JP5478843B2 - Rotation separator - Google Patents

Rotation separator Download PDF

Info

Publication number
JP5478843B2
JP5478843B2 JP2008152395A JP2008152395A JP5478843B2 JP 5478843 B2 JP5478843 B2 JP 5478843B2 JP 2008152395 A JP2008152395 A JP 2008152395A JP 2008152395 A JP2008152395 A JP 2008152395A JP 5478843 B2 JP5478843 B2 JP 5478843B2
Authority
JP
Japan
Prior art keywords
sludge
separation
spiral
rotating plate
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008152395A
Other languages
Japanese (ja)
Other versions
JP2009297609A (en
Inventor
良行 菅原
稔 佐藤
貴浩 伊藤
進介 小関
Original Assignee
株式会社西原環境
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社西原環境 filed Critical 株式会社西原環境
Priority to JP2008152395A priority Critical patent/JP5478843B2/en
Publication of JP2009297609A publication Critical patent/JP2009297609A/en
Application granted granted Critical
Publication of JP5478843B2 publication Critical patent/JP5478843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、廃水処理施設等から発生する活性汚泥や沈殿池引抜汚泥などの原水(汚泥と分離液を含む混合液)を汚泥と分離液とに固液分離する回転分離装置に関し、特に汚泥の分離濃縮に有効な回転分離装置に関するものである。   The present invention relates to a rotary separation device that separates raw water (mixed liquid containing sludge and separated liquid) such as activated sludge and sedimentation basin drawn sludge generated from wastewater treatment facilities into sludge and separated liquid. The present invention relates to a rotary separation device effective for separation and concentration.

従来、一次処理や二次処理で発生する原水を分離濃縮する方法としては、大別して重力濃縮と機械濃縮の2つの方法がある。
重力濃縮は一般的な方法であって、重力濃縮槽、凝集分離濃縮槽、沈殿分離槽などを用いている。これらの重力濃縮槽、凝集分離濃縮槽、沈殿分離槽などは、原水を重力沈降によって固液分離するので、特にエネルギーを必要としない。
Conventionally, as a method for separating and concentrating raw water generated in a primary treatment or a secondary treatment, there are roughly two methods, gravity concentration and mechanical concentration.
Gravity concentration is a common method, and a gravity concentration tank, a coagulation separation concentration tank, a precipitation separation tank, or the like is used. These gravity concentration tanks, flocculation separation concentration tanks, precipitation separation tanks and the like do not require any particular energy because raw water is solid-liquid separated by gravity sedimentation.

一方、機械濃縮には、遠心式、常圧浮上式、ベルト式などがあるが、一般的に遠心式すなわち遠心濃縮法を採用する場合が多い。この遠心濃縮法は、比重が1よりも大きな汚泥を回転する遠心濃縮法によって分離濃縮するので、多くのエネルギーを消費する。常圧浮上式は、汚泥と微細気泡を接触させ、汚泥の見かけ比重を1よりも小さくして汚泥を浮上させ固液分離濃縮するものである。   On the other hand, the mechanical concentration includes a centrifugal method, a normal pressure levitation method, a belt method, and the like, but generally a centrifugal method, that is, a centrifugal concentration method is often employed. Since this centrifugal concentration method separates and concentrates the sludge having a specific gravity larger than 1 by the centrifugal concentration method that rotates, it consumes a lot of energy. The normal pressure levitation type is a method in which sludge is brought into contact with fine bubbles, the apparent specific gravity of sludge is made smaller than 1, and the sludge is levitated and solid-liquid separated and concentrated.

古くから原水の分離濃縮では、一般に重力濃縮が採用されてきたが、近年は原水質の変化による分離濃縮性の悪化に対応する目的で、機械濃縮を採用するケースが増加している。
重力濃縮槽は、自然の重力によって原水中から固形物を沈降させるもので、とても省エネであり、良好時には濃縮濃度は1.5%程度、SS回収率は70%程度が得られるが、流入原水の性状変動により濃縮性能は大きく変化する。重力濃縮槽は、一般的に円筒型のコンクリート製で、汚泥滞留時間が10〜24時間と非常に長く、設置スペースも大きい。
機械濃縮は、重力濃縮の濃縮性悪化を改善する目的で採用されており、濃縮濃度は4%以上で、SS回収率は90%以上と性能は良好であるが、機械の設備費や機械を動かす動力などの維持管理費がコスト高で、定期的な分解点検を行わなければならず、運転管理も煩雑である。
Gravity concentration has generally been adopted for separation and concentration of raw water for a long time, but in recent years, the case of employing mechanical concentration has been increasing for the purpose of dealing with the deterioration of separation and concentration due to changes in raw water quality.
Gravity concentration tanks sink solids from raw water by natural gravity and are very energy-saving. When good, concentration concentration is about 1.5% and SS recovery rate is about 70%. Concentration performance changes greatly due to fluctuations in properties. The gravity concentration tank is generally made of cylindrical concrete, and the sludge residence time is as long as 10 to 24 hours, and the installation space is large.
Mechanical concentration is adopted for the purpose of improving the deterioration of the concentration of gravity concentration. The concentrated concentration is 4% or more and the SS recovery rate is 90% or more, but the performance is good. Maintenance costs such as power to move are expensive, and periodic overhauls must be performed, and operation management is complicated.

以上のように濃縮技術の中で、重力濃縮は維持管理が容易で低コストであるが、汚泥濃縮濃度が低く、汚泥の性状による汚泥濃縮性能の変動が大きいという問題があった。これに対して機械濃縮機は、汚泥濃縮性能は良好であるが、設備費や維持管理費が高いというコスト面での問題があった。   As described above, among the concentration techniques, gravity concentration is easy to maintain and low in cost, but has a problem that the sludge concentration is low and the fluctuation of the sludge concentration performance is large due to the properties of the sludge. On the other hand, the mechanical concentrator has a good sludge concentration performance, but has a problem in terms of costs such as high equipment costs and maintenance costs.

そのため汚泥濃縮性能が良好で、かつ低コストの分離濃縮機が望まれている。この要望に応える分離濃縮機として、例えば、本出願人による特許文献1の固液分離装置がある。この固液分離装置は、円筒型の回転羽根によって、流入水(原水)に回転力を加えることにより固液分離を行い、固液分離後の汚泥排出効率を向上させるために通常の汚泥掻寄機を使用する場合には、前記回転羽根と汚泥掻寄機を一基の駆動機(モータ)で同時回転駆動するようにしている。   Therefore, a separation and concentrator with good sludge concentration performance and low cost is desired. As a separation and concentration machine that meets this demand, for example, there is a solid-liquid separation device of Patent Document 1 by the present applicant. This solid-liquid separator performs solid-liquid separation by applying a rotational force to the inflow water (raw water) with a cylindrical rotary blade, and in order to improve sludge discharge efficiency after solid-liquid separation, When using a machine, the rotary blade and the sludge scraper are simultaneously driven to rotate by a single drive machine (motor).

特開2006−263670号公報(図7,8)JP 2006-263670 A (FIGS. 7 and 8)

特許文献1の固液分離装置は以上のように、円筒型の回転羽根(回転体)によって、流入水(原水)に回転力を加えることにより固液分離を行うが、前記回転羽根は回転数の使用範囲が広いため、固液分離後の汚泥の排出に通常の汚泥掻寄機を使用すると、使用条件によっては汚泥の濃縮効率および排出効率が低下するという課題があった。すなわち、通常の汚泥掻寄機を使用して該汚泥掻寄機と前記回転羽根とを一基の駆動機で同時回転駆動した場合、汚泥掻寄機の回転数が速すぎてしまうため、該汚泥掻寄機による汚泥の巻き上げ現象が生じて汚泥の濃縮効率および排出効率が低下するという課題があった。また、複数の駆動機を設ける場合には、設置コストや運転コストの増大を招くという課題があった。   As described above, the solid-liquid separation device of Patent Document 1 performs solid-liquid separation by applying a rotational force to inflow water (raw water) with a cylindrical rotary blade (rotary body). Therefore, there is a problem that when a normal sludge scraper is used to discharge sludge after solid-liquid separation, the sludge concentration efficiency and the discharge efficiency are lowered depending on the use conditions. That is, when the sludge scraper and the rotary blade are simultaneously rotated using a single sludge scraper using a normal sludge scraper, the rotational speed of the sludge scraper becomes too fast. There was a problem that the sludge winding phenomenon by the sludge scraping machine occurred and the sludge concentration efficiency and the discharge efficiency were lowered. Moreover, when providing a some drive machine, the subject that it caused the increase in installation cost and operation cost occurred.

この発明は上記のような課題を解決するためになされたもので、汚泥の濃縮効率および排出効率を更に向上させることができるとともに、コンパクトで、かつ設備費や維持管理費等のコスト低減を図ることができる回転分離装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and can further improve the sludge concentration efficiency and discharge efficiency, and is compact and reduces costs such as equipment costs and maintenance costs. An object of the present invention is to obtain a rotary separation device that can be used.

請求項1の発明に係る回転分離装置は、汚泥を含む原水を汚泥と分離液とに固液分離する回転分離装置において、前記原水を受け入れる分離槽と、該分離槽内に配設され、間隔を空けた複数枚の分離羽根を備える回転体と、前記分離槽の底部に、底面とは間隔を持たせて配設されると共に、2重以上に渦巻く渦巻状の汚泥流路を形成し、沈降汚泥を掻き寄せる渦巻状回転板とを備えていることを特徴とするものである。

The rotary separation device according to the invention of claim 1 is a rotary separation device for solid-liquid separation of raw water containing sludge into sludge and a separation liquid, a separation tank for receiving the raw water, a separation tank disposed in the separation tank, A rotating body having a plurality of separation blades spaced apart, and a bottom portion of the separation tank, and a bottom surface of the separation tank is disposed with a space therebetween, and a spiral sludge flow path swirling more than twice is formed, A spiral rotating plate for scraping the settled sludge is provided.

請求項2の発明に係る回転分離装置は、前記分離槽の内壁と前記回転体との間に間隙を有していることを特徴とするものである。   The rotary separation device according to the invention of claim 2 is characterized in that a gap is provided between the inner wall of the separation tank and the rotating body.

請求項3の発明に係る回転分離装置は、前記回転体の回転数が10回転/分以下であることを特徴とするものである。   According to a third aspect of the present invention, there is provided a rotary separation device characterized in that the rotational speed of the rotating body is 10 revolutions / minute or less.

請求項1の発明によれば、フロックを含んだ原水を受け入れる分離槽と、この分離槽に配設され、間隙を空けた複数枚の分離羽根を備えた回転体と、分離槽の底部に渦巻状回転板を設置したことで、回転体で原水を回転させても、回転体のスリットは、該回転体内の流入原水に含まれた汚泥をスリットから流出し難い形状もしくは寸法に設定されており、スリットから流出する分離液の濃度も低くなり、フロックは回転体の外に出ないため、懸濁性物質の少ない良好な水質の処理水(分離液)を得ることができる。また、回転体の回転により回転体内部にフロックが多量に保持でき、分離槽底部で渦巻状回転板の回転によって汚泥の濃縮が可能となるため、さらに汚泥の濃縮濃度が高くなり、従来の重力濃縮槽よりも設置面積や容積を減少させ、全体をコンパクト化でき、設備費を削減できる効果がある。
このため、汚泥の濃縮効率および排出効率が向上するという効果がある。しかも、前記分離槽内に回転体と渦巻状回転板とを上下に配設しただけの簡単な構造のため、メンテナンスが容易で、設備費や維持管理費等のコスト低減を図ることができるという効果がある。
また、この発明の回転分離装置では、回転体の回転による固液分離後の汚泥を、回転体による固液分離時の濃縮と、沈降汚泥の堆積による濃縮と、渦巻状回転板による沈降汚泥の掻き寄せ濃縮と段階的に行うことができるため、汚泥濃縮効率が向上するという効果がある。また、渦巻状回転板の回転により汚泥の連続搬送が可能となり、汚泥の搬送・排出効率も向上するという効果がある。さらには、分離槽の底部で渦巻状回転板の低速回転により、該渦巻状回転板の渦巻状水路に沿って沈降汚泥が徐々に一方向へ連続搬送されるため、汚泥の舞い上がりを抑制することができ、固液分離性能が向上するという効果がある。
According to the first aspect of the present invention, a separation tank that receives raw water containing flocks, a rotating body that is provided in the separation tank and includes a plurality of separation blades that are spaced from each other, and a vortex at the bottom of the separation tank The slit of the rotating body is set to a shape or size that makes it difficult for the sludge contained in the inflowing raw water in the rotating body to flow out of the slit even when the raw water is rotated by the rotating body. Since the concentration of the separation liquid flowing out from the slit is reduced and the floc does not come out of the rotating body, it is possible to obtain treated water (separation liquid) with good water quality with few suspended substances. In addition, a large amount of floc can be held inside the rotating body due to the rotation of the rotating body, and the concentration of sludge can be increased by the rotation of the spiral rotating plate at the bottom of the separation tank. Compared to the concentration tank, the installation area and volume can be reduced, the whole can be made compact, and the equipment cost can be reduced.
For this reason, there exists an effect that the concentration efficiency and discharge efficiency of sludge improve. Moreover, because of the simple structure in which the rotating body and the spiral rotating plate are arranged vertically in the separation tank, maintenance is easy, and costs such as equipment costs and maintenance costs can be reduced. effective.
Further, in the rotary separation device of the present invention, the sludge after solid-liquid separation by the rotation of the rotating body is concentrated at the time of solid-liquid separation by the rotating body, the concentration by sedimentation of the settled sludge, and the settling sludge by the spiral rotating plate. Since it can be carried out step by step with the concentration, there is an effect that the sludge concentration efficiency is improved. In addition, the sludge can be continuously conveyed by the rotation of the spiral rotating plate, and the sludge conveyance / discharge efficiency is improved. Furthermore, since the sedimentary sludge is gradually conveyed continuously in one direction along the spiral water channel of the spiral rotating plate due to the low-speed rotation of the spiral rotating plate at the bottom of the separation tank, the rise of the sludge is suppressed. And solid-liquid separation performance is improved.

請求項2の発明によれば、分離槽の内壁と回転体との間に間隙を有しているので、汚泥から分離された分離液を、前記間隙(移流スペース)を通じてスムーズにかつ速やかに排出することができる効果がある。さらに、分離液をスムーズにかつ速やかに排出することができるため、固液分離にかかる時間を短縮することができ、従来の重力濃縮槽よりも設置面積や容積を減少させ、全体をコンパクト化でき、設備費を削減できる効果がある。   According to the second aspect of the present invention, since there is a gap between the inner wall of the separation tank and the rotating body, the separation liquid separated from the sludge is discharged smoothly and quickly through the gap (convection space). There is an effect that can be done. Furthermore, since the separation liquid can be discharged smoothly and quickly, the time required for solid-liquid separation can be shortened, and the installation area and volume can be reduced compared to the conventional gravity concentration tank, and the whole can be made compact. This has the effect of reducing equipment costs.

請求項3の発明によれば、回転体を10回転/分以下の回転数で駆動するので、回転体の過剰回転に起因した分離汚泥の巻き上げ現象を抑制することができて固液分離性能が向上するという効果がある。
また、回転体を10回転/分以下の回転数で駆動すると、回転体を駆動させている駆動機から同軸で配設された、分離槽底部に汚泥掻寄機も10回転/分以下の回転数で駆動する。通常の汚泥掻寄機では、10回転/分以下の回転数で駆動すると、回転速度が速すぎて汚泥の巻き上げ現象が生じてしまうが、分離槽底部の汚泥掻寄機に渦巻状回転板を設置すると、掻寄られる汚泥の移動速度が通常の汚泥掻寄機より遅くなるため、汚泥の巻き上げが起こりにくく、確実に汚泥の濃縮が進み、汚泥濃縮効率が向上するという効果がある。
According to the invention of claim 3, since the rotating body is driven at a rotational speed of 10 revolutions / min or less, the separation sludge winding-up phenomenon caused by the excessive rotation of the rotating body can be suppressed, and the solid-liquid separation performance is improved. There is an effect of improving.
In addition, when the rotating body is driven at a rotation speed of 10 rotations / minute or less, the sludge scraper at the bottom of the separation tank, which is coaxially arranged from the driving machine driving the rotation body, also rotates at 10 rotations / minute or less. Drive with numbers. In a normal sludge scraping machine, if it is driven at a rotation speed of 10 revolutions / minute or less, the rotation speed is too high and the sludge winding phenomenon occurs. However, a spiral rotating plate is attached to the sludge scraping machine at the bottom of the separation tank. When installed, the moving speed of the sludge to be scraped is slower than that of a normal sludge scraping machine, so that the sludge does not easily roll up, and the sludge concentration progresses reliably and the sludge concentration efficiency is improved.

実施の形態1.
図1はこの発明の実施の形態1による回転分離装置の基本的構造を示す概略断面図、図2は図1のA−A線に沿った拡大断面矢視図、図3は図1の固液分離装置の具体的構造を説明するための平面図、図4は図3の断面図である。
この実施の形態1の回転分離装置は、原水を受け入れる分離槽1と、この分離槽1内の上部に配設されて流入原水の固液分離を促進する固液分離用の回転体2と、前記分離槽1内の底部に配設されて該底部の中心部に沈降汚泥を掻き寄せる渦巻状回転板3と、前記回転体2と渦巻状回転板3を一体的に同時回転駆動する駆動機4とから主要部が構成されている。
実施の形態1による回転分離装置の駆動機4は、前記回転体2と渦巻状回転板3を一体的に同時回転駆動するが、後述するようにたとえば回転駆動が一体的でなくても、駆動機が複数台あっても汚泥が回転分離できればよく、これに限るものではない。
Embodiment 1 FIG.
1 is a schematic cross-sectional view showing the basic structure of a rotary separation device according to Embodiment 1 of the present invention, FIG. 2 is an enlarged cross-sectional view taken along line AA in FIG. 1, and FIG. FIG. 4 is a cross-sectional view of FIG. 3, illustrating a specific structure of the liquid separation device.
The rotary separation device according to the first embodiment includes a separation tank 1 that receives raw water, a solid-liquid separation rotating body 2 that is disposed in an upper portion of the separation tank 1 and promotes solid-liquid separation of inflow raw water, A spiral rotating plate 3 that is disposed at the bottom of the separation tank 1 and scrapes the settled sludge to the center of the bottom, and a drive unit that integrally and simultaneously drives the rotating body 2 and the spiral rotating plate 3. 4 is the main part.
The drive unit 4 of the rotary separation device according to the first embodiment simultaneously and simultaneously drives the rotating body 2 and the spiral rotating plate 3 as described later. Even if there are a plurality of machines, it is sufficient that the sludge can be rotated and separated, and the present invention is not limited to this.

さらに詳述すると、分離槽1は、上部の大径筒部1Aと、この大径筒部1Aの下端にテーパー状の中間段差壁部1Bを介して連なる下部の小径筒部1Cとを有し、その小径筒部1Cの底壁部1Dを中心部に向って下降傾斜するテーパー状に形成してなる段付き円筒状のタンク構造となっている。該分離槽1は大径頭部1A、中間段差壁部1B、小径筒部1Cと直径が異なる形状を有しているが、大径筒部1Aと、中間段差壁部1Bと、小径筒部1Cは、直径が異ならなくても、一部の筒部、たとえば大径筒部1Aと中間段差壁部1Bが同じ直径であっても、中間段差壁部1Bと小径筒部1Cが同じ直径であっても、汚泥の分離濃縮が行えれば、これに限定するものではない。このような分離槽1の上端部外周には、大径筒部1Aの上端開口から分離液をオーバーフローにより流出させる集水樋状の分離液排出水路5が設けられ、この分離液排出水路5の側部には分離液排出口6が設けられている。また、前記分離槽1の底壁部1Dの中心部には、汚泥排出弁8を有する汚泥排出管7が接続され、この汚泥排出管7の先端は汚泥排出量調整機9に接続されている。   More specifically, the separation tank 1 has an upper large-diameter cylindrical portion 1A and a lower small-diameter cylindrical portion 1C connected to the lower end of the large-diameter cylindrical portion 1A via a tapered intermediate step wall portion 1B. The bottom wall 1D of the small-diameter cylindrical portion 1C has a stepped cylindrical tank structure formed in a tapered shape that is inclined downward toward the center. The separation tank 1 has a shape different in diameter from the large diameter head portion 1A, the intermediate step wall portion 1B, and the small diameter tube portion 1C, but the large diameter tube portion 1A, the intermediate step wall portion 1B, and the small diameter tube portion. Even if the diameters of 1C are not different, even if some cylindrical parts, for example, the large diameter cylindrical part 1A and the intermediate stepped wall part 1B have the same diameter, the intermediate stepped wall part 1B and the small diameter cylindrical part 1C have the same diameter. However, the present invention is not limited to this as long as the sludge can be separated and concentrated. On the outer periphery of the upper end portion of the separation tank 1, there is provided a water collecting bowl-like separation liquid discharge channel 5 through which the separation liquid flows out from the upper end opening of the large-diameter cylindrical portion 1 </ b> A. A separation liquid discharge port 6 is provided at the side portion. A sludge discharge pipe 7 having a sludge discharge valve 8 is connected to the center of the bottom wall 1D of the separation tank 1, and the tip of the sludge discharge pipe 7 is connected to a sludge discharge amount adjuster 9. .

汚泥排出量調整機9は、分離槽1の上部外側に配設された汚泥排出量調整用のタンク10と、このタンク10内に高さ調整可能に配設された水位調整板11とからなって、前記タンク10の下部に汚泥排出口12が設けられた構造となっている。このような汚泥排出量調整機9は、分離槽1の上部外側に配設され、かつ、分離槽1内の水位よりも低い位置に保持されている。そして、分離槽1の底壁部1Dの中心部に接続された汚泥排出管7を分離槽1の外側に沿って立ち上げ、その立ち上げ上端を汚泥排出量調整機9のタンク10の底部に接続開口させている。このような関連構造とすることにより、分離槽1の底部に沈降した濃縮汚泥を、分離槽1内の水位と前記タンク10内の水位調整板11による設定水位との水位差、および、分離槽1内の水圧によって、前記汚泥排出管7から前記タンク10内に流入させることができるようにしてある。なお、前記水位調整板11は手動で高さ調整可能となっている。しかし、該汚泥排出量調整機9は、この構造に限るものではなく、汚泥濃度計を用いたり、流量計を用いたり、汚泥の排出量を調整できればこれに限定するものではない。また、汚泥排出量調整機は設置した方が安定運転に効果があるが、必ずしも汚泥排出量を調整しなくてもよく、汚泥排出量調整機を設置しなくても、濃縮汚泥を分離槽1に戻す構造になっていて、汚泥の分離濃縮ができれば、これに限定するものではない。   The sludge discharge amount adjusting machine 9 includes a sludge discharge amount adjusting tank 10 disposed outside the upper portion of the separation tank 1 and a water level adjusting plate 11 disposed in the tank 10 so as to be adjustable in height. Thus, a sludge discharge port 12 is provided in the lower part of the tank 10. Such a sludge discharge amount adjusting machine 9 is disposed outside the upper part of the separation tank 1 and is held at a position lower than the water level in the separation tank 1. Then, the sludge discharge pipe 7 connected to the center of the bottom wall 1D of the separation tank 1 is raised along the outside of the separation tank 1, and the upper end of the rise is connected to the bottom of the tank 10 of the sludge discharge amount adjuster 9. The connection is open. By adopting such a related structure, the concentrated sludge that has settled at the bottom of the separation tank 1 is changed to a water level difference between the water level in the separation tank 1 and the set water level by the water level adjusting plate 11 in the tank 10, and the separation tank. 1 can be made to flow into the tank 10 from the sludge discharge pipe 7 by the water pressure in the tank 1. The water level adjusting plate 11 can be manually adjusted in height. However, the sludge discharge amount adjusting machine 9 is not limited to this structure, and is not limited to this as long as a sludge concentration meter, a flow meter, or a sludge discharge amount can be adjusted. In addition, the sludge discharge amount adjusting machine is more effective for stable operation, but it is not always necessary to adjust the sludge discharge amount. The structure is not limited to this as long as the sludge can be separated and concentrated.

前記回転体2は、複数枚の分離羽根2aを所定間隔毎に備え、該分離羽根2aの相互間に幅狭い縦方向のスリット2bを有する円筒体からなっている。この実施の形態1で用いている回転体2は、図3に示すように、平面ほぼ「く」の字の形状に形成された細長い短冊状の分離羽根2aの複数枚を所定の間隔で円筒状に配設して一体化し、該分離羽根2aの相互間が分離液流出用のスリット2bとして形成されているものであり、回転体2の内部汚泥が前記スリット2bから回転体2の外側に流出し難い構造となっている。該分離羽根2aは、「く」の字の形状としてあるが、回転体2の内部汚泥が回転体2の外側に流出し難い構造であれば、板状であっても、椀状であっても、「く」の変形であっても、緩やかに湾曲であってもよく、「く」の字の形状に限らない。また、分離羽根2aは、全て同じ形状・大きさであっても、一つ置き、二つ置きに同じ形状・大きさであっても、全てランダムであってもよい。間隔も等間隔である必要はなく、ランダムな間隔であっても、一つ置き、二つ置き、に同一の間隔でもよい。さらに分離羽根2aの形状は回転体3の大きさなどにより変えることができる。     The rotating body 2 includes a plurality of separation blades 2a at predetermined intervals, and includes a cylindrical body having a narrow vertical slit 2b between the separation blades 2a. As shown in FIG. 3, the rotating body 2 used in the first embodiment is a cylinder formed by separating a plurality of elongated strip-shaped separation blades 2a formed in a substantially “<” shape on a plane at a predetermined interval. The separation blades 2a are formed as slits 2b for separating liquid outflow, and the internal sludge of the rotating body 2 extends from the slit 2b to the outside of the rotating body 2. It has a structure that does not easily leak. The separation blade 2a has a shape of "<", but if the internal sludge of the rotating body 2 is difficult to flow out of the rotating body 2, it may be plate-shaped or bowl-shaped. However, it may be a deformation of “ku” or may be gently curved, and is not limited to the shape of “ku”. Further, the separation blades 2a may all have the same shape / size, or may be the same shape / size every other one or two, or may all be random. The intervals do not have to be equal, and may be random intervals, or may be the same interval every other or every other interval. Furthermore, the shape of the separation blade 2a can be changed according to the size of the rotating body 3 and the like.

前記渦巻状回転板3は、図2に示すように一枚の帯状板を平面渦巻状に成形したもので、平面渦巻状の汚泥流路を形成している。ここで、前記渦巻状回転板3の詳細な形状構造を説明するために、該渦巻状回転板3を外周渦巻部位3aと中間渦巻部位3bと中心渦巻部位3cとに区分すると、前記渦巻状回転板3は分離槽1の底壁部1Dのテーパー面に対応した形状とすべく、該渦巻状回転板3全体の高さ方向において、外周渦巻部位3aと中間渦巻部位3bと中心渦巻部位3cとでは、これらの上端から下端までの長さが、図1に示すように、外周渦巻部位3aよりも中間渦巻部位3bが、かつ、該中間渦巻部位3bよりも中心渦巻部位3cが下方へ漸次長くなるように形成されている。しかし、該渦巻状回転板3の上端から下端までの長さは、汚泥の掻き寄せができれば、外周渦巻部位3a、中間渦巻部位3bおよび中心渦巻部位3cまで同じ高さであっても、また外周渦巻部位3aに向かって長くなっていても、外周渦巻部位3a、中間渦巻部位3bおよび中心渦巻部位3cの高さが不均一であっても良く、これに限定するものではない。   As shown in FIG. 2, the spiral rotating plate 3 is formed by forming a single strip-like plate into a planar spiral shape, and forms a planar spiral sludge flow path. Here, in order to explain the detailed shape structure of the spiral rotating plate 3, the spiral rotating plate 3 is divided into an outer peripheral spiral portion 3a, an intermediate spiral portion 3b, and a central spiral portion 3c. The plate 3 has a shape corresponding to the tapered surface of the bottom wall portion 1D of the separation tank 1, and in the height direction of the entire spiral rotating plate 3, an outer peripheral spiral portion 3a, an intermediate spiral portion 3b, and a central spiral portion 3c Then, as shown in FIG. 1, the length from the upper end to the lower end of the intermediate spiral part 3b is gradually longer than the outer peripheral spiral part 3a, and the central spiral part 3c is gradually longer than the intermediate spiral part 3b. It is formed to become. However, the length from the upper end to the lower end of the spiral rotating plate 3 may be the same height as the outer spiral portion 3a, the intermediate spiral portion 3b, and the central spiral portion 3c as long as sludge can be scraped. Even if it becomes longer toward the spiral portion 3a, the heights of the outer peripheral spiral portion 3a, the intermediate spiral portion 3b, and the central spiral portion 3c may be non-uniform, and the present invention is not limited to this.

以上において、前記回転体2の外周側下端には垂直方向の連結部材13を介して前記渦巻状回転板3が吊持状態に連結されている。このように連結された回転体2と渦巻状回転板3のユニットを分離槽1内に収納することにより、該分離槽1の大径筒部1A内に回転体2を、かつ、小径筒部1C内の底壁部1D側に渦巻状回転板3を配設している。そして、前記回転体2の上端部が駆動機4の回転軸4aに水平方向のサポート14(図3参照)を介して連結保持されている。該回転体2と該渦巻状回転板3は、吊持状態で連結されているが、必ずしも吊持状態で連結されてなくてもよく、後述するがたとえば駆動機から回転体2と渦巻状回転板が個別に接続されていてもよく、これに限定するものではない。
この状態において、前記分離槽1の大径筒部1Aの内周面と回転体2との間には間隙Sが設けられており、この間隙Sは分離液流出路となるものである。なお、前記回転体2は、10回転/分以下の回転数で駆動されるようになっている。
In the above, the spiral rotating plate 3 is connected to the lower end on the outer peripheral side of the rotating body 2 via the connecting member 13 in the vertical direction. By storing the unit of the rotating body 2 and the spiral rotating plate 3 connected in this way in the separation tank 1, the rotating body 2 and the small diameter cylinder part are placed in the large diameter cylindrical part 1 </ b> A of the separation tank 1. A spiral rotating plate 3 is disposed on the bottom wall 1D side in 1C. And the upper end part of the said rotary body 2 is connected and hold | maintained through the horizontal support 14 (refer FIG. 3) to the rotating shaft 4a of the drive machine 4. FIG. The rotating body 2 and the spiral rotating plate 3 are connected in a suspended state. However, the rotating body 2 and the spiral rotating plate 3 do not necessarily have to be connected in a suspended state. The plates may be connected individually and are not limited to this.
In this state, a gap S is provided between the inner circumferential surface of the large-diameter cylindrical portion 1A of the separation tank 1 and the rotating body 2, and this gap S serves as a separation liquid outflow path. The rotating body 2 is driven at a rotation speed of 10 rotations / minute or less.

また、前記回転体2内の上部中心部には、原水投入管15から投入された原水を回転体2内の中心部に誘導流入させるためのフィードコーン16が配設され、このフィードコーン16は前記サポート14に連結保持されている。そのフィードコーン16は、図4に示すように上部が円錐形状の流入部16aとして形成され、該流入部16aの下端中心に垂直方向のパイプ部16bを有し、該パイプ部16bの下部周壁部に複数の孔部16cを設けた構造となっている。原水投入管15は、これに変えて原水投入水路でも、原水投入口でも、原水自然流下投入でも、回転分離装置に原水が投入できるものであればよく、これに限定されるものではない。また、原水を回転体2内の中心部に誘導流入させるための該フィードコーンは、上部が円錐形状となっているが、角錐形状や多角錐形状や円筒形状でもよく、さらに、原水が投入できればどんな形状でもよく、フィードコーンに限定するものではない。   Further, a feed cone 16 for guiding the raw water introduced from the raw water input pipe 15 into the central portion in the rotary body 2 is disposed at the upper central portion in the rotary body 2. The support 14 is connected and held. As shown in FIG. 4, the feed cone 16 has an upper portion formed as a conical inflow portion 16a, and has a vertical pipe portion 16b at the center of the lower end of the inflow portion 16a, and a lower peripheral wall portion of the pipe portion 16b. In this structure, a plurality of holes 16c are provided. Instead of this, the raw water input pipe 15 is not limited to this, as long as it can input the raw water to the rotary separation device, whether it is a raw water input channel, a raw water input port, or a natural water flow-down input. In addition, the feed cone for guiding and flowing raw water into the center of the rotating body 2 has a conical shape at the top, but it may be in a pyramid shape, a polygonal pyramid shape, or a cylindrical shape. Any shape is acceptable and not limited to a feed cone.

次に、上記実施の形態1による回転分離装置の動作について説明する。
汚泥供給ポンプ等により原水投入管15からフィードコーン16に原水が投入されると、該原水はフィードコーン16によって回転体2内の中心部から分離槽1内に供給される。このとき、駆動機4は起動しており、これにより、回転体2と渦巻状回転板3およびフィードコーン16は10回転/分以下の回転数で低速回転駆動されている。この状態において、分離槽1内の水面位置はフィードコーン16の流入部16aの円錐部にあり、流入原水は前記円錐部の表面で乱されるが、この乱れはフィードコーン16の回転により解消される。そして、分離槽1内では、まず上部の回転体2内で原水中の汚泥が濃縮されながら、該汚泥は渦巻状回転板3の上部全面から分離槽1の底部に向って沈降する。その沈降過程において、前記回転体2内で分離された分離液は、該回転体2の分離羽根2a間のスリット2bから分離槽1における大径筒部1Aの内周面と回転体2との間の間隙Sに流出した後、該間隙Sからオーバーフローして分離液排出水路5に流入し、分離液排出口6から系外に排出される。
Next, the operation of the rotary separation device according to the first embodiment will be described.
When raw water is fed into the feed cone 16 from the raw water feed pipe 15 by a sludge feed pump or the like, the raw water is fed into the separation tank 1 from the center in the rotating body 2 by the feed cone 16. At this time, the drive unit 4 is activated, whereby the rotating body 2, the spiral rotating plate 3 and the feed cone 16 are driven to rotate at a low speed at a rotation speed of 10 rotations / minute or less. In this state, the water surface position in the separation tank 1 is at the conical portion of the inflow portion 16 a of the feed cone 16, and the inflow raw water is disturbed by the surface of the conical portion, but this disturbance is eliminated by the rotation of the feed cone 16. The In the separation tank 1, first, the sludge in the raw water is concentrated in the upper rotating body 2, and the sludge settles from the entire upper surface of the spiral rotating plate 3 toward the bottom of the separation tank 1. In the sedimentation process, the separated liquid separated in the rotating body 2 is separated from the inner peripheral surface of the large-diameter cylindrical portion 1A in the separation tank 1 from the slit 2b between the separation blades 2a of the rotating body 2 and the rotating body 2. After flowing out into the gap S between them, it overflows from the gap S and flows into the separation liquid discharge channel 5 and is discharged out of the system through the separation liquid discharge port 6.

一方、分離槽1内の底部に沈降した汚泥は、次第に高く堆積することによって更に濃縮が促進される。このように濃縮された汚泥は、渦巻状回転板3の領域にまで高く堆積すると、該渦巻状回転板3の低速回転により分離槽1の底壁中心部に向って徐々に掻き寄せ搬送されることにより、更に濃縮される。このときの様子を図5に示す。図5において、渦巻状回転板3は反時計回り方向に低速回転駆動されており、この状態において、分離槽1内の底部に沈降して渦巻状回転板3の領域にまで高く堆積した汚泥は、渦巻状回転板3の側面に沿って分離槽1の底壁中心部へ掻き寄せ搬送され、この搬送過程では汚泥が渦巻状回転板3により押圧(圧密)され、汚泥間の水を排出するため、汚泥の濃縮が更にいっそう促進される。   On the other hand, the sludge that has settled at the bottom of the separation tank 1 gradually accumulates higher, thereby further concentrating. When the sludge concentrated in this manner is deposited to a high level in the region of the spiral rotating plate 3, it is gradually scraped and conveyed toward the center of the bottom wall of the separation tank 1 by the low speed rotation of the spiral rotating plate 3. To further concentrate. The state at this time is shown in FIG. In FIG. 5, the spiral rotating plate 3 is driven to rotate at a low speed in the counterclockwise direction, and in this state, the sludge that has settled down to the bottom of the separation tank 1 and accumulated in the region of the spiral rotating plate 3 is high. Then, it is scraped and conveyed along the side surface of the spiral rotating plate 3 to the center of the bottom wall of the separation tank 1, and in this conveying process, sludge is pressed (consolidated) by the spiral rotating plate 3 and the water between the sludge is discharged. Therefore, the concentration of sludge is further promoted.

そして、分離槽1の底部中心部まで掻き寄せられて集積した濃縮汚泥は、汚泥排出弁8を開くことにより、分離槽1内の水位と汚泥排出量調整機9のタンク10内の水位との水位差、および、分離槽1内の水圧によって、汚泥排出管7から前記タンク10内に流入し、次いで該タンク10内の水位調整板11の上端を越流して汚泥排出口12から系外に排出される。   Then, the concentrated sludge that has been scraped and collected to the center of the bottom of the separation tank 1 opens the sludge discharge valve 8, and the water level in the separation tank 1 and the water level in the tank 10 of the sludge discharge amount adjuster 9 are Due to the difference in water level and the water pressure in the separation tank 1, it flows into the tank 10 from the sludge discharge pipe 7, then flows over the upper end of the water level adjusting plate 11 in the tank 10 and out of the system from the sludge discharge port 12. Discharged.

渦巻状回転板と通常の汚泥掻き寄せ板の比較を図6に示す。渦巻状回転板の特徴は、汚泥の連続搬送が可能なことであり、これにより確実な搬送が可能になる。また、回転数をある程度増加させても、汚泥の巻き上げが起こりにくく、上部回転体2と同一回転数で使用することが出来る。これに対し、通常の掻き寄せ板の場合は、汚泥は間欠搬送であり、搬送時の掻寄速度は渦巻状回転板の10倍程度となり、また板の枚数が多いため、汚泥が舞い上がりやすく、回転数の増加が難しい。
回転体2の回転数は、例えば回転体2直径がφ1mの場合、使用する分離羽根形状によっては、2回転/分(周速6.3m/分)程度で使用できる。このような条件では、通常の掻き寄せ板は使用できず、渦巻状回転板が有効である。
FIG. 6 shows a comparison between the spiral rotating plate and a normal sludge scraping plate. The spiral rotating plate is characterized in that sludge can be continuously conveyed, thereby enabling reliable conveyance. Moreover, even if the number of rotations is increased to some extent, sludge is hardly wound up and can be used at the same number of rotations as the upper rotating body 2. On the other hand, in the case of a normal scraping plate, the sludge is intermittently conveyed, the scraping speed during conveyance is about 10 times that of the spiral rotating plate, and the number of plates is large, so the sludge tends to rise, It is difficult to increase the rotation speed.
For example, when the diameter of the rotating body 2 is φ1 m, the rotating body 2 can be used at about 2 rotations / minute (circumferential speed 6.3 m / minute) depending on the shape of the separating blade used. Under such conditions, a normal scraping plate cannot be used, and a spiral rotating plate is effective.

以上説明した実施の形態1の回転分離装置によれば、分離槽1内の上部に配設された回転体2の回転時の分離羽根2aによって、流入原水の固液分離が促進されると共に、回転体2内で分離された汚泥は、前記分離羽根2a相互間のスリット2bから回転体2の外側には流出し難いために濃縮されながら沈降して分離槽1の底部に堆積し、堆積した汚泥は次第に高さが高くなることによっても更に濃縮が促進される。しかも、その濃縮汚泥は、渦巻状回転板3の回転により分離槽1の底部中心部に掻き寄せ搬送され、該搬送過程では渦巻状回転板3により汚泥が押圧されるため、汚泥の濃縮が更にいっそう促進される。   According to the rotary separation device of the first embodiment described above, solid-liquid separation of inflow raw water is promoted by the separation blade 2a at the time of rotation of the rotating body 2 disposed in the upper part of the separation tank 1, The sludge separated in the rotating body 2 does not easily flow out from the slit 2b between the separation blades 2a to the outside of the rotating body 2, so that it settles down and accumulates at the bottom of the separation tank 1 and accumulates. Concentration is further promoted by increasing the height of the sludge. In addition, the concentrated sludge is scraped and conveyed to the center of the bottom of the separation tank 1 by the rotation of the spiral rotating plate 3, and the sludge is pressed by the spiral rotating plate 3 in the conveying process, so that the sludge is further concentrated. Further promoted.

したがって、実施の形態1の回転分離装置では、回転体2の回転による固液分離後の汚泥を、回転体2による固液分離時の濃縮と、沈降汚泥の堆積による濃縮と、渦巻状回転板3による沈降汚泥の掻き寄せ濃縮とを段階的に行うことができ、このため、汚泥濃縮効率が向上するという効果がある。また、渦巻状回転板3の回転により汚泥の連続搬送が可能となり、このため、汚泥の搬送・排出効率も向上するという効果がある。さらには、分離槽1の底部で渦巻状回転板3の低速回転により、該渦巻状回転板3の渦巻状水路に沿って沈降汚泥が徐々に一方向へ連続搬送されるため、汚泥の舞い上がりを抑制することができ、固液分離性能が向上するという効果がある。   Therefore, in the rotary separation device of the first embodiment, the sludge after solid-liquid separation by the rotation of the rotating body 2 is concentrated at the time of solid-liquid separation by the rotating body 2, concentrated by sedimentation of sedimented sludge, and a spiral rotating plate. Sedimentation and concentration of the settled sludge by 3 can be performed stepwise, and this has the effect of improving the sludge concentration efficiency. Further, the sludge can be continuously transported by the rotation of the spiral rotating plate 3, and the sludge transport / discharge efficiency is also improved. Furthermore, since the settled sludge is continuously conveyed in one direction along the spiral water channel of the spiral rotating plate 3 by the low speed rotation of the spiral rotating plate 3 at the bottom of the separation tank 1, the sludge soars. It is possible to suppress the solid-liquid separation performance.

また、前記回転体2のスリット2bは、該回転体2内の流入原水に含まれた汚泥をスリット2bから流出し難い形状もしくは寸法に設定することが可能なため、そのスリット2bから流出する分離液の濃度も低くなるという効果がある。   Further, the slit 2b of the rotating body 2 can be set to a shape or size that makes it difficult for the sludge contained in the inflow raw water in the rotating body 2 to flow out of the slit 2b. There is an effect that the concentration of the liquid is also lowered.

さらに、実施の形態1の回転分離装置は、回転体2と渦巻状回転板3を一体的にユニット化して分離槽1内に配設し、そのユニットを一基の駆動機4で回転駆動するように構成したので、構造が簡単で装置全体をコンパクト化できるとともに、メンテナンスも容易であり、設備費や維持管理費等のコスト低減を図ることができるという効果がある。   Furthermore, in the rotary separation device according to the first embodiment, the rotating body 2 and the spiral rotating plate 3 are integrated into a unit and disposed in the separation tank 1, and the unit is rotated by a single drive unit 4. Thus, the structure is simple, the entire apparatus can be made compact, maintenance is easy, and costs such as equipment costs and maintenance costs can be reduced.

実施例1.
この実施例1では、前記実施の形態1による回転分離装置を小規模汚水処理施設で運転してその性能を測定したものである。
ここで、当該回転分離装置は直径が約1300mm、回転体2は直径が1050mmで高さが約1900mm、分離槽1は汚泥有効容積が約1.5m、駆動機(モータ)4は
回転数が0.3回転/分(回転数は調整可能)とした。
また、回転分離装置における汚泥の滞留時間は6時間で、引き抜き条件は6時間に1回約375L(設定濃縮倍率4倍)とした。
原汚泥の性状はTS0.6%、VTS81%であり、処理量0.25m/hの条件で濃縮濃度は2.5%、分離液のSS濃度は30〜60mg/lであり、SS回収率としては、99%以上である。
このような条件下で、回転体2の回転数を変化させた場合(回転数を0.3〜1.5回転/分の範囲で変化させた場合)の性能は、濃縮濃度が2.4〜2.5%となり、良好な性能が得られた。
なお、回転体2の回転数が10回転/分の場合には、濃縮濃度が1.5%となり、通常の重力濃縮と変わらない濃度まで低下しており、回転数は10回転/分以下が望ましい。
Example 1.
In Example 1, the rotary separator according to Embodiment 1 was operated in a small-scale sewage treatment facility and its performance was measured.
Here, the rotary separation device has a diameter of about 1300 mm, the rotating body 2 has a diameter of 1050 mm and a height of about 1900 mm, the separation tank 1 has an effective sludge volume of about 1.5 m 3 , and the drive machine (motor) 4 has a rotational speed. Was 0.3 revolutions / minute (the number of revolutions was adjustable).
In addition, the sludge residence time in the rotary separator was 6 hours, and the extraction condition was about 375 L (set concentration ratio 4 times) once every 6 hours.
The properties of the raw sludge are TS 0.6%, VTS 81%, the concentration is 2.5% under the condition of 0.25 m 3 / h, and the SS concentration of the separation liquid is 30-60 mg / l. The rate is 99% or more.
Under such conditions, when the rotation speed of the rotating body 2 is changed (when the rotation speed is changed in the range of 0.3 to 1.5 rotations / minute), the concentrated concentration is 2.4. It was ˜2.5%, and good performance was obtained.
When the rotational speed of the rotating body 2 is 10 revolutions / minute, the concentration concentration is 1.5%, which is reduced to a concentration that is not different from normal gravity concentration, and the rotational speed is 10 revolutions / minute or less. desirable.

次に、渦巻状回転板3を通常の掻き寄せ板に変更して濃縮性能を測定した結果について説明する。なお、通常の掻き寄せ板は、渦巻状回転板3と汚泥の搬送範囲を同じにしたものである。
通常の掻き寄せ板の場合、図7に示すように、渦巻状回転板3と同じ回転数では濃縮濃度や分離液濃度が悪くなり、回転数の増加に伴って、更に悪化する傾向を示している。
以上により、渦巻状回転板3は、通常の掻き寄せ板と比較して、濃縮濃度が高く、分離液濃度が低く、良好な性能を有することが確認された。
Next, the result of measuring the concentration performance by changing the spiral rotating plate 3 to a normal scraping plate will be described. The normal scraping plate is the same as the spiral rotating plate 3 and the same sludge conveyance range.
In the case of a normal scraping plate, as shown in FIG. 7, at the same rotational speed as that of the spiral rotating plate 3, the concentrated concentration and the concentration of the separation liquid are deteriorated, and the tendency to be further deteriorated as the rotational speed is increased. Yes.
From the above, it was confirmed that the spiral rotating plate 3 has a high concentration and a low concentration of the separation liquid as compared with a normal scraping plate, and has good performance.

実施の形態2.
図8はこの発明の実施の形態2による回転分離装置を示す概略断面図であり、図1〜図4と同一部分には同一符号を付して説明する。
この実施の形態2の回転分離装置は、前記実施の形態1における駆動機4の回転軸4aを回転体2の下方まで長く延ばし、その回転軸4aの下端部にアーム状の連結部材17で渦巻状回転板3を連結吊持する構造としたものであり、この点が前記実施の形態1と大きく異なり、その他の構造は前記実施の形態1と同じである。したがって、この実施の形態2の場合も、一基の駆動機4で回転体2と渦巻状回転板3を一体的に同時回転駆動することができることにより、前記実施の形態1と同様の作用効果を奏する。
Embodiment 2. FIG.
FIG. 8 is a schematic cross-sectional view showing a rotary separating apparatus according to Embodiment 2 of the present invention. The same parts as those in FIGS.
In the rotation separating apparatus according to the second embodiment, the rotating shaft 4a of the driving machine 4 according to the first embodiment is extended to the lower side of the rotating body 2, and the lower end portion of the rotating shaft 4a is swirled by an arm-like connecting member 17. The rotary plate 3 is connected and suspended. This point is greatly different from that of the first embodiment, and other structures are the same as those of the first embodiment. Therefore, also in the case of the second embodiment, the rotating body 2 and the spiral rotating plate 3 can be integrally and simultaneously driven by a single driving machine 4, so that the same effect as the first embodiment can be obtained. Play.

実施の形態3.
図9はこの発明の実施の形態3による回転分離装置を示す概略断面図であり、図1〜図4および図8と同一部分には同一符号を付して説明する。
この実施の形態3の回転分離装置は、前記実施の形態1,2における駆動機4とは別の駆動機18で渦巻状回転板3を回転駆動する構造とした点が前記実施の形態1,2と大きく異なる。この実施の形態3の回転分離装置では、分離槽1の底壁部1Dの中心部に軸受19を介して渦巻状回転板3と一体の軸20を貫通支承させ、該軸20の下端部に嵌着されたプーリ(又はスプロケット)20aと、前記駆動機18の回転軸18aに嵌着されたプーリ(又はスプロケット)18bとにベルト(又はチェーン)21を巻回して前記駆動機18で渦巻状回転板3を単独駆動する構造としたものである。その他の構造については、前記実施の形態1,2における連結部材13,17を除いて前記実施の形態1,2と同じである。したがって、この実施の形態3の場合も、回転体2と渦巻状回転板3とによる前記実施の形態1,2と同様の作用効果を奏する。
Embodiment 3 FIG.
FIG. 9 is a schematic sectional view showing a rotary separating apparatus according to Embodiment 3 of the present invention. The same parts as those in FIGS. 1 to 4 and FIG.
The rotation separation device according to the third embodiment has a structure in which the spiral rotating plate 3 is rotationally driven by a drive unit 18 different from the drive unit 4 in the first and second embodiments. Very different from 2. In the rotary separation device according to the third embodiment, a shaft 20 integral with the spiral rotating plate 3 is passed through and supported at the center of the bottom wall portion 1D of the separation tank 1 through a bearing 19, and the lower end portion of the shaft 20 is supported. A belt (or chain) 21 is wound around a pulley (or sprocket) 20a that is fitted and a pulley (or sprocket) 18b that is fitted to a rotating shaft 18a of the driving machine 18 and spirally formed by the driving machine 18. In this structure, the rotating plate 3 is driven alone. Other structures are the same as those in the first and second embodiments except for the connecting members 13 and 17 in the first and second embodiments. Therefore, also in the case of the third embodiment, the same effects as those of the first and second embodiments by the rotating body 2 and the spiral rotating plate 3 are obtained.

実施の形態4.
図10(a)はこの発明の実施の形態4による回転分離装置を示す概略断面図、図10(b)は図10(a)のB−B線に沿った部分断面図であり、図9と同一部分には同一符号を付して説明する。
この実施の形態4の回転分離装置は、前記実施の形態3の場合と同様に、回転体2の駆動機4とは別に渦巻状回転板3専用の駆動機22を分離槽1の上方に配設し、その駆動機22の回転軸22aを渦巻状回転板3の領域まで延ばして該渦巻状回転板3と前記回転軸22aとをギア連動させた点が、実施の形態3と大きく異なる、
Embodiment 4 FIG.
FIG. 10A is a schematic cross-sectional view showing a rotary separation device according to Embodiment 4 of the present invention, and FIG. 10B is a partial cross-sectional view taken along the line BB of FIG. The same parts as those in FIG.
As in the case of the third embodiment, the rotary separation device of the fourth embodiment has a driver 22 dedicated to the spiral rotating plate 3 disposed above the separation tank 1 separately from the driver 4 of the rotating body 2. The point that the rotating shaft 22a of the driving machine 22 is extended to the region of the spiral rotating plate 3 and the spiral rotating plate 3 and the rotating shaft 22a are gear-linked is greatly different from that of the third embodiment.

この実施の形態4の回転分離装置では、前記実施の形態3の場合と同様に、渦巻状回転板3と一体の軸20を分離槽1の底壁部1Dの中心部に軸受19を介して回転可能に支承させている。そして、前記回転軸22aの下端にピニオンギア23を嵌着するとともに、前記渦巻状回転板3には、該渦巻状回転板3の外側を取り囲むリング状のラックギア24を一体的に取り付け、このラックギア24に前記ピニオンギア23を噛合させた構造としている。したがって、この実施の形態4の場合も、前記実施の形態3の場合と同様に回転体2と渦巻状回転板3をそれぞれの系統の駆動機4,22で個々に回転駆動すること以外は、前記実施の形態1と同様の作用効果を奏する。   In the rotary separation device of the fourth embodiment, as in the case of the third embodiment, the shaft 20 integrated with the spiral rotating plate 3 is connected to the center of the bottom wall portion 1D of the separation tank 1 via the bearing 19. It is supported so that it can rotate. A pinion gear 23 is fitted to the lower end of the rotary shaft 22a, and a ring-shaped rack gear 24 surrounding the outer side of the spiral rotary plate 3 is integrally attached to the spiral rotary plate 3. 24, the pinion gear 23 is engaged. Therefore, in the case of the fourth embodiment, as in the case of the third embodiment, the rotating body 2 and the spiral rotating plate 3 are individually rotated and driven by the respective drive units 4 and 22. The same operational effects as those of the first embodiment are obtained.

実施の形態5.
図11はこの発明の実施の形態5による回転分離装置を示す概略断面図であり、図1〜図4と同一部分には同一符号を付して説明する。
この実施の形態5の回転分離装置は、前記実施の形態1における連結部材13を不要化して回転体2の下端に渦巻状回転板3を一体結合させた点が、前記実施の形態1と大きく異なり、その他の構造は前記実施の形態1と同じである。
この実施の形態5の回転分離装置によれば、前記実施の形態1と同様の作用効果を奏することに加え、前述のように実施の形態1における連結部材13を不要化できるのみならず、前記実施の形態1と同一容積の分離槽1であっても該分離槽1内での回転体2の高さを高くすることができ、その分、固液分離効率が向上するという効果がある。
Embodiment 5 FIG.
FIG. 11 is a schematic sectional view showing a rotary separating apparatus according to Embodiment 5 of the present invention. The same parts as those in FIGS.
The rotation separating apparatus according to the fifth embodiment is largely different from the first embodiment in that the connecting member 13 in the first embodiment is not required and the spiral rotating plate 3 is integrally coupled to the lower end of the rotating body 2. The other structure is the same as that of the first embodiment.
According to the rotation separation device of the fifth embodiment, in addition to the same effects as the first embodiment, not only can the connecting member 13 in the first embodiment be made unnecessary as described above, Even in the separation tank 1 having the same volume as that of the first embodiment, the height of the rotating body 2 in the separation tank 1 can be increased, and the solid-liquid separation efficiency is improved accordingly.

実施の形態6.
図12はこの発明の実施の形態6による回転分離装置を示す概略断面図、図13は図12中の渦巻状回転板3の斜視図であり、図1〜図4と同一または相当部分には同一符号を付して説明する。
前記実施の形態1の回転分離装置では、分離槽1の底部側周壁を底部中心に向ってテーパー面状に形成したが、この実施の形態6の回転分離装置では、分離槽1の底壁部1Dを通常の有底筒状タンクの底壁部と同様の平坦面に形成した点、その底壁部1D側の周壁の一部に外方へ突出するダクト状の汚泥排出部1Eを設け、この汚泥排出部1Eに汚泥排出管7を接続した点、渦巻状回転板3の全体(外周渦巻部位3a,中間渦巻部位3b,中心渦巻部位3c)の高さを同じくした点、渦巻状回転板3の下端全面を分離槽1の平坦な前記底壁部1Dに近接させた点が前記実施の形態1と大きく異なる。その他の構造は前記実施の形態1の同じである。
Embodiment 6 FIG.
12 is a schematic cross-sectional view showing a rotary separating apparatus according to Embodiment 6 of the present invention, and FIG. 13 is a perspective view of the spiral rotating plate 3 in FIG. 12, which is the same as or equivalent to FIGS. The same reference numerals are used for explanation.
In the rotary separation device of the first embodiment, the bottom side peripheral wall of the separation tank 1 is formed in a tapered surface toward the center of the bottom. However, in the rotary separation device of the sixth embodiment, the bottom wall portion of the separation tank 1 is formed. 1D is formed on the same flat surface as the bottom wall portion of a normal bottomed cylindrical tank, a duct-shaped sludge discharge portion 1E protruding outward is provided on a part of the peripheral wall on the bottom wall portion 1D side, The point which connected the sludge discharge pipe 7 to this sludge discharge part 1E, the point which made the height of the whole spiral rotation board 3 (the outer periphery spiral part 3a, the intermediate | middle spiral part 3b, the center spiral part 3c) the same, a spiral rotary plate 3 is greatly different from the first embodiment in that the entire lower end of 3 is brought close to the flat bottom wall portion 1D of the separation tank 1. Other structures are the same as those of the first embodiment.

この実施の形態6の回転分離装置では、回転体2と一体的に同時回転する渦巻状回転板3が図2とは逆方向(図13で時計回り方向)に低速回転駆動される。これにより、分離槽1の底壁部1D上に沈降堆積した汚泥は、渦巻状回転板3全体に側面に接して盛り上がった状態で該渦巻状回転板3の中心側から渦巻径方向の外側に向って搬送される。ここで、分離槽1の底部側の内周面とこれに面する渦巻状回転板3の外周面との間には汚泥流路25が形成されており、この汚泥流路25は、渦巻状回転板3の外周渦巻部位3aの先端側に向って漸次幅狭くなっている。したがって、その幅狭方向に搬送される汚泥は、分離槽1の内周面と渦巻状回転板3との間で漸次圧縮されて前記汚泥排出部1Eに押し出される。この状態で、前記実施の形態1の場合と同様に、分離槽1と汚泥排出量調整機9との水位差および分離槽1内の水圧によって、前記汚泥排出部1Eに押し出された汚泥は、汚泥排出管7から汚泥排出量調整機9を経由して汚泥排出口12から系外に排出される。この実施の形態6の回転分離装置によれば、前記実施の形態1の場合と同様の効果が得られることに加え、分離槽1の底部に沈降堆積した汚泥の濃縮効率が更に向上するという効果がある。   In the rotary separation device according to the sixth embodiment, the spiral rotating plate 3 that rotates simultaneously with the rotating body 2 is driven to rotate at a low speed in a direction opposite to that in FIG. 2 (clockwise in FIG. 13). As a result, the sludge deposited and deposited on the bottom wall 1D of the separation tank 1 is raised from the center side of the spiral rotating plate 3 to the outer side in the spiral radial direction in a state where it rises in contact with the side surface of the entire spiral rotating plate 3. It is conveyed toward. Here, a sludge channel 25 is formed between the inner peripheral surface on the bottom side of the separation tank 1 and the outer peripheral surface of the spiral rotating plate 3 facing this, and the sludge channel 25 is spiral. The width is gradually narrowed toward the distal end side of the outer peripheral spiral portion 3a of the rotating plate 3. Therefore, the sludge conveyed in the narrow direction is gradually compressed between the inner peripheral surface of the separation tank 1 and the spiral rotating plate 3 and pushed out to the sludge discharge section 1E. In this state, as in the case of the first embodiment, the sludge pushed out to the sludge discharger 1E due to the water level difference between the separation tank 1 and the sludge discharge amount adjuster 9 and the water pressure in the separation tank 1, It is discharged from the sludge discharge pipe 7 through the sludge discharge amount adjuster 9 to the outside from the sludge discharge port 12. According to the rotary separation device of the sixth embodiment, in addition to obtaining the same effect as in the first embodiment, the effect of further improving the concentration efficiency of the sludge deposited and deposited on the bottom of the separation tank 1 is obtained. There is.

実施の形態7.
図14はこの発明の実施の形態7による回転分離装置を示す概略断面図であり、図1〜図4と同一部分には同一符号を付して説明する。
この実施の形態7では、分離槽1として周壁全体がストレートの円筒タンクを用いた点が前記実施の形態1と大きく異なり、その他の構造および作用効果は前記実施の形態1と同様である。
Embodiment 7 FIG.
FIG. 14 is a schematic sectional view showing a rotary separating apparatus according to Embodiment 7 of the present invention. The same parts as those in FIGS.
In this Embodiment 7, the point which used the cylindrical tank with the whole surrounding wall straight as the separation tank 1 differs greatly from the said Embodiment 1, and another structure and an effect are the same as that of the said Embodiment 1. FIG.

実施の形態8.
図15はこの発明の実施の形態8による回転分離装置の概略平面図、図16は図15の概略断面図であり、図1〜図4および図8〜図12,14と同一または相当部分には同一符号を付して重複説明を省略する。
この実施の形態8の回転分離装置では、回転体2と渦巻状回転板3の回転駆動手段として、駆動モータ(駆動機4)を使用せずに、流入原水による水力を利用した水力駆動器40を適用しており、この点が前記実施の形態1〜7と大きく異なる。
Embodiment 8 FIG.
15 is a schematic plan view of a rotary separation device according to Embodiment 8 of the present invention, and FIG. 16 is a schematic cross-sectional view of FIG. 15, which is the same as or corresponding to FIGS. 1 to 4 and FIGS. Are denoted by the same reference numerals and redundant description is omitted.
In the rotation separation device according to the eighth embodiment, the hydraulic drive unit 40 that uses the hydraulic power of the inflowing raw water without using the drive motor (driving machine 4) as the rotation driving means of the rotating body 2 and the spiral rotating plate 3. This point is significantly different from the first to seventh embodiments.

この実施の形態8において、前記水力駆動器40は、フィードコーン16内の上部(流入部16a)に配設されて該フィードコーン16と回転体2および渦巻状回転板3と一体回転する回転羽根41からなり、該回転羽根41を原水投入管15からの流入原水で回転させる構造となっている。なお、前記回転羽根41は、これと一体の回転軸42を分離槽1の上部中心部に軸受43を介して支持されている。   In the eighth embodiment, the hydraulic drive unit 40 is disposed on the upper portion (inflow portion 16a) in the feed cone 16 and rotates integrally with the feed cone 16, the rotating body 2 and the spiral rotating plate 3. 41, and the rotating blade 41 is rotated by the inflow raw water from the raw water input pipe 15. The rotary blade 41 has a rotating shaft 42 integral with the rotating blade 41 supported at the center of the upper part of the separation tank 1 via a bearing 43.

このように構成された水力駆動器40は、原水投入管15からの流入原水を接線方向の放射状に分散する機能を有しており、この流れにより回転羽根41が回転する。すなわち、原水投入管15は、回転羽根41の上方から該回転羽根41に原水を投入するようになっており、その原水による水力で回転羽根41が水平回転することにより、フィードコーン16と回転体2および渦巻状回転板3が前記回転羽根41と一体に回転駆動される。   The hydraulic drive unit 40 configured in this manner has a function of dispersing the incoming raw water from the raw water input pipe 15 radially in the tangential direction, and the rotating blades 41 are rotated by this flow. That is, the raw water input pipe 15 is configured to input raw water into the rotary blade 41 from above the rotary blade 41, and when the rotary blade 41 rotates horizontally by the hydraulic force of the raw water, the feed cone 16 and the rotary body are rotated. 2 and the spiral rotating plate 3 are rotationally driven integrally with the rotary blade 41.

したがって、この実施の形態8の回転分離装置によれば、前記実施の形態1〜7と同様の作用効果が得られることに加え、前記実施の形態1〜7における駆動機4を必要としないので、設備費および電力費をいっそう削減できるという効果がある。   Therefore, according to the rotation separation device of the eighth embodiment, in addition to obtaining the same operational effects as those of the first to seventh embodiments, the driver 4 in the first to seventh embodiments is not required. There is an effect that the equipment cost and the power cost can be further reduced.

実施の形態9.
図17はこの発明の回転分離装置に適用可能な渦巻状回転板3の様々な形状例を示す説明図である。
図17(a)に示す渦巻状回転板3は、該渦巻状回転板3を渦巻方向へ細かく分割した構造としたもので、このような構成によれば、分離槽1の底部においても、分割された羽根30の分割間から分離液の排出が可能となるため、固液分離が促進されて汚泥濃縮濃度が高くなるという効果がある。
Embodiment 9 FIG.
FIG. 17 is an explanatory view showing various shape examples of the spiral rotating plate 3 applicable to the rotary separation device of the present invention.
The spiral rotating plate 3 shown in FIG. 17 (a) has a structure in which the spiral rotating plate 3 is finely divided in the spiral direction. According to such a configuration, even at the bottom of the separation tank 1, the spiral rotating plate 3 is divided. Since the separation liquid can be discharged from between the divided blades 30, solid-liquid separation is promoted, and the sludge concentration concentration is increased.

図17(b)に示す渦巻状回転板3は、分割された個々の平板31を、間隙を持って相互に重なり合い、渦巻状を呈するように配置した構造となっているものである。このような構造であれば、渦巻き方向に隣り合う平板31の相互間から分離液の排出が可能となり、また、濃縮汚泥を押す面が平滑ではなく変化するため、濃縮汚泥を混ぜながら搬送することが可能となり、更に水抜け効果を高めることができるという効果がある。   The spiral rotating plate 3 shown in FIG. 17B has a structure in which the divided individual flat plates 31 are arranged so as to overlap each other with a gap and present a spiral shape. With such a structure, the separation liquid can be discharged from between the flat plates 31 adjacent to each other in the spiral direction, and the surface for pushing the concentrated sludge changes instead of being smooth. And the effect of draining water can be further enhanced.

図17(c)は、さらに形状が異なる渦巻状回転板3を示す平面図、図17(d)は図17(c)の概略断面図であり、これらの図に示す渦巻状回転板3は、前記各実施の形態の回転分離装置に適用した渦巻状回転板3の一部に外側を向く水平方向の汚泥切り羽根32を突設したものである。このように構成した渦巻状回転板3では、該渦巻状回転板3の回転時に汚泥切り羽根32が濃縮汚泥を切ることにより、濃縮汚泥内部の水分を更に分離することができ、このため、汚泥濃縮濃度が更に高くなるという効果がある。   FIG. 17C is a plan view showing a spiral rotating plate 3 having a different shape, and FIG. 17D is a schematic cross-sectional view of FIG. 17C. The spiral rotating plate 3 shown in these drawings is shown in FIG. The horizontal sludge cutting blades 32 projecting outward from a part of the spiral rotating plate 3 applied to the rotary separation device of each of the above embodiments. In the spiral rotating plate 3 configured as described above, the sludge cutting blade 32 cuts the concentrated sludge when the spiral rotating plate 3 is rotated, so that the moisture in the concentrated sludge can be further separated. There is an effect that the concentrated concentration is further increased.

図17(e)に示す渦巻状回転板3は、分割された個々の湾曲板(曲線板)33を、間隙をもって相互に重なり合い、渦巻状を呈するように配置した構造となっているものである。このような構成によれば、曲線板33間から分離液の排出が可能となり、また、濃縮汚泥を押す面が平滑ではなく渦巻状回転板3の回転時に変化するため、濃縮汚泥を混ぜながら搬送することが可能となり、更に水抜け効果を高めることができる。   The spiral rotating plate 3 shown in FIG. 17 (e) has a structure in which individual divided curved plates (curved plates) 33 are arranged so as to overlap each other with a gap and present a spiral shape. . According to such a configuration, the separation liquid can be discharged from between the curved plates 33, and the surface for pushing the concentrated sludge is not smooth but changes when the spiral rotating plate 3 rotates, so that the concentrated sludge is mixed and conveyed. It is possible to improve the drainage effect.

実施の形態10.
図18はこの発明の回転分離装置に適用可能な渦巻状回転板3の別の形状例を示す説明図である。
図18に示す渦巻状回転板3は、二枚の羽根部材34,35を一組とした二重巻き構造としたものである。このような構成の渦巻状回転板3によれば、トータル汚泥の単位時間当りの搬送速度が速くなる効果が得られる。また、分離槽1内の容積や高さを有効に利用することができる効果もある。なお、前記渦巻状回転板3は、三重渦巻き以上であって、巻き方がずれていてもよい。
Embodiment 10 FIG.
FIG. 18 is an explanatory view showing another example of the shape of the spiral rotating plate 3 applicable to the rotary separation device of the present invention.
The spiral rotating plate 3 shown in FIG. 18 has a double winding structure in which two blade members 34 and 35 are combined. According to the spiral rotating plate 3 having such a configuration, an effect of increasing the transport speed per unit time of the total sludge can be obtained. Moreover, there exists an effect which can utilize the volume and height in the separation tank 1 effectively. The spiral rotating plate 3 may be more than triple spiral, and the winding method may be shifted.

実施の形態11.
図19はこの発明の回転分離装置に適用可能な更に別の渦巻状回転板3を示す概略平面図である。
前記実施の形態1,6および前記実施の形態9,10では、渦巻状回転板3を中心部に向かって右に巻いたものを示したが、この実施の形態11では、渦巻状回転板3を中心部に向かって左に巻いたものである。
このように左巻き構造とした渦巻状回転板3は、図8の紙面上で時計回り方向(図2の矢印と逆方向)に低速回転駆動される。その低速回転駆動により、分離槽1の底部に沈降堆積した汚泥は、前記実施の形態1の場合と同様に、渦巻状回転板3の側面に沿って分離槽1の底壁中心部に掻き寄せられ、汚泥排出管7から図1中の汚泥排出弁8→汚泥排出量調整機9を経由して汚泥排出口12から系外に排出される。
したがって、この実施の形態11の渦巻状回転板3を備えた回転分離装置の場合も前記実施の形態1と同様の作用効果を奏する。
Embodiment 11 FIG.
FIG. 19 is a schematic plan view showing still another spiral rotating plate 3 applicable to the rotary separation device of the present invention.
In the first and sixth embodiments and the ninth and tenth embodiments, the spiral rotating plate 3 is wound to the right toward the center, but in the eleventh embodiment, the spiral rotating plate 3 is used. Is rolled to the left toward the center.
The spiral rotating plate 3 having the left-handed structure as described above is driven to rotate at a low speed in the clockwise direction (the direction opposite to the arrow in FIG. 2) on the paper surface of FIG. The sludge settled and accumulated at the bottom of the separation tank 1 by the low-speed rotation drive is scraped to the center of the bottom wall of the separation tank 1 along the side surface of the spiral rotating plate 3 as in the case of the first embodiment. 1 is discharged from the sludge discharge port 7 through the sludge discharge valve 8 in FIG.
Therefore, the same effect as that of the first embodiment can be obtained in the case of the rotary separation device provided with the spiral rotating plate 3 of the eleventh embodiment.

以上、前記実施の形態11で説明したように、この発明の回転分離装置に適用する渦巻状回転板3は、渦巻き方向が左右いずれの方向であってもよく、巻き数も問われるものではない。また、前記各実施の形態による回転分離装置は、無薬注での汚泥濃縮以外に、凝集剤を使用した汚泥凝集濃縮や通常の沈殿池等、あらゆる固液分離に適用可能である。   As described above in the eleventh embodiment, the spiral rotating plate 3 applied to the rotary separation device of the present invention may have either the right or left spiral direction, and the number of turns is not limited. . Further, the rotary separation device according to each of the above-described embodiments can be applied to any solid-liquid separation such as sludge aggregation using a flocculant or a normal sedimentation basin, in addition to sludge concentration without chemical injection.

この発明の実施の形態1による回転分離装置の基本的構造を示す概略断面図である。It is a schematic sectional drawing which shows the basic structure of the rotation separation apparatus by Embodiment 1 of this invention. 図1のA−A線に沿った拡大断面矢視図である。である。FIG. 2 is an enlarged sectional view taken along line AA in FIG. 1. It is. 図1の固液分離装置の具体的構造を説明するための平面図である。It is a top view for demonstrating the specific structure of the solid-liquid separator of FIG. 図3の断面図である。FIG. 4 is a cross-sectional view of FIG. 3. 渦巻状回転板による汚泥掻き寄せ時の作用説明図である。It is operation | movement explanatory drawing at the time of sludge scraping by a spiral rotating board. 図2の渦巻状回転板の特性原理説明図である。It is characteristic principle explanatory drawing of the spiral rotating board of FIG. 渦巻状回転板と通常の掻き寄せ板の濃縮性能を比較する説明図である。It is explanatory drawing which compares the concentrating performance of a spiral rotating board and a normal scraping board. この発明の実施の形態2による回転分離装置を示す概略断面図である。It is a schematic sectional drawing which shows the rotation separation apparatus by Embodiment 2 of this invention. この発明の実施の形態3による回転分離装置を示す概略断面図である。It is a schematic sectional drawing which shows the rotation separation apparatus by Embodiment 3 of this invention. 図10(a)はこの発明の実施の形態4による回転分離装置を示す概略断面図、図10(b)は図10(a)のB−B線に沿った部分断面図である。FIG. 10A is a schematic cross-sectional view showing a rotary separating apparatus according to Embodiment 4 of the present invention, and FIG. 10B is a partial cross-sectional view taken along line BB in FIG. 10A. この発明の実施の形態5による回転分離装置を示す概略断面図である。It is a schematic sectional drawing which shows the rotation separation apparatus by Embodiment 5 of this invention. この発明の実施の形態6による回転分離装置を示す概略断面図である。It is a schematic sectional drawing which shows the rotation separation apparatus by Embodiment 6 of this invention. 図12中の渦巻状回転板の斜視図である。It is a perspective view of the spiral rotating plate in FIG. この発明の実施の形態7による回転分離装置を示す概略断面図である。It is a schematic sectional drawing which shows the rotation separation apparatus by Embodiment 7 of this invention. この発明の実施の形態8による回転分離装置の概略平面図である。It is a schematic plan view of the rotation separation device by Embodiment 8 of this invention. 図15の概略断面図である。It is a schematic sectional drawing of FIG. この発明の回転分離装置に適用可能な渦巻状回転板の様々な形状例を示す説明図である。It is explanatory drawing which shows the example of various shapes of the spiral rotating board applicable to the rotation separation apparatus of this invention. この発明の回転分離装置に適用可能な渦巻状回転板3の別の形状例を示す説明図である。It is explanatory drawing which shows another example of the shape of the spiral rotating board 3 applicable to the rotation separation apparatus of this invention. この発明の回転分離装置に適用可能な更に別の渦巻状回転板3を示す概略平面図である。FIG. 6 is a schematic plan view showing still another spiral rotating plate 3 applicable to the rotary separation device of the present invention.

符号の説明Explanation of symbols

1 分離槽
1A 大径筒部
1B 中間段差壁部
1C 小径筒部
1D 底壁部
1E 汚泥排出部
2 回転体
2a 分離羽根
2b スリット
3 渦巻状回転板
3a 外周渦巻部位
3b 中間渦巻部位
3c 中心渦巻部位
4 駆動機
4a 回転軸
5 分離液排出水路
6 分離液排出口
7 汚泥排出管
8 汚泥排出弁
9 汚泥排出量調整機
10 タンク
11 水位調整板
12 汚泥排出口
13 連結部材
14 サポート
15 原水投入管
16 フィードコーン
16a 流入部
16b パイプ部
16c 孔部
17 連結部材
18 駆動機
18a 回転軸
18b プーリ(又はスプロケット)
19 軸受
20 軸
20a プーリ(又はスプロケット)
21 ベルト(又はチェーン)
22 駆動機
23 ピニオンギア
24 ラックギア
25 汚泥流路
30 羽根
31 平板
32 汚泥切り羽根
33 曲線板
34,35 羽根
40 水力駆動器
41 回転羽根
42 回転軸
43 軸受
S 隙間
DESCRIPTION OF SYMBOLS 1 Separation tank 1A Large diameter cylindrical part 1B Middle stepped wall part 1C Small diameter cylindrical part 1D Bottom wall part 1E Sludge discharge part 2 Rotating body 2a Separation blade 2b Slit 3 Spiral rotating plate 3a Outer peripheral spiral part 3b Intermediate spiral part 3c Central spiral part DESCRIPTION OF SYMBOLS 4 Drive machine 4a Rotating shaft 5 Separation liquid discharge channel 6 Separation liquid discharge port 7 Sludge discharge pipe 8 Sludge discharge valve 9 Sludge discharge amount adjuster 10 Tank 11 Water level adjustment plate 12 Sludge discharge port 13 Connecting member 14 Support 15 Raw water input pipe 16 Feed cone 16a Inflow portion 16b Pipe portion 16c Hole portion 17 Connecting member 18 Drive unit 18a Rotating shaft 18b Pulley (or sprocket)
19 Bearing 20 Axis 20a Pulley (or sprocket)
21 Belt (or chain)
22 drive machine 23 pinion gear 24 rack gear 25 sludge flow path 30 blade 31 flat plate 32 sludge cutting blade 33 curved plate 34, 35 blade 40 hydraulic drive 41 rotary blade 42 rotary shaft 43 bearing S clearance

Claims (3)

汚泥を含む原水を汚泥と分離液とに固液分離する回転分離装置において、
前記原水を受け入れる分離槽と、
該分離槽内に配設され、間隔を空けた複数枚の分離羽根を備える回転体と、
前記分離槽の底部に、底面とは間隔を持たせて配設されると共に
2重以上に渦巻く渦巻状の汚泥流路を形成し、
沈降汚泥を掻き寄せる渦巻状回転板と
を備えていることを特徴とする回転分離装置。
In a rotary separation device that separates raw water containing sludge into sludge and separated liquid into solid and liquid,
A separation tank for receiving the raw water;
A rotating body provided in the separation tank and provided with a plurality of spaced apart separation blades;
The bottom of the separation tank is disposed with a gap from the bottom ,
Form a spiral sludge flow path that swirls more than twice ,
A rotary separation device comprising a spiral rotating plate for scraping the settled sludge.
前記分離槽の内壁と前記回転体との間に間隙を有している
ことを特徴とする請求項1に記載の回転分離装置。
The rotary separation device according to claim 1, wherein a gap is provided between an inner wall of the separation tank and the rotating body.
前記回転体の回転数は10回転/分以下である
ことを特徴とする請求項1または請求項2のいずれかに記載の回転分離装置。
The rotation separation device according to claim 1, wherein the rotation speed of the rotating body is 10 rotations / minute or less.
JP2008152395A 2008-06-11 2008-06-11 Rotation separator Expired - Fee Related JP5478843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152395A JP5478843B2 (en) 2008-06-11 2008-06-11 Rotation separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152395A JP5478843B2 (en) 2008-06-11 2008-06-11 Rotation separator

Publications (2)

Publication Number Publication Date
JP2009297609A JP2009297609A (en) 2009-12-24
JP5478843B2 true JP5478843B2 (en) 2014-04-23

Family

ID=41545070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152395A Expired - Fee Related JP5478843B2 (en) 2008-06-11 2008-06-11 Rotation separator

Country Status (1)

Country Link
JP (1) JP5478843B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5619379B2 (en) * 2009-06-24 2014-11-05 株式会社西原環境 Solid-liquid separator
JP5826545B2 (en) * 2011-07-20 2015-12-02 株式会社西原環境 Polluted water treatment system and polluted water treatment method
KR101552506B1 (en) * 2015-01-14 2015-09-11 주식회사 아쿠아테크 Apparatus for Concentrating Microorganism Sludge
CN111603809B (en) * 2020-07-01 2023-07-04 长沙矿山研究院有限责任公司 Thickener and use method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274414A (en) * 1985-09-30 1987-04-06 Ina Shokuhin Kogyo Kk Thickener with improved scraping plate
JP4765022B2 (en) * 2005-03-25 2011-09-07 株式会社西原環境 Solid-liquid separator
JP4765045B2 (en) * 2005-07-22 2011-09-07 株式会社西原環境 Solid-liquid separation device and solid-liquid separation system
JP4774491B2 (en) * 2006-06-09 2011-09-14 株式会社西原環境 Solid-liquid separation system

Also Published As

Publication number Publication date
JP2009297609A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4765022B2 (en) Solid-liquid separator
US9782696B2 (en) Method for maximizing uniform effluent flow through a waste water treatment system
JP5478843B2 (en) Rotation separator
JP5619379B2 (en) Solid-liquid separator
JP6548979B2 (en) Precipitation tank and precipitation method
JP5520882B2 (en) Centrifugal sedimentation device
JP2007029801A (en) Solid-liquid separator and solid-liquid separation system
JP4774491B2 (en) Solid-liquid separation system
KR100953671B1 (en) The separating screw decanter centrifuges having helical designed outlet for discharging concentrated liquid or cake
KR101431049B1 (en) sedimentation basin manifold type sludge collecting and discharging apparatus
KR102541106B1 (en) sedimentation tank
KR101207039B1 (en) Driving unit of sludge discharging apparatus
WO2015146181A1 (en) Sedimentation tank
JP6542106B2 (en) Precipitation tank and precipitation method
JP7154925B2 (en) Screw separator and wastewater treatment system
JP6038717B2 (en) Sand settling device
KR20090093772A (en) Apparatus for synthetically pretreating waste water
JP7083650B2 (en) Solid-liquid separator
JP2019030878A (en) Sedimentation tank and sedimentation treatment method
JP2016159244A (en) Settling tank and sedimentation processing method
KR102066510B1 (en) Inclined spiral sludge collector
JP2006198571A (en) Precipitator
JP4760398B2 (en) Pressure levitation device
JP6536657B2 (en) Settling tank
JP2019147116A (en) Concentrator and concentration method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R150 Certificate of patent or registration of utility model

Ref document number: 5478843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees