JP2001242099A - Microwave type concentration meter - Google Patents

Microwave type concentration meter

Info

Publication number
JP2001242099A
JP2001242099A JP2000049884A JP2000049884A JP2001242099A JP 2001242099 A JP2001242099 A JP 2001242099A JP 2000049884 A JP2000049884 A JP 2000049884A JP 2000049884 A JP2000049884 A JP 2000049884A JP 2001242099 A JP2001242099 A JP 2001242099A
Authority
JP
Japan
Prior art keywords
calibration curve
liquid
microwave
temperature
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000049884A
Other languages
Japanese (ja)
Inventor
Seiji Yamaguchi
征治 山口
Koji Takemura
幸司 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba Corp
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba IT and Control Systems Corp filed Critical Toshiba Corp
Priority to JP2000049884A priority Critical patent/JP2001242099A/en
Publication of JP2001242099A publication Critical patent/JP2001242099A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve accuracy of concentration measurement on a measurement objective liquid consisting of suspension or solution of a substance with a dielectric constant variable according to a temperature. SOLUTION: In the previous steps to a concentration computing circuit 18, this microwave type concentration meter is provided with a temperature detector 21, a zero point temperature correcting circuit 22, a calibration curve inclination correcting circuit 23, and a calibration curve intercept correcting circuit 24. Therefore, respective factors such as a phase difference Δθ, an inclination (a), an intercept b in the calibration curve of a concentration x are corrected according to a temperature of the measurement liquid, and then, the concentration x is calculated on the basis of the corrected calibration curve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、入射させたマイク
ロ波の伝搬遅れに基づいて、測定用液体の濃度を測定す
るマイクロ波式濃度計に係り、特に、測定用液体の液温
補正方式を改良し、濃度測定の正確性を向上し得るマイ
クロ波式濃度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave densitometer for measuring the concentration of a measurement liquid based on the propagation delay of an incident microwave, and more particularly to a method for correcting the liquid temperature of the measurement liquid. The present invention relates to a microwave type densitometer which can be improved to improve the accuracy of concentration measurement.

【0002】[0002]

【従来の技術】一般に、汚泥やパルプ、建材材料等の種
々の懸濁物質や溶解性物質を含む測定対象液の濃度を測
定する濃度計として、超音波式濃度計及び光学式濃度計
が広く用いられている。
2. Description of the Related Art Generally, ultrasonic densitometers and optical densitometers are widely used as densitometers for measuring the concentration of a liquid to be measured containing various suspended or soluble substances such as sludge, pulp, and building materials. Used.

【0003】ここで、超音波式濃度計は、超音波の減衰
率を測定し、測定対象液の濃度を求める機器である。但
し、超音波式濃度計は、測定対象液中に気泡が混入して
いる場合、気泡の影響により測定誤差を増大させてしま
う傾向がある。
[0003] The ultrasonic densitometer is a device that measures the attenuation rate of ultrasonic waves and obtains the concentration of the liquid to be measured. However, when bubbles are mixed in the liquid to be measured, the ultrasonic densitometer tends to increase the measurement error due to the influence of the bubbles.

【0004】また、光学式濃度計は、光を用いて透過光
減衰率や散乱光増加率を測定して濃度を求める機器であ
る。但し、光学式濃度計は、光を入射あるいは出射する
光学窓に汚れが付着した場合、汚れの影響により測定誤
差を増大させてしまう傾向がある。
[0004] An optical densitometer is a device for measuring a transmitted light attenuation rate or a scattered light increase rate using light to obtain a density. However, in the optical densitometer, when dirt adheres to an optical window through which light enters or exits, a measurement error tends to increase due to the influence of the dirt.

【0005】一方、最近では、これら気泡や汚れによる
測定誤差の生じにくい機器としてマイクロ波式濃度計が
開発され、実用化されるようになってきている。
On the other hand, recently, a microwave type densitometer has been developed and practically used as a device which hardly causes a measurement error due to such bubbles and dirt.

【0006】図6は係るマイクロ波式濃度計の構成を示
すブロック図である。このマイクロ波式濃度計は、マイ
クロ波発振器11から発信されたマイクロ波がパワース
プリッタ12により基準系経路と、測定系経路とに分配
される。
FIG. 6 is a block diagram showing the configuration of such a microwave type densitometer. In this microwave densitometer, a microwave transmitted from a microwave oscillator 11 is distributed by a power splitter 12 to a reference system path and a measurement system path.

【0007】まず、基準系経路を通るマイクロ波は、伝
送ケーブル13を介して位相差測定回路14に導入され
る。
First, the microwave passing through the reference system path is introduced into the phase difference measuring circuit 14 via the transmission cable 13.

【0008】一方、測定系経路を通るマイクロ波は、配
管15の側面に取付けられたマイクロ波送信アンテナ1
6を介して配管15の長手方向と直交する方向に配管1
5内に入射され、配管15内を流れる測定対象液中を通
過した後、配管15の反対側の側面に対向配置されたマ
イクロ波受信アンテナ17に出射され、マイクロ波受信
アンテナ17から位相差測定回路14に導入される。
On the other hand, the microwave passing through the measurement system path is transmitted to the microwave transmitting antenna 1 attached to the side of the pipe 15.
6 in a direction orthogonal to the longitudinal direction of the pipe 15
5, passes through the liquid to be measured flowing through the pipe 15, is emitted to the microwave receiving antenna 17 disposed opposite to the side surface on the opposite side of the pipe 15, and measures the phase difference from the microwave receiving antenna 17. It is introduced into the circuit 14.

【0009】また、測定対象液は、濃度ゼロ(又は基準
値)の濃度基準用液体と、濃度xの測定用液体との2種
類があり、それぞれ個別に配管に流されて位相遅れθ
1,θ2が測定される。
There are two types of liquids to be measured: a liquid for concentration reference having a concentration of zero (or a reference value) and a liquid for measurement having a concentration x.
1, θ2 are measured.

【0010】すなわち、位相測定回路14においては、
図7に示すように、マイクロ波発振器11から伝送ケー
ブル13等を経由して直接受信するマイクロ波を位相基
準とし、これに対して配管15内に濃度xの測定用液体
内を充填して流したときのマイクロ波の位相遅れθsに
起因する位相差θ2=360−θsを測定し、配管15
内に濃度基準用液体(例えば、濃度ゼロとみなせる水道
水)を充填して流したときのマイクロ波の位相遅れθw
に起因する位相差θ1=360−θwと測定し、θ2と
θ1とを比較し、位相差△θ=(θ2−θ1)=(θw
−θs)を求めて濃度演算回路18に送出する。なお、
この位相差Δθと測定用液体の濃度xとの間には図8に
示す検量線の如き優れた直線関係の有ることが理論的及
び実験的に確認されている。
That is, in the phase measuring circuit 14,
As shown in FIG. 7, the microwave directly received from the microwave oscillator 11 via the transmission cable 13 or the like is used as a phase reference. The phase difference θ2 = 360−θs caused by the phase delay θs of the microwave when the
Lag θw when microwaves are filled with a reference liquid (for example, tap water that can be regarded as having a zero concentration) and flowed
Is measured as θ1 = 360−θw, and θ2 is compared with θ1, and the phase difference Δθ = (θ2−θ1) = (θw
−θs) and sends it to the density calculation circuit 18. In addition,
It has been theoretically and experimentally confirmed that there is an excellent linear relationship between the phase difference Δθ and the concentration x of the measurement liquid as shown in a calibration curve in FIG.

【0011】濃度演算処理部18は、この位相差Δθ及
び検量線に基づいて、測定用液体の濃度xを算出する。
具体的には、濃度演算処理部18は、濃度x=a△θ+
bの演算により濃度xを算出する。なお、aは検量線の
傾き、bは検量線の切片である。通常はb=0である。
The concentration calculation processing section 18 calculates the concentration x of the measuring liquid based on the phase difference Δθ and the calibration curve.
Specifically, the density calculation processing unit 18 calculates the density x = a △ θ +
The density x is calculated by the calculation of b. Here, a is the slope of the calibration curve, and b is the intercept of the calibration curve. Usually, b = 0.

【0012】このようなマイクロ波式濃度計は次のよう
な原理に基づいている。すなわち、測定対象液中の懸濁
物質または溶解性物質の濃度が変化すると測定対象液全
体としての誘電率、導電率が変化する。誘電率、導電率
が変化すると、測定対象液中を伝播する電波の速度が変
化する。ここで、マイクロ波式濃度計は、このような濃
度変化による電波の速度変化を位相の変化として測定
し、その位相変化の差△θが濃度に比例するという原理
に基づいている。
Such a microwave densitometer is based on the following principle. That is, when the concentration of the suspended substance or the soluble substance in the liquid to be measured changes, the dielectric constant and conductivity of the whole liquid to be measured change. When the dielectric constant and the conductivity change, the speed of the radio wave propagating in the liquid to be measured changes. Here, the microwave densitometer measures the speed change of the radio wave due to such a density change as a phase change, and is based on the principle that the difference Δθ of the phase change is proportional to the density.

【0013】このようなマイクロ波式濃度計は、マイク
ロ波の減衰率を測定する方式ではなく、位相差の差Δθ
(以下位相差△θという)を測定する方式であり、マイ
クロ波を入射あるいは出射させる窓部を透明とする必要
が無いため、気泡や汚れの影響を受け難く、且つ連続的
に濃度を測定可能となっている。
[0013] Such a microwave densitometer is not a method of measuring the attenuation rate of microwaves, but a phase difference Δθ.
(Hereinafter referred to as phase difference Δθ) It is not necessary to make the window through which microwaves enter or exit transparent, so it is hardly affected by bubbles and dirt, and the concentration can be measured continuously. It has become.

【0014】また、以上のようなマイクロ波式濃度計
は、一般的に測定対象液の誘電率が温度によって変化
し、位相差△θに影響を与えることから、液温補正が行
なわれている。
In the microwave type densitometer as described above, since the dielectric constant of the liquid to be measured generally changes depending on the temperature and affects the phase difference Δθ, the liquid temperature is corrected. .

【0015】例えば基準液体が水の場合、測定対象液の
液温tsとゼロ点すなわちθ1測定時の水温twとの差
△t(=ts−tw)と、位相差補正値△θtとが図9
に示すように液温補正係数αを介して略直線関係にある
ので、液温補正後の位相差△θ’=(△θ−△θt)を
用いて検量線に基づき、濃度xが算出されている。
For example, when the reference liquid is water, the difference Δt (= ts−tw) between the liquid temperature ts of the liquid to be measured and the zero point, that is, the water temperature tw at the time of θ1 measurement, and the phase difference correction value Δθt are shown in FIG. 9
As shown in the above, since the liquid crystal temperature is in a substantially linear relationship via the liquid temperature correction coefficient α, the concentration x is calculated based on the calibration curve using the phase difference Δθ ′ = (Δθ−Δθt) after the liquid temperature correction. ing.

【0016】この液温補正は、図10に示すように水の
誘電率が水温に応じて略直線的に大きく変化する性質に
基づいている。また、この液温補正は、予め求めた水温
の差△tに液温補正係数αを乗じて得られた位相差補正
値△θtだけ位相差のゼロ点(θ1)を平行移動する方
式となっている。
This liquid temperature correction is based on the property that the dielectric constant of water changes substantially linearly according to the water temperature, as shown in FIG. In addition, the liquid temperature correction is a method in which the zero point (θ1) of the phase difference is translated in parallel by a phase difference correction value Δθt obtained by multiplying a previously obtained water temperature difference Δt by a liquid temperature correction coefficient α. ing.

【0017】[0017]

【発明が解決しようとする課題】しかしながら、以上の
ようなマイクロ波式濃度計では、懸濁物質の誘電率が温
度によって変化する物質が測定対象の場合、濃度の測定
結果が不正確となる場合がある。
However, in the microwave type densitometer as described above, when the substance whose permittivity of the suspended substance changes with temperature is the object to be measured, the concentration measurement result becomes inaccurate. There is.

【0018】例えばある種の高分子等では、図11
(a),図12(a)に示すように、懸濁物質の誘電率
が温度に応じて変化し、図11(b),図12(b)に
示すように検量線の傾きが変化する。
For example, in the case of a certain polymer or the like, FIG.
As shown in FIGS. 12A and 12A, the dielectric constant of the suspended substance changes according to the temperature, and the slope of the calibration curve changes as shown in FIGS. 11B and 12B. .

【0019】このため、濃度が高い場合やゼロ点との液
温差が大きい場合には、水温のみの補正、すなわちゼロ
点の平行移動だけの補正では不十分であり、濃度の測定
結果が不正確となる場合がある。
For this reason, when the concentration is high or when the liquid temperature difference from the zero point is large, the correction of only the water temperature, that is, the correction of only the parallel movement of the zero point is not sufficient, and the measurement result of the concentration is inaccurate. It may be.

【0020】本発明は上記実情を考慮してなされたもの
で、温度に応じて誘電率が変化する物質の懸濁液や溶液
からなる測定対象液に対し、濃度測定の正確性を向上し
得るマイクロ波式濃度計を実現することを目的とする。
The present invention has been made in view of the above circumstances, and can improve the accuracy of concentration measurement for a liquid to be measured consisting of a suspension or solution of a substance whose dielectric constant changes with temperature. It is intended to realize a microwave densitometer.

【0021】[0021]

【課題を解決するための手段】本発明の骨子は、例えば
下水汚泥、パルプ、塗料等の種々の懸濁物質や溶解性物
質等混合物質を含む測定対象液中の混合物質濃度を測定
するマイクロ波式濃度計において、特に測定対象液の測
定感度が温度によって変化する、すなわち検量線の傾き
や切片が温度によって変化する場合、従来のゼロ点の液
温補正に加えて検量線の傾き、切片又はその両者の液温
補正を行なう手段を具備したことにある。これにより、
各種物質について、高濃度でしかも液温が大きく変化す
る場合でも正確に測定できるマイクロ波式濃度計を実現
できる。
The gist of the present invention is a micrometer for measuring the concentration of a mixed substance in a liquid to be measured containing mixed substances such as various suspended substances such as sewage sludge, pulp and paint, and soluble substances. In a wave type densitometer, especially when the measurement sensitivity of the liquid to be measured changes with temperature, that is, when the slope or intercept of the calibration curve changes with temperature, the slope and intercept of the calibration curve in addition to the conventional zero point liquid temperature correction Alternatively, there is provided means for correcting the liquid temperature of both of them. This allows
It is possible to realize a microwave densitometer that can accurately measure various substances even when the concentration is high and the liquid temperature greatly changes.

【0022】さて以上のような本発明の骨子に基づいて
具体的には以下のような手段が講じられる。すなわち、
本発明は上記目的を達成するために、測定用液体を流す
ための検出器配管と、この検出器配管を挟んで互いに対
向配置されたマイクロ波送信アンテナ及びマイクロ波受
信アンテナと、前記マイクロ波送信アンテナに供給する
ためのマイクロ波を発信するマイクロ波発信手段と、前
記マイクロ波送信アンテナから送信されて前記配管内の
測定用液体を伝搬して前記マイクロ波受信アンテナにて
受信されたマイクロ波の位相遅れθ2を測定し、また、
予め前記配管内に基準用液体を充填して測定用液体と同
じ条件で測定したときのマイクロ波の位相遅れとを比較
し、その位相差Δθ=(θ2−θ1)を測定する位相差
測定手段と、前記位相差測定手段により測定された位相
差Δθを、前記測定用液体の液温tsと前記基準用液体
の液温twとの温度差Δt(=tw−ts)に基づいて
補正し、位相差Δθ’を得る位相差補正手段と、前記測
定用液体毎に対応する検量線x=a・Δθ’+bのう
ち、右辺の少なくとも1つの項を前記測定用液体の液温
tsに基づいて補正する検量線補正手段と、前記位相差
補正手段により得られた位相差Δθ’及び前記検量線補
正手段により補正された検量線に基づいて、測定用液体
の濃度xを算出する濃度算出手段とを備えたマイクロ波
式濃度計である。
On the basis of the gist of the present invention as described above, the following means are specifically taken. That is,
In order to achieve the above object, the present invention provides a detector pipe for flowing a liquid for measurement, a microwave transmitting antenna and a microwave receiving antenna disposed to face each other with the detector pipe interposed therebetween, and the microwave transmitting antenna. Microwave transmitting means for transmitting microwaves to be supplied to the antenna, and microwaves transmitted from the microwave transmitting antenna, propagated through the liquid for measurement in the pipe, and received by the microwave receiving antenna. Measure the phase delay θ2, and
A phase difference measuring means for comparing the phase delay of a microwave when the pipe is filled with a reference liquid in advance and measuring the same under the same conditions as the measurement liquid, and measuring the phase difference Δθ = (θ2−θ1). And correcting the phase difference Δθ measured by the phase difference measuring means based on a temperature difference Δt (= tw−ts) between the liquid temperature ts of the measuring liquid and the liquid temperature tw of the reference liquid, A phase difference correction unit for obtaining a phase difference Δθ ′, and at least one term on the right side of a calibration curve x = a · Δθ ′ + b corresponding to each of the measurement liquids, based on the liquid temperature ts of the measurement liquid. Calibration curve correcting means for correcting, and concentration calculating means for calculating the concentration x of the measuring liquid based on the phase difference Δθ 'obtained by the phase difference correcting means and the calibration curve corrected by the calibration curve correcting means. It is a microwave type densitometer provided with.

【0023】(作用)従って、本発明は以上のような手
段を講じたことにより、測定用液体の温度に基づいて、
濃度xの検量線における位相差Δθ、傾きa、切片bと
いった各要素を補正し、補正後の検量線に基づいて濃度
xを算出するので、温度に応じて誘電率が変化する物質
の懸濁液や溶液からなる測定対象液に対し、濃度測定の
正確性を向上させることができる。
(Operation) Accordingly, the present invention, by taking the above-described means, can determine the temperature based on the temperature of the measuring liquid.
Each element such as the phase difference Δθ, the slope a, and the intercept b in the calibration curve of the concentration x is corrected, and the concentration x is calculated based on the corrected calibration curve. Therefore, the suspension of a substance whose dielectric constant changes according to the temperature. The accuracy of the concentration measurement can be improved for a liquid to be measured, which is a liquid or a solution.

【0024】[0024]

【発明の実施の形態】以下、本発明の一実施形態につい
て図面を参照して説明する。図1は本発明の一実施形態
に係るマイクロ波式濃度計の構成を示すブロック図であ
り、前述した図面と同一部分には同一符号を付してその
詳しい説明を省略し、ここでは異なる部分について主に
述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a microwave densitometer according to one embodiment of the present invention. The same parts as those in the above-mentioned drawings are denoted by the same reference numerals, and detailed description thereof will be omitted. Is mainly described.

【0025】すなわち、本実施形態は、検量線の傾きや
切片が液温に応じて変化する物質であっても、濃度測定
の正確性の向上を図るものである。具体的には、濃度演
算回路18の前段に、温度検出器21、ゼロ点温度補正
回路22、検量線傾き補正回路23及び検量線切片補正
回路24を備えている。
That is, in the present embodiment, the accuracy of the concentration measurement is improved even if the slope or intercept of the calibration curve is a substance that changes according to the liquid temperature. Specifically, a temperature detector 21, a zero-point temperature correction circuit 22, a calibration curve inclination correction circuit 23, and a calibration curve intercept correction circuit 24 are provided before the concentration calculation circuit 18.

【0026】ここで、温度検出器21は、配管15に取
付けられ、配管15内を流れる測定対象液の液温を測定
し、液温を示す液温信号をゼロ点温度補正回路22、検
量線傾き補正回路23及び検量線切片補正回路24に送
出するものである。
The temperature detector 21 is attached to the pipe 15, measures the temperature of the liquid to be measured flowing in the pipe 15, and sends a liquid temperature signal indicating the liquid temperature to a zero point temperature correction circuit 22, a calibration curve. It is sent to the inclination correction circuit 23 and the calibration curve intercept correction circuit 24.

【0027】ゼロ点温度補正回路22は、温度検出器2
1から送出された液温信号の示す液温tsと、所定のゼ
ロ点の水温twとの温度差(tw−ts)=△tを求め
る機能と、温度差Δtから、図9に示した如き位相差補
正式△θt=α・△tに基づいて、位相差補正値△θt
を求める機能と、位相差測定回路14で測定された位相
差Δθから△θtを減じ、得られたゼロ点温度補正後の
位相差△θ’=(△θ−△θt)の値を濃度演算回路1
8に送出する機能とをもっている。
The zero-point temperature correction circuit 22 includes a temperature detector 2
As shown in FIG. 9, the function for obtaining a temperature difference (tw−ts) = △ t between the liquid temperature ts indicated by the liquid temperature signal sent from 1 and the water temperature tw at a predetermined zero point, and the temperature difference Δt. Based on the phase difference correction formula △ θt = α · Δt, the phase difference correction value △ θt
And a function of subtracting で θt from the phase difference Δθ measured by the phase difference measurement circuit 14, and calculating the obtained value of the phase difference ゼ ロ θ '= (△ θ- △ θt) after the zero-point temperature correction, for the density calculation. Circuit 1
8 is provided.

【0028】検量線傾き補正回路23は、温度検出器2
1から送出された液温信号の示す液温tsに対応する検
量線の傾きaを関数a=f(t)に基づいて求め、
得られた値aを濃度演算回路18に送出するものであ
る。
The calibration curve slope correction circuit 23 includes a temperature detector 2
Determined based on the slope a t of the corresponding calibration curve on the liquid temperature ts indicated by the liquid temperature signal sent from the 1 to the function a t = f (t),
The resulting values a t is to sent to the concentration calculation circuit 18.

【0029】検量線切片補正回路24は、温度検出器2
1から送出された液温信号の示す液温tsに対応する検
量線の切片b1を関数b=g(t)に基づいて求め、
得られた値bを濃度演算回路18に送出するものであ
る。
The calibration curve intercept correction circuit 24 includes the temperature detector 2
The intercept b1 of the calibration curve corresponding to the liquid temperature ts indicated by the liquid temperature signal transmitted from 1 is obtained based on the function b t = g (t),
The resulting value b t is intended to be sent to the concentration calculation circuit 18.

【0030】濃度演算回路18は、前述同様の濃度演算
機能をもつが、演算に用いる値が液温補正された位相差
Δθ’、傾きa、切片b1となっている。すなわち、
濃度演算回路18は、ゼロ点温度補正回路22から受け
たゼロ点温度補正後の位相差△θ’、検量線傾き補正回
路23から受けた検量線の傾きa、検量線切片補正回
路24から受けた検量線の切片bの値に基づいて、濃
度x=a・△θ’+bを演算し、測定対象液の濃度
xを算出する機能をもっている。
The concentration arithmetic circuit 18 is having the aforementioned same concentration calculation function, the value used for the calculation is the liquid temperature corrected phase difference [Delta] [theta] ', the slope a t, and has a section b1. That is,
The concentration calculation circuit 18 receives the zero-point temperature-corrected phase difference 温度 θ ′ received from the zero-point temperature correction circuit 22, the calibration curve slope a t received from the calibration curve slope correction circuit 23, and the calibration curve intercept correction circuit 24. based on the value of the intercept b t of the received calibration curve, it has a function of calculating the concentration x = a t · △ θ ' + b t, and calculates the concentration x of the analyte solution.

【0031】次に、以上のように構成されたマイクロ波
式濃度計の動作を説明する。いま、測定対象液のゼロ点
温度補正後の検量線が、図2に示す液温特性を有し、そ
の傾きatの液温特性が図3に示す液温tの関数at=
f(t)で表され、切片bの液温特性が図4に示す液温
tの関数bt=g(t)で表されるとする。
Next, the operation of the microwave densitometer configured as described above will be described. Now, the calibration curve after the zero point temperature correction of the liquid to be measured has the liquid temperature characteristic shown in FIG. 2, and the liquid temperature characteristic of the slope at is the function at = t of the liquid temperature t shown in FIG.
It is assumed that the liquid temperature characteristic of the intercept b is expressed by f (t) and the function bt = g (t) of the liquid temperature t shown in FIG.

【0032】なお、検量線の液温特性としては、懸濁物
質の誘電率、導電率、密度および誘電率の温度変化特性
に基づいて理論計算式で求めてもよく、また、これらの
温度変化特性が不明のとき等は、測定対象物質のサンプ
ル液の温度変化特性の測定結果から求めてもよい。
The liquid temperature characteristics of the calibration curve may be obtained by a theoretical calculation formula based on the temperature change characteristics of the permittivity, conductivity, density and permittivity of the suspended substance. When the characteristics are unknown, etc., it may be obtained from the measurement results of the temperature change characteristics of the sample liquid of the substance to be measured.

【0033】ここで、位相差測定回路14は、前述した
通り、位相差Δθを測定すると共に、この位相差Δθを
ゼロ点温度補正回路22に送出する。
Here, the phase difference measuring circuit 14 measures the phase difference Δθ and sends the phase difference Δθ to the zero point temperature correction circuit 22 as described above.

【0034】一方、温度検出器21で測定された液温信
号はゼロ点補正回路22、検量線傾き補正回路23及び
検量線切片補正回路24に送出される。
On the other hand, the liquid temperature signal measured by the temperature detector 21 is sent to a zero point correction circuit 22, a calibration curve inclination correction circuit 23, and a calibration curve intercept correction circuit 24.

【0035】ゼロ点温度補正回路22は、液温信号の示
す液温tsと、所定のゼロ点の水温twとの温度差(t
w−ts)=△tを求めると、このΔtから、図9に示
した如き位相差補正式△θt=α・△tに基づいて、位
相差補正値△θtを求め、位相差測定回路14で測定さ
れた位相差Δθから△θtを減じ、得られたゼロ点温度
補正後の位相差△θ’=(△θ−△θt)の値を濃度演
算回路18に送出する。
The zero point temperature correction circuit 22 calculates a temperature difference (t) between the liquid temperature ts indicated by the liquid temperature signal and a predetermined zero point water temperature tw.
(w−ts) = △ t, the phase difference correction value △ θt is obtained from Δt based on the phase difference correction formula △ θt = α · △ t as shown in FIG. Then, △ θt is subtracted from the phase difference Δθ measured in step (1), and the obtained value of the phase difference △ θ ′ = (△ θ- △ θt) after the zero point temperature correction is sent to the density calculation circuit 18.

【0036】一方、検量線傾き補正回路23は、液温信
号の示す液温tsに対応する検量線の傾きaを図3に
示した如き関数a=f(t)に基づいて求め、得られ
た値aを濃度演算回路18に送出する。
On the other hand, a calibration curve inclination correction circuit 23 obtains based on the slope a t of calibration curve corresponding to the liquid temperature ts indicated by the liquid temperature signal to the function a t = f (t) such as shown in FIG. 3, the resulting values a t is sent to the concentration calculation circuit 18.

【0037】また一方、検量線切片補正回路24は、液
温信号の示す液温tsに対応する検量線の切片b1を図
4に示した如き関数b=g(t)に基づいて求め、得
られた値bを濃度演算回路18に送出する。
On the other hand, the calibration curve intercept correction circuit 24 obtains the intercept b1 of the calibration curve corresponding to the liquid temperature ts indicated by the liquid temperature signal based on the function b t = g (t) as shown in FIG. the resulting value b t is sent to the concentration calculation circuit 18.

【0038】濃度演算回路18では、これらゼロ点温度
補正後の位相差△θ’、液温tsに対応する検量線の傾
きa、液温tsに対応する検量線の切片bの値に基
づいて、濃度x=a・△θ’+bを演算し、測定対
象液の濃度xを算出する。
[0038] In the concentration arithmetic circuit 18, a phase difference after these zero-point temperature compensation △ theta ', the slope a t of calibration curve corresponding to the liquid temperature ts, the value of the intercept b t of the calibration curve corresponding to the liquid temperature ts based on, calculates the concentration x = a t · △ θ ' + b t, and calculates the concentration x of the analyte solution.

【0039】上述したように本実施形態によれば、測定
用液体の液温tsに基づいて、濃度xの検量線における
位相差Δθ、傾きa、切片bといった各要素を補正し、
補正後の検量線に基づいて濃度xを算出するので、温度
に応じて誘電率が変化する物質の懸濁液や溶液からなる
測定対象液に対し、濃度測定の正確性を向上させること
ができる。また、高濃度やゼロ点との液温差が大きいと
きにも濃度を正確に測定することができる。
As described above, according to the present embodiment, based on the liquid temperature ts of the measuring liquid, each element such as the phase difference Δθ, the slope a, and the intercept b in the calibration curve of the concentration x is corrected.
Since the concentration x is calculated based on the calibration curve after the correction, the accuracy of the concentration measurement can be improved for a measurement target liquid composed of a suspension or solution of a substance whose dielectric constant changes according to the temperature. . In addition, the concentration can be accurately measured even when the concentration is high or the liquid temperature difference from the zero point is large.

【0040】なお、上記実施形態では、図11(a),
図12(a)に示した如き懸濁物質の温度による誘電率
の変化特性が直線関係などの単純な特性を示す場合を例
に挙げて説明したが、これに限らず、例えば対象物質が
結晶性高分子などの場合で、図5に示す如き複雑な特性
を示す場合(図11(b),図12(b)に相当する検
量線も複雑な曲線関係となる場合)であっても、ゼロ点
補正回路22、検量線傾き補正回路23及び検量線切片
補正回路24がそれぞれ、検量線の曲線をある幅の温度
帯ごとに区切った直線関係で近似(折れ線近似)して液
温補正を行うことにより、本発明を同様に実施して同様
の効果を得ることができる。
In the above embodiment, FIG.
Although the case where the change characteristic of the dielectric constant depending on the temperature of the suspended substance shows a simple characteristic such as a linear relationship as shown in FIG. 12A has been described as an example, the present invention is not limited to this. In the case of a functional polymer or the like, even when the complex characteristic shown in FIG. 5 is shown (when the calibration curves corresponding to FIG. 11B and FIG. 12B also have a complicated curve relationship), The zero point correction circuit 22, the calibration curve slope correction circuit 23, and the calibration curve intercept correction circuit 24 each approximate (linear line approximation) the curve of the calibration curve in a linear relationship that is divided for each temperature band having a certain width to perform the liquid temperature correction. By doing so, the present invention can be implemented in the same manner and the same effect can be obtained.

【0041】その他、本発明はその要旨を逸脱しない範
囲で種々変形して実施できる。
In addition, the present invention can be variously modified and implemented without departing from the gist thereof.

【0042】[0042]

【発明の効果】以上説明したように本発明によれば、温
度に応じて誘電率が変化する物質の懸濁液や溶液からな
る測定対象液に対し、濃度測定の正確性を向上できるマ
イクロ波式濃度計を提供することができる。
As described above, according to the present invention, it is possible to improve the accuracy of concentration measurement for a liquid to be measured consisting of a suspension or solution of a substance whose dielectric constant changes with temperature. An expression densitometer can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るマイクロ波式濃度計
の構成を示すブロック図
FIG. 1 is a block diagram illustrating a configuration of a microwave densitometer according to an embodiment of the present invention.

【図2】同実施形態における検量線の液温特性の一例を
示す特性図
FIG. 2 is a characteristic diagram showing an example of a liquid temperature characteristic of a calibration curve in the embodiment.

【図3】同実施形態における検量線の傾きの液温特性の
一例を示す特性図
FIG. 3 is a characteristic diagram showing an example of a liquid temperature characteristic of a slope of a calibration curve in the embodiment.

【図4】同実施形態における検量線の切片の液温特性の
一例を示す特性図
FIG. 4 is a characteristic diagram showing an example of a liquid temperature characteristic of a section of a calibration curve in the embodiment.

【図5】同実施形態の変形例における複雑な特性をもつ
物質の誘電率の温度依存性を示す特性図
FIG. 5 is a characteristic diagram showing the temperature dependence of the dielectric constant of a substance having complicated characteristics in a modification of the embodiment.

【図6】従来のマイクロ波式濃度計の構成を示すブロッ
ク図
FIG. 6 is a block diagram showing the configuration of a conventional microwave densitometer.

【図7】一般的な位相差θ1と位相遅れθwの関係θ1
=360−θw、位相差θ2と位相遅れθsの関係θ2=
360−θsを説明するための波形図
FIG. 7 is a relationship θ1 between a general phase difference θ1 and a phase delay θw.
= 360-θw, relation θ2 between phase difference θ2 and phase delay θs =
Waveform diagram for explaining 360-θs

【図8】一般的な検量線を検量線を説明するための特性
FIG. 8 is a characteristic diagram for explaining a general calibration curve.

【図9】一般的な液温差と位相差補正値の関係を説明す
るための特性図
FIG. 9 is a characteristic diagram for explaining a general relationship between a liquid temperature difference and a phase difference correction value.

【図10】一般的な水温による水の誘電率の変化を説明
するための特性図
FIG. 10 is a characteristic diagram for explaining a change in dielectric constant of water depending on a general water temperature.

【図11】一般的な物質の温度と誘電率変化の一例を示
す特性図並びに温度に応じて懸濁物質の誘電率が変化し
た場合の検量線の変化の一例を説明するための特性図
FIG. 11 is a characteristic diagram showing an example of a change in temperature and dielectric constant of a general substance, and a characteristic diagram for explaining an example of a change in a calibration curve when the dielectric constant of a suspended substance changes according to temperature.

【図12】一般的な誘電率の温度依存性並びに検量線の
温度依存性の一例を示す特性図
FIG. 12 is a characteristic diagram showing an example of the temperature dependency of a general permittivity and the temperature dependency of a calibration curve.

【符号の説明】[Explanation of symbols]

11…マイクロ波発振器 12…パワースプリッタ 13…伝送ケーブル 14…位相差測定回路 15…配管 16…マイクロ波送信アンテナ 17…マイクロ波受信アンテナ 18…濃度演算回路 21…温度検出器 22…ゼロ点温度補正回路 23…検量線傾き補正回路 24…検量線切片補正回路 DESCRIPTION OF SYMBOLS 11 ... Microwave oscillator 12 ... Power splitter 13 ... Transmission cable 14 ... Phase difference measurement circuit 15 ... Piping 16 ... Microwave transmission antenna 17 ... Microwave reception antenna 18 ... Concentration calculation circuit 21 ... Temperature detector 22 ... Zero point temperature correction Circuit 23: Calibration curve inclination correction circuit 24: Calibration curve intercept correction circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹村 幸司 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Takemura 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Fuchu Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 測定用液体を流すための検出器配管と、 この検出器配管を挟んで互いに対向配置されたマイクロ
波送信アンテナ及びマイクロ波受信アンテナと、 前記マイクロ波送信アンテナに供給するためのマイクロ
波を発信するマイクロ波発信手段と、 前記マイクロ波送信アンテナから送信されて前記配管内
の測定用液体を伝搬して前記マイクロ波受信アンテナに
て受信されたマイクロ波の位相遅れθ2を測定し、ま
た、予め前記配管内に基準用液体を充填して測定用液体
と同じ条件で測定したときのマイクロ波の位相遅れとを
比較し、その位相差Δθ=(θ2−θ1)を測定する位
相差測定手段と、 前記位相差測定手段により測定された位相差Δθを、前
記測定用液体の液温tsと前記基準用液体の液温twと
の温度差Δt(=tw−ts)に基づいて補正し、位相
差Δθ’を得る位相差補正手段と、 前記測定用液体毎に対応する検量線x=a・Δθ’+b
のうち、右辺の少なくとも1つの項を前記測定用液体の
液温tsに基づいて補正する検量線補正手段と、 前記位相差補正手段により得られた位相差Δθ’及び前
記検量線補正手段により補正された検量線に基づいて、
測定用液体の濃度xを算出する濃度算出手段とを備えた
ことを特徴とするマイクロ波式濃度計。
1. A detector pipe for flowing a liquid for measurement, a microwave transmitting antenna and a microwave receiving antenna which are arranged to face each other with the detector pipe interposed therebetween, and a power supply for supplying the microwave transmitting antenna to the microwave transmitting antenna. Microwave transmitting means for transmitting microwaves, and measuring the phase delay θ2 of microwaves transmitted from the microwave transmitting antenna, propagated through the liquid for measurement in the pipe, and received by the microwave receiving antenna. Further, the phase difference of the microwave when the pipe is filled with the reference liquid in advance and measured under the same conditions as the measurement liquid is compared, and the phase difference Δθ = (θ2−θ1) is measured. A phase difference measuring means, and a phase difference Δθ measured by the phase difference measuring means, a temperature difference Δt (= tw−ts) between the liquid temperature ts of the measuring liquid and the liquid temperature tw of the reference liquid. Based corrected, 'and the phase difference correction means for obtaining a calibration curve x = a · Δθ corresponding to each liquid for the measurement' phase difference [Delta] [theta] + b
Calibration curve correction means for correcting at least one term on the right side based on the liquid temperature ts of the measurement liquid; and a phase difference Δθ 'obtained by the phase difference correction means and correction by the calibration curve correction means. Based on the calibration curve
And a concentration calculating means for calculating a concentration x of the measuring liquid.
【請求項2】 請求項1に記載のマイクロ波濃度計にお
いて、 前記検量線補正手段は、前記検量線の傾きaの温度特性
に基づいて、前記検量線x=a・Δθ’+bのうち、傾
きaを補正することを特徴とするマイクロ波式濃度計。
2. The microwave densitometer according to claim 1, wherein the calibration curve correction means includes a calibration curve x = a · Δθ ′ + b based on a temperature characteristic of a slope a of the calibration curve. A microwave densitometer characterized in that the inclination a is corrected.
【請求項3】 請求項1に記載のマイクロ波濃度計にお
いて、 前記検量線補正手段は、前記検量線の切片bの温度特性
に基づいて、前記検量線x=a・Δθ’+bのうち、切
片bを補正することを特徴とするマイクロ波式濃度計。
3. The microwave densitometer according to claim 1, wherein the calibration curve correction unit is configured to calculate the calibration curve x = a · Δθ ′ + b based on a temperature characteristic of an intercept b of the calibration curve. A microwave densitometer, wherein the intercept b is corrected.
【請求項4】 請求項1に記載のマイクロ波濃度計にお
いて、 前記検量線補正手段は、前記検量線の傾きa及び切片b
の各々の温度特性に基づいて、前記検量線x=a・Δ
θ’+bのうち、傾きa及び切片bを補正することを特
徴とするマイクロ波式濃度計。
4. The microwave densitometer according to claim 1, wherein said calibration curve correcting means comprises a slope a and an intercept b of said calibration curve.
The calibration curve x = a · Δ based on each temperature characteristic of
A microwave densitometer characterized in that the inclination a and the intercept b of θ ′ + b are corrected.
【請求項5】 請求項1乃至請求項4のいずれか1項に
記載のマイクロ波濃度計において、 前記位相差補正手段及び前記検量線補正手段は、前記測
定用液体の液温tsに基づく補正を所定の幅の温度帯ご
とに実行することを特徴とするマイクロ波式濃度計。
5. The microwave densitometer according to claim 1, wherein the phase difference correction means and the calibration curve correction means correct based on a liquid temperature ts of the measurement liquid. Is performed for each temperature band having a predetermined width.
JP2000049884A 2000-02-25 2000-02-25 Microwave type concentration meter Pending JP2001242099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049884A JP2001242099A (en) 2000-02-25 2000-02-25 Microwave type concentration meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049884A JP2001242099A (en) 2000-02-25 2000-02-25 Microwave type concentration meter

Publications (1)

Publication Number Publication Date
JP2001242099A true JP2001242099A (en) 2001-09-07

Family

ID=18571750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049884A Pending JP2001242099A (en) 2000-02-25 2000-02-25 Microwave type concentration meter

Country Status (1)

Country Link
JP (1) JP2001242099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111814A (en) * 2006-10-31 2008-05-15 Toshiba Corp Apparatus for electromagnetically measuring physical quantity
JP2009204601A (en) * 2008-02-27 2009-09-10 Jiaotong Univ Apparatus and method for measuring suspended solid concentration utilizing time domain reflectometry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111814A (en) * 2006-10-31 2008-05-15 Toshiba Corp Apparatus for electromagnetically measuring physical quantity
JP2009204601A (en) * 2008-02-27 2009-09-10 Jiaotong Univ Apparatus and method for measuring suspended solid concentration utilizing time domain reflectometry

Similar Documents

Publication Publication Date Title
US7908930B2 (en) Systems and methods for measuring multiphase flow in a hydrocarbon transporting pipeline
JP3139874B2 (en) Densitometer
JP2000111499A (en) Microwave concentration-measuring device
JP3413073B2 (en) Microwave concentration measuring device
JP2001242099A (en) Microwave type concentration meter
US11579060B2 (en) Method and device for measuring fat in milk
SU1257409A1 (en) Device for measuring mass flow rate of substance
JP4208004B2 (en) Microwave concentration measurement method
JP2965712B2 (en) Densitometer
JP2005156316A (en) Microwave density meter
JP3652890B2 (en) Cryogenic fluid density measurement system
KR100320329B1 (en) Densitometer using microwave
JP5481154B2 (en) Electromagnetic applied densitometer
JPS59133431A (en) Apparatus for measuring powder flow rate using microwave
JP2002350364A (en) Microwave apparatus for measuring concentration
RU169540U1 (en) FLOW MICROWAVE HUMIDIFIER
JP2000258361A (en) Microwave type densitometer
JP2001255285A (en) Microwave type concentration meter
CN109799247B (en) Device and method for detecting phase content of two-phase flow based on microwave transmission time
JP2000046757A (en) Microwave utilized concentration measuring method
JPH1183758A (en) Densitometer
JP2006029935A (en) Microwave-type densitometer
JP2002357566A (en) Microwave concentration-measuring instrument
JPH0979881A (en) Flow measuring method and its device
JP2002139456A (en) Sludge concentration meter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050712

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20051206

Free format text: JAPANESE INTERMEDIATE CODE: A02