WO2018211612A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2018211612A1
WO2018211612A1 PCT/JP2017/018463 JP2017018463W WO2018211612A1 WO 2018211612 A1 WO2018211612 A1 WO 2018211612A1 JP 2017018463 W JP2017018463 W JP 2017018463W WO 2018211612 A1 WO2018211612 A1 WO 2018211612A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fan
compressor
operating frequency
air volume
Prior art date
Application number
PCT/JP2017/018463
Other languages
French (fr)
Japanese (ja)
Inventor
一平 篠田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/018463 priority Critical patent/WO2018211612A1/en
Publication of WO2018211612A1 publication Critical patent/WO2018211612A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits

Definitions

  • the present invention relates to an air conditioner having an evaporator and a fan for supplying air in an air-conditioned space to the evaporator.
  • the air conditioner installed in the data center mainly performs cooling operation, and most of the cooling load is sensible heat load.
  • the indoor temperature and humidity be adjusted to be constant. If the air conditioner performs cooling operation and excessively dehumidifies the room, it must be humidified, and on the other hand, extra energy is consumed. Therefore, the data center is required to have high sensible heat cooling that suppresses latent heat treatment and preferentially performs sensible heat treatment.
  • the air conditioner when performing high sensible heat cooling, the air conditioner must increase the air volume of the fan on the evaporator side, and the energy is low under a load with a sufficiently high sensible heat ratio and a low cooling load. It will be wasted.
  • an air conditioning system that controls the evaporation temperature to be equal to or higher than the dew point temperature by lowering the air volume of the fan on the evaporator side with the dew point temperature as a target with respect to the dry bulb temperature of the air in the air conditioning target space (for example, Patent Document 1).
  • an air-conditioning indoor unit is disclosed that determines a lower limit value of the rotation speed of a fan of an indoor unit based on an evaporation temperature when cooling indoor air (see, for example, Patent Document 2).
  • the present invention has been made to solve the above-described problems, and provides an air conditioner that saves energy while preventing the occurrence of condensation in an evaporator.
  • An air conditioner includes a refrigerant circuit in which a compressor, a condenser, an expansion device, and an evaporator are connected in order through a refrigerant pipe, a fan that supplies air sucked from a space to be conditioned to the evaporator, A dry bulb temperature sensor that measures the dry bulb temperature of the air in the air-conditioned space, an evaporation temperature sensor that measures the evaporation temperature in the evaporator, and an operating frequency of the compressor so that the dry bulb temperature becomes a set temperature. And a controller that controls the air volume of the fan, and the controller controls the air volume of the fan when the operating frequency is equal to or lower than a set value and the evaporation temperature is higher than a dew point temperature. It is controlled according to the size of.
  • the cooling capacity it is determined whether or not the cooling capacity can be lowered based on the operating frequency of the compressor that operates corresponding to the dry bulb temperature of the air-conditioning target space, and the compressor is maintained while the evaporation temperature is maintained higher than the dew point temperature. Since the air volume of the fan is controlled according to the operating frequency, it is possible to prevent the occurrence of dew condensation in the evaporator and to reduce the energy consumption.
  • FIG. 1 is a refrigerant circuit diagram illustrating a configuration example of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner 1 includes a heat source side unit 10 and a load side unit 20.
  • the load side unit 20 is installed in the air conditioning target space.
  • the heat source side unit 10 includes a compressor 11 that compresses and discharges the refrigerant, and a condenser 12 that exchanges heat between the refrigerant and the outside air.
  • the load-side unit 20 includes an expansion device 21 that expands the flowing refrigerant, an evaporator 22 that exchanges heat between the flowing refrigerant and the air in the air conditioning target space, and an evaporator 22 that sucks air from the air conditioning target space. And a fan 23 to be supplied.
  • the load unit 20 is provided with a dry bulb temperature sensor 25 that measures the dry bulb temperature of the air sucked from the air-conditioning target space.
  • An evaporation temperature sensor 24 for measuring the evaporation temperature is provided on the refrigerant outlet side of the evaporator 22.
  • the compressor 11, the condenser 12, the expansion device 21 and the evaporator 22 are connected in order by refrigerant piping, and the refrigerant circuit 30 is configured.
  • the heat source unit 10 is provided with a controller 15 that controls the compressor 11, the expansion device 21, and the fan 23.
  • the compressor 11 is a variable capacity compressor.
  • the control unit 15 is connected to the compressor 11, the expansion device 21, the fan 23, the evaporation temperature sensor 24, and the dry bulb temperature sensor 25 via signal lines.
  • FIG. 2 is a diagram illustrating a configuration example of the control unit illustrated in FIG.
  • the control unit 15 is, for example, a microcomputer.
  • the control unit 15 includes a memory 151 that stores a program, and a CPU (Central Processing Unit) 152 that executes processing according to the program.
  • the memory 151 stores set temperature and target relative humidity input by the user.
  • the memory 151 stores a maximum value of the capacity of the compressor 11 and a maximum value of the rotational speed of the fan 23.
  • the memory 151 stores a table showing a correspondence relationship with the lower limit value of the air volume of the fan 23 corresponding to the capacity of the compressor 11. This table is used for fan airflow suppression control in the first embodiment.
  • the control unit 15 controls the capacity of the compressor 11 and the opening degree of the expansion device 21 so that the dry bulb temperature measured by the dry bulb temperature sensor 25 approaches the set temperature.
  • the control unit 15 controls the operating frequency as the capacity control of the compressor 11
  • the control unit 15 controls the air volume of the fan 23 based on the dry bulb temperature of the air-conditioning target space, the evaporation temperature, and the operating frequency of the compressor 11. Details of the control executed by the control unit 15 will be described later.
  • control unit 15 is provided in the heat source side unit 10 is illustrated in FIG. 1, it may be provided in the load side unit 20.
  • a fan that blows outside air may be provided in the condenser 12.
  • the air conditioning apparatus 1 may be an apparatus that can perform not only cooling operation but also heating operation.
  • control part 15 demonstrated in the case of acquiring evaporation temperature from the evaporation temperature sensor 24 provided in the refrigerant
  • FIG. 3 is a flowchart showing a control procedure executed by the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a table showing the correspondence relationship with the lower limit value of the air flow rate of the fan on the evaporator side corresponding to the capacity of the compressor in the control procedure shown in FIG.
  • the air volume lower limit value% shown in FIG. 4 means the ratio of the lower limit value of the rotational speed to the maximum value of the rotational speed of the fan 23.
  • the operating frequency range of the compressor 11 is associated with the lower limit value of the fan 23 so that the lower limit value of the fan 23 becomes smaller as the operating frequency of the compressor 11 becomes smaller.
  • the minimum and maximum values of the operating frequency range at each stage serve as a threshold for whether or not to change the stage.
  • step S2 when the operation frequency of the compressor 11 is 75% or less of the maximum value as a result of the determination in step S2, the control unit 15 acquires the value of the dry bulb temperature of the air-conditioning target space from the dry bulb temperature sensor 25 ( In step S4), the set temperature is read (step S5), and the magnitudes of these temperatures are compared (step S6). As a result of the determination, when the condition of set temperature + 1 ° C. ⁇ dry bulb temperature is satisfied, the control unit 15 determines that the cooling capacity is insufficient. In this case, the control unit 15 sets the air volume of the fan 23 on the evaporator 22 side to 100% (step S3).
  • step S6 when the relationship of the set temperature + 1 ° C.> the dry bulb temperature is satisfied, the control unit 15 determines that the cooling capacity has a surplus capacity.
  • the control unit 15 reads the target relative humidity (step S7), and calculates a virtual dew point temperature from the dry bulb temperature and the target relative humidity (step S8).
  • step S6 when the relationship of set temperature + 1 ° C.> dry bulb temperature is satisfied, it is considered that the relative humidity of the air-conditioning target space approximates the target relative humidity.
  • the control unit 15 can calculate the dew point temperature from the target relative humidity and the dry bulb temperature based on the air diagram data stored in advance in the memory 151.
  • control unit 15 acquires the value of the evaporation temperature from the evaporation temperature sensor 24 (step S9). And the control part 15 compares the magnitude
  • step S10 when the relationship of evaporation temperature + 2 ° C.> dew point temperature is satisfied, the control unit 15 determines whether or not the operating frequency of the compressor 11 exceeds 50% of the maximum value. (Step S11). When the operating frequency exceeds 50% of the maximum value, the control unit 15 performs control to lower the rotational speed of the fan 23 by setting the lower limit value of the air volume of the fan 23 to 69% of the maximum value. Specifically, the control unit 15 determines whether or not the air volume of the fan 23 is larger than 69% of the maximum value (step S12). When the air flow rate of the fan 23 is larger than 69% of the maximum value, the control unit 15 refers to the table shown in FIG.
  • step S13 If is less than 69% of the maximum value, the air flow stage is maintained.
  • the operating frequency during operation is 75% or less of the maximum value, if the air volume of the fan 23 is 69% or more of the maximum value, it is the air volume that can perform high sensible heat cooling.
  • the controller 15 may reduce the rotational speed of the fan 23 according to a predetermined table when decreasing the air volume of the fan 23, or may decrease the rotational speed at a minimum controllable interval such as 1 Hz and 1 rpm.
  • step S11 If it is determined in step S11 that the operating frequency of the compressor 11 is 50% or less of the maximum value, the control unit 15 sets the lower limit value of the air volume of the fan 23 to 43% of the maximum value and decreases the rotational speed of the fan 23. Take control. Specifically, the control unit 15 determines whether or not the air volume of the fan 23 is larger than 43% of the maximum value (step S14). When the air volume is larger than 43% of the maximum value, the control unit 15 reduces the air volume level of the fan 23 by one level (step S15). When the operation frequency is 43% or less of the maximum value, the air volume level of the fan 23 is decreased. To maintain.
  • step S10 determines whether the condition of evaporation temperature + 2 ° C.> dew point temperature is not satisfied. If it is determined in step S10 that the condition of evaporation temperature + 2 ° C.> dew point temperature is not satisfied, the control unit 15 performs control to increase the rotational speed of the fan 23. In the control shown in FIG. 3, the control unit 15 performs control to increase the air volume of the fan 23 by one level (step S16).
  • the control unit 15 determines whether or not the end of the fan airflow suppression control is input from the user (step S17). If the end instruction is not input, the control unit 15 again performs step S1. Return to.
  • the control unit 15 monitors the operating frequency of the compressor 11 during operation, and repeats the determination of whether to increase or decrease the air volume of the fan 23 or to maintain the current state. This repetition is desirably performed in the same cycle as the operation frequency control cycle of the compressor 11. This repetition is preferably performed at intervals of 30 seconds, for example.
  • step S17 when the end of the fan air volume suppression control is input from the user, the control unit 15 sets the air volume of the fan 23 to 100% (step S18).
  • + 1 ° C. in the determination condition (set temperature + 1 ° C. ⁇ dry bulb temperature) in step S6 shown in FIG. 3 is a correction value.
  • the determination condition in step S6 is not limited to this condition, and it is desirable to use a determination value that changes from thermo-off to thermo-on in the refrigeration cycle control in the air conditioner 1.
  • the set temperature correction value is preferably set to + 1 ° C., for example.
  • the condition that changes from thermo-off to thermo-on is a condition that requires cooling capacity.
  • + 2 ° C. in the determination condition (evaporation temperature + 2 ° C.> dew point temperature) in step S10 shown in FIG. 3 is a correction value.
  • the correction value in the determination condition of step S10 serves as a threshold value for determining whether or not drainage is generated by a large-sized evaporator, and the value is preferably + 2 ° C.
  • a correction value may not be provided for the determination condition in step S10.
  • the control method described with reference to FIG. 3 is summarized.
  • the control unit 15 controls the operating frequency of the compressor 11 so that the dry bulb temperature of the air-conditioning target space becomes the set temperature. In this control, all heat treatment including sensible heat treatment and latent heat treatment is performed.
  • the control unit 15 sets the operating frequency of the compressor 11 to a large value such as a maximum value.
  • the control unit 15 performs control to lower the operating frequency of the compressor 11 in order to prevent overshooting.
  • the control unit 15 When the operating frequency is a value smaller than the maximum value and lower than a set value (for example, 75%), the dry bulb temperature becomes substantially the same as the set temperature, and the latent heat treatment is considered sufficient. Under this situation, the control unit 15 performs high sensible heat cooling that suppresses latent heat treatment and prioritizes sensible heat treatment. However, the control unit 15 controls the air volume of the fan 23 in accordance with the operation frequency of the compressor 11 so that the sensible heat treatment does not become excessive. If the temperature obtained by adding the correction value (+ 2 ° C.) to the evaporation temperature is higher than the dew point temperature in the determination in step S ⁇ b> 10, the control unit 15 controls the air volume of the fan 23 according to the operating frequency of the compressor 11. The fan air volume is determined according to the operating frequency. In accordance with the table shown in FIG. 4, the control unit 15 decreases the air volume of the fan 23 as the operating frequency of the compressor 11 decreases.
  • the control unit 15 increases the air volume of the fan 23 and decreases the evaporation temperature.
  • the dew point temperature that the control unit 15 compares with the temperature obtained by adding the correction value to the evaporation temperature is a virtually calculated value.
  • the control unit 15 adds the operation frequency described with reference to FIG. 3 to the average value of the total operation frequency obtained by summing the operation frequencies of the plurality of compressors 11. It is sufficient to control by replacing with. For example, consider a case where the air conditioner has three heat source side units 10 and the operating frequencies of the three compressors 11 are 95%, 90%, and 85% of the maximum value in step S2.
  • step S2 the control unit 15 may compare the average value 90% of the total operating frequencies of these operating frequencies with the set value 75%.
  • the control method described in the first embodiment is also applied to an air conditioner in which a plurality of heat source side units 10 are connected to a load side unit 20 provided with a large size evaporator, such as a data center. Can do.
  • the control method described in the first embodiment it is difficult to apply the control method described in the first embodiment to an air conditioner having a plurality of load-side units 20.
  • the load side unit 20 is multi (multiple units)
  • the total capacity of the compressor 11 in operation and the cooling capacity required by one load side unit 20 out of the plurality of load side units 20 are: This is because they do not necessarily match. For example, even if the total capacity during operation is 50%, if one unit on the load side 20 requires 100% cooling capacity, the fan speed should be reduced to maintain high sensible cooling. is not.
  • the air conditioner 1 includes a refrigerant circuit 30 in which a compressor 11, a condenser 12, an expansion device 21, and an evaporator 22 are connected in order through a refrigerant pipe, and an air sucked from an air-conditioning target space.
  • the fan 23 supplied to the air, the dry bulb temperature sensor 25 for measuring the dry bulb temperature of the air in the air-conditioning target space, the evaporation temperature sensor 24 for measuring the evaporation temperature in the evaporator 22, and the dry bulb temperature to be the set temperature.
  • the control unit 15 controls the operation frequency of the compressor 11 and the air volume of the fan 23, and the control unit 15 has a case where the operation frequency of the compressor 11 is equal to or lower than a set value and the evaporation temperature is higher than the dew point temperature.
  • the air volume of the fan 23 is controlled according to the operating frequency of the compressor 11.
  • the control unit 15 determines whether or not the cooling capacity can be lowered based on the operation frequency of the compressor 11 that operates corresponding to the dry bulb temperature of the air-conditioning target space, and the evaporation temperature is
  • the air volume of the fan 23 is controlled according to the operating frequency of the compressor 11 while maintaining a state higher than the dew point temperature. In this case, it can be suppressed that the cooling capacity is insufficient and the output of the compressor is increased or the fan air volume is increased again. Therefore, it is possible to prevent the occurrence of dew condensation in the evaporator 22 and suppress the energy consumption of the fan 23 to save energy.
  • the control unit 15 is based on the operating frequency of the compressor 11 and the dry bulb temperature in the air-conditioning target space as a premise for performing the air volume suppression control of the fan 23. In addition, it is determined whether or not the cooling capacity is sufficient and whether or not the air volume suppression control of the fan 23 may be performed. As a result, when it is determined that the cooling capacity is insufficient, the control unit 15 maintains the operation frequency of the compressor 11 and does not shift to the air volume suppression control of the fan 23. Therefore, even in an air-conditioning target space where the temperature management is strict such as a data center, the air-conditioning apparatus 1 according to the first embodiment can quickly exhibit the cooling capability when the cooling capability is required.
  • the control unit 15 determines the range of the operating frequency and the lower limit value of the air volume of the fan 23 so that the lower limit value of the air volume of the fan 23 decreases as the operating frequency of the compressor 11 decreases. It holds tables that are associated and set in multiple stages. And the control part 15 controls the air volume of the fan 23 using the lower limit value of the air volume of the fan 23 set to the stage of the range to which the operating frequency of the compressor under operation belongs among a plurality of stages. In this case, when the operating frequency of the compressor 11 decreases, the air volume of the fan 23 is controlled to decrease. For this reason, it is possible to suppress the cooling capacity from becoming excessive and to reduce the energy consumption of the fan 23.
  • the control unit 15 determines whether or not the range to which the operating frequency belongs before and after the change, and before and after the change. If the range to which the operating frequency belongs does not change, the stage used for controlling the air volume of the fan 23 does not change. If the change in the operating frequency of the compressor 11 is within the range set in the table shown in FIG. 4, the control unit 15 does not change the lower limit value of the air volume of the fan 23. As a result, the air volume range of the fan 23 is prevented from being frequently changed, and a hunting phenomenon in which the temperature swings up and down can be prevented.
  • the heat source side unit 10 containing the compressor 11 and the condenser 12 is provided with two or more, and the control part 15 sets the average value of the sum total of the operating frequency of the several compressor 11 to one unit
  • the air volume of the fan 23 may be controlled.
  • the temperature of the air-conditioning target space can be reduced. Hunting phenomenon can be suppressed.
  • Embodiment 2 FIG. In the first embodiment, a case has been described in which the plurality of stages in which the capacity of the compressor 11 and the air volume lower limit value of the fan 23 are associated with each other are three stages. In the second embodiment, the stage is increased by one stage compared to the first embodiment.
  • the control unit 15 holds the table shown in FIG. 4 in the memory 151 as an initial stage.
  • the control unit 15 changes the interval between the steps according to the instruction. For example, when an instruction to increase the number of steps is input, the control unit 15 changes the number of steps from the three steps described in the first embodiment to four steps, and updates the table stored in the memory 151.
  • step S2 the determination reference value in step S2 is different. Further, in FIG. 5, there are four stages of air volume control of the fan 23, and steps S101 to S103 are added. In the second embodiment, processing different from the processing described with reference to FIG. 3 will be described in detail, and detailed description of processing similar to the processing described with reference to FIG. 3 will be omitted.
  • step S2 shown in FIG. 5 the control unit 15 determines whether or not the operating frequency of the compressor 11 during operation exceeds a set value (step S2).
  • the set value is 88% of the maximum value.
  • the control unit 15 proceeds to the process in step S4.
  • step S10 the control unit 15 determines whether or not the relationship of evaporation temperature + 2 ° C.> dew point temperature exists. If it is determined in step S10 that evaporation temperature + 2 ° C.> dew point temperature, the control unit 15 determines whether the operating frequency of the compressor 11 exceeds 75% of the maximum value (step S101). When the operating frequency is 75% or less of the maximum value, the control unit 15 proceeds to the process of step S11.
  • step S102 determines whether or not the air volume of the fan 23 is larger than 85% of the maximum value.
  • step S102 determines whether or not the air volume of the fan 23 is larger than 85% of the maximum value.
  • the control unit 15 lowers the air volume level by one level (step S103), and when the air volume of the fan 23 is 85% or less of the maximum value, the air volume level is decreased. maintain.
  • the operating frequency during operation is 88% or less of the maximum value, if the air volume of the fan 23 is 69% or more of the maximum value, the air volume can be high sensible heat cooling.
  • the air conditioner 1 maintains a table in which the operation frequency of the compressor 11 and the lower limit value of the air volume of the fan 23 are associated with each other, and changes the number of stages. When an instruction is input, the number of steps is changed in accordance with the instruction, and the held table is updated.
  • the interval between the steps of associating the operation frequency of the compressor 11 and the air volume lower limit value of the fan 23 can be set finely.
  • the control method described in the second embodiment may be applied to an air conditioner having a plurality of heat source side units 10.

Abstract

This air conditioning device has: a refrigerant circuit, in which a compressor, condenser, expansion device, and evaporator are connected in this order using a refrigerant pipe; a fan that supplies the evaporator with air sucked from a space to be air-conditioned; a dry-bulb temperature sensor that measures the dry-bulb temperature of air in the space to be air-conditioned; an evaporation temperature sensor that measures the evaporation temperature of the evaporator; and a control unit that controls the operation frequency of the compressor and the air volume of the fan so that the dry-bulb temperature is a set temperature. In the cases where the operation frequency of the compressor is equal to a set value or lower, and the evaporation temperature is higher than a dew-point temperature, the control unit controls the air volume of the fan in accordance with the magnitude of the operation frequency of the compressor.

Description

空気調和装置Air conditioner
 本発明は、蒸発器と蒸発器に空調対象空間の空気を供給するファンとを有する空気調和装置に関する。 The present invention relates to an air conditioner having an evaporator and a fan for supplying air in an air-conditioned space to the evaporator.
 データセンタに設置された空気調和装置は、主として冷房運転を行い、冷房負荷のほとんどが顕熱負荷である。また、データセンタでは、室内の温度および湿度が一定に調整されることが求められる。空気調和装置が冷房運転を行って室内を過剰に除湿してしまうと、加湿しなければならなくなり、却って余計なエネルギーを消費することになる。そのため、データセンタでは、潜熱処理を抑制し、顕熱処理を優先的に行う高顕熱冷房が求められる。 The air conditioner installed in the data center mainly performs cooling operation, and most of the cooling load is sensible heat load. In the data center, it is required that the indoor temperature and humidity be adjusted to be constant. If the air conditioner performs cooling operation and excessively dehumidifies the room, it must be humidified, and on the other hand, extra energy is consumed. Therefore, the data center is required to have high sensible heat cooling that suppresses latent heat treatment and preferentially performs sensible heat treatment.
 一方、高顕熱冷房を行う場合、空気調和装置は、蒸発器側のファンの風量を多くしなければならず、十分に顕熱比が高い負荷で、かつ冷房負荷が低い条件においては、エネルギーが無駄に消費されてしまう。 On the other hand, when performing high sensible heat cooling, the air conditioner must increase the air volume of the fan on the evaporator side, and the energy is low under a load with a sufficiently high sensible heat ratio and a low cooling load. It will be wasted.
 従来、空調対象空間の空気の乾球温度に対して、露点温度を目標として、蒸発器側のファンの風量を下げて蒸発温度を露点温度以上に制御する空調システムが開示されている(例えば、特許文献1参照)。また、室内の空気を冷却する際に、室内機のファンの回転数の下限値を蒸発温度に基づいて判断する空調室内機が開示されている(例えば、特許文献2参照)。 Conventionally, an air conditioning system that controls the evaporation temperature to be equal to or higher than the dew point temperature by lowering the air volume of the fan on the evaporator side with the dew point temperature as a target with respect to the dry bulb temperature of the air in the air conditioning target space (for example, Patent Document 1). In addition, an air-conditioning indoor unit is disclosed that determines a lower limit value of the rotation speed of a fan of an indoor unit based on an evaporation temperature when cooling indoor air (see, for example, Patent Document 2).
特開2015-1359号公報JP2015-1359A 特開2013-104619号公報JP 2013-104619 A
 特許文献1および2に開示された装置では、蒸発器側のファンの風量を下げることで、ファンの消費エネルギーを抑えることはできるが、冷房能力を低下させることになる。この場合、冷房能力の低下を補うために、空気調和装置は、圧縮機の出力を上げたり、ファンの風量を再び増加させたりする制御を行う必要がある。却って消費エネルギーが大きくなってしまうおそれがある。 In the devices disclosed in Patent Documents 1 and 2, by reducing the air volume of the fan on the evaporator side, the energy consumption of the fan can be suppressed, but the cooling capacity is reduced. In this case, in order to compensate for the decrease in the cooling capacity, the air conditioner needs to perform control to increase the output of the compressor or increase the air volume of the fan again. On the other hand, energy consumption may increase.
 本発明は、上記のような課題を解決するためになされたもので、蒸発器での結露発生を防止しつつ、省エネルギー化を図る空気調和装置を提供するものである。 The present invention has been made to solve the above-described problems, and provides an air conditioner that saves energy while preventing the occurrence of condensation in an evaporator.
 本発明に係る空気調和装置は、圧縮機、凝縮器、膨張装置および蒸発器が冷媒配管で順に接続された冷媒回路と、空調対象空間から吸い込んだ空気を前記蒸発器に供給するファンと、前記空調対象空間の空気の乾球温度を測定する乾球温度センサと、前記蒸発器における蒸発温度を測定する蒸発温度センサと、前記乾球温度が設定温度になるように、前記圧縮機の運転周波数および前記ファンの風量を制御する制御部と、を有し、前記制御部は、前記運転周波数が設定値以下であり、かつ前記蒸発温度が露点温度より高い場合、前記ファンの風量を該運転周波数の大きさに応じて制御するものである。 An air conditioner according to the present invention includes a refrigerant circuit in which a compressor, a condenser, an expansion device, and an evaporator are connected in order through a refrigerant pipe, a fan that supplies air sucked from a space to be conditioned to the evaporator, A dry bulb temperature sensor that measures the dry bulb temperature of the air in the air-conditioned space, an evaporation temperature sensor that measures the evaporation temperature in the evaporator, and an operating frequency of the compressor so that the dry bulb temperature becomes a set temperature. And a controller that controls the air volume of the fan, and the controller controls the air volume of the fan when the operating frequency is equal to or lower than a set value and the evaporation temperature is higher than a dew point temperature. It is controlled according to the size of.
 本発明では、空調対象空間の乾球温度に対応して運転する圧縮機の運転周波数を基に冷房能力を下げることの可否を判定し、蒸発温度が露点温度より高い状態を維持しつつ圧縮機の運転周波数に応じてファンの風量を制御しているため、蒸発器における結露発生を防止するとともに消費エネルギーを抑制することができる。 In the present invention, it is determined whether or not the cooling capacity can be lowered based on the operating frequency of the compressor that operates corresponding to the dry bulb temperature of the air-conditioning target space, and the compressor is maintained while the evaporation temperature is maintained higher than the dew point temperature. Since the air volume of the fan is controlled according to the operating frequency, it is possible to prevent the occurrence of dew condensation in the evaporator and to reduce the energy consumption.
本発明の実施の形態1の空気調和装置の一構成例を示す冷媒回路図である。It is a refrigerant circuit figure which shows one structural example of the air conditioning apparatus of Embodiment 1 of this invention. 図1に示した制御部の一構成例を示す図である。It is a figure which shows the example of 1 structure of the control part shown in FIG. 本発明の実施の形態1の空気調和装置が実行する制御方法を示すフローチャートである。It is a flowchart which shows the control method which the air conditioning apparatus of Embodiment 1 of this invention performs. 図3に示す制御手順において、圧縮機の容量に対応する蒸発器側のファンの風量の下限値との対応関係を示す表である。It is a table | surface which shows the correspondence with the lower limit of the air volume of the fan by the side of the evaporator corresponding to the capacity | capacitance of a compressor in the control procedure shown in FIG. 本発明の実施の形態2の空気調和装置が実行する制御方法を示すフローチャートである。It is a flowchart which shows the control method which the air conditioning apparatus of Embodiment 2 of this invention performs. 図5に示す制御手順において、圧縮機の容量に対応する蒸発器側のファンの風量の下限値との対応関係を示す表である。6 is a table showing a correspondence relationship with a lower limit value of an air flow rate of a fan on the evaporator side corresponding to a capacity of a compressor in the control procedure shown in FIG. 5.
実施の形態1.
 本実施の形態1の空気調和装置の構成を説明する。図1は、本発明の実施の形態1の空気調和装置の一構成例を示す冷媒回路図である。空気調和装置1は、熱源側ユニット10と、負荷側ユニット20とを有する。負荷側ユニット20は空調対象空間に設置されている。
Embodiment 1 FIG.
The structure of the air conditioning apparatus of Embodiment 1 will be described. FIG. 1 is a refrigerant circuit diagram illustrating a configuration example of the air-conditioning apparatus according to Embodiment 1 of the present invention. The air conditioner 1 includes a heat source side unit 10 and a load side unit 20. The load side unit 20 is installed in the air conditioning target space.
 熱源側ユニット10は、冷媒を圧縮して吐出する圧縮機11と、冷媒と外気との間で熱交換を行う凝縮器12とを有する。負荷側ユニット20は、流入する冷媒を膨張させる膨張装置21と、流入する冷媒と空調対象空間との空気との間で熱交換する蒸発器22と、空調対象空間から空気を吸い込んで蒸発器22に供給するファン23とを有する。負荷側ユニット20には、空調対象空間から吸い込まれる空気の乾球温度を測定する乾球温度センサ25が設けられている。蒸発器22の冷媒出口側には、蒸発温度を測定する蒸発温度センサ24が設けられている。 The heat source side unit 10 includes a compressor 11 that compresses and discharges the refrigerant, and a condenser 12 that exchanges heat between the refrigerant and the outside air. The load-side unit 20 includes an expansion device 21 that expands the flowing refrigerant, an evaporator 22 that exchanges heat between the flowing refrigerant and the air in the air conditioning target space, and an evaporator 22 that sucks air from the air conditioning target space. And a fan 23 to be supplied. The load unit 20 is provided with a dry bulb temperature sensor 25 that measures the dry bulb temperature of the air sucked from the air-conditioning target space. An evaporation temperature sensor 24 for measuring the evaporation temperature is provided on the refrigerant outlet side of the evaporator 22.
 圧縮機11、凝縮器12、膨張装置21および蒸発器22が冷媒配管で順に接続され、冷媒回路30が構成されている。熱源側ユニット10には、圧縮機11、膨張装置21およびファン23を制御する制御部15が設けられている。圧縮機11は容量可変の圧縮機である。制御部15は、圧縮機11、膨張装置21、ファン23、蒸発温度センサ24および乾球温度センサ25と信号線を介して接続されている。 The compressor 11, the condenser 12, the expansion device 21 and the evaporator 22 are connected in order by refrigerant piping, and the refrigerant circuit 30 is configured. The heat source unit 10 is provided with a controller 15 that controls the compressor 11, the expansion device 21, and the fan 23. The compressor 11 is a variable capacity compressor. The control unit 15 is connected to the compressor 11, the expansion device 21, the fan 23, the evaporation temperature sensor 24, and the dry bulb temperature sensor 25 via signal lines.
 図2は、図1に示した制御部の一構成例を示す図である。制御部15は、例えば、マイクロコンピュータである。制御部15は、プログラムを記憶するメモリ151と、プログラムにしたがって処理を実行するCPU(Central Processing Unit)152とを有する。メモリ151は、ユーザが入力する設定温度および目標相対湿度を記憶する。メモリ151は、圧縮機11の容量の最大値およびファン23の回転数の最大値を記憶する。メモリ151は、圧縮機11の容量に対応する、ファン23の風量の下限値との対応関係を示す表を記憶する。この表は、本実施の形態1におけるファン風量抑制制御に用いられるものである。 FIG. 2 is a diagram illustrating a configuration example of the control unit illustrated in FIG. The control unit 15 is, for example, a microcomputer. The control unit 15 includes a memory 151 that stores a program, and a CPU (Central Processing Unit) 152 that executes processing according to the program. The memory 151 stores set temperature and target relative humidity input by the user. The memory 151 stores a maximum value of the capacity of the compressor 11 and a maximum value of the rotational speed of the fan 23. The memory 151 stores a table showing a correspondence relationship with the lower limit value of the air volume of the fan 23 corresponding to the capacity of the compressor 11. This table is used for fan airflow suppression control in the first embodiment.
 制御部15は、乾球温度センサ25が測定する乾球温度を設定温度に近づけるように、圧縮機11の容量および膨張装置21の開度を制御する。本実施の形態1では、制御部15が圧縮機11の容量制御として運転周波数を制御する場合で説明する。制御部15は、空調対象空間の乾球温度、蒸発温度および圧縮機11の運転周波数を基に、ファン23の風量を制御する。制御部15が実行する制御の詳細は後述する。 The control unit 15 controls the capacity of the compressor 11 and the opening degree of the expansion device 21 so that the dry bulb temperature measured by the dry bulb temperature sensor 25 approaches the set temperature. In the first embodiment, the case where the control unit 15 controls the operating frequency as the capacity control of the compressor 11 will be described. The control unit 15 controls the air volume of the fan 23 based on the dry bulb temperature of the air-conditioning target space, the evaporation temperature, and the operating frequency of the compressor 11. Details of the control executed by the control unit 15 will be described later.
 なお、図1では、制御部15が熱源側ユニット10に設けられた場合を示しているが、負荷側ユニット20に設けられていてもよい。熱源側ユニット10において、凝縮器12に外気を送風するファンが設けられていてもよい。また、空気調和装置1は、冷房運転だけでなく暖房運転も行うことができる装置であってもよい。 In addition, although the case where the control unit 15 is provided in the heat source side unit 10 is illustrated in FIG. 1, it may be provided in the load side unit 20. In the heat source side unit 10, a fan that blows outside air may be provided in the condenser 12. Moreover, the air conditioning apparatus 1 may be an apparatus that can perform not only cooling operation but also heating operation.
 また、制御部15が蒸発器22の冷媒出口側に設けられた蒸発温度センサ24から蒸発温度を取得する場合で説明したが、蒸発温度センサ24の設置場所は、蒸発器22の冷媒出口側に限らず、冷媒入口側であってもよく、または冷媒入口および冷媒出口の両方であってもよい。さらに、圧縮機11の冷媒吸入側の圧力を測定する吸入圧力センサを設け、制御部15が吸入圧力センサの測定値を用いて蒸発温度を算出してもよい。 Moreover, although the control part 15 demonstrated in the case of acquiring evaporation temperature from the evaporation temperature sensor 24 provided in the refrigerant | coolant exit side of the evaporator 22, the installation place of the evaporation temperature sensor 24 is on the refrigerant | coolant exit side of the evaporator 22. It may be not only the refrigerant inlet side but also both the refrigerant inlet and the refrigerant outlet. Further, a suction pressure sensor for measuring the pressure on the refrigerant suction side of the compressor 11 may be provided, and the control unit 15 may calculate the evaporation temperature using the measurement value of the suction pressure sensor.
 次に、本実施の形態1の空気調和装置の動作を説明する。図3は、本発明の実施の形態1における空気調和装置が実行する制御の手順を示すフローチャートである。図4は、図3に示す制御手順において、圧縮機の容量に対応する蒸発器側のファンの風量の下限値との対応関係を示す表である。 Next, the operation of the air conditioning apparatus of the first embodiment will be described. FIG. 3 is a flowchart showing a control procedure executed by the air-conditioning apparatus according to Embodiment 1 of the present invention. FIG. 4 is a table showing the correspondence relationship with the lower limit value of the air flow rate of the fan on the evaporator side corresponding to the capacity of the compressor in the control procedure shown in FIG.
 図4に示す容量x%は、圧縮機11の運転周波数の最大値に対して、運転中の運転周波数の割合を意味する。また、図4に示す風量下限値%は、ファン23の回転数の最大値に対して、回転数の下限値の割合を意味する。図4に示す表では、圧縮機11の運転周波数が小さくなるとファン23の風量の下限値が小さくなるように、圧縮機11の運転周波数の範囲とファン23の風量の下限値とが対応づけられて複数の段階に設定されている。各段階における運転周波数の範囲の最小値と最大値は、段階を変化するか否かの閾値の役目を果たしている。 4 indicates the ratio of the operating frequency during operation to the maximum value of the operating frequency of the compressor 11. Further, the air volume lower limit value% shown in FIG. 4 means the ratio of the lower limit value of the rotational speed to the maximum value of the rotational speed of the fan 23. In the table shown in FIG. 4, the operating frequency range of the compressor 11 is associated with the lower limit value of the fan 23 so that the lower limit value of the fan 23 becomes smaller as the operating frequency of the compressor 11 becomes smaller. Are set in multiple stages. The minimum and maximum values of the operating frequency range at each stage serve as a threshold for whether or not to change the stage.
 制御部15は、運転中の空気調和装置1において、圧縮機11の運転周波数を監視している。図3に示すように、制御部15は、圧縮機11の運転周波数を読み込む(ステップS1)。制御部15は、運転周波数の最大値を100%としたとき、読み込んだ運転周波数が設定値を超えているか否かを判定する(ステップS2)。本実施の形態1では、設定値は最大値の75%である。判定の結果、圧縮機11の運転周波数が75%を超えている場合、制御部15は、冷房負荷が高いと判断し、蒸発器22側のファン23の風量を下げずに、風量100%を維持する(ステップS3)。ファン23の風量100%は、風量の最大値であり、運転中の圧縮機11の運転周波数が100%のときに顕熱比=1となる、いわゆる高顕熱冷房を行うことができる風量とする。 The control unit 15 monitors the operating frequency of the compressor 11 in the operating air conditioner 1. As shown in FIG. 3, the control part 15 reads the operating frequency of the compressor 11 (step S1). The controller 15 determines whether or not the read operation frequency exceeds the set value when the maximum value of the operation frequency is 100% (step S2). In the first embodiment, the set value is 75% of the maximum value. If the operation frequency of the compressor 11 exceeds 75% as a result of the determination, the control unit 15 determines that the cooling load is high, and reduces the air volume of 100% without reducing the air volume of the fan 23 on the evaporator 22 side. Maintain (step S3). The air volume 100% of the fan 23 is the maximum value of the air volume, and is the air volume capable of performing so-called high sensible heat cooling where the sensible heat ratio = 1 when the operating frequency of the compressor 11 during operation is 100%. .
 一方、ステップS2の判定の結果、圧縮機11の運転周波数が最大値の75%以下である場合、制御部15は、空調対象空間の乾球温度の値を乾球温度センサ25から取得し(ステップS4)、設定温度を読み込み(ステップS5)、これらの温度の大きさを比較する(ステップS6)。判定の結果、設定温度+1℃≦乾球温度の条件が満たされる場合、制御部15は、冷房能力が不足している状態と判断する。この場合、制御部15は、蒸発器22側のファン23の風量を100%とする(ステップS3)。 On the other hand, when the operation frequency of the compressor 11 is 75% or less of the maximum value as a result of the determination in step S2, the control unit 15 acquires the value of the dry bulb temperature of the air-conditioning target space from the dry bulb temperature sensor 25 ( In step S4), the set temperature is read (step S5), and the magnitudes of these temperatures are compared (step S6). As a result of the determination, when the condition of set temperature + 1 ° C. ≦ dry bulb temperature is satisfied, the control unit 15 determines that the cooling capacity is insufficient. In this case, the control unit 15 sets the air volume of the fan 23 on the evaporator 22 side to 100% (step S3).
 一方、ステップS6の判定の結果、設定温度+1℃>乾球温度の関係にある場合、制御部15は、冷房能力に余力があると判断する。制御部15は、目標相対湿度を読み込み(ステップS7)、乾球温度および目標相対湿度から仮想の露点温度を算出する(ステップS8)。例えば、ステップS6において、設定温度+1℃>乾球温度の関係にある場合、空調対象空間の相対湿度が目標相対湿度に近似していると考えられる。制御部15は、メモリ151が予め記憶した空気線図のデータを基にして、目標相対湿度および乾球温度から露点温度を算出できる。 On the other hand, as a result of the determination in step S6, when the relationship of the set temperature + 1 ° C.> the dry bulb temperature is satisfied, the control unit 15 determines that the cooling capacity has a surplus capacity. The control unit 15 reads the target relative humidity (step S7), and calculates a virtual dew point temperature from the dry bulb temperature and the target relative humidity (step S8). For example, in step S6, when the relationship of set temperature + 1 ° C.> dry bulb temperature is satisfied, it is considered that the relative humidity of the air-conditioning target space approximates the target relative humidity. The control unit 15 can calculate the dew point temperature from the target relative humidity and the dry bulb temperature based on the air diagram data stored in advance in the memory 151.
 続いて、制御部15は、蒸発温度の値を蒸発温度センサ24から取得する(ステップS9)。そして、制御部15は、蒸発温度および露点温度の大きさを比較する(ステップS10)。ステップS10の判定において、蒸発温度+2℃>露点温度の関係にある場合、制御部15は、ファン23の回転数を下げる制御を行う。 Subsequently, the control unit 15 acquires the value of the evaporation temperature from the evaporation temperature sensor 24 (step S9). And the control part 15 compares the magnitude | size of evaporation temperature and dew point temperature (step S10). If it is determined in step S10 that evaporation temperature + 2 ° C.> dew point temperature, the control unit 15 performs control to reduce the rotational speed of the fan 23.
 図3に示す制御では、ステップS10の判定において、蒸発温度+2℃>露点温度の関係にある場合、制御部15は、圧縮機11の運転周波数が最大値の50%を超えるか否かを判定する(ステップS11)。運転周波数が最大値の50%を超える場合、制御部15は、ファン23の風量の下限値を最大値の69%とし、ファン23の回転数を下げる制御を行う。具体的には、制御部15は、ファン23の風量が最大値の69%よりも大きいか否かを判定する(ステップS12)。ファン23の風量が最大値の69%よりも大きい場合、制御部15は、メモリ151が保持する図4に示す表を参照し、風量の段階を1段階下げ(ステップS13)、ファン23の風量が最大値の69%以下の場合、風量の段階を維持する。運転中の運転周波数が最大値の75%以下である場合、ファン23の風量が最大値の69%以上であれば、高顕熱冷房を行うことができる風量である。 In the control shown in FIG. 3, in the determination of step S10, when the relationship of evaporation temperature + 2 ° C.> dew point temperature is satisfied, the control unit 15 determines whether or not the operating frequency of the compressor 11 exceeds 50% of the maximum value. (Step S11). When the operating frequency exceeds 50% of the maximum value, the control unit 15 performs control to lower the rotational speed of the fan 23 by setting the lower limit value of the air volume of the fan 23 to 69% of the maximum value. Specifically, the control unit 15 determines whether or not the air volume of the fan 23 is larger than 69% of the maximum value (step S12). When the air flow rate of the fan 23 is larger than 69% of the maximum value, the control unit 15 refers to the table shown in FIG. 4 held by the memory 151 and lowers the air flow level by one step (step S13). If is less than 69% of the maximum value, the air flow stage is maintained. When the operating frequency during operation is 75% or less of the maximum value, if the air volume of the fan 23 is 69% or more of the maximum value, it is the air volume that can perform high sensible heat cooling.
 制御部15は、ファン23の風量を下げる際、予め決められたテーブルにしたがってファン23の回転数を下げてもよく、1Hzおよび1rpmなどの制御可能な最小間隔で回転数を下げてもよい。 The controller 15 may reduce the rotational speed of the fan 23 according to a predetermined table when decreasing the air volume of the fan 23, or may decrease the rotational speed at a minimum controllable interval such as 1 Hz and 1 rpm.
 ステップS11の判定において、圧縮機11の運転周波数が最大値の50%以下となる場合、制御部15は、ファン23の風量の下限値を最大値の43%とし、ファン23の回転数を下げる制御を行う。具体的には、制御部15は、ファン23の風量が最大値の43%より大きいか否かを判定する(ステップS14)。風量が最大値の43%よりも大きい場合、制御部15は、ファン23の風量の段階を1段階下げ(ステップS15)、運転周波数が最大値の43%以下の場合、ファン23の風量の段階を維持する。 If it is determined in step S11 that the operating frequency of the compressor 11 is 50% or less of the maximum value, the control unit 15 sets the lower limit value of the air volume of the fan 23 to 43% of the maximum value and decreases the rotational speed of the fan 23. Take control. Specifically, the control unit 15 determines whether or not the air volume of the fan 23 is larger than 43% of the maximum value (step S14). When the air volume is larger than 43% of the maximum value, the control unit 15 reduces the air volume level of the fan 23 by one level (step S15). When the operation frequency is 43% or less of the maximum value, the air volume level of the fan 23 is decreased. To maintain.
 一方、ステップS10の判定において、蒸発温度+2℃>露点温度の条件を満たさない場合、制御部15は、ファン23の回転数を上げる制御を行う。図3に示す制御では、制御部15は、ファン23の風量を1段階上げる制御を行う(ステップS16)。 On the other hand, if it is determined in step S10 that the condition of evaporation temperature + 2 ° C.> dew point temperature is not satisfied, the control unit 15 performs control to increase the rotational speed of the fan 23. In the control shown in FIG. 3, the control unit 15 performs control to increase the air volume of the fan 23 by one level (step S16).
 制御部15は、上述した一連の制御を行った後、ファン風量抑制制御の終了がユーザから入力されるか否かを判定し(ステップS17)、終了の指示が入力されない場合、再度、ステップS1に戻る。制御部15は、運転中の圧縮機11の運転周波数を監視し、ファン23の風量を上げるか下げるか、または現状維持するかの判定を繰り返す。この繰り返しは、圧縮機11の運転周波数の制御周期と同じ周期で行うのが望ましい。この繰り返しは、例えば、30秒間隔で行われるのが望ましい。ステップS17において、ファン風量抑制制御の終了がユーザから入力されると、制御部15は、ファン23の風量を100%に設定する(ステップS18)。 After performing the above-described series of controls, the control unit 15 determines whether or not the end of the fan airflow suppression control is input from the user (step S17). If the end instruction is not input, the control unit 15 again performs step S1. Return to. The control unit 15 monitors the operating frequency of the compressor 11 during operation, and repeats the determination of whether to increase or decrease the air volume of the fan 23 or to maintain the current state. This repetition is desirably performed in the same cycle as the operation frequency control cycle of the compressor 11. This repetition is preferably performed at intervals of 30 seconds, for example. In step S17, when the end of the fan air volume suppression control is input from the user, the control unit 15 sets the air volume of the fan 23 to 100% (step S18).
 図3に示すステップS6における判定条件(設定温度+1℃≦乾球温度)における+1℃は補正値である。ステップS6における判定条件は、この条件に限らず、空気調和装置1における冷凍サイクル制御において、サーモオフからサーモオンに変化する判定値を用いるのが望ましい。この場合、本実施の形態1のように、設定温度の補正値を、例えば、+1℃とするのがよい。サーモオフからサーモオンに変化するような条件とは、冷房能力が必要になる条件である。 + 1 ° C. in the determination condition (set temperature + 1 ° C. ≦ dry bulb temperature) in step S6 shown in FIG. 3 is a correction value. The determination condition in step S6 is not limited to this condition, and it is desirable to use a determination value that changes from thermo-off to thermo-on in the refrigeration cycle control in the air conditioner 1. In this case, as in the first embodiment, the set temperature correction value is preferably set to + 1 ° C., for example. The condition that changes from thermo-off to thermo-on is a condition that requires cooling capacity.
 また、図3に示すステップS10における判定条件(蒸発温度+2℃>露点温度)における+2℃は補正値である。データセンタ用途で用いられる空気調和システムでは、大型サイズの蒸発器が設けられている。ステップS10の判定条件における補正値は大型サイズの蒸発器でドレンが出るか否かの閾値の役目を果たし、その値は+2℃であることが望ましい。ただし、蒸発器のサイズによっては、ステップS10における判定条件に補正値を設けなくてもよい。 Further, + 2 ° C. in the determination condition (evaporation temperature + 2 ° C.> dew point temperature) in step S10 shown in FIG. 3 is a correction value. In an air conditioning system used for data center applications, a large-sized evaporator is provided. The correction value in the determination condition of step S10 serves as a threshold value for determining whether or not drainage is generated by a large-sized evaporator, and the value is preferably + 2 ° C. However, depending on the size of the evaporator, a correction value may not be provided for the determination condition in step S10.
 図3を参照して説明した制御方法を、まとめる。制御部15は空調対象空間の乾球温度が設定温度になるように圧縮機11の運転周波数を制御する。この制御では、顕熱処理と潜熱処理を含む全熱処理が行われる。乾球温度と設定温度との差が大きい場合、制御部15は、圧縮機11の運転周波数を最大値などの大きい値に設定する。乾球温度と設定温度との差が小さくなると、制御部15は、オーバーシュートしてしまうのを防ぐために、圧縮機11の運転周波数を下げる制御を行う。 The control method described with reference to FIG. 3 is summarized. The control unit 15 controls the operating frequency of the compressor 11 so that the dry bulb temperature of the air-conditioning target space becomes the set temperature. In this control, all heat treatment including sensible heat treatment and latent heat treatment is performed. When the difference between the dry bulb temperature and the set temperature is large, the control unit 15 sets the operating frequency of the compressor 11 to a large value such as a maximum value. When the difference between the dry bulb temperature and the set temperature becomes small, the control unit 15 performs control to lower the operating frequency of the compressor 11 in order to prevent overshooting.
 運転周波数が最大値より小さい値であって設定された値(例えば、75%)以下になると、乾球温度がほぼ設定温度と同じになり、潜熱処理は十分と考えられる。この状況下では、制御部15は、潜熱処理を抑え、顕熱処理を優先する高顕熱冷房を行う。ただし、制御部15は、顕熱処理が過剰にならないように、圧縮機11の運転周波数に対応して、ファン23の風量を制御する。ステップS10の判定において、蒸発温度に補正値(+2℃)を加味した温度が露点温度より高い場合、制御部15は、圧縮機11の運転周波数に応じてファン23の風量を制御する。運転周波数の大きさに応じて、ファンの風量を決定する。制御部15は、図4に示す表にしたがって、圧縮機11の運転周波数が小さいほど、ファン23の風量を下げる。 When the operating frequency is a value smaller than the maximum value and lower than a set value (for example, 75%), the dry bulb temperature becomes substantially the same as the set temperature, and the latent heat treatment is considered sufficient. Under this situation, the control unit 15 performs high sensible heat cooling that suppresses latent heat treatment and prioritizes sensible heat treatment. However, the control unit 15 controls the air volume of the fan 23 in accordance with the operation frequency of the compressor 11 so that the sensible heat treatment does not become excessive. If the temperature obtained by adding the correction value (+ 2 ° C.) to the evaporation temperature is higher than the dew point temperature in the determination in step S <b> 10, the control unit 15 controls the air volume of the fan 23 according to the operating frequency of the compressor 11. The fan air volume is determined according to the operating frequency. In accordance with the table shown in FIG. 4, the control unit 15 decreases the air volume of the fan 23 as the operating frequency of the compressor 11 decreases.
 一方、蒸発温度に補正値(+2℃)を加味した温度が露点温度以下である場合、制御部15は、ファン23の風量を上げ、蒸発温度を下げる。ステップS10の判定において、制御部15が蒸発温度に補正値を加味した温度と比較する露点温度は、仮想的に算出された値である。図3に示すループの処理が何回か繰り返された後、ステップS10において、蒸発温度+2℃=露点温度の関係、または蒸発温度+2℃<露点温度の関係になった場合、乾球温度がステップS6の関係を満たす範囲で上昇したことが考えられる。この場合、蒸発温度が下がると、空調対象空間に対する顕熱処理が促進される。ここで、制御部15がファン23の風量を上げる制御をせずに、圧縮機11の運転周波数を上げてしまうと、全熱処理が行われ、空調対象空間を過剰に冷却してしまうおそれがある。このようにして、空調対象空間への過剰な冷却効果を抑制することができる。 On the other hand, when the temperature obtained by adding the correction value (+ 2 ° C.) to the evaporation temperature is equal to or lower than the dew point temperature, the control unit 15 increases the air volume of the fan 23 and decreases the evaporation temperature. In the determination in step S10, the dew point temperature that the control unit 15 compares with the temperature obtained by adding the correction value to the evaporation temperature is a virtually calculated value. After the processing of the loop shown in FIG. 3 is repeated several times, if the relationship of evaporation temperature + 2 ° C. = dew point temperature or the relationship of evaporation temperature + 2 ° C. <dew point temperature is satisfied in step S10, the dry bulb temperature is stepped. It is conceivable that it has risen within a range that satisfies the relationship of S6. In this case, when the evaporation temperature is lowered, the sensible heat treatment for the air-conditioning target space is promoted. Here, if the control unit 15 does not control to increase the air volume of the fan 23 and increases the operating frequency of the compressor 11, the entire heat treatment may be performed and the air-conditioning target space may be excessively cooled. . In this way, an excessive cooling effect on the air-conditioning target space can be suppressed.
 なお、本実施の形態1では、負荷側ユニット20が1台の場合に熱源側ユニット10が1台の場合で説明したが、熱源側ユニット10が複数台であってもよい。複数の熱源側ユニット10が設けられた空気調和装置の場合、制御部15は、図3を参照して説明した運転周波数を、複数の圧縮機11の運転周波数を合計した合計運転周波数の平均値に置き換えて制御すればよい。例えば、空気調和装置が3台の熱源側ユニット10を有し、ステップS2において、3台の圧縮機11の運転周波数が最大値の95%、90%および85%である場合を考える。この場合、ステップS2において、制御部15は、これらの運転周波数の合計運転周波数の平均値90%と、設定された値75%とを比較すればよい。データセンタのように、大型サイズの蒸発器が設けられた負荷側ユニット20に複数の熱源側ユニット10が接続された空気調和装置にも、本実施の形態1で説明した制御方法を適用することができる。 In the first embodiment, the case where the number of the heat source side units 10 is one when the load side unit 20 is one is described. However, a plurality of the heat source side units 10 may be provided. In the case of an air conditioner provided with a plurality of heat source side units 10, the control unit 15 adds the operation frequency described with reference to FIG. 3 to the average value of the total operation frequency obtained by summing the operation frequencies of the plurality of compressors 11. It is sufficient to control by replacing with. For example, consider a case where the air conditioner has three heat source side units 10 and the operating frequencies of the three compressors 11 are 95%, 90%, and 85% of the maximum value in step S2. In this case, in step S2, the control unit 15 may compare the average value 90% of the total operating frequencies of these operating frequencies with the set value 75%. The control method described in the first embodiment is also applied to an air conditioner in which a plurality of heat source side units 10 are connected to a load side unit 20 provided with a large size evaporator, such as a data center. Can do.
 一方、本実施の形態1で説明した制御方法を、複数の負荷側ユニット20を有する空気調和装置に適用するのは難しい。負荷側ユニット20がマルチ(複数台)の場合、運転中の圧縮機11の総容量と、複数台の負荷側ユニット20のうち、ある1台の負荷側ユニット20が必要とする冷房能力とは必ずしも一致しないためである。例えば、運転中の総容量が50%としても、ある1台の負荷側ユニット20にとっては100%の冷房能力を必要としている場合、高顕熱冷房を維持するためにはファンの回転数を落とすべきではない。 On the other hand, it is difficult to apply the control method described in the first embodiment to an air conditioner having a plurality of load-side units 20. When the load side unit 20 is multi (multiple units), the total capacity of the compressor 11 in operation and the cooling capacity required by one load side unit 20 out of the plurality of load side units 20 are: This is because they do not necessarily match. For example, even if the total capacity during operation is 50%, if one unit on the load side 20 requires 100% cooling capacity, the fan speed should be reduced to maintain high sensible cooling. is not.
 本実施の形態1の空気調和装置1は、圧縮機11、凝縮器12、膨張装置21および蒸発器22が冷媒配管で順に接続された冷媒回路30と、空調対象空間から吸い込んだ空気を蒸発器に供給するファン23と、空調対象空間の空気の乾球温度を測定する乾球温度センサ25と、蒸発器22における蒸発温度を測定する蒸発温度センサ24と、乾球温度が設定温度になるように圧縮機11の運転周波数およびファン23の風量を制御する制御部15とを有し、制御部15は、圧縮機11の運転周波数が設定値以下であり、かつ蒸発温度が露点温度より高い場合、ファン23の風量を圧縮機11の運転周波数の大きさに応じて制御するものである。 The air conditioner 1 according to the first embodiment includes a refrigerant circuit 30 in which a compressor 11, a condenser 12, an expansion device 21, and an evaporator 22 are connected in order through a refrigerant pipe, and an air sucked from an air-conditioning target space. The fan 23 supplied to the air, the dry bulb temperature sensor 25 for measuring the dry bulb temperature of the air in the air-conditioning target space, the evaporation temperature sensor 24 for measuring the evaporation temperature in the evaporator 22, and the dry bulb temperature to be the set temperature. The control unit 15 controls the operation frequency of the compressor 11 and the air volume of the fan 23, and the control unit 15 has a case where the operation frequency of the compressor 11 is equal to or lower than a set value and the evaporation temperature is higher than the dew point temperature. The air volume of the fan 23 is controlled according to the operating frequency of the compressor 11.
 本実施の形態1によれば、制御部15は、空調対象空間の乾球温度に対応して運転する圧縮機11の運転周波数を基に冷房能力を下げることの可否を判定し、蒸発温度が露点温度より高い状態を維持しつつ圧縮機11の運転周波数に応じてファン23の風量を制御している。この場合、冷房能力が不足して圧縮機の出力増加またはファン風量の再度の増加を行うことを抑制できる。そのため、蒸発器22での結露発生を防止するとともに、ファン23の消費エネルギーを抑制し、省エネルギー化を図ることができる。 According to the first embodiment, the control unit 15 determines whether or not the cooling capacity can be lowered based on the operation frequency of the compressor 11 that operates corresponding to the dry bulb temperature of the air-conditioning target space, and the evaporation temperature is The air volume of the fan 23 is controlled according to the operating frequency of the compressor 11 while maintaining a state higher than the dew point temperature. In this case, it can be suppressed that the cooling capacity is insufficient and the output of the compressor is increased or the fan air volume is increased again. Therefore, it is possible to prevent the occurrence of dew condensation in the evaporator 22 and suppress the energy consumption of the fan 23 to save energy.
 また、従来技術では、データセンタ用途の空気調和装置は温度管理が厳しいため、冷房能力が不足している場合は直ぐに冷房能力が出る状態、つまり蒸発器側のファン風量が100%に戻れない。これに対して、本実施の形態1の空気調和装置1では、制御部15は、ファン23の風量抑制制御を行う前提として、圧縮機11の運転周波数と空調対象空間における乾球温度とを基に、冷房能力が十分であるか否か、ファン23の風量抑制制御を行ってよいか否かを判断している。その結果、制御部15は、冷房能力が不十分と判断した場合、圧縮機11の運転周波数を維持し、ファン23の風量抑制制御に移行しない。そのため、データセンタのように温度管理が厳しい空調対象空間においても、本実施の形態1の空気調和装置1は、冷房能力が必要な場合に速やかに冷房能力を発揮することができる。 In the conventional technology, since the air conditioner for data center use is strictly controlled in temperature, if the cooling capacity is insufficient, the cooling capacity can be obtained immediately, that is, the fan air volume on the evaporator side cannot return to 100%. On the other hand, in the air conditioning apparatus 1 of the first embodiment, the control unit 15 is based on the operating frequency of the compressor 11 and the dry bulb temperature in the air-conditioning target space as a premise for performing the air volume suppression control of the fan 23. In addition, it is determined whether or not the cooling capacity is sufficient and whether or not the air volume suppression control of the fan 23 may be performed. As a result, when it is determined that the cooling capacity is insufficient, the control unit 15 maintains the operation frequency of the compressor 11 and does not shift to the air volume suppression control of the fan 23. Therefore, even in an air-conditioning target space where the temperature management is strict such as a data center, the air-conditioning apparatus 1 according to the first embodiment can quickly exhibit the cooling capability when the cooling capability is required.
 また、本実施の形態1では、制御部15は、圧縮機11の運転周波数が小さくなるとファン23の風量の下限値が小さくなるように、運転周波数の範囲とファン23の風量の下限値とが対応づけられて複数の段階に設定された表を保持している。そして、制御部15は、複数の段階のうち、運転中の圧縮機の運転周波数が属する範囲の段階に設定された、ファン23の風量の下限値を用いて、ファン23の風量を制御する。この場合、圧縮機11の運転周波数が小さくなると、ファン23の風量は小さくなるように制御される。そのため、冷房能力が過剰になることを抑制できるとともに、ファン23の消費エネルギーを抑制できる。 Further, in the first embodiment, the control unit 15 determines the range of the operating frequency and the lower limit value of the air volume of the fan 23 so that the lower limit value of the air volume of the fan 23 decreases as the operating frequency of the compressor 11 decreases. It holds tables that are associated and set in multiple stages. And the control part 15 controls the air volume of the fan 23 using the lower limit value of the air volume of the fan 23 set to the stage of the range to which the operating frequency of the compressor under operation belongs among a plurality of stages. In this case, when the operating frequency of the compressor 11 decreases, the air volume of the fan 23 is controlled to decrease. For this reason, it is possible to suppress the cooling capacity from becoming excessive and to reduce the energy consumption of the fan 23.
 また、本実施の形態1では、制御部15は、運転中の圧縮機11の運転周波数が変化すると、変化の前後で運転周波数の属する範囲が変化したか否かを判定し、変化の前後で運転周波数の属する範囲が変化しない場合、ファン23の風量の制御に用いる段階を変化しない。圧縮機11の運転周波数の変化が図4に示した表に設定された範囲内であれば、制御部15は、ファン23の風量の下限値を変更しない。その結果、ファン23の風量の範囲が頻繁に変更されることが抑制され、温度が上下に振幅するハンチング現象が起こることを防止できる。 In the first embodiment, when the operating frequency of the operating compressor 11 changes, the control unit 15 determines whether or not the range to which the operating frequency belongs before and after the change, and before and after the change. If the range to which the operating frequency belongs does not change, the stage used for controlling the air volume of the fan 23 does not change. If the change in the operating frequency of the compressor 11 is within the range set in the table shown in FIG. 4, the control unit 15 does not change the lower limit value of the air volume of the fan 23. As a result, the air volume range of the fan 23 is prevented from being frequently changed, and a hunting phenomenon in which the temperature swings up and down can be prevented.
 さらに、本実施の形態1において、圧縮機11および凝縮器12を含む熱源側ユニット10が複数設けられ、制御部15は、複数の圧縮機11の運転周波数の合計の平均値を、1台の圧縮機11の場合の運転周波数として、ファン23の風量の制御を行ってもよい。データセンタのように、大型サイズの蒸発器が設けられた負荷側ユニット20に複数の熱源側ユニット10が接続された空気調和装置で省エネルギー化を図ることができるだけでなく、空調対象空間の温度のハンチング現象を抑制できる。 Furthermore, in this Embodiment 1, the heat source side unit 10 containing the compressor 11 and the condenser 12 is provided with two or more, and the control part 15 sets the average value of the sum total of the operating frequency of the several compressor 11 to one unit | set. As the operating frequency in the case of the compressor 11, the air volume of the fan 23 may be controlled. As in a data center, not only energy saving can be achieved with an air conditioner in which a plurality of heat source side units 10 are connected to a load side unit 20 provided with a large-sized evaporator, but also the temperature of the air-conditioning target space can be reduced. Hunting phenomenon can be suppressed.
実施の形態2.
 実施の形態1では、圧縮機11の容量とファン23の風量下限値とが対応づけられた複数の段階が3段階の場合を説明した。本実施の形態2は、その段階が実施の形態1に比べて、1段階増えたものである。
Embodiment 2. FIG.
In the first embodiment, a case has been described in which the plurality of stages in which the capacity of the compressor 11 and the air volume lower limit value of the fan 23 are associated with each other are three stages. In the second embodiment, the stage is increased by one stage compared to the first embodiment.
 本実施の形態2の空気調和装置の構成を、図1を参照して説明する。本実施の形態2では、実施の形態1と同様な構成についての詳細な説明を省略する。 The configuration of the air conditioner of the second embodiment will be described with reference to FIG. In the second embodiment, detailed description of the same configuration as that of the first embodiment is omitted.
 制御部15は、初期段階として、図4に示した表をメモリ151に保持している。制御部15は、圧縮機11の運転周波数とファン23の風量下限値との対応づけの段階数を変更する指示が入力されると、その段階の間隔を指示にしたがって変更する。例えば、制御部15は、段階数を増やす指示が入力されると、段階数を実施の形態1で説明した3段階から4段階に変更し、メモリ151が記憶する表を更新する。 The control unit 15 holds the table shown in FIG. 4 in the memory 151 as an initial stage. When an instruction to change the number of steps for associating the operation frequency of the compressor 11 with the air volume lower limit value of the fan 23 is input, the control unit 15 changes the interval between the steps according to the instruction. For example, when an instruction to increase the number of steps is input, the control unit 15 changes the number of steps from the three steps described in the first embodiment to four steps, and updates the table stored in the memory 151.
 次に、本実施の形態2の空気調和装置が実行する制御の手順を説明する。図5は、本発明の実施の形態2の空気調和装置が実行する制御方法を示すフローチャートである。図6は、図5に示す制御手順において、圧縮機の容量に対応する蒸発器側のファンの風量の下限値との対応関係を示す表である。実施の形態1と同様に、図6に示す容量x%は運転周波数の最大値に対する運転中の運転周波数の割合を意味し、図6に示す風量下限値%はファン23の回転数の最大値に対する回転数の下限値の割合を意味する。 Next, a control procedure executed by the air conditioner according to the second embodiment will be described. FIG. 5 is a flowchart showing a control method executed by the air-conditioning apparatus according to Embodiment 2 of the present invention. FIG. 6 is a table showing a correspondence relationship with the lower limit value of the air flow rate of the evaporator-side fan corresponding to the capacity of the compressor in the control procedure shown in FIG. As in the first embodiment, the capacity x% shown in FIG. 6 means the ratio of the operating frequency during operation to the maximum value of the operating frequency, and the air volume lower limit value% shown in FIG. 6 is the maximum value of the rotational speed of the fan 23. The ratio of the lower limit value of the rotation speed with respect to.
 図5に示すフローチャートと図3に示したフローチャートとを比較すると、ステップS2の判定基準値が異なる。また、図5では、ファン23の風量制御の段階が4段階であり、ステップS101~S103が追加されている。本実施の形態2では、図3を参照して説明した処理と異なる処理を詳細に説明し、図3を参照して説明した処理と同様な処理についての詳細な説明を省略する。 If the flowchart shown in FIG. 5 is compared with the flowchart shown in FIG. 3, the determination reference value in step S2 is different. Further, in FIG. 5, there are four stages of air volume control of the fan 23, and steps S101 to S103 are added. In the second embodiment, processing different from the processing described with reference to FIG. 3 will be described in detail, and detailed description of processing similar to the processing described with reference to FIG. 3 will be omitted.
 図5に示すステップS2において、制御部15は、運転中の圧縮機11の運転周波数が設定値を超えているか否かを判定する(ステップS2)。本実施の形態1では、設定値は最大値の88%である。判定の結果、圧縮機11の運転周波数が88%を超えている場合、ステップS3の処理に進む。一方、ステップS2の判定の結果、圧縮機11の運転周波数が最大値の88%以下である場合、制御部15は、ステップS4の処理に進む。 In step S2 shown in FIG. 5, the control unit 15 determines whether or not the operating frequency of the compressor 11 during operation exceeds a set value (step S2). In the first embodiment, the set value is 88% of the maximum value. As a result of the determination, when the operating frequency of the compressor 11 exceeds 88%, the process proceeds to step S3. On the other hand, when the operation frequency of the compressor 11 is 88% or less of the maximum value as a result of the determination in step S2, the control unit 15 proceeds to the process in step S4.
 ステップS10において、制御部15は、蒸発温度+2℃>露点温度の関係にあるか否かを判定する。ステップS10の判定において、蒸発温度+2℃>露点温度の関係にある場合、制御部15は、圧縮機11の運転周波数が最大値の75%を超えるか否かを判定する(ステップS101)。運転周波数が最大値の75%以下の場合、制御部15は、ステップS11の処理に進む。 In step S10, the control unit 15 determines whether or not the relationship of evaporation temperature + 2 ° C.> dew point temperature exists. If it is determined in step S10 that evaporation temperature + 2 ° C.> dew point temperature, the control unit 15 determines whether the operating frequency of the compressor 11 exceeds 75% of the maximum value (step S101). When the operating frequency is 75% or less of the maximum value, the control unit 15 proceeds to the process of step S11.
 ステップS101の判定の結果、運転周波数が最大値の75%を超える場合、制御部15は、ファン23の風量が最大値の85%よりも大きいか否かを判定する(ステップS102)。ファン23の風量が最大値の85%よりも大きい場合、制御部15は、風量の段階を1段階下げ(ステップS103)、ファン23の風量が最大値の85%以下の場合、風量の段階を維持する。運転中の運転周波数が最大値の88%以下である場合、ファン23の風量が最大値の69%以上であれば、高顕熱冷房を行うことができる風量である。 If the operation frequency exceeds 75% of the maximum value as a result of the determination in step S101, the control unit 15 determines whether or not the air volume of the fan 23 is larger than 85% of the maximum value (step S102). When the air volume of the fan 23 is larger than 85% of the maximum value, the control unit 15 lowers the air volume level by one level (step S103), and when the air volume of the fan 23 is 85% or less of the maximum value, the air volume level is decreased. maintain. When the operating frequency during operation is 88% or less of the maximum value, if the air volume of the fan 23 is 69% or more of the maximum value, the air volume can be high sensible heat cooling.
 本実施の形態2の空気調和装置1は、圧縮機11の運転周波数とファン23の風量の下限値とが対応づけられて複数の段階に設定された表を保持し、段階の数を変更する指示が入力されると、指示にしたがって段階の数を変更し、保持する表を更新する。 The air conditioner 1 according to the second embodiment maintains a table in which the operation frequency of the compressor 11 and the lower limit value of the air volume of the fan 23 are associated with each other, and changes the number of stages. When an instruction is input, the number of steps is changed in accordance with the instruction, and the held table is updated.
 本実施の形態2によれば、ユーザが段階数を変更することで、圧縮機11の運転周波数とファン23の風量下限値との対応づけの段階の間隔を細かく設定することができる。本実施の形態2で説明した制御方法を、複数の熱源側ユニット10を有する空気調和装置に適用してもよい。 According to the second embodiment, when the user changes the number of stages, the interval between the steps of associating the operation frequency of the compressor 11 and the air volume lower limit value of the fan 23 can be set finely. The control method described in the second embodiment may be applied to an air conditioner having a plurality of heat source side units 10.
 1 空気調和装置、10 熱源側ユニット、11 圧縮機、12 凝縮器、15 制御部、20 負荷側ユニット、21 膨張装置、22 蒸発器、23 ファン、24 蒸発温度センサ、25 乾球温度センサ、30 冷媒回路、151 メモリ、152 CPU。 1 air conditioner, 10 heat source side unit, 11 compressor, 12 condenser, 15 control unit, 20 load side unit, 21 expansion device, 22 evaporator, 23 fan, 24 evaporation temperature sensor, 25 dry bulb temperature sensor, 30 Refrigerant circuit, 151 memory, 152 CPU.

Claims (5)

  1.  圧縮機、凝縮器、膨張装置および蒸発器が冷媒配管で順に接続された冷媒回路と、
     空調対象空間から吸い込んだ空気を前記蒸発器に供給するファンと、
     前記空調対象空間の空気の乾球温度を測定する乾球温度センサと、
     前記蒸発器における蒸発温度を測定する蒸発温度センサと、
     前記乾球温度が設定温度になるように、前記圧縮機の運転周波数および前記ファンの風量を制御する制御部と、
    を有し、
     前記制御部は、
     前記運転周波数が設定値以下であり、かつ前記蒸発温度が露点温度より高い場合、前記ファンの風量を該運転周波数の大きさに応じて制御する、
     空気調和装置。
    A refrigerant circuit in which a compressor, a condenser, an expansion device, and an evaporator are sequentially connected by refrigerant piping;
    A fan that supplies air sucked from the air-conditioned space to the evaporator;
    A dry bulb temperature sensor for measuring the dry bulb temperature of the air in the air-conditioned space;
    An evaporation temperature sensor for measuring the evaporation temperature in the evaporator;
    A control unit for controlling the operating frequency of the compressor and the air volume of the fan so that the dry bulb temperature becomes a set temperature;
    Have
    The controller is
    When the operating frequency is equal to or lower than a set value and the evaporation temperature is higher than the dew point temperature, the air volume of the fan is controlled according to the size of the operating frequency.
    Air conditioner.
  2.  前記制御部は、
     前記運転周波数が小さくなると前記風量の下限値が小さくなるように、前記運転周波数の範囲と前記風量の下限値とが対応づけられて複数の段階に設定された表を保持し、
     前記複数の段階のうち、運転中の前記圧縮機の運転周波数が属する前記範囲の段階に設定された前記風量の下限値を用いて前記ファンの風量を制御する、請求項1に記載の空気調和装置。
    The controller is
    Maintaining a table set in a plurality of stages by associating the range of the operating frequency with the lower limit value of the air volume so that the lower limit value of the air volume becomes smaller when the operating frequency becomes smaller,
    2. The air conditioner according to claim 1, wherein the air volume of the fan is controlled using a lower limit value of the air volume set in a stage of the range to which an operating frequency of the compressor in operation belongs among the plurality of stages. apparatus.
  3.  前記制御部は、
     運転中の前記圧縮機の前記運転周波数が変化すると、変化の前後で該運転周波数の属する前記範囲が変化したか否かを判定し、変化の前後で該運転周波数の属する前記範囲が変化しない場合、前記ファンの風量の制御に用いる前記段階を変化しない、請求項2に記載の空気調和装置。
    The controller is
    When the operating frequency of the compressor being operated changes, it is determined whether or not the range to which the operating frequency belongs before and after the change, and the range to which the operating frequency does not change before and after the change The air conditioning apparatus according to claim 2, wherein the stage used for controlling the air volume of the fan is not changed.
  4.  前記制御部は、
     前記段階の数を変更する指示が入力されると、該指示にしたがって前記段階の数を変更し、前記表を更新する、請求項2または3に記載の空気調和装置。
    The controller is
    The air conditioner according to claim 2 or 3, wherein when an instruction to change the number of stages is input, the number of stages is changed according to the instruction and the table is updated.
  5.  前記圧縮機および前記凝縮器を含む熱源側ユニットが複数設けられ、
     前記制御部は、
     複数の前記圧縮機の運転周波数の合計の平均値を、前記運転周波数として、前記ファンの風量の制御を行う、請求項1~4のいずれか1項に記載の空気調和装置。
    A plurality of heat source side units including the compressor and the condenser are provided,
    The controller is
    The air conditioner according to any one of claims 1 to 4, wherein the air volume of the fan is controlled using an average value of a total of operating frequencies of the plurality of compressors as the operating frequency.
PCT/JP2017/018463 2017-05-17 2017-05-17 Air conditioning device WO2018211612A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018463 WO2018211612A1 (en) 2017-05-17 2017-05-17 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018463 WO2018211612A1 (en) 2017-05-17 2017-05-17 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2018211612A1 true WO2018211612A1 (en) 2018-11-22

Family

ID=64274063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018463 WO2018211612A1 (en) 2017-05-17 2017-05-17 Air conditioning device

Country Status (1)

Country Link
WO (1) WO2018211612A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932365A (en) * 2021-10-21 2022-01-14 合肥天鹅制冷科技有限公司 Eight-zone step type environment control system with double heat exchangers and control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307705A (en) * 1993-04-20 1994-11-01 Toshiba Corp Humidity control method for air conditioner
JPH08285353A (en) * 1995-04-07 1996-11-01 Toshiba Corp Air conditioner
JPH1096545A (en) * 1996-09-24 1998-04-14 N T T Facilities:Kk Air conditioner and control method thereof
JP2002333186A (en) * 1993-06-01 2002-11-22 Hitachi Ltd Air conditioner
JP2007040583A (en) * 2005-08-02 2007-02-15 Ntt Facilities Inc Dehumidification control method of air conditioning system
JP2015001359A (en) * 2013-06-18 2015-01-05 株式会社Nttファシリティーズ Non-humidification control method of air conditioning system
JP2015031419A (en) * 2013-07-31 2015-02-16 三菱電機株式会社 Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307705A (en) * 1993-04-20 1994-11-01 Toshiba Corp Humidity control method for air conditioner
JP2002333186A (en) * 1993-06-01 2002-11-22 Hitachi Ltd Air conditioner
JPH08285353A (en) * 1995-04-07 1996-11-01 Toshiba Corp Air conditioner
JPH1096545A (en) * 1996-09-24 1998-04-14 N T T Facilities:Kk Air conditioner and control method thereof
JP2007040583A (en) * 2005-08-02 2007-02-15 Ntt Facilities Inc Dehumidification control method of air conditioning system
JP2015001359A (en) * 2013-06-18 2015-01-05 株式会社Nttファシリティーズ Non-humidification control method of air conditioning system
JP2015031419A (en) * 2013-07-31 2015-02-16 三菱電機株式会社 Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932365A (en) * 2021-10-21 2022-01-14 合肥天鹅制冷科技有限公司 Eight-zone step type environment control system with double heat exchangers and control method thereof
CN113932365B (en) * 2021-10-21 2023-01-06 合肥天鹅制冷科技有限公司 Eight-zone step type environment control system with double heat exchangers and control method thereof

Similar Documents

Publication Publication Date Title
US11262092B2 (en) Air conditioning system including a ventilator that supplies humidified outdoor air
US8538587B2 (en) HVAC system with automated blower capacity dehumidification, a HVAC controller therefor and a method of operation thereof
WO2019153887A1 (en) Control method and device for air conditioning system and air conditioning system
KR101171583B1 (en) Air conditioning control method and air conditioning control apparatus
JP5996107B2 (en) Air conditioning system
US11879658B2 (en) Air-conditioning ventilation system
WO2015037434A1 (en) Air-conditioning apparatus
US11306928B2 (en) Method and apparatus for re-heat circuit operation
JP2019168194A (en) Outside air treatment unit
WO2018164253A1 (en) Air-conditioning device
JPH10259944A (en) Air conditioning system
WO2018211612A1 (en) Air conditioning device
WO2023138059A1 (en) Anti-condensation control method and control system for air conditioner, electronic device and storage medium
WO2020003490A1 (en) Air conditioning device
JP2021004702A (en) Outside air treatment device and air conditioning system
US11788739B2 (en) Method and apparatus for hybrid dehumidification
KR102558826B1 (en) Air conditioner system and control method
CN114930092A (en) Air conditioning system control device, air conditioning system control method, and program
JP2019011950A (en) Air conditioner
JP6239100B2 (en) Air conditioning system
JP2023019957A (en) air conditioner
JPH0694285A (en) Air conditioner
JP2015218986A (en) Air conditioner
CN116294094A (en) Method for dry-wet separation operation of terminal air conditioner and one-to-multiple air conditioning system
CN115419937A (en) Floor heating control method and device and floor heating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP