき、受信ア
ンテナ13を取り付ける内壁位置は、気泡溜りや堆積物
が発生しにくい例えば斜め下方の部分とすればよい。
In the above embodiment, the transmitting antenna 12 and the receiving antenna 13 forming the microwave propagation path are attached to the supporting member 14, respectively. However, only the transmitting antenna 12 is attached to the supporting member, and the receiving antenna 13 is
It may be attached to the inner wall of the pipe 11. At this time, the position of the inner wall to which the receiving antenna 13 is attached may be, for example, an obliquely lower portion where it is difficult for bubble accumulation and deposits to occur.

【0042】このように構成しても、アンテナ12、1
3間の対向距離を、配管の直径に影響されることなく、
最適な値に任意に設定できるため、充分な測定感度を維
持し、高い測定精度が得られる。また、配管12内に発
生する気泡や堆積物、付着物の影響を殆ど受けずに良好
な測定結果を得ることもできる。
Even with this configuration, the antennas 12 and 1
The facing distance between the three is not affected by the diameter of the pipe,
Since it can be arbitrarily set to the optimum value, sufficient measurement sensitivity can be maintained and high measurement accuracy can be obtained. Further, it is possible to obtain a good measurement result without being substantially affected by bubbles, deposits, and adhered substances generated in the pipe 12.

【0043】次に、図2で示す実施の形態を説明する。
なお、図1と対応する部分には同一符号を付している。
Next, the embodiment shown in FIG. 2 will be described.
The parts corresponding to those in FIG. 1 are designated by the same reference numerals.

【0044】この実施の形態でも図1のものと同様に、
被測定物質が流れる配管11内において、送信アンテナ
12及び受信アンテナ(以下、第1の受信アンテナと呼
ぶ)13を、支持部材14に取り付け、被検出物質中で
対向配置させ、マイクロ波伝播経路(以下、第1のマイ
クロ波伝播経路と呼ぶ)を形成している。この支持部材
14も金属または強度の高い合成樹脂やセラミックによ
り、棒状或いは板状に形成されている。なお、各アンテ
ナ12、13は、図1のようにモノポールアンテナでは
なく通常の構成のものであるが、図1の場合と同様に、
それぞれ保護部材15で覆い、被測定物質から保護して
いる。
Also in this embodiment, as in the case of FIG.
In a pipe 11 through which the substance to be measured flows, a transmitting antenna 12 and a receiving antenna (hereinafter, referred to as a first receiving antenna) 13 are attached to a supporting member 14 and are arranged to face each other in the substance to be detected, and a microwave propagation path ( Hereinafter, the first microwave propagation path) is formed. The support member 14 is also formed in a rod shape or a plate shape from metal, high-strength synthetic resin, or ceramic. The antennas 12 and 13 are not monopole antennas as shown in FIG. 1 but have a normal structure. However, as in the case of FIG.
Each is covered with a protective member 15 to protect it from the substance to be measured.

【0045】これら送信アンテナ12及び第1の受信ア
ンテナ13による第1のマイクロ波伝播経路には、図5
で示した回路が接続されており、被測定物質の物理量を
測定することができる。この場合、図1の装置と同様
に、配管11の直径に影響されることなく、高い測定精
度が得られると共に、配管11内に発生する気泡や堆積
物、付着物の影響を殆ど受けずに良好な測定結果が得ら
れる。
The first microwave propagation path formed by the transmitting antenna 12 and the first receiving antenna 13 is shown in FIG.
The circuit shown by is connected, and the physical quantity of the substance to be measured can be measured. In this case, similar to the device of FIG. 1, a high measurement accuracy can be obtained without being affected by the diameter of the pipe 11, and almost no influence of bubbles, deposits, and adhered substances generated in the pipe 11 is obtained. Good measurement results are obtained.

【0046】この実施の形態では、さらに、送信アンテ
ナ12に対して、もう一つの受信アンテナ17(以下、
第2の受信アンテナと呼ぶ)を設け、第2のマイクロ波
伝播経路を形成する。これら送信アンテナ12及び第2
の受信アンテナ17による第2のマイクロ波伝播経路に
も図5で示した回路が接続されており、被測定物質の物
理量を測定することができる。
In this embodiment, in addition to the transmitting antenna 12, another receiving antenna 17 (hereinafter,
A second receiving antenna) is provided to form a second microwave propagation path. These transmitting antenna 12 and the second
The circuit shown in FIG. 5 is also connected to the second microwave propagation path by the receiving antenna 17 of FIG. 5, and the physical quantity of the substance to be measured can be measured.

【0047】また、送信アンテナ12に対する第2の受
信アンテナ17との距離は、第1の受信アンテナ13と
の距離に等しく設定しておく。このようにすると濃度測
定のための演算が容易となる。
The distance between the transmitting antenna 12 and the second receiving antenna 17 is set equal to the distance between the transmitting antenna 12 and the first receiving antenna 13. In this way, the calculation for measuring the concentration becomes easy.

【0048】但し、この第2のマイクロ波伝播経路は、
前述した第1のマイクロ波伝播経路とは異なり、配管1
1内に生じる気泡や堆積物などによる影響を比較的受け
やすい位置に形成する。
However, this second microwave propagation path is
Unlike the first microwave propagation path described above, the piping 1
It is formed at a position relatively susceptible to the influence of air bubbles, deposits, etc. generated inside 1.

【0049】すなわち、第1の受信アンテナ13は、送
信アンテナ12と共に、支持部材14によって、気泡や
堆積物の影響を殆ど受けない被検出物質中に設置されて
いるが、第2の受信アンテナ17は、配管11内に生じ
る気泡が集まる頂部内壁に設置する。したがって、配管
11内に気泡が発生した場合、第2のマイクロ波伝播経
路による測定結果は、気泡溜りによる干渉を受け大きく
変動する。
That is, the first receiving antenna 13 is installed together with the transmitting antenna 12 by the support member 14 in the substance to be detected which is hardly affected by bubbles and deposits, but the second receiving antenna 17 is provided. Is installed on the inner wall of the top where bubbles generated in the pipe 11 gather. Therefore, when bubbles are generated in the pipe 11, the measurement result by the second microwave propagation path is greatly changed due to the interference due to the bubble pool.

【0050】このように、構成した本実施の形態におい
て、まず、第1のマイクロ波伝播経路、すなわち、送信
アンテナ12から配管11内を流れる被測定物質(流
体)を経て受信アンテナ13に至る第1の伝播経路での
マイクロ波の伝播時間を測定する。同じく、第2のマイ
クロ波伝播経路、すなわち、送信アンテナ12から配管
11内の被測定物質を経て受信アンテナ17に至る第2
の伝播経路でのマイクロ波の伝播時間を測定する。
In this embodiment thus configured, first, the first microwave propagation path, that is, the substance to be measured (fluid) flowing in the pipe 11 from the transmitting antenna 12 to the receiving antenna 13 is reached. The propagation time of the microwave in the propagation path 1 is measured. Similarly, the second microwave propagation path, that is, the second microwave from the transmitting antenna 12 to the receiving antenna 17 through the substance to be measured in the pipe 11.
The propagation time of the microwave in the propagation path of is measured.

【0051】この2つの伝播経路におけるマイクロ波の
伝播時間から被測定物質の物理量、例えば、濃度がそれ
ぞれ算出される。このとき、配管11内に気泡溜りがな
い場合は、算出された濃度の値はほぼ等しい。
From the propagation times of the microwaves in these two propagation paths, the physical quantity of the substance to be measured, for example, the concentration, is calculated. At this time, when there is no bubble accumulation in the pipe 11, the calculated concentration values are almost equal.

【0052】しかし、配管11内に気泡が生じると、配
管11内の頂部、すなわち、第2のアンテナ17が設置
された内壁直下に気泡溜りが生じ、第2の受信アンテナ
17は気泡溜りによる影響を受ける。すなわち、第2の
受信アンテナ17に受信されるマイクロ波は気泡溜りに
邪魔されて、その伝播時間が遅くなる。
However, when air bubbles are generated in the pipe 11, air bubbles are generated at the top of the pipe 11, that is, immediately below the inner wall where the second antenna 17 is installed, and the second receiving antenna 17 is affected by the air bubbles. Receive. That is, the microwave received by the second receiving antenna 17 is obstructed by the bubble reservoir and the propagation time thereof is delayed.

【0053】一方、第1の受信アンテナ13は、配管1
1内の断面中心近くに配置されており、配管11内に気
泡が生じても、その周囲に気泡溜りは殆ど生じない。し
たがって、第1の受信アンテナ13で受信されるマイク
ロ波の伝播時間は正常である。
On the other hand, the first receiving antenna 13 is connected to the pipe 1
It is arranged near the center of the cross section in 1, and even if bubbles are generated in the pipe 11, there is almost no accumulation of bubbles around it. Therefore, the propagation time of the microwave received by the first receiving antenna 13 is normal.

【0054】これらの結果、第2のマイクロ波伝播経路
による伝播時間は、気泡溜まりの影響を受けない第1の
マイクロ波伝播経路による伝播時間と比較して大幅に変
動する。この伝播時間の変動により、気泡溜りが配管1
1内に発生したことを直ちに検出することができる。
As a result, the propagation time of the second microwave propagation path fluctuates significantly as compared with the propagation time of the first microwave propagation path which is not affected by the bubble accumulation. Due to this change in the propagation time, the bubble pool is
The occurrence within 1 can be immediately detected.

【0055】なお、このとき、被測定物質の濃度は、気
泡溜りの影響がない第1の受信アンテナ13によって正
確に測定することができる。
At this time, the concentration of the substance to be measured can be accurately measured by the first receiving antenna 13 which is not affected by the accumulation of bubbles.

【0056】上記実施の形態では、第2の受信アンテナ
17を配管11の頂部内壁に設けたが、送信側アンテナ
12および第1の受信アンテナ13と共に、同一の支持
部材14に取り付けてもよい。
In the above embodiment, the second receiving antenna 17 is provided on the inner wall of the top of the pipe 11, but it may be attached to the same supporting member 14 together with the transmitting antenna 12 and the first receiving antenna 13.

【0057】また、上記実施の形態では、配管11の内
部に生じた気泡溜りを検出するため、第2のアンテナ1
7を配管11内の頂部内壁に設けたが、堆積物の発生を
検出する場合は、第2のアンテナ17を配管11内の底
部内壁に設ければよい。
Further, in the above embodiment, the second antenna 1 is used in order to detect the bubble accumulation generated inside the pipe 11.
Although 7 is provided on the inner wall of the top of the pipe 11, the second antenna 17 may be provided on the inner wall of the bottom of the pipe 11 when the generation of deposits is detected.

【0058】このように構成すると、配管11内に堆積
物が生じた場合、第2のマイクロ波伝播経路による測定
結果は大きく変動するため、堆積物の発生を直ちに検出
することができる。
According to this structure, when a deposit is generated in the pipe 11, the measurement result by the second microwave propagation path changes greatly, so that the occurrence of the deposit can be immediately detected.

【0059】次に、図3乃至図4で示す実施の形態につ
いて説明する。なお、図1及び図2と対応する部分には
同一符号を付している。
Next, the embodiment shown in FIGS. 3 to 4 will be described. The parts corresponding to those in FIGS. 1 and 2 are designated by the same reference numerals.

【0060】この実施の形態においても、マイクロ波の
送信アンテナ12は、配管11内において支持部材14
に取り付けられており、配管11内の被測定物質中に設
置される。この実施の形態では、送信アンテナ12は配
管11の断面中心部に設置している。
Also in this embodiment, the microwave transmitting antenna 12 has the support member 14 in the pipe 11.
And is installed in the substance to be measured in the pipe 11. In this embodiment, the transmitting antenna 12 is installed at the center of the cross section of the pipe 11.

【0061】なお、支持部材14は金属または強度の高
い合成樹脂やセラミックにより、棒状或いは板状に形成
されており、また、送信アンテナ12は、保護部材15
で覆われ、被測定物質から保護されている。
The support member 14 is made of metal, synthetic resin or ceramic having high strength, and is formed in a rod shape or a plate shape.
It is covered with and is protected from the substance to be measured.

【0062】この送信アンテナ12に対し、第1のマイ
クロ波伝播経路を形成する第1の受信アンテナ13と、
第2のマイクロ波伝播経路を形成する第2の受信アンテ
ナ17を、配管11内壁の互いに異なる位置に設けてい
る。
With respect to this transmitting antenna 12, a first receiving antenna 13 forming a first microwave propagation path,
The second receiving antennas 17 forming the second microwave propagation path are provided at different positions on the inner wall of the pipe 11.

【0063】第1のマイクロ波伝播経路は、配管11内
に生じる気泡や堆積物の影響を受け難い位置に形成され
ている。すなわち、第1の受信アンテナ13は、気泡溜
りの生じない配管11内の下部で、堆積物が堆積し難い
図示斜め右下に設置する。
The first microwave propagation path is formed at a position where it is unlikely to be affected by bubbles and deposits generated in the pipe 11. That is, the first receiving antenna 13 is installed in the lower portion of the pipe 11 where bubble accumulation does not occur and in the diagonally lower right in the figure where deposits are hard to deposit.

【0064】これに対し、第2のマイクロ波伝播経路
は、配管11内に生じる気泡や堆積物の影響を比較的受
け易い位置に形成する。すなわち、第2の受信アンテナ
17は、図4で示すように、気泡溜り18の生じ易い配
管11内の頂部内壁に設置する。
On the other hand, the second microwave propagation path is formed at a position relatively susceptible to the influence of bubbles and deposits generated in the pipe 11. That is, as shown in FIG. 4, the second receiving antenna 17 is installed on the inner wall of the top of the pipe 11 where the bubble reservoir 18 is likely to occur.

【0065】これら送信アンテナ12と第1の受信アン
テナ13とによる第1のマイクロ波伝播経路及び、第2
の受信アンテナ17とによる第2のマイクロ波伝播経路
には、それぞれ図5で示した回路が接続されており、被
測定物質の物理量をそれぞれ測定することができる。ま
た、送信アンテナ12に対する両受信アンテナ13、1
7との距離は、送信アンテナ12が配管11の断面中心
部に配置されていることから、互いに等しく設定されて
いる。
The first microwave propagation path by the transmitting antenna 12 and the first receiving antenna 13 and the second microwave propagation path
The circuits shown in FIG. 5 are connected to the second microwave propagation paths formed by the receiving antenna 17 and the physical quantity of the substance to be measured, respectively. Also, both receiving antennas 13 and 1 with respect to the transmitting antenna 12
The transmission antenna 12 is located at the center of the cross section of the pipe 11, and thus the distance to 7 is set equal to each other.

【0066】上記構成において、被測定物質の濃度測定
に当っては、まず、送信アンテナ12から配管11内を
流れる被測定物質を経て受信アンテナ13に至る第1の
伝播経路でのマイクロ波の伝播時間を測定する。同じ
く、送信アンテナ12から配管11内の被測定物質を経
て受信アンテナ17に至る第2の伝播経路でのマイクロ
波の伝播時間を測定する。
In the above structure, in measuring the concentration of the substance to be measured, first, the propagation of microwaves in the first propagation path from the transmitting antenna 12 through the substance to be measured flowing in the pipe 11 to the receiving antenna 13 is conducted. Measure time. Similarly, the propagation time of the microwave in the second propagation path from the transmitting antenna 12 through the substance to be measured in the pipe 11 to the receiving antenna 17 is measured.

【0067】この2つの伝播経路におけるマイクロ波の
伝播時間から被測定物質の濃度がそれぞれ算出される。
このとき、配管11内に気泡溜まりがない場合は、算出
された濃度の値はほぼ等しい。
The concentration of the substance to be measured is calculated from the propagation times of the microwaves in these two propagation paths.
At this time, when there is no bubble accumulation in the pipe 11, the calculated concentration values are almost equal.

【0068】しかし、配管11内に気泡が生じると、図
4で示すように、配管11内の、第2のアンテナ17が
設置された内壁直下に気泡溜まり18が生じる。このた
め、第2の受信アンテナ17に受信されるマイクロ波は
気泡溜りに邪魔されて、その伝播時間が遅くなる。
However, when bubbles are generated in the pipe 11, as shown in FIG. 4, a bubble pool 18 is formed in the pipe 11 immediately below the inner wall on which the second antenna 17 is installed. Therefore, the microwave received by the second receiving antenna 17 is obstructed by the bubble reservoir, and the propagation time thereof is delayed.

【0069】一方、第1の受信アンテナ13は、配管1
1の斜め下部の内壁面に設置されているため、その周囲
に気泡溜りは殆ど生じない。また、堆積が生じても堆積
物によって覆われることもない。したがって、第1の受
信アンテナ13で受信されるマイクロ波の伝播時間は正
常である。
On the other hand, the first receiving antenna 13 is connected to the pipe 1
Since it is installed on the inner wall surface of the diagonally lower part of 1, there is almost no bubble accumulation around it. Further, even if the accumulation occurs, it is not covered with the deposit. Therefore, the propagation time of the microwave received by the first receiving antenna 13 is normal.

【0070】これらの結果、第2のマイクロ波伝播経路
による伝播時間は、第1のマイクロ波伝播経路による伝
播時間に比べ大幅に変動する。この伝播時間の変動によ
り、気泡溜まりが配管11内に発生したことが直ちに検
出される。
As a result, the propagation time of the second microwave propagation path fluctuates significantly as compared with the propagation time of the first microwave propagation path. Due to this change in propagation time, it is immediately detected that a bubble pool has occurred in the pipe 11.

【0071】もちろん、被測定物質の濃度は、気泡溜ま
り18や堆積物による影響がない第1の受信アンテナ1
3によって正確に測定することができる。
Of course, the concentration of the substance to be measured is not affected by the bubble pool 18 or the deposits.
3 allows accurate measurement.

【0072】[0072]

【発明の効果】本発明によれば、配管が大口径化しても
マイクロ波の伝播距離を適正な範囲に保つことができ、
また、配管内に気泡や沈殿物および付着物が生じても、
これらによる影響を受け難く、正確で安定な測定が可能
となる。
According to the present invention, the microwave propagation distance can be kept within an appropriate range even if the diameter of the pipe is increased.
In addition, even if air bubbles, precipitates, or deposits occur in the pipe,
It is difficult to be affected by these, and accurate and stable measurement is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による物質量測定装置の一実施の形態を
示す模式図である。
FIG. 1 is a schematic diagram showing an embodiment of a substance amount measuring apparatus according to the present invention.

【図2】本発明の他の実施の形態を示す模式図である。FIG. 2 is a schematic diagram showing another embodiment of the present invention.

【図3】本発明のさらに他の実施の形態を示す模式図で
ある。
FIG. 3 is a schematic diagram showing still another embodiment of the present invention.

【図4】図3の実施の形態の動作を説明する模式図であ
る。
FIG. 4 is a schematic diagram illustrating the operation of the embodiment of FIG.

【図5】従来のマイクロ波式濃度計の制御構成を示すブ
ロック図である。
FIG. 5 is a block diagram showing a control configuration of a conventional microwave densitometer.

【図6】検量線を示したグラフ図である。FIG. 6 is a graph showing a calibration curve.

【符号の説明】[Explanation of symbols]

11 配管 12 マイクロ波送信アンテナ 13、17 マイクロ波受信アンテナ 14 支持部材 18 気泡溜まり 11 piping 12 microwave transmitting antenna 13,17 Microwave receiving antenna 14 Support members 18 Bubble puddle

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 送信アンテナからマイクロ波を送信し、
受信アンテナとの間に位置する被測定物質を伝播したマ
イクロ波の伝播時間または位相遅れから被測定物質の物
理量を測定する物質量測定装置であって、 被測定物質を流すための配管と、 この配管内に設置された支持部材に支持され、かつ前記
被測定物質中において所定距離を保って対向配置された
マイクロ波送信アンテナ及び受信アンテナと、 を備えたことを特徴とする物質量測定装置。
1. A microwave is transmitted from a transmitting antenna,
A substance quantity measuring device for measuring a physical quantity of a measured substance from a propagation time or a phase delay of a microwave propagating through the measured substance, which is located between a receiving antenna and a pipe for flowing the measured substance, 1. A substance amount measuring apparatus, comprising: a microwave transmitting antenna and a receiving antenna, which are supported by a supporting member installed in a pipe and are arranged to face each other in the substance to be measured with a predetermined distance therebetween.
【請求項2】 送信アンテナからマイクロ波を送信し、
受信アンテナとの間に位置する被測定物質を伝播したマ
イクロ波の伝播時間または位相遅れから被測定物質の物
理量を測定する物質量測定装置であって、 被測定物質を流すための配管と、 この配管内に設置された支持部材に支持され、かつ前記
被測定物質中に設置されたマイクロ波送信アンテナと、 前記配管内壁に取り付けられたマイクロ波受信アンテナ
と、 を備えたことを特徴とする物質量測定装置。
2. A microwave is transmitted from a transmitting antenna,
A substance quantity measuring device for measuring a physical quantity of a measured substance from a propagation time or a phase delay of a microwave propagating through the measured substance, which is located between a receiving antenna and a pipe for flowing the measured substance, A microwave transmitting antenna, which is supported by a supporting member installed in a pipe and is installed in the substance to be measured, and a microwave receiving antenna, which is attached to an inner wall of the pipe. Quantity measuring device.
【請求項3】 送信アンテナからマイクロ波を送信し、
受信アンテナとの間に位置する被測定物質を伝播したマ
イクロ波の伝播時間または位相遅れから被測定物質の物
理量を測定する物質量測定装置であって、 被測定物質を流すための配管と、 この配管内に設置された支持部材に支持され、かつ前記
被測定物質中に設置されたマイクロ波送信アンテナと、 このマイクロ波送信アンテナと対向し、配管内に生じる
気泡や堆積物の影響を受け難い位置に設置された第1の
受信アンテナと、 前記送信アンテナと対向し、前記気泡や堆積物による影
響を比較的受け易い位置に設置された第2の受信アンテ
ナと、 を備えたことを特徴とする物質量測定装置。
3. A microwave is transmitted from a transmitting antenna,
A substance quantity measuring device for measuring a physical quantity of a measured substance from a propagation time or a phase delay of a microwave propagating through the measured substance, which is located between a receiving antenna and a pipe for flowing the measured substance, A microwave transmitting antenna that is supported by a supporting member that is installed in the pipe and that is installed in the substance to be measured, and is opposed to the microwave transmitting antenna and is not easily affected by bubbles or deposits generated in the pipe. A first receiving antenna installed at a position, and a second receiving antenna installed at a position facing the transmitting antenna and relatively easily affected by the bubbles or the deposits, Measuring device for substance quantity.
【請求項4】 第1の受信アンテナは送信アンテナと共
に支持部材に取り付けられ、第2の受信アンテナは配管
内壁に取り付けられていることを特徴とする請求項3に
記載の物質量測定装置。
4. The substance amount measuring device according to claim 3, wherein the first receiving antenna is attached to the supporting member together with the transmitting antenna, and the second receiving antenna is attached to the inner wall of the pipe.
【請求項5】 第1及び第2の受信アンテナが、送信ア
ンテナと共にそれぞれ支持部材に取り付けられているこ
とを特徴とする請求項3に記載の物質量測定装置。
5. The substance amount measuring apparatus according to claim 3, wherein the first and second receiving antennas are attached to the supporting member together with the transmitting antenna.
【請求項6】 第1及び第2の受信アンテナが、配管内
壁の互いに異なる位置に取り付けられていることを特徴
とする請求項3に記載の物質量測定装置。
6. The substance amount measuring device according to claim 3, wherein the first and second receiving antennas are attached to the inner wall of the pipe at different positions from each other.
【請求項7】 マイクロ波送信アンテナと、第1および
第2の受信アンテナとの距離を互いに同一距離としたこ
とを特徴とする請求項3に記載の物質量測定装置。
7. The substance amount measuring apparatus according to claim 3, wherein the microwave transmitting antenna and the first and second receiving antennas have the same distance from each other.
【請求項8】 支持部材は、金属、または強度の高い合
成樹脂、或いはセラミック等で形成されていることを特
徴とする請求項1、請求項2、請求項3のいずれかに記
載の物質量測定装置。
8. The amount of substance according to claim 1, wherein the support member is formed of metal, high strength synthetic resin, ceramic or the like. measuring device.
JP2002113330A 2002-04-16 2002-04-16 Substance measuring device Expired - Fee Related JP4028284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113330A JP4028284B2 (en) 2002-04-16 2002-04-16 Substance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113330A JP4028284B2 (en) 2002-04-16 2002-04-16 Substance measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006203491A Division JP4304197B2 (en) 2006-07-26 2006-07-26 Substance measuring device

Publications (2)

Publication Number Publication Date
JP2003307502A true JP2003307502A (en) 2003-10-31
JP4028284B2 JP4028284B2 (en) 2007-12-26

Family

ID=29395545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113330A Expired - Fee Related JP4028284B2 (en) 2002-04-16 2002-04-16 Substance measuring device

Country Status (1)

Country Link
JP (1) JP4028284B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018036781A1 (en) * 2016-08-22 2018-03-01 Basf Se Method and apparatus for detecting deposits in a pipe system of an apparatus
CN108627434A (en) * 2017-03-17 2018-10-09 维美德自动化有限公司 Equipment for measuring concentration
DE102020133855A1 (en) 2020-12-16 2022-06-23 Endress+Hauser Flowtec Ag Method for determining a pavement property

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102481988B1 (en) * 2022-06-17 2022-12-27 유기석 Method for detecting height of sediment in a pipe, method and apparatus for calculating flow rate using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018036781A1 (en) * 2016-08-22 2018-03-01 Basf Se Method and apparatus for detecting deposits in a pipe system of an apparatus
EA037645B1 (en) * 2016-08-22 2021-04-26 Басф Се Method and apparatus for detecting deposits in a pipe system of an apparatus
EA037645B9 (en) * 2016-08-22 2021-09-20 Басф Се Method and apparatus for detecting deposits in a pipe system of an apparatus
US11579098B2 (en) 2016-08-22 2023-02-14 Basf Se Method and apparatus for detecting deposits in a pipe system of an apparatus
CN108627434A (en) * 2017-03-17 2018-10-09 维美德自动化有限公司 Equipment for measuring concentration
DE102020133855A1 (en) 2020-12-16 2022-06-23 Endress+Hauser Flowtec Ag Method for determining a pavement property

Also Published As

Publication number Publication date
JP4028284B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP3160474B2 (en) Microwave densitometer
KR101856186B1 (en) Hybrid radar flowmeter including ultrasonic flowmeter, and method for operating the same
JP2012513026A (en) Filling level determination system and method
JP2008089583A (en) Radar/level measurement
KR102037873B1 (en) Multi-level input type deposition ultrasonic flowmeter
NO344669B1 (en) A method and device for multiphase measurement in the vicinity of deposits on the pipe wall
US4167736A (en) Fluid flow measurement
JP2003307502A (en) Substance quantity measuring device
KR101899409B1 (en) Ultrasonic wave water meter for convergence and integration having temperature compensation algorithm
KR101845238B1 (en) Flow detection apparatus with complex sensing structure
JP4304197B2 (en) Substance measuring device
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP5481154B2 (en) Electromagnetic applied densitometer
JP3631478B2 (en) Densitometer
JP2000258361A (en) Microwave type densitometer
JP2965712B2 (en) Densitometer
JP3998504B2 (en) Microwave densitometer
JP3631477B2 (en) Densitometer
JPH1019620A (en) Flow measuring device
KR100927449B1 (en) Method of water level measuring
JP2005083821A (en) Microwave densitometer
KR102478319B1 (en) Flow slot member
JP2006029935A (en) Microwave-type densitometer
JP3311230B2 (en) Microwave densitometer
JP3373734B2 (en) Densitometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees