JP5478286B2 - Air conditioning control method and apparatus - Google Patents

Air conditioning control method and apparatus Download PDF

Info

Publication number
JP5478286B2
JP5478286B2 JP2010021932A JP2010021932A JP5478286B2 JP 5478286 B2 JP5478286 B2 JP 5478286B2 JP 2010021932 A JP2010021932 A JP 2010021932A JP 2010021932 A JP2010021932 A JP 2010021932A JP 5478286 B2 JP5478286 B2 JP 5478286B2
Authority
JP
Japan
Prior art keywords
temperature
supply air
lower limit
air
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010021932A
Other languages
Japanese (ja)
Other versions
JP2011158219A (en
Inventor
龍太 太宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2010021932A priority Critical patent/JP5478286B2/en
Priority to KR1020100100323A priority patent/KR101171583B1/en
Priority to CN201110034628.XA priority patent/CN102141288B/en
Priority to US13/018,659 priority patent/US20110186643A1/en
Publication of JP2011158219A publication Critical patent/JP2011158219A/en
Application granted granted Critical
Publication of JP5478286B2 publication Critical patent/JP5478286B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0006Control or safety arrangements for ventilation using low temperature external supply air to assist cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

この発明は、結露によって物理的損傷を生じる虞がある機器が設置された室を制御対象室とし、この制御対象室への空調機からの給気温度および給気風量を制御する空調制御方法および装置に関するものである。   The present invention relates to an air-conditioning control method for controlling a supply air temperature and an air supply amount from an air conditioner to a control target room, and a room in which equipment that may cause physical damage due to condensation is set as a control target room. It relates to the device.

従来より、サーバなどの電子機器が設置されたデータセンタでは、データセンタ内における機器の排熱を空調機からの給気によって処理するようにしている(例えば、特許文献1,2参照)。   Conventionally, in data centers where electronic devices such as servers are installed, exhaust heat of devices in the data center is processed by supplying air from an air conditioner (see, for example, Patent Documents 1 and 2).

図10にその概略を示す。同図において、1はデータセンタ(制御対象室)、2はデータセンタ1内に設けられた空調機(冷却装置)、3はデータセンタ1内に設置されたサーバなどの電子機器を収容したラック、4は空調機2に対して設けられた空調制御装置、5は外気の温度および湿度を調整してデータセンタ1内へ供給する外調機、6はデータセンタ1内からの排気の排出を行う排気ファン、7は空調機2からのデータセンタ1内への給気の温度を検出する給気温度センサ、8は空調機2への冷媒の循環量を調節する冷媒循環量調節装置である。   The outline is shown in FIG. In the figure, 1 is a data center (controlled room), 2 is an air conditioner (cooling device) provided in the data center 1, and 3 is a rack containing electronic devices such as servers installed in the data center 1. 4 is an air conditioning control device provided for the air conditioner 2, 5 is an external air conditioner that adjusts the temperature and humidity of the outside air and supplies the air to the data center 1, and 6 is a discharge of exhaust gas from the data center 1. An exhaust fan to be performed, 7 is a supply air temperature sensor that detects the temperature of the supply air from the air conditioner 2 into the data center 1, and 8 is a refrigerant circulation amount adjusting device that adjusts the circulation amount of the refrigerant to the air conditioner 2. .

なお、冷媒循環量調節装置8としては、コンプレッサ(COMP)、膨張弁、ホットガスバイパス弁など種々の操作対象があるが、この例ではその一例として冷媒循環量調節装置8としてコンプレッサ(COMP)を用いた例を示している。以下、冷媒循環量調節装置8をCOMP8と呼ぶ。   The refrigerant circulation amount adjusting device 8 includes various operation objects such as a compressor (COMP), an expansion valve, and a hot gas bypass valve. In this example, a compressor (COMP) is used as the refrigerant circulation amount adjusting device 8 as an example. The example used is shown. Hereinafter, the refrigerant circulation amount adjusting device 8 is referred to as COMP8.

このシステムにおいて、空調機2は冷却コイル2−1とファン2−2とを備え、ラック3にはファン3−1が内蔵されている。COMP8は冷却コイル2−1への冷媒の循環通路に設けられている。また、空調機2において、ファン2−2の風量(給気風量)は100%固定とされている。空調制御装置4は、給気温度センサ7からのデータセンタ1内への給気温度の測定値tspvを入力とし、この給気温度の測定値tspvと予め定められている給気温度の設定値tsspとが一致するように、COMP8へのインバータ出力(COMPINV)を調整する。すなわち、給気温度の測定値tspvと給気温度の設定値tsspとが一致するように、COMP8へのインバータ出力の%値を調整することによって、冷却コイル2−1への冷媒の供給量を制御する。   In this system, the air conditioner 2 includes a cooling coil 2-1 and a fan 2-2, and the rack 3 includes a fan 3-1. The COMP 8 is provided in the refrigerant circulation passage to the cooling coil 2-1. In the air conditioner 2, the air volume (supply air volume) of the fan 2-2 is fixed to 100%. The air-conditioning control device 4 receives the measured value tspv of the supply air temperature into the data center 1 from the supply air temperature sensor 7 and inputs the measured value tspv of the supply air temperature and a predetermined set value of the supply air temperature. The inverter output (COMPINV) to COMP8 is adjusted so that tssp matches. That is, the refrigerant supply amount to the cooling coil 2-1 is adjusted by adjusting the% value of the inverter output to COMP8 so that the measured value tspv of the supply air temperature and the set value tssp of the supply air temperature match. Control.

このようにして、データセンタ1では、空調機2からの給気風量を100%固定として、また給気温度を一定として、ラック3に収容されているサーバなどの電子機器の排熱を空調機2からの給気によって処理するようにしている。   In this way, in the data center 1, the exhaust air heat from the electronic devices such as servers accommodated in the rack 3 is fixed with the supply air volume from the air conditioner 2 fixed at 100% and the supply air temperature fixed. It is made to process by the air supply from 2.

データセンタ1において、空調機2からの給気の温度が低すぎると、結露が生じ、データセンタ1内の電子機器に物理的損傷を与えてしまう虞がある。このため、このシステムでは、外調機5によって外気を除湿してデータセンタ1へ取り入れる一方、データセンタ1内で結露が生じない余裕をもった給気温度の設定値tsspを事前に決め、この給気温度の設定値tsspを固定値として、空調機2からの給気温度の一定制御を行うようにしている。なお、この給気温度の一定制御に類似した技術として、特許文献1では、ラックの側面に冷却パネルを設け、このパネル表面が結露しないように、冷却パネルに供給する熱媒の温度を制御するようにしている。   In the data center 1, if the temperature of the air supply from the air conditioner 2 is too low, condensation may occur and the electronic devices in the data center 1 may be physically damaged. For this reason, in this system, the outside air is dehumidified by the external air conditioner 5 and taken into the data center 1, while a set value tssp of the supply air temperature having a margin in which no condensation occurs in the data center 1 is determined in advance. The set value tssp of the supply air temperature is set to a fixed value so that the supply air temperature from the air conditioner 2 is controlled to be constant. As a technique similar to the constant control of the supply air temperature, in Patent Document 1, a cooling panel is provided on the side surface of the rack, and the temperature of the heat medium supplied to the cooling panel is controlled so that the panel surface does not condense. I am doing so.

特開2003−35441号公報JP 2003-35441 A 特開2009−140421号公報JP 2009-140421 A

しかしながら、図10に示したシステムでは、給気温度の設定値tsspを余裕をもって高めに設定し、この高めに設定した給気温度の設定値tsspを固定として給気温度の一定制御を行うようにしているため、また、空調機2からの給気風量を100%固定としているため、消費されるエネルギーのロスが大きいという問題があった。   However, in the system shown in FIG. 10, the set value tssp of the supply air temperature is set high with a margin, and the set value tssp of the supply air temperature set higher is fixed, and the constant control of the supply air temperature is performed. Therefore, since the supply air volume from the air conditioner 2 is fixed to 100%, there is a problem that the loss of consumed energy is large.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、給気温度を下げて、その分、給気風量を削減して、省エネルギーを図ることができる空調制御方法および装置を提供することにある。   The present invention has been made in order to solve such problems, and the object of the present invention is to reduce the supply air temperature and reduce the supply air volume accordingly, thereby achieving energy saving. It is to provide a control method and apparatus.

このような目的を達成するために、本発明に係る空調制御方法は、制御対象室の露点温度を測定するステップと、測定された露点温度に基づいて制御対象室において結露が発生する虞のない給気温度の下限値を算出するステップと、機器を収容したラックへの空気の流入側の温度を現在温度として測定するステップと、測定される現在温度に対する要求温度を記憶しておくステップと、算出された給気温度の下限値と測定された現在温度と記憶されている要求温度とに基づいて給気温度の設定値を決定するステップと、算出された給気温度の下限値と測定された現在温度と記憶されている要求温度とに基づいて給気風量の設定値を決定するステップとを備えることを特徴とする。 In order to achieve such an object, the air-conditioning control method according to the present invention includes a step of measuring the dew point temperature of the controlled room, and there is no possibility that condensation occurs in the controlled room based on the measured dew point temperature. A step of calculating a lower limit value of the supply air temperature, a step of measuring the temperature on the air inflow side into the rack containing the equipment as a current temperature, a step of storing a required temperature for the current temperature to be measured, A step of determining a set value of the supply air temperature based on the calculated lower limit value of the supply air temperature , the measured current temperature and the stored required temperature, and the lower limit value of the calculated supply air temperature is measured. And a step of determining a set value of the supply air volume based on the current temperature and the stored required temperature .

この発明では、制御対象室の露点温度を測定し、この露点温度の測定値(trpv)に基づいて制御対象室において結露が発生する虞のない給気温度の下限値(tsmin1)を算出する。例えば、余裕分をαとし、tsmin1=trpv+αとして給気温度の下限値tsmin1を算出する。   In the present invention, the dew point temperature of the control target room is measured, and the lower limit value (tsmin1) of the supply air temperature at which there is no possibility of condensation in the control target room is calculated based on the measured value (trpv) of the dew point temperature. For example, the margin is α, and the lower limit value tsmin1 of the supply air temperature is calculated as tsmin1 = trpv + α.

そして、機器を収容したラックへの空気の流入側の温度(ラックの入口側の温度)を現在温度(tpv)として測定し、算出した給気温度の下限値tsmin1と測定した現在温度tpvと記憶されている要求温度tspとに基づいて給気温度の設定値tsspを決定する。また、算出した給気温度の下限値tsmin1と測定した現在温度tpvと記憶されている要求温度tspとに基づいて給気風量の設定値Qsspを決定する。 Then, the temperature on the air inflow side to the rack containing the equipment (temperature on the inlet side of the rack) is measured as the current temperature (tpv), and the calculated lower limit value tsmin1 of the supply air temperature and the measured current temperature tpv are stored. The set value tssp of the supply air temperature is determined based on the required temperature tssp. Further, the set value Qssp of the supply air amount is determined based on the calculated lower limit value tsmin1 of the supply air temperature, the measured current temperature tpv, and the stored required temperature tsp.

本発明において、制御対象室の露点温度を測定するステップに代えて、制御対象室からの排気の露点温度、外調機からの給気の露点温度を測定するステップを設けるようにしてもよい。すなわち、本発明では、制御対象室からの排気の露点温度に基づいて給気温度の下限値を算出するようにしてもよく、外調機からの給気の露点温度に基づいて給気温度の下限値を算出するようにしてもよい。また、本発明において、外調機は必ずしも設けなくてもよく、外調機を設けない場合、外気の露点温度に基づいて給気温度の下限値を算出するようにすることも考えられる。また、本発明は、上述した空調制御方法を適用した空調制御装置としても構成することが可能である。   In the present invention, instead of the step of measuring the dew point temperature of the control target chamber, a step of measuring the dew point temperature of the exhaust gas from the control target chamber and the dew point temperature of the supply air from the external air conditioner may be provided. That is, in the present invention, the lower limit value of the supply air temperature may be calculated based on the dew point temperature of the exhaust from the control target chamber, and the supply air temperature may be calculated based on the dew point temperature of the supply air from the external air conditioner. The lower limit value may be calculated. In the present invention, it is not always necessary to provide an external air conditioner. When no external air conditioner is provided, it is conceivable to calculate the lower limit value of the supply air temperature based on the dew point temperature of the outside air. The present invention can also be configured as an air conditioning control device to which the above-described air conditioning control method is applied.

本発明によれば、制御対象室の露点温度(或いは、排気の露点温度、外調機からの給気の露点温度、外気の露点温度)を測定し、この測定した露点温度に基づいて制御対象室において結露が発生する虞のない給気温度の下限値を算出し、この算出した給気温度の下限値と測定された現在温度と記憶されている要求温度とに基づいて給気温度の設定値および給気風量の設定値を決定するようにしたので、給気温度を下げて、その分、給気風量を削減して、省エネルギーを図ることができるようになる。 According to the present invention, the dew point temperature of the control target room (or the dew point temperature of the exhaust, the dew point temperature of the supply air from the external air conditioner, the dew point temperature of the outside air) is measured, and the control target is based on the measured dew point temperature. Calculate the lower limit value of the supply air temperature that does not cause condensation in the room, and set the supply air temperature based on the calculated lower limit value of the supply air temperature , the measured current temperature, and the stored required temperature Since the value and the set value of the supply air volume are determined, it is possible to reduce the supply air temperature and reduce the supply air volume accordingly, thereby saving energy.

本発明に係る空調制御方法を適用した空調制御システムの説明に入る前の参 考例(参考例1)の概略を示す図である。The outline of ginseng Reference Example before entering the description of the air conditioning control system according to the air conditioning control method according to the present invention (Example 1) shows. 参考例1の空調制御システムにおける空調制御装置の要部を示す機能ブロック図である。It is a functional block diagram which shows the principal part of the air-conditioning control apparatus in the air-conditioning control system of the reference example 1 . 本発明に係る空調制御方法を適用した空調制御システムの実施の形態(実施 の形態1)の概略を示す図である。It is a figure which shows the outline of embodiment ( Embodiment 1) of the air-conditioning control system to which the air-conditioning control method which concerns on this invention is applied. 実施の形態1の空調制御システムにおける空調制御装置の要部を示す機能ブロック図である。FIG. 3 is a functional block diagram illustrating a main part of an air conditioning control device in the air conditioning control system according to the first embodiment . 実施の形態1の空調制御システムで用いる給気温度の設定特性Iおよび給気風量の設定特性IIを例示する図である。It is a figure which illustrates the setting characteristic I of the supply air temperature used in the air-conditioning control system of Embodiment 1 , and the setting characteristic II of the supply air volume. 給気温度の下限値が高い場合と低い場合とで異なる給気温度の設定特性Iおよび給気風量の設定特性IIを対比して示す図である。It is a figure which contrasts and shows the setting characteristic I of the supply air temperature and the setting characteristic II of the supply air volume which differ depending on whether the lower limit value of the supply air temperature is high or low. 露点温度センサをデータセンタ内からの排気の排出通路に設けた例を示す図である。It is a figure which shows the example which provided the dew point temperature sensor in the discharge path of the exhaust_gas | exhaustion from the inside of a data center. 露点温度センサをデータセンタ内への外調機からの給気の供給通路に設けた例を示す図である。It is a figure which shows the example which provided the dew point temperature sensor in the supply path of the air supply from the external air conditioner in a data center. 外調機を設けない場合に露点温度センサをデータセンタ内への外気の供給通路に設けた例を示す図である。It is a figure which shows the example which provided the dew point temperature sensor in the supply path of the external air in a data center, when not providing an external air conditioner. 従来の空調制御システムの概略を示す図である。It is a figure which shows the outline of the conventional air conditioning control system.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

参考例1
図1は本発明に係る空調制御方法を適用した空調制御システムの説明に入る前の参考例(参考例1)の概略を示す図である。同図において、図10と同一符号は図10を参照して説明した構成要素と同一或いは同等構成要素を示し、その説明は省略する。
[ Reference Example 1 ]
FIG. 1 is a diagram showing an outline of a reference example (reference example 1) before entering an explanation of an air conditioning control system to which an air conditioning control method according to the present invention is applied. 10, the same reference numerals as those in FIG. 10 denote the same or equivalent components as those described with reference to FIG. 10, and the description thereof is omitted.

この参考例1において、図10に示した従来のシステムと異なる点は、空調制御装置4が有する機能にある。この参考例1では、空調制御装置4を4Aとし、従来のシステムにおける空調制御装置と区別する。 The reference example 1 is different from the conventional system shown in FIG. 10 in the function of the air conditioning control device 4. In this reference example 1 , the air conditioning control device 4 is 4A, and is distinguished from the air conditioning control device in the conventional system.

また、この参考例1において、データセンタ1には、データセンタ1内の露点温度を測定する露点温度センサ9が設けられており、この露点温度センサ9からの露点温度の測定値trpvを空調制御装置4Aに送るものとしている。 In the first reference example , the data center 1 is provided with a dew point temperature sensor 9 for measuring the dew point temperature in the data center 1, and the measured value trpv of the dew point temperature from the dew point temperature sensor 9 is controlled by air conditioning. The data is sent to the device 4A.

また、この参考例1において、空調機2のファン2−2には、その回転数を可変とするインバータINVが付設されており、空調制御装置4AからのインバータINVへのインバータ出力(ファンINV)の%値を調整することによって、ファン2−2の風量(給気風量)を制御するものとしている。 Further, in Reference Example 1 , the fan 2-2 of the air conditioner 2 is provided with an inverter INV whose rotation speed is variable, and an inverter output (fan INV) from the air conditioning control device 4A to the inverter INV. The air volume of the fan 2-2 (supply air volume) is controlled by adjusting the% value.

空調制御装置4Aは、プロセッサや記憶装置からなるハードウェアと、これらのハードウェアと協働して各種機能を実現させるプログラムとによって実現され、参考例1特有の機能として空調機2からのデータセンタ1内への給気温度および給気風量の設定値の決定機能を有している。 The air conditioning control device 4A is realized by hardware including a processor and a storage device, and a program that realizes various functions in cooperation with these hardware. A data center from the air conditioner 2 is provided as a function unique to Reference Example 1. 1 has a function for determining the set value of the supply air temperature and the supply air volume.

図2に空調制御装置4Aの要部の機能ブロック図を示す。以下、この機能ブロック図における各部の機能を交えながら、空調制御装置4Aが有する給気温度および給気風量の設定値の決定機能について説明する。   FIG. 2 shows a functional block diagram of the main part of the air conditioning control device 4A. Hereinafter, a function for determining the set values of the supply air temperature and the supply air volume of the air conditioning control device 4A will be described with the functions of the respective units in this functional block diagram.

空調制御装置4Aは、給気温度下限値算出部401と、機器制約給気温度下限値記憶部402と、給気温度設定値決定部403と、給気風量設定値決定部404と、COMPINV出力部405と、ファンINV出力部406とを備えている。   The air conditioning control device 4A includes a supply air temperature lower limit value calculation unit 401, a device-restricted supply air temperature lower limit value storage unit 402, a supply air temperature setting value determination unit 403, an intake air flow rate setting value determination unit 404, and a COMPINV output. Unit 405 and a fan INV output unit 406.

なお、この例では、空調制御装置4AにCOMPINV出力部405とファンINV出力部406を設けた構成としているが、実際のシステムでは空調機2に対して専用のコントローラ(図示せず)が設けられている場合が多く、このような専用のコントローラが空調機2に対して設けられている場合には、その専用のコントローラがCOMPINV出力部405やファンINV出力部406を有する構成とされる。この場合、空調制御装置4Aからは、COMPINV出力部405およびファンINV出力部406が除かれ、給気温度設定値決定部403や給気風量設定値決定部404で決定された設定値が専用のコントローラへ送信されることになる。   In this example, the COMPINV output unit 405 and the fan INV output unit 406 are provided in the air conditioning control device 4A. However, in an actual system, a dedicated controller (not shown) is provided for the air conditioner 2. When such a dedicated controller is provided for the air conditioner 2, the dedicated controller includes a COMPINV output unit 405 and a fan INV output unit 406. In this case, the COMPINV output unit 405 and the fan INV output unit 406 are removed from the air conditioning control device 4A, and the setting values determined by the supply air temperature setting value determination unit 403 and the supply air amount setting value determination unit 404 are dedicated. It will be sent to the controller.

給気温度下限値算出部401は、露点温度センサ9からのデータセンタ1内の露点温度(室内の露点温度)の測定値trpvを入力とし、この露点温度の測定値trpvに予め定められている余裕分αを加算して、データセンタ1内で結露が発生する虞のない給気温度の下限値tsmin1(tsmin1=trpv+α)を算出する。すなわち、空調機2からの給気によってデータセンタ1内で除湿(コイル2−1での除湿も含む)が発生する虞のない給気温度の下限値tsmin1を算出する。なお、余裕分αは、室内のCO2濃度から人がどの程度いるかを判断し(室内発生水分量を推定し)、可変とするようにしてもよい。また、CO2濃度だけではなく、セキュリティシステムなどの情報から、どの程度人がいるかを把握するようにしてもよい。 The supply air temperature lower limit value calculation unit 401 receives the measured value trpv of the dew point temperature (indoor dew point temperature) in the data center 1 from the dew point temperature sensor 9, and is preset to the measured value trpv of this dew point temperature. By adding the margin α, a lower limit value tsmin1 (tsmin1 = trpv + α) of the supply air temperature at which there is no possibility of condensation in the data center 1 is calculated. That is, the lower limit value tsmin1 of the supply air temperature at which there is no possibility of dehumidification (including dehumidification in the coil 2-1) in the data center 1 due to supply of air from the air conditioner 2 is calculated. The margin α may be made variable by determining how much a person is from the indoor CO 2 concentration (estimating the amount of water generated in the room). Further, it may be determined how many people are present not only from the CO 2 concentration but also from information such as a security system.

給気温度設定値決定部403は、給気温度下限値算出部401によって算出された給気温度の下限値tsmin1を入力とし、この給気温度の下限値tsmin1と機器制約給気温度下限値記憶部402に記憶されている機器制約給気温度下限値tsmin2とを比較し、高い方の給気温度の下限値を給気温度の設定値tsspとする。ここで、機器制約給気温度下限値tsmin2とは、空調機2の能力によって制約される給気温度の下限値であり、カタログ等に記載されている給気温度範囲の下限値のことを指す。   The supply air temperature set value determination unit 403 receives the lower limit value tsmin1 of the supply air temperature calculated by the supply air temperature lower limit calculation unit 401, and stores the lower limit value tsmin1 of the supply air temperature and the device-constrained supply air temperature lower limit value. The device-constrained supply air temperature lower limit value tsmin2 stored in the unit 402 is compared, and the lower limit value of the higher supply air temperature is set as the supply air temperature setting value tssp. Here, the device-constrained supply air temperature lower limit value tsmin2 is a lower limit value of the supply air temperature restricted by the capacity of the air conditioner 2, and indicates a lower limit value of the supply air temperature range described in a catalog or the like. .

給気風量設定値決定部404は、給気温度設定値決定部403によって決定された給気温度の設定値tsspを入力とし、Qssp(CMH)=定格能力(kW)×3600/{(想定吸込み温度−tssp)×比重量(kg/m3))}として給気風量の設定値Qsspを決定する。なお、この給気風量の設定値Qsspの算出式において、「想定吸込み温度」とは、空調機2の定格運転時に想定されている吸込み温度のことで、カタログ等に記載されている定格時吸込み温度のことの指す。また、「定格能力」とは空調機2の定格冷却能力である。 The supply air amount set value determination unit 404 receives the set value tssp of the supply air temperature determined by the supply air temperature set value determination unit 403, and Qssp (CMH) = rated capacity (kW) × 3600 / {(assumed suction Temperature-tssp) × specific weight (kg / m 3 ))}, the set value Qssp of the supply air volume is determined. In the calculation formula for the set value Qssp of the supply air flow rate, the “assumed suction temperature” is the suction temperature assumed during the rated operation of the air conditioner 2, and the suction at the time described in the catalog etc. It refers to temperature. The “rated capacity” is the rated cooling capacity of the air conditioner 2.

COMPINV出力部405は、給気温度センサ7からのデータセンタ1内への給気温度の測定値tspvと給気温度設定値決定部403によって決定された給気温度の設定値tsspとを入力とし、給気温度の測定値tspvと給気温度の設定値tsspとが一致するように、COMP8へのインバータ出力(COMPINV)を調整する。   The COMPINV output unit 405 receives the measured value tsspv of the supply air temperature into the data center 1 from the supply air temperature sensor 7 and the set value tssp of the supply air temperature determined by the supply air temperature setting value determination unit 403. Then, the inverter output (COMPINV) to COMP8 is adjusted so that the measured value tsspv of the supply air temperature matches the set value tssp of the supply air temperature.

ファンINV出力部406は、給気風量設定値決定部404によって決定された給気風量の設定値Qsspを入力とし、ファン2−2からの給気風量QsをQsspとするように、インバータINVへのインバータ出力(ファンINV)を調整する。   The fan INV output unit 406 receives the setting value Qssp of the supply air amount determined by the supply air amount setting value determination unit 404 and inputs the supply air amount Qs from the fan 2-2 to the inverter INV. The inverter output (fan INV) is adjusted.

このようにして、参考例1では、露点温度センサ9によって測定されるデータセンタ1内の露点温度trpvより、可能な限り低い値として、データセンタ1内で結露が発生する虞のない給気温度の設定値tsspが決定されるものとなり、またその給気温度の設定値tsspに適した給気風量の設定値Qsspが決定されるようになり、給気温度を下げて、その分、給気風量を削減して、省エネルギーを図ることができるようになる。 In this way, in the reference example 1 , the supply air temperature at which the dew point is not generated in the data center 1 is set as low as possible from the dew point temperature trpv in the data center 1 measured by the dew point temperature sensor 9. Set value tssp is determined, and the set value Qssp of the supply air amount suitable for the set value tssp of the supply air temperature is determined, and the supply air temperature is lowered and the supply air is increased accordingly. The air volume can be reduced to save energy.

なお、参考例1において、給気風量の設定値Qsspを算出する際、この算出される給気風量の設定値Qsspに少し安全を見込んだ値を足しこむようにしてもよい。ラック3に収容されている電子機器の負荷によっては、データセンタ1内が暑くなりすぎるという虞があるが、給気風量の設定値Qsspに少し安全を見込んだ値を足しこむようにすることにより、データセンタ1内が暑くなりすぎるという問題を改善することが可能となる。 In Reference Example 1 , when the set value Qssp of the supply air volume is calculated, a value that is a little safer may be added to the calculated set value Qssp of the supply air volume. Depending on the load of the electronic equipment accommodated in the rack 3, the data center 1 may become too hot. However, by adding a value that allows a little safety to the set value Qssp of the supply air volume, The problem that the inside of the data center 1 becomes too hot can be improved.

実施の形態1
図3は本発明に係る空調制御方法を適用した空調制御システムの実施の形態(実施の形態1)の概略を示す図である。この実施の形態1において、データセンタ1には、データセンタ1内の露点温度を測定する露点温度センサ9に加え、ラック3の入口側の温度(ラック3への空気の流入側の温度)を現在温度として測定する温度センサ10が設けられており、露点温度センサ9からの露点温度の測定値trpvおよび温度センサ10からの現在温度の測定値tpvを空調制御装置4(4B)へ送るようにしている。
[ Embodiment 1 ]
FIG. 3 is a diagram showing an outline of an embodiment (Embodiment 1) of an air conditioning control system to which an air conditioning control method according to the present invention is applied. In the first embodiment, in addition to the dew point temperature sensor 9 that measures the dew point temperature in the data center 1, the data center 1 includes the temperature on the inlet side of the rack 3 ( the temperature on the air inflow side to the rack 3) . A temperature sensor 10 that measures the current temperature is provided, and the measured value trpv of the dew point temperature from the dew point temperature sensor 9 and the measured value tpv of the current temperature from the temperature sensor 10 are sent to the air conditioning controller 4 (4B). ing.

また、この実施の形態1においても、参考例1と同様、空調機2のファン2−2には、その回転数を可変とするインバータINVが付設されており、空調制御装置4BからのインバータINVへのインバータ出力(ファンINV)の%値を調整することによって、ファン2−2の風量(給気風量)を制御するようにしている。 Also in the first embodiment , similarly to the reference example 1 , the fan 2-2 of the air conditioner 2 is provided with the inverter INV that makes the rotation speed variable, and the inverter INV from the air conditioning control device 4B. The air volume (supply air volume) of the fan 2-2 is controlled by adjusting the% value of the inverter output (fan INV).

図4に空調制御装置4Bの要部の機能ブロック図を示す。以下、この機能ブロック図における各部の機能を交えながら、空調制御装置4Bが有する給気温度および給気風量の設定値の決定機能について説明する。   FIG. 4 shows a functional block diagram of the main part of the air conditioning control device 4B. Hereinafter, the function for determining the set values of the supply air temperature and the supply air volume of the air conditioning control device 4B will be described while combining the functions of the respective units in this functional block diagram.

空調制御装置4Bは、給気温度下限値算出部411と、機器制約給気温度下限値記憶部412と、給気温度下限値決定部413と、要求温度記憶部414と、給気温度設定値決定部415と、給気風量設定値決定部416と、COMPINV出力部417と、ファンINV出力部418とを備えている。なお、要求温度記憶部414には、温度センサ10が測定する現在温度tpvに対する要求値が要求温度tspとして記憶されている。   The air-conditioning control device 4B includes a supply air temperature lower limit value calculation unit 411, a device-constrained supply air temperature lower limit value storage unit 412, a supply air temperature lower limit value determination unit 413, a required temperature storage unit 414, and an intake air temperature set value. A determination unit 415, an air supply air volume setting value determination unit 416, a COMPINV output unit 417, and a fan INV output unit 418 are provided. The required temperature storage unit 414 stores a required value for the current temperature tpv measured by the temperature sensor 10 as the required temperature tsp.

給気温度下限値算出部411は、参考例1における給気温度下限値算出部401と同様にして、露点温度センサ9からのデータセンタ1内の露点温度(室内の露点温度)の測定値trpvを入力とし、この露点温度の測定値trpvに予め定められている余裕分αを加算して、データセンタ1内で結露が発生する虞のない給気温度の下限値tsmin1(tsmin1=trpv+α)を算出する。 The supply air temperature lower limit value calculation unit 411 is the same as the supply air temperature lower limit value calculation unit 401 in Reference Example 1, and the measured value trpv of the dew point temperature (indoor dew point temperature) in the data center 1 from the dew point temperature sensor 9. Is added to the measured value trpv of the dew point temperature and a predetermined margin α is added to obtain the lower limit value tsmin1 (tsmin1 = trpv + α) of the supply air temperature at which there is no possibility of condensation in the data center 1. calculate.

給気温度下限値決定部413は、給気温度下限値算出部411によって算出された給気温度の下限値tsmin1を入力とし、この給気温度の下限値tsmin1と機器制約給気温度下限値記憶部412に記憶されている機器制約給気温度下限値tsmin2とを比較し、高い方の給気温度の下限値を給気温度の下限値tsminとする。   The supply air temperature lower limit determination unit 413 receives the lower limit value tsmin1 of the supply air temperature calculated by the supply air temperature lower limit calculation unit 411, and stores the lower limit value tsmin1 of the supply air temperature and the device-constrained supply air temperature lower limit value. The lower limit value tsmin2 of the device restriction supply air temperature stored in the unit 412 is compared, and the lower limit value of the higher supply air temperature is set as the lower limit value tsmin of the supply air temperature.

給気温度設定値決定部415は、給気温度下限値決定部413によって決定された給気温度の下限値tsminと温度センサ10からの現在温度tpvと要求温度記憶部414に記憶されている要求温度tspとを入力とし、図5に示す給気温度の設定特性Iに従って給気温度の設定値tsspを決定する。   The supply air temperature set value determination unit 415 includes a lower limit value tsmin of the supply air temperature determined by the supply air temperature lower limit determination unit 413, the current temperature tpv from the temperature sensor 10, and the request stored in the required temperature storage unit 414. Using the temperature tsp as an input, the set value tssp of the supply air temperature is determined according to the setting characteristic I of the supply air temperature shown in FIG.

すなわち、給気温度の下限値tsminを制御パラメータとして利用し、現在温度tpvがtxよりも高い範囲では、給気温度の設定値tsspを給気温度の下限値tsminとして固定する一方、現在温度tpvがtxよりも低い範囲では、要求温度tspとの差が広がるにつれ、給気温度の設定値tsspを上げて行く。   That is, the lower limit value tsmin of the supply air temperature is used as a control parameter, and in the range where the current temperature tpv is higher than tx, the set value tssp of the supply air temperature is fixed as the lower limit value tsmin of the supply air temperature, while the current temperature tpv In a range lower than tx, the set value tssp of the supply air temperature is increased as the difference from the required temperature tsp increases.

このような給気温度の設定特性Iとすることにより、データセンタ1内での負荷が減って、現在温度tpvがtxよりも低くなると、給気温度の設定値tsspがアップされ、空調機2の能力が下げられる。これにより、データセンタ1内での過冷却が防がれ、省エネルギーとなる。   By setting the supply air temperature setting characteristic I as described above, when the load in the data center 1 decreases and the current temperature tpv becomes lower than tx, the supply air temperature setting value tssp is increased, and the air conditioner 2 The ability of is reduced. This prevents overcooling in the data center 1 and saves energy.

給気風量設定値決定部416は、給気温度下限値決定部413によって決定された給気温度の下限値tsminと温度センサ10からの現在温度tpvと要求温度記憶部414に記憶されている要求温度tspとを入力とし、図5に示す給気風量の設定特性IIに従って給気風量の設定値Qsspを決定する。   The supply air amount set value determination unit 416 includes the lower limit value tsmin of the supply air temperature determined by the supply air temperature lower limit determination unit 413, the current temperature tpv from the temperature sensor 10, and the request stored in the required temperature storage unit 414. Using the temperature tsp as an input, a setting value Qssp of the supply air volume is determined according to the setting characteristic II of the supply air volume shown in FIG.

すなわち、給気温度の下限値tsminを制御パラメータとして利用し、給気温度の設定値tsspがtsminに固定される前は、予め定められた下限値に給気風量の設定値Qsspを固定する一方、給気温度の設定値tsspがtsminに固定された後は、要求温度tspとの差が広がるにつれ、給気風量の設定値Qsspを上げて行く。   In other words, the lower limit value tsmin of the supply air temperature is used as a control parameter, and the set value Qssp of the supply air volume is fixed to a predetermined lower limit value before the set value tssp of the supply air temperature is fixed to tsmin. After the supply air temperature setting value tssp is fixed at tsmin, the supply air flow rate setting value Qssp is increased as the difference from the required temperature tssp increases.

このような給気風量の設定特性IIとすることにより、データセンタ1内での負荷が小さい場合には、給気風量の設定値Qsspが下限値に固定されて省エネルギーが図られる一方、データセンタ1内での負荷が増え、現在温度tpvがtxよりも高くなると、給気風量の設定値Qsspが上げられて行き、データセンタ1内が暑くなることが防がれる。   By setting the supply air flow rate setting characteristic II as described above, when the load in the data center 1 is small, the supply air flow rate setting value Qssp is fixed to the lower limit value to save energy. When the load in 1 increases and the current temperature tpv becomes higher than tx, the set value Qssp of the supply air flow rate is raised, and the inside of the data center 1 is prevented from becoming hot.

COMPINV出力部417は、給気温度センサ7からのデータセンタ1内への給気温度の測定値tspvと給気温度設定値決定部415によって決定された給気温度の設定値tsspとを入力とし、給気温度の測定値tspvと給気温度の設定値tsspとが一致するように、COMP8へのインバータ出力(COMPINV)を調整する。   The COMPINV output unit 417 receives as input the measured value tsspv of the supply air temperature into the data center 1 from the supply air temperature sensor 7 and the set value tssp of the supply air temperature determined by the supply air temperature setting value determination unit 415. Then, the inverter output (COMPINV) to COMP8 is adjusted so that the measured value tsspv of the supply air temperature matches the set value tssp of the supply air temperature.

ファンINV出力部406は、給気風量設定値決定部416によって決定された給気風量の設定値Qsspを入力とし、ファン2−2からの給気風量QsをQsspとするように、インバータINVへのインバータ出力(ファンINV)を調整する。   The fan INV output unit 406 receives the air supply air volume setting value Qssp determined by the air supply air volume setting value determination unit 416 and inputs the air supply air volume Qs from the fan 2-2 to the inverter INV. The inverter output (fan INV) is adjusted.

図6に給気温度の下限値tsminを制御パラメータとして変化する給気温度の設定特性Iおよび給気風量の設定特性IIを示す。特性IHおよびIIHは給気温度の下限値tsminが高い場合の給気温度の設定特性および給気風量の設定特性を示し、特性ILおよびIILは給気温度の下限値tsminが低い場合の給気温度の設定特性および給気風量の設定特性を示す。このような設定特性の変化からも、給気温度の下限値tsminを低くすれば、同程度の冷房要求でも、給気風量(ファンINVの出力)を抑えることができることが分かる。 FIG. 6 shows a setting characteristic I of the supply air temperature and a setting characteristic II of the supply air volume that change using the lower limit value tsmin of the supply air temperature as a control parameter. Characteristics I H and II H indicate a setting characteristic of the supply air temperature and a setting characteristic of the supply air amount when the lower limit value tsmin of the supply air temperature is high, and the characteristics I L and II L have a lower lower limit value tsmin of the supply air temperature. The setting characteristics of the supply air temperature and the setting characteristics of the supply air volume are shown. It can be seen from such a change in the setting characteristics that if the lower limit value tsmin of the supply air temperature is lowered, the supply air volume (the output of the fan INV) can be suppressed even with the same cooling requirement.

なお、上述した例では、データセンタ1内に露点温度センサ9を設け、室内の露点温度を測定するようにしたが、データセンタ1内からの排気ファン6による排気の露点温度を測定するようにしてもよく、データセンタ1内への外調機5からの給気の露点温度を測定するようにしてもよい。 In the above-described example , the dew point temperature sensor 9 is provided in the data center 1 and the indoor dew point temperature is measured. However, the dew point temperature of the exhaust by the exhaust fan 6 from the data center 1 is measured. Alternatively, the dew point temperature of the supply air from the external air conditioner 5 into the data center 1 may be measured.

すなわち、参考例1を例とした場合、図7に示すように、データセンタ1内からの排気ファン6による排気の排出通路に露点温度センサ9を設け、この露点温度センサ9からの露点温度の測定値trpvより給気温度の下限値tsmin1を算出するようにしてもよく、図8に示すように、データセンタ1内への外調機5からの給気の供給通路に露点温度センサ9を設け、この露点温度センサ9からの露点温度の測定値trpvより給気温度の下限値tsmin1を算出するようにしてもよい。 That is, taking Reference Example 1 as an example, as shown in FIG. 7, a dew point temperature sensor 9 is provided in the exhaust discharge path by the exhaust fan 6 from the data center 1, and the dew point temperature from the dew point temperature sensor 9 is measured. The lower limit value tsmin1 of the supply air temperature may be calculated from the measured value trpv. As shown in FIG. 8, a dew point temperature sensor 9 is provided in the supply passage of the supply air from the external air conditioner 5 into the data center 1. It is also possible to calculate the lower limit value tsmin1 of the supply air temperature from the measured value trpv of the dew point temperature from the dew point temperature sensor 9.

また、上述した例では、外調機5を設けるようにしたが、外調機5は必ずしも設けなくてもよい。外調機5を設けない場合、例えば参考例1において、図9に示すように、データセンタ1内への外気の供給通路に露点温度センサ9を設け、この露点温度センサ9からの露点温度の測定値trpvより給気温度の下限値tsmin1を算出するようにすることも考えられる。 In the example described above , the external air conditioner 5 is provided, but the external air conditioner 5 is not necessarily provided. When the external air conditioner 5 is not provided, for example, in Reference Example 1 , as shown in FIG. 9, a dew point temperature sensor 9 is provided in the outside air supply passage into the data center 1, and the dew point temperature from the dew point temperature sensor 9 is It is also conceivable to calculate the lower limit value tsmin1 of the supply air temperature from the measured value trpv.

また、上述した例では、露点温度センサ9を設けて露点温度を測定するようにしたが、温度と湿度を測定するようにし、この測定した温度と湿度から露点温度を算出するようにしてもよい。本発明において、露点温度を測定するという概念には、測定した温度と湿度から露点温度を算出することも含まれる。 In the example described above , the dew point temperature sensor 9 is provided to measure the dew point temperature. However, the temperature and humidity may be measured, and the dew point temperature may be calculated from the measured temperature and humidity. . In the present invention, the concept of measuring the dew point temperature includes calculating the dew point temperature from the measured temperature and humidity.

また、上述した例では、冷媒循環量調節装置8をコンプレッサ(COMP)としているが、前述したとおり、膨張弁、ホットガスバイパス弁など種々の操作対象が冷媒循環量調節装置8として考えられることは言うまでもない。 In the above-described example , the refrigerant circulation amount adjusting device 8 is a compressor (COMP). However, as described above, various operation objects such as an expansion valve and a hot gas bypass valve can be considered as the refrigerant circulation amount adjusting device 8. Needless to say.

本発明の空調制御方法および装置は、結露によって物理的損傷を生じる虞がある機器が設置された室を制御対象室への空調機からの給気温度および給気風量を制御する空調制御方法および装置として、サーバなどの電子機器を設置したデータセンタなど様々な室を制御対象室として適用することが可能である。   The air-conditioning control method and apparatus of the present invention include an air-conditioning control method for controlling a supply air temperature and a supply air amount from an air conditioner to a control target room in a room in which equipment that may cause physical damage due to condensation is installed. As a device, various rooms such as a data center in which electronic devices such as servers are installed can be applied as control target rooms.

1…データセンタ、2…空調機(冷却装置)、2−1…冷却コイル、2−2…ファン、INV…インバータ、3…ラック、3−1…ファン(内蔵ファン)、4(4A,4B)…空調制御装置、5…外調機、6…排気ファン、7…給気温度センサ、8…冷媒循環量調節装置(COMP)、9…露点温度センサ、10…温度センサ、401…給気温度下限値算出部、402…機器制約給気温度下限値記憶部、403…給気温度設定値決定部、404…給気風量設定値決定部、405…COMPINV出力部、406…ファンINV出力部、411…給気温度下限値算出部、412…機器制約給気温度下限値記憶部、413…給気温度下限値決定部、414…要求温度記憶部、415…給気温度設定値決定部、416…給気風量設定値決定部、417…COMPINV出力部、418…ファンINV出力部。   DESCRIPTION OF SYMBOLS 1 ... Data center, 2 ... Air conditioner (cooling device), 2-1 ... Cooling coil, 2-2 ... Fan, INV ... Inverter, 3 ... Rack, 3-1 ... Fan (built-in fan), 4 (4A, 4B) ) ... Air conditioning control device, 5 ... External air conditioner, 6 ... Exhaust fan, 7 ... Air supply temperature sensor, 8 ... Refrigerant circulation amount adjusting device (COMP), 9 ... Dew point temperature sensor, 10 ... Temperature sensor, 401 ... Air supply Temperature lower limit value calculation unit, 402 ... device-constrained supply air temperature lower limit value storage unit, 403 ... supply air temperature set value determination unit, 404 ... supply air flow rate set value determination unit, 405 ... COMPINV output unit, 406 ... fan INV output unit 411 ... Supply air temperature lower limit value calculation unit, 412 ... Device-constrained supply air temperature lower limit value storage unit, 413 ... Supply air temperature lower limit value determination unit, 414 ... Required temperature storage unit, 415 ... Supply air temperature set value determination unit, 416 ... Supply air volume setting value determination unit, 41 ... COMPINV output section, 418 ... fan INV output section.

Claims (6)

結露によって物理的損傷を生じる虞がある機器が設置された室を制御対象室とし、この制御対象室への空調機からの給気温度および給気風量を制御する空調制御方法であって、
前記制御対象室の露点温度を測定するステップと、
前記測定された露点温度に基づいて前記制御対象室において結露が発生する虞のない前記給気温度の下限値を算出するステップと、
前記機器を収容したラックへの空気の流入側の温度を現在温度として測定するステップと、
前記測定される現在温度に対する要求温度を記憶しておくステップと、
前記算出された給気温度の下限値と前記測定された現在温度と前記記憶されている要求温度とに基づいて前記給気温度の設定値を決定するステップと、
前記算出された給気温度の下限値と前記測定された現在温度と前記記憶されている要求温度とに基づいて前記給気風量の設定値を決定するステップと
を備えることを特徴とする空調制御方法。
An air conditioning control method for controlling a supply air temperature and an air supply amount from an air conditioner to a room to be controlled, where a room in which equipment that may cause physical damage due to condensation is installed is set as a room to be controlled,
Measuring a dew point temperature of the controlled room;
Calculating a lower limit value of the supply air temperature that does not cause condensation in the control target room based on the measured dew point temperature; and
Measuring the temperature on the air inflow side to the rack containing the equipment as the current temperature;
Storing a required temperature for the measured current temperature;
Determining a set value of the supply air temperature based on a lower limit value of the calculated supply air temperature, the measured current temperature, and the stored required temperature ;
Determining a set value of the supply air volume based on the calculated lower limit value of the supply air temperature, the measured current temperature, and the stored required temperature. Method.
請求項1に記載された空調制御方法において、
前記空調機の能力によって制約される給気温度の下限値を機器制約給気温度下限値とし、この機器制約給気温度下限値と前記算出された給気温度の下限値とを比較し、高い方の値を給気温度の下限値として決定するステップを備え、
前記給気温度の設定値を決定するステップは、
前記決定された給気温度の下限値と前記測定された現在温度と前記記憶されている要求温度とに基づいて前記給気温度の設定値を決定する
ことを特徴とする空調制御方法。
In the air-conditioning control method according to claim 1,
The lower limit value of the supply air temperature restricted by the capacity of the air conditioner is set as the lower limit value of the device restriction supply air temperature. Determining the value of the one as the lower limit value of the supply air temperature,
Determining the set value of the supply air temperature;
An air conditioning control method comprising: determining a set value of the supply air temperature based on a lower limit value of the determined supply air temperature, the measured current temperature, and the stored required temperature .
請求項1又は2に記載された空調制御方法において、
前記制御対象室の露点温度を測定するステップに代えて、前記制御対象室からの排気の露点温度、前記制御対象室へ外気を処理して供給する外調機からの給気の露点温度、外気の露点温度のうち、何れかの露点温度を測定するステップ
を備えることを特徴とする空調制御方法。
In the air-conditioning control method according to claim 1 or 2,
In place of the step of measuring the dew point temperature of the control target room, the dew point temperature of the exhaust gas from the control target room, the dew point temperature of the supply air from the external air conditioner that processes and supplies the outside air to the control target room, the outside air An air conditioning control method comprising the step of measuring any one of the dew point temperatures.
結露によって物理的損傷を生じる虞がある機器が設置された室を制御対象室とし、この制御対象室への空調機からの給気温度および給気風量を制御する空調制御装置であって、
前記制御対象室の露点温度を測定する露点温度測定手段と、
前記測定された露点温度に基づいて前記制御対象室において結露が発生する虞のない前記給気温度の下限値を算出する給気温度下限値算出手段と、
前記機器を収容したラックへの空気の流入側の温度を現在温度として測定する現在温度測定手段と、
前記測定される現在温度に対する要求温度を記憶しておく記憶手段と、
前記算出された給気温度の下限値と前記測定された現在温度と前記記憶されている要求温度とに基づいて前記給気温度の設定値を決定する給気温度設定値決定手段と、
前記算出された給気温度の下限値と前記測定された現在温度と前記記憶されている要求温度とに基づいて前記給気風量の設定値を決定する給気風量設定値決定手段と
を備えることを特徴とする空調制御装置。
An air conditioning control device that controls a supply air temperature and an air supply amount from an air conditioner to a control target room, where a room in which equipment that may cause physical damage due to condensation is installed is set as a control target room,
Dew point temperature measuring means for measuring the dew point temperature of the controlled room;
A supply air temperature lower limit value calculating means for calculating a lower limit value of the supply air temperature without the possibility of dew condensation in the controlled room based on the measured dew point temperature;
Current temperature measuring means for measuring the temperature of the air inflow side to the rack containing the equipment as the current temperature;
Storage means for storing a required temperature for the current temperature to be measured;
A supply air temperature setting value determining means for determining a set value of the supply air temperature based on a lower limit value of the calculated supply air temperature, the measured current temperature, and the stored required temperature ;
Supply air volume setting value determining means for determining a set value of the supply air volume based on the lower limit value of the calculated supply air temperature, the measured current temperature, and the stored required temperature. An air conditioning control device.
請求項4に記載された空調制御装置において、
前記空調機の能力によって制約される給気温度の下限値を機器制約給気温度下限値とし、この機器制約給気温度下限値と前記算出された給気温度の下限値とを比較し、高い方の値を給気温度の下限値として決定する給気温度下限値決定手段を備え、
前記給気温度設定値決定手段は、
前記決定された給気温度の下限値と前記測定された現在温度と前記記憶されている要求温度とに基づいて前記給気温度の設定値を決定する
ことを特徴とする空調制御装置。
In the air conditioning control device according to claim 4,
The lower limit value of the supply air temperature constrained by the capacity of the air conditioner is set as a device-restricted supply air temperature lower limit value, and the device-restricted supply air temperature lower limit value is compared with the calculated lower limit value of the supply air temperature. Supply air temperature lower limit value determining means for determining one value as the lower limit value of the supply air temperature,
The supply air temperature set value determining means includes
An air conditioning control device that determines a set value of the supply air temperature based on a lower limit value of the determined supply air temperature, the measured current temperature, and the stored required temperature .
請求項4又は5に記載された空調制御装置において、
前記制御対象室の露点温度を測定する露点温度測定手段に代えて、前記制御対象室からの排気の露点温度、前記制御対象室へ外気を処理して供給する外調機からの給気の露点温度、外気の露点温度のうち、何れかの露点温度を測定する露点温度測定手段
を備えることを特徴とする空調制御装置。
In the air-conditioning control device according to claim 4 or 5,
Instead of the dew point temperature measuring means for measuring the dew point temperature of the control target room, the dew point temperature of the exhaust from the control target room, the dew point of the supply air from the external air conditioner that processes and supplies the outside air to the control target room An air conditioning control device comprising: dew point temperature measuring means for measuring any one of a temperature and a dew point temperature of outside air.
JP2010021932A 2010-02-03 2010-02-03 Air conditioning control method and apparatus Expired - Fee Related JP5478286B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010021932A JP5478286B2 (en) 2010-02-03 2010-02-03 Air conditioning control method and apparatus
KR1020100100323A KR101171583B1 (en) 2010-02-03 2010-10-14 Air conditioning control method and air conditioning control apparatus
CN201110034628.XA CN102141288B (en) 2010-02-03 2011-01-30 Air-conditioning controlling method and device
US13/018,659 US20110186643A1 (en) 2010-02-03 2011-02-01 Air-conditioning controlling method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021932A JP5478286B2 (en) 2010-02-03 2010-02-03 Air conditioning control method and apparatus

Publications (2)

Publication Number Publication Date
JP2011158219A JP2011158219A (en) 2011-08-18
JP5478286B2 true JP5478286B2 (en) 2014-04-23

Family

ID=44340760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021932A Expired - Fee Related JP5478286B2 (en) 2010-02-03 2010-02-03 Air conditioning control method and apparatus

Country Status (4)

Country Link
US (1) US20110186643A1 (en)
JP (1) JP5478286B2 (en)
KR (1) KR101171583B1 (en)
CN (1) CN102141288B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818350B2 (en) * 2011-10-25 2015-11-18 アズビル株式会社 Air conditioning control device and air conditioning control method
JP5966327B2 (en) * 2011-11-14 2016-08-10 ダイキン工業株式会社 Air conditioning indoor unit
US9188993B2 (en) * 2012-11-02 2015-11-17 Johnson Controls Technology Company Systems and methods for sensing dew point in a building space
CN103884072A (en) * 2012-12-19 2014-06-25 广东美的暖通设备有限公司 Air-conditioner, indoor unit and condensation-proof control method of air-conditioner and indoor unit
JP6063311B2 (en) * 2013-03-19 2017-01-18 アズビル株式会社 Air conditioning system and air conditioning control method
JP2014240707A (en) * 2013-06-11 2014-12-25 アズビル株式会社 Van control system and vav control method
JP2014240733A (en) * 2013-06-12 2014-12-25 パナソニックIpマネジメント株式会社 Environment determination system, environment determination program and apparatus selection device
CN105874283A (en) * 2013-11-29 2016-08-17 东芝三菱电机产业系统株式会社 Electric equipment housing
CN103743061B (en) * 2013-12-27 2016-01-27 杭州悦居环境设备有限公司 The control method of dew-point dehumidifying
JP6277776B2 (en) 2014-02-27 2018-02-14 富士通株式会社 Air conditioning control system and air conditioning control method
US9949410B1 (en) 2014-03-21 2018-04-17 Google Llc Managing dependencies between data center computing and infrastructure
JP2016020770A (en) * 2014-07-15 2016-02-04 アズビル株式会社 Room pressure control system and room pressure control method
KR101626675B1 (en) 2014-11-12 2016-06-01 엘지전자 주식회사 An air conditioning system and a method for controlling the same
JP6099112B1 (en) * 2016-09-12 2017-03-22 株式会社 テクノミライ Digital smart energy saving system, method and program
US11406046B2 (en) * 2020-01-13 2022-08-02 Dell Products, L.P. Data center cooling system that prevents condensation caused by opening external access doors

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346129A (en) * 1993-05-17 1994-09-13 Honeywell Inc. Indoor climate controller system adjusting both dry-bulb temperature and wet-bulb or dew point temperature in the enclosure
JPH06337150A (en) * 1993-05-28 1994-12-06 Hitachi Ltd Method for controlling air-conditioning device
JP3377846B2 (en) * 1993-12-27 2003-02-17 東北電力株式会社 Thermal storage type air conditioner
JP4085649B2 (en) * 2002-02-25 2008-05-14 日本電気株式会社 Electronic device dew condensation prevention structure and dew condensation prevention method
JP2003329281A (en) * 2002-05-14 2003-11-19 Hitachi Ltd Control system of air conditioner
JP4153738B2 (en) * 2002-07-18 2008-09-24 東芝キヤリア株式会社 Air conditioner for storage unit
JP2004273967A (en) * 2003-03-12 2004-09-30 Sumitomo Heavy Ind Ltd Chamber temperature control system
JP2005156148A (en) * 2003-11-05 2005-06-16 Yamatake Corp Air-conditioning controller and air-conditioning control method for air-conditioning system
JP4445246B2 (en) * 2003-11-14 2010-04-07 三菱電機株式会社 Air conditioner
CN1266429C (en) * 2004-03-25 2006-07-26 上海交通大学 Blowing temp optimized controller based on indoor relative moisture control
JP4147556B2 (en) * 2004-07-12 2008-09-10 三菱電機株式会社 Air conditioning apparatus and control method thereof
CN1632396A (en) * 2004-12-10 2005-06-29 马维理 Cotton mill air-conditioning dust collection automatic control system
JP2007139241A (en) * 2005-11-16 2007-06-07 Hitachi Ltd Air conditioner
JP4906493B2 (en) 2006-12-19 2012-03-28 株式会社長府製作所 Desiccant air conditioner and its dew protection device
US20080304236A1 (en) * 2007-06-05 2008-12-11 Murakami Vance B Maintaining cooling system air above condensation point
JP5024675B2 (en) * 2008-03-10 2012-09-12 株式会社日立プラントテクノロジー Electronic device cooling system and cooling method
US8578727B2 (en) * 2008-03-21 2013-11-12 Mitsubishi Electric Corporation Indoor unit and air-conditioning apparatus provided with the same
JP5332283B2 (en) * 2008-04-11 2013-11-06 ダイキン工業株式会社 Mediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program

Also Published As

Publication number Publication date
KR101171583B1 (en) 2012-08-09
US20110186643A1 (en) 2011-08-04
CN102141288B (en) 2015-03-18
CN102141288A (en) 2011-08-03
KR20110090744A (en) 2011-08-10
JP2011158219A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5478286B2 (en) Air conditioning control method and apparatus
US11262092B2 (en) Air conditioning system including a ventilator that supplies humidified outdoor air
US8255087B2 (en) Constant air volume HVAC system with a dehumidification function and discharge air temperature control, an HVAC controller therefor and a method of operation thereof
JP5375945B2 (en) Air conditioning system that adjusts temperature and humidity
US10337780B2 (en) Variable refrigerant flow system operation in low ambient conditions
WO2015037434A1 (en) Air-conditioning apparatus
JP7026781B2 (en) Air conditioning system
US11879658B2 (en) Air-conditioning ventilation system
KR20120087793A (en) Apparatus and method for controlling air condition
CN108151232A (en) Progress control method, device, air conditioner and computer readable storage medium
JP4852791B2 (en) Ventilation equipment
JP5737173B2 (en) Air conditioning system that adjusts temperature and humidity
JP5673524B2 (en) Air conditioning system that adjusts temperature and humidity
JP5491908B2 (en) Humidification control system
WO2018211612A1 (en) Air conditioning device
JP7305043B2 (en) Heating control device and heating control program
WO2020240659A1 (en) Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
US10712040B2 (en) HVAC blower
JPH0694285A (en) Air conditioner
CN116294094A (en) Method for dry-wet separation operation of terminal air conditioner and one-to-multiple air conditioning system
CA2716425C (en) A constant air volume hvac system with a dehumidification function and discharge air temperature control, an hvac controller therefor and a method of operation thereof
JP2007120929A (en) Air conditioning control system for nuclear facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5478286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees