JP5473291B2 - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP5473291B2
JP5473291B2 JP2008266689A JP2008266689A JP5473291B2 JP 5473291 B2 JP5473291 B2 JP 5473291B2 JP 2008266689 A JP2008266689 A JP 2008266689A JP 2008266689 A JP2008266689 A JP 2008266689A JP 5473291 B2 JP5473291 B2 JP 5473291B2
Authority
JP
Japan
Prior art keywords
voltage
transfer
secondary transfer
bias
static elimination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008266689A
Other languages
Japanese (ja)
Other versions
JP2010096921A (en
Inventor
斎藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008266689A priority Critical patent/JP5473291B2/en
Publication of JP2010096921A publication Critical patent/JP2010096921A/en
Application granted granted Critical
Publication of JP5473291B2 publication Critical patent/JP5473291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

本発明は、転写部の下流に記録材の分離性を高めるための除電手段を配置した画像形成装置、詳しくは、画像形成に先立たせて画像形成時の転写条件を設定する際の除電手段の制御に関する。   The present invention relates to an image forming apparatus in which a charge eliminating unit for improving the separation of a recording material is disposed downstream of a transfer unit, and more specifically, a charge eliminating unit for setting transfer conditions during image formation prior to image formation. Regarding control.

像担持体(感光体又は中間転写体)に担持されたトナー像に重ね合わせて転写部に記録材を通過させることにより、トナー像を記録材に転写する画像形成装置が広く用いられている。   2. Description of the Related Art Image forming apparatuses that transfer a toner image onto a recording material by superimposing the toner image carried on an image carrier (photosensitive body or intermediate transfer body) and passing the recording material through a transfer unit are widely used.

このような画像形成装置では、転写部を通過する過程で記録材へ過剰に注入された電荷を除電して、転写部の下流における像担持体からの曲率分離性能を高めるために、転写部の下流に除電手段が配置される場合がある。   In such an image forming apparatus, in order to increase the curvature separation performance from the image carrier downstream of the transfer unit by eliminating the charge excessively injected into the recording material in the process of passing through the transfer unit, There are cases in which a static elimination means is disposed downstream.

例えば、特許文献1には、転写ローラを用いた転写部の下流にコロナ放電器を用いた除電手段を配置して、転写部を出た直後の記録材に、コロナ放電で発生させた荷電粒子を照射する画像形成装置が示される。   For example, Patent Document 1 discloses a charged particle generated by corona discharge on a recording material immediately after exiting a transfer portion by disposing a charge eliminating unit using a corona discharger downstream of a transfer portion using a transfer roller. An image forming apparatus that irradiates is shown.

一方、転写部に定電圧を印加して記録材にトナー像を転写する画像形成装置では、画像形成に先立たせて転写部に電圧を印加して転写部に流れる電流を測定し、画像形成時の転写部で用いる電圧条件を設定する場合がある。   On the other hand, in an image forming apparatus that applies a constant voltage to a transfer portion and transfers a toner image onto a recording material, prior to image formation, a voltage is applied to the transfer portion to measure the current flowing through the transfer portion, In some cases, the voltage condition used in the transfer portion is set.

例えば、特許文献2には、ATVC制御(Active Transfer Voltage Control)が示される。ここでは、記録材が通過していない転写部に、トナー像の転写に必要な電流値に対応させた定電流を印加して出力電圧値が測定され、測定結果に基いて、画像形成時の転写ローラに印加する定電圧が設定される。   For example, Patent Document 2 discloses ATVC control (Active Transfer Voltage Control). Here, a constant current corresponding to the current value necessary for the transfer of the toner image is applied to the transfer portion through which the recording material does not pass, and the output voltage value is measured. Based on the measurement result, the output voltage value is measured. A constant voltage applied to the transfer roller is set.

例えば、特許文献3には、PTVC制御(Programable Transfer Voltage Control)が示される。ここでは、記録材が通過していない転写部に、複数段階の定電圧が印加されてそれぞれの段階で転写部材に流れる電流値が測定される。そして、複数段階の電圧−電流データからトナー像の転写に必要な電流値に相当する出力電圧を補間演算し、その演算結果に基いて画像形成時に用いる定電圧が設定される。 For example, Patent Document 3 discloses PTVC control (Programmable Transfer Voltage Control). Here, a plurality of stages of constant voltages are applied to the transfer portion through which the recording material has not passed, and the current value flowing through the transfer member is measured at each stage. An output voltage corresponding to a current value necessary for transferring the toner image is interpolated from a plurality of levels of voltage-current data, and a constant voltage used for image formation is set based on the calculation result.

特開2002−372874号公報JP 2002-372874 A 特開平2−123385号公報JP-A-2-123385 特開平5−181373号公報JP-A-5-181373

しかし、特許文献1に示される構成において、特許文献2、3に示される制御を用いて画像形成時の転写部で用いる電圧条件を設定すると、適正な電圧条件を設定できない場合があることが判明した。   However, in the configuration shown in Patent Document 1, it has been found that if the voltage condition used in the transfer portion at the time of image formation is set using the control shown in Patent Documents 2 and 3, an appropriate voltage condition may not be set. did.

すなわち、特許文献1に示される構成では、除電部材が転写部材にかなり近接して設置され、除電部材には、転写部材に印加される電圧に対して大きな電位差を持った電圧(逆極性)が印加されている。 In other words, in the configuration shown in Patent Document 1, the static elimination member is installed quite close to the transfer member , and the static elimination member has a voltage (reverse polarity) having a large potential difference with respect to the voltage applied to the transfer member. Applied.

このため、画像形成時には、除電部材で発生した荷電粒子の一部が転写部材へ流れ込んで漏れ電流となり、本来なら転写部に流れてトナー像の転写に関与すべき電流の一部が損なわれしまう。 Therefore, at the time of image formation becomes a leakage current flows some of the charged particles generated by the charge removing member to the transfer member, and a portion of the current to be involved in the transfer of the toner image flows to the transfer unit would otherwise be impaired End up.

特に、像担持体や転写部材の抵抗値が増大する部品寿命末期には、増大した抵抗値に合わせて画像形成時の転写部材に印加される電圧も高まるため、除電部材と転写部材との電位差が大きくなって漏れ電流が著しく増大する。 In particular, the component life end of the resistance value of the image bearing member and the transfer member is increased, because also increases the voltage applied to the transfer member during image formation in accordance with the increased resistance, the potential difference between the charge removing member and the transfer member Increases and leakage current increases remarkably.

このため、除電部材に除電電圧を印加しない状態で、転写部材に電圧を印加して画像形成時の転写部材に印加する電圧を設定した場合、電圧が過小に設定される可能性がある。特に、部品寿命末期に至って転写部に設定される電圧レベルが高くなると、漏れ電流が急増する結果、転写部を実際に流れてトナー像の転写に関与すべき電流が不足して、転写不良を引き起す可能性がある。 For this reason, when a voltage is applied to the transfer member and a voltage to be applied to the transfer member at the time of image formation is set without applying a neutralization voltage to the charge removal member , the voltage may be set too low. In particular, when the voltage level set at the transfer section becomes high at the end of the component life, the leakage current increases rapidly, resulting in a shortage of current that should actually flow through the transfer section and participate in the transfer of the toner image. May cause.

本発明は、画像形成時に除電部材に電圧が印加されても、設定された転写電圧により生ずる転写不良を低減することができる画像形成装置を提供することを目的としている。 An object of the present invention is to provide an image forming apparatus capable of reducing transfer defects caused by a set transfer voltage even when a voltage is applied to a charge removal member during image formation.

本発明の画像形成装置は、像担持体と、前記像担持体にトナー像を形成するトナー像形成手段と、前記像担持体に形成されたトナー像を転写材に転写する転写部材と、転写材の移動方向において前記転写部材よりも下流側に配置され、転写材を除電するための除電部材と、前記転写部材に印加する電圧を出力する転写電源と、前記除電部材に印加する電圧を出力する除電電源と、前記転写部材にテスト電圧を印加して、画像形成時の前記転写部材に印加する転写電圧を設定する設定部と、使用される転写材の坪量を判断する判断手段と、を有し、前記設定部は、使用される転写材の坪量が所定値以下の薄紙の場合には、前記除電電源が前記除電部材に電圧を印加した状態で前記転写部材にテスト電圧を印加して前記転写電圧の設定を行使用される転写材の坪量が前記所定値より大きい場合には、前記除電電源が前記除電部材に電圧を印加しない状態で前記転写電圧の設定を行うものである。 The image forming apparatus of the present invention includes an image bearing member, a toner image forming means for forming a toner image on said image bearing member, a transcription member you transferred to the transfer material a toner image formed on said image bearing member rolling than the transfer member in the direction of movement of Utsushizai positioned downstream, rolling and discharging member for neutralizing the Utsushizai, a transfer power supply for outputting a voltage to be applied to the transfer member, applied to the charge removing member A neutralizing power source that outputs a voltage to be applied, a test voltage is applied to the transfer member, a setting unit that sets a transfer voltage to be applied to the transfer member during image formation, and a basis weight of a transfer material to be used is determined a judgment means, wherein the setting unit, when the basis weight of the transfer material used is a predetermined value or less of the thin paper, before Symbol transfer member in a state where the neutralization power is applied a voltage to the charge removing member applying a test voltage set preferences of the transfer voltage, the use If the basis weight of the transfer material is greater than the predetermined value is the one in which the charge removing power to set the transfer voltage in a state where no voltage is applied to the charge removing member.

本発明により、画像形成時に除電部材に電圧が印加されても、設定された転写電圧により生ずる転写不良を低減することができる。 According to the present invention, even if a voltage is applied to the charge removal member during image formation, transfer defects caused by the set transfer voltage can be reduced.

以下、本発明のいくつかの実施形態を、図面を参照して詳細に説明する。本発明は、転写手段に印加される電圧に応じた電圧が除電手段に印加される限りにおいて、実施形態の構成の一部または全部を、その代替的な構成で置き換えた別の実施形態でも実施できる。   Hereinafter, some embodiments of the present invention will be described in detail with reference to the drawings. The present invention is also implemented in another embodiment in which a part or all of the configuration of the embodiment is replaced with the alternative configuration as long as a voltage corresponding to the voltage applied to the transfer unit is applied to the static elimination unit. it can.

本実施形態では、トナー像の形成/転写に係る主要部のみを説明するが、本発明は、必要な機器、装備、筐体構造を加えて、プリンタ、各種印刷機、複写機、FAX、複合機等、種々の用途で実施できる。   In the present embodiment, only main parts related to toner image formation / transfer will be described. However, the present invention includes a printer, various printing machines, a copier, a fax machine, a composite machine, in addition to necessary equipment, equipment, and a housing structure. It can be implemented in various applications such as a machine.

<画像形成部>
図1は第1実施形態の画像形成装置の構成の説明図、図2は画像形成部の構成の説明図である。
<Image forming unit>
FIG. 1 is an explanatory diagram of the configuration of the image forming apparatus according to the first embodiment, and FIG. 2 is an explanatory diagram of the configuration of the image forming unit.

図1に示すように、第1実施形態の画像形成装置100は、電子写真方式を用いて記録材(記録用紙、OHPシート、布等)にフルカラー画像を形成するレーザビームプリンタである。画像形成装置100は、中間転写ベルト51に沿って、イエロー、マゼンタ、シアン、ブラックのトナー像形成手段である画像形成部Pa、Pb、Pc、Pdを配置した中間転写方式タンデム型である。   As shown in FIG. 1, an image forming apparatus 100 according to the first embodiment is a laser beam printer that forms a full-color image on a recording material (recording paper, OHP sheet, cloth, etc.) using an electrophotographic method. The image forming apparatus 100 is an intermediate transfer type tandem type in which image forming portions Pa, Pb, Pc, and Pd, which are yellow, magenta, cyan, and black toner image forming units, are arranged along an intermediate transfer belt 51.

画像形成部Paでは、感光ドラム1aにイエロートナー像が形成されて中間転写ベルト51に一次転写される。画像形成部Pbでは、感光ドラム1bにマゼンタトナー像が形成されて中間転写ベルト51のイエロートナー像に重ねて一次転写される。画像形成部Pc、Pdでは、それぞれ感光ドラム1c、1dにシアントナー像、ブラックトナー像が形成されて同様に中間転写ベルト51のトナー像に位置を重ねて順次一次転写される。なお、本実施例では、感光ドラムや中間転写ベルトはトナー像を担持する像担持体としての役割を有するものである。   In the image forming portion Pa, a yellow toner image is formed on the photosensitive drum 1 a and is primarily transferred to the intermediate transfer belt 51. In the image forming portion Pb, a magenta toner image is formed on the photosensitive drum 1 b and is primarily transferred to the yellow toner image on the intermediate transfer belt 51. In the image forming portions Pc and Pd, a cyan toner image and a black toner image are formed on the photosensitive drums 1c and 1d, respectively, and similarly, the toner images on the intermediate transfer belt 51 are sequentially superimposed and sequentially transferred. In this embodiment, the photosensitive drum and the intermediate transfer belt have a role as an image carrier that carries a toner image.

中間転写ベルト51に一次転写された四色のトナー像は、二次転写部N2へ給送された記録材Pへ一括二次転写される。二次転写部N2でトナー像を二次転写された記録材Pは、定着装置7で加熱加圧を受けて、表面にトナー像を定着された後に外部へ排出される。   The four-color toner images primarily transferred to the intermediate transfer belt 51 are collectively transferred to the recording material P fed to the secondary transfer portion N2. The recording material P onto which the toner image has been secondarily transferred at the secondary transfer portion N2 is heated and pressurized by the fixing device 7, and the toner image is fixed on the surface, and then discharged to the outside.

記録材給送装置8は、記録材カセット81からピックアップローラ82で引き出した記録材Pを、分離装置83で1枚ずつに分離して、レジストローラ84へ送り出す。レジストローラ84は、停止状態で記録材Pを受け入れて待機させ、中間転写ベルト51のトナー像にタイミングを合わせて二次転写部N2へ記録材Pを送り出す。   The recording material feeding device 8 separates the recording material P drawn from the recording material cassette 81 by the pickup roller 82 one by one by the separating device 83 and sends it to the registration roller 84. The registration roller 84 receives and waits for the recording material P in a stopped state, and sends the recording material P to the secondary transfer portion N2 in synchronization with the toner image on the intermediate transfer belt 51.

中間転写ユニット5は、像担持体の一例である中間転写ベルト51を、駆動ローラ52、支持ローラ58、59、テンションローラ53、対向ローラ54に掛け渡して、矢印R2方向に回転させる。   The intermediate transfer unit 5 spans an intermediate transfer belt 51, which is an example of an image carrier, over a driving roller 52, support rollers 58 and 59, a tension roller 53, and a counter roller 54, and rotates it in the direction of arrow R <b> 2.

定着装置7は、ランプヒータ71を中心に配置した定着ローラ72に加圧ローラ73を圧接して記録材Pの加熱・加圧ニップを形成する。   The fixing device 7 presses a pressure roller 73 against a fixing roller 72 disposed around a lamp heater 71 to form a heating / pressure nip of the recording material P.

ベルトクリーニング装置57は、中間転写ベルト51にクリーニングブレードを摺擦させて、二次転写部N2を通過して記録材Pが分離された中間転写ベルト51の表面に残留した転写残トナー、紙粉等を除去する。   The belt cleaning device 57 rubs the intermediate transfer belt 51 with a cleaning blade, passes the secondary transfer portion N2, and leaves the transfer residual toner and paper dust remaining on the surface of the intermediate transfer belt 51 from which the recording material P has been separated. Etc. are removed.

画像形成部Pa、Pb、Pc、Pdは、付設された現像装置4a、4b、4c、4dで用いるトナーの色がイエロー、マゼンタ、シアン、ブラックと異なる以外は、ほぼ同一に構成される。以下では、図2を参照して画像形成部Paについて説明し、他の画像形成部Pb、Pc、Pdについては、説明中の符号末尾のaを、b、c、dに読み替えて説明されるものとする。   The image forming portions Pa, Pb, Pc, and Pd are configured substantially the same except that the colors of toner used in the attached developing devices 4a, 4b, 4c, and 4d are different from yellow, magenta, cyan, and black. Hereinafter, the image forming unit Pa will be described with reference to FIG. 2, and the other image forming units Pb, Pc, and Pd will be described by replacing “a” at the end of the reference numerals with “b”, “c”, and “d”. Shall.

図2に示すように、画像形成部Paは、感光ドラム1aの周囲に、帯電ローラ2a、露光装置3a、現像装置4a、一次転写ローラ55a、クリーニング装置6aを配置している。   As shown in FIG. 2, in the image forming section Pa, a charging roller 2a, an exposure device 3a, a developing device 4a, a primary transfer roller 55a, and a cleaning device 6a are arranged around the photosensitive drum 1a.

感光ドラム1aは、アルミニウム製シリンダの外周面に、帯電極性が負極性の有機光導電体層(OPC)を形成してあり、200mm/secのプロセススピードで矢印R1方向に回転する。   The photosensitive drum 1a is formed with an organic photoconductor layer (OPC) having a negative polarity on the outer peripheral surface of an aluminum cylinder, and rotates in the direction of arrow R1 at a process speed of 200 mm / sec.

帯電部材である帯電ローラ2aは、金属性の中心軸の表面に抵抗性の弾性層を被せて形成され、感光ドラム1aに圧接して従動回転する。電源D3は、交流電圧を重畳した直流電圧を帯電ローラ2aに印加して、感光ドラム1aの表面を一様な負極性の電位に帯電させる。   The charging roller 2a, which is a charging member, is formed by covering a surface of a metallic central axis with a resistive elastic layer, and is driven to rotate while being pressed against the photosensitive drum 1a. The power source D3 applies a DC voltage superimposed with an AC voltage to the charging roller 2a to charge the surface of the photosensitive drum 1a to a uniform negative potential.

露光装置3aは、イエローの分解色画像を展開した走査線画像データをON−OFF変調したレーザービームを回転ミラーで走査して、帯電した感光ドラム1aの表面に画像の静電像を書き込む。   The exposure device 3a scans the scanning line image data obtained by developing the yellow separated color image with a rotating mirror, and writes an electrostatic image of the image on the surface of the charged photosensitive drum 1a.

現像装置4aは、非磁性トナーを磁性キャリアに混合した二成分現像剤を攪拌して、非磁性トナーを負極性に、磁性キャリアを正極性にそれぞれ帯電させる。帯電した二成分現像剤は、固定磁極42aの周囲で感光ドラム1aとカウンタ方向に回転する現像スリーブ41aに穂立ち状態で担持されて、感光ドラム1aを摺擦する。電源D4は、負極性の直流電圧に交流電圧を重畳した現像電圧を現像スリーブ41aに印加して、現像スリーブ41aよりも相対的に正極性となった感光ドラム1aの露光部へトナーを移動させて、静電像を反転現像する。   The developing device 4a agitates a two-component developer in which nonmagnetic toner is mixed with a magnetic carrier, and charges the nonmagnetic toner to negative polarity and the magnetic carrier to positive polarity. The charged two-component developer is carried on the developing sleeve 41a rotating around the fixed magnetic pole 42a in the counter direction with the photosensitive drum 1a, and rubs against the photosensitive drum 1a. The power source D4 applies a developing voltage obtained by superimposing an AC voltage to a negative DC voltage to the developing sleeve 41a, and moves the toner to the exposed portion of the photosensitive drum 1a that has a relatively positive polarity relative to the developing sleeve 41a. Then, the electrostatic image is reversely developed.

一次転写部材である一次転写ローラ55aは、感光ドラム1a側へ中間転写ベルト51を挟み込むように圧接されて、感光ドラム1aと中間転写ベルト51との間に一次転写部N1aを形成する。電源D1aは、一次転写ローラ55aに電圧を印加する転写出力部であり、一次転写ローラ55aに一次転写バイアスとして+900Vの正極性の直流電圧を印加する。これにより、負極性に帯電して感光ドラム1aに担持されたトナー像が、一次転写部N1aを通過する中間転写ベルト51へ一次転写される。   The primary transfer roller 55a, which is a primary transfer member, is pressed against the photosensitive drum 1a so as to sandwich the intermediate transfer belt 51, thereby forming a primary transfer portion N1a between the photosensitive drum 1a and the intermediate transfer belt 51. The power supply D1a is a transfer output unit that applies a voltage to the primary transfer roller 55a, and applies a positive DC voltage of +900 V to the primary transfer roller 55a as a primary transfer bias. As a result, the toner image charged negatively and carried on the photosensitive drum 1a is primarily transferred to the intermediate transfer belt 51 passing through the primary transfer portion N1a.

一次転写ローラ55aは、2000V印加時の抵抗値が1×10〜10Ωの半導電性のものを用いた。具体的には、ニトリルゴムとエチレン−エピクロルヒドリン共重合体とのブレンドにより形成された、外径φ16mm、芯金径φ8mmのイオン導電性スポンジローラを用いた。一次転写ローラ55aの抵抗値は、温度23度C、湿度50%RHの環境下で印加電圧2kVのとき1×10〜10Ω程度である。 As the primary transfer roller 55a, a semiconductive roller having a resistance value of 1 × 10 2 to 10 8 Ω when 2000V was applied was used. Specifically, an ion conductive sponge roller formed by blending a nitrile rubber and an ethylene-epichlorohydrin copolymer and having an outer diameter of φ16 mm and a core metal diameter of φ8 mm was used. The resistance value of the primary transfer roller 55a is about 1 × 10 6 to 10 8 Ω at an applied voltage of 2 kV in an environment of a temperature of 23 ° C. and a humidity of 50% RH.

クリーニング装置6aは、クリーニングブレードを感光ドラム1aに摺擦して、一次転写部N1aを通過した感光ドラム1aの表面に付着した転写残トナーを除去する。   The cleaning device 6a slides the cleaning blade against the photosensitive drum 1a to remove the transfer residual toner attached to the surface of the photosensitive drum 1a that has passed through the primary transfer portion N1a.

近年、記録材の種類が豊富になって、記録材の厚みや電気抵抗等も幅広くなっているので中間転写方式が採用される。また、画像比率、記録材の幅等の違いによってトナー像への供給電荷量が変化することを避けるために、記録材への転写部では定電圧制御が採用される。さらに、温度、湿度といった雰囲気環境の変化、或いは画像形成の累積に伴って、中間転写ベルトや転写ローラの電気的抵抗、或いは感光ドラムの表層の膜厚等が変化する。これらの変化に伴って、画像形成時の転写ローラに印加する電圧を最適化するために、画像形成に先立たせて定電圧制御の制御値(転写ローラに印加する定電圧値)を決定するATVC制御やPTVC制御が実行される。   In recent years, the number of types of recording materials has increased, and the thickness and electrical resistance of recording materials have become wide. Further, constant voltage control is employed in the transfer portion to the recording material in order to avoid a change in the amount of charge supplied to the toner image due to differences in image ratio, recording material width, and the like. Furthermore, the electrical resistance of the intermediate transfer belt and the transfer roller, the film thickness of the surface layer of the photosensitive drum, and the like change as the ambient environment such as temperature and humidity changes or as the image formation is accumulated. Along with these changes, in order to optimize the voltage applied to the transfer roller during image formation, ATVC determines a control value for constant voltage control (a constant voltage value applied to the transfer roller) prior to image formation. Control and PTVC control are executed.

また、坪量の低い、薄紙を記録材Pとして用いる際には、材料そのものの剛性が低いために中間転写ベルトからの分離不良が発生し易い。このため、除電針91に高電圧を印加して、より効率的に記録材Pの帯電電荷を除去することで、二次転写部N2における記録材Pの分離性を向上させている。   Further, when thin paper having a low basis weight is used as the recording material P, the rigidity of the material itself is low, so that separation failure from the intermediate transfer belt is likely to occur. For this reason, the separability of the recording material P in the secondary transfer portion N2 is improved by applying a high voltage to the static elimination needle 91 and removing the charged charge of the recording material P more efficiently.

<二次転写部>
図3は二次転写部及び除電針の構成の説明図である。
<Secondary transfer section>
FIG. 3 is an explanatory diagram of the configuration of the secondary transfer portion and the static elimination needle.

図3に示すように、二次転写部材である二次転写ローラ56は、両端をバネ部材に付勢されて、中間転写ベルト51を介して対向ローラ54に圧接して、中間転写ベルト51と二次転写ローラ56との間に二次転写部N2を形成する。対向ローラ54は接地電位に接続されている。   As shown in FIG. 3, the secondary transfer roller 56 as a secondary transfer member is urged by spring members at both ends and is pressed against the opposing roller 54 via the intermediate transfer belt 51, A secondary transfer portion N2 is formed between the secondary transfer roller 56 and the secondary transfer roller 56. The opposing roller 54 is connected to the ground potential.

転写電源D2は、二次転写ローラ56に電圧を印加する転写出力部であり、画像形成時、転写手段の一例である二次転写ローラ56に電圧条件の一例である二次転写バイアスを印加する。これにより、負極性に帯電して中間転写ベルト51に担持されたトナー像が、二次転写部N2を通過する記録材へ二次転写される。二次転写バイアスは、画像形成に先立たせて、二次転写ローラ56に電圧を印加して設定されており、一例として定電圧制御された+2.3kVの正極性の直流電圧である。   The transfer power supply D2 is a transfer output unit that applies a voltage to the secondary transfer roller 56, and applies a secondary transfer bias, which is an example of voltage conditions, to the secondary transfer roller 56, which is an example of transfer means, during image formation. . As a result, the toner image charged to the negative polarity and carried on the intermediate transfer belt 51 is secondarily transferred to the recording material passing through the secondary transfer portion N2. The secondary transfer bias is set by applying a voltage to the secondary transfer roller 56 prior to image formation, and is, for example, a positive DC voltage of +2.3 kV that is constant voltage controlled.

中間転写ベルト51は、比誘電率ε=3〜5、体積抵抗率ρv=1×10〜1011Ω・mの半導電性のポリイミド樹脂を用いた。 As the intermediate transfer belt 51, a semiconductive polyimide resin having a relative dielectric constant ε = 3 to 5 and a volume resistivity ρv = 1 × 10 6 to 10 11 Ω · m was used.

対向ローラ54は、EPDMゴムに導電性カーボンを分散させた、外径φ20mm、芯金径φ16mmの半導電性ローラを使用した。対向ローラ54の抵抗値は、上記測定方法にて、温度23度C、湿度50%RHの環境下で印加電圧10Vのとき1×10〜10Ω程度である。 The opposing roller 54 was a semiconductive roller having an outer diameter of 20 mm and a core metal diameter of 16 mm, in which conductive carbon was dispersed in EPDM rubber. The resistance value of the facing roller 54 is about 1 × 10 1 to 10 5 Ω when the applied voltage is 10 V in an environment of a temperature of 23 ° C. and a humidity of 50% RH by the measurement method described above.

二次転写ローラ56は、ニトリルゴムとエチレン−エピクロルヒドリン共重合体とのブレンドにより形成された、外径φ24mm、芯金径φ12mmのイオン導電性スポンジローラを用いた。二次転写ローラ56の抵抗値は、上記測定方法にて、温度23度C、湿度50%RHの環境下で印加電圧2kVのとき1×10〜10Ω程度である。 As the secondary transfer roller 56, an ion conductive sponge roller formed by blending nitrile rubber and ethylene-epichlorohydrin copolymer and having an outer diameter of φ24 mm and a cored bar diameter of φ12 mm was used. The resistance value of the secondary transfer roller 56 is about 1 × 10 6 to 10 8 Ω when the applied voltage is 2 kV in an environment of a temperature of 23 ° C. and a humidity of 50% RH by the measurement method described above.

なお、二次転写ローラ56を接地電位に接続して、転写手段の一例である対向ローラ54に負極性の直流電圧を印加する構成を採用しても、同様に、中間転写ベルト51から記録材へトナー像を二次転写できる。   Even if a configuration in which the secondary transfer roller 56 is connected to the ground potential and a negative DC voltage is applied to the counter roller 54, which is an example of a transfer unit, is similarly applied from the intermediate transfer belt 51 to the recording material. The toner image can be secondarily transferred.

また、図1に示すように、画像形成装置100は、画像形成部Pdのみを用いて、ブラック単色画像を形成するブラック単色モードを実行できる。ブラック単色モードの場合、画像形成部Pdにおいてのみ、上述したトナー像形成工程を行い、中間転写ベルト51にブラックトナー像のみを担持させる。そして、二次転写部N2を通過する記録材Pにブラックトナー像を転写した後、定着装置7にて定着する。   As shown in FIG. 1, the image forming apparatus 100 can execute a black single color mode for forming a black single color image using only the image forming unit Pd. In the black monochrome mode, the above-described toner image forming process is performed only in the image forming unit Pd, and only the black toner image is carried on the intermediate transfer belt 51. Then, after the black toner image is transferred to the recording material P passing through the secondary transfer portion N2, it is fixed by the fixing device 7.

<除電部>
記録材Pの移動方向(搬送方向)における二次転写ローラ56の下流側に、記録材Pの除電を行う除電手段の一例である除電針91が配設される。除電針91は、厚み0.2mmのSUS304の薄板材を鋸歯状に加工したものであり、隣り合う鋸歯のピッチは1mmとした。除電針91は、搬送される記録材Pに対して非接触となる高さ位置に、鋸歯の先端が記録材Pの裏面に向くように配設されている。
<Static elimination part>
On the downstream side of the secondary transfer roller 56 in the moving direction (conveying direction) of the recording material P, a static elimination needle 91 that is an example of a static elimination unit that neutralizes the recording material P is disposed. The static elimination needle 91 was obtained by processing a thin plate material of SUS304 having a thickness of 0.2 mm into a sawtooth shape, and the pitch of the adjacent sawtooth was 1 mm. The static elimination needle 91 is disposed at a height position where it is not in contact with the recording material P being conveyed so that the tip of the saw tooth faces the back surface of the recording material P.

除電針91には、除電針91に可変の除電バイアスを印加する除電出力部である除電電源D5が接続されており、所定のタイミングで除電針91に除電バイアスを印加可能である。除電バイアスの極性は、二次転写ローラ56に印加される正極性の二次転写バイアスとは逆極性の負極性に設定されている。   The static elimination needle 91 is connected to a static elimination power source D5 that is a static elimination output unit that applies a variable static elimination bias to the static elimination needle 91, and the static elimination bias can be applied to the static elimination needle 91 at a predetermined timing. The polarity of the neutralizing bias is set to a negative polarity that is opposite to the positive polarity secondary transfer bias applied to the secondary transfer roller 56.

図3に示すように、除電針91は、除電針ホルダ92に対して貼り付けられて配置される。除電針ホルダ92は、主として絶縁保障されたPBT(ポリブチレンテレフタレート)から構成された絶縁部材であり、二次転写ローラ56と除電針91の間で直接高圧がリークしてしまうことを防止する。   As shown in FIG. 3, the static elimination needle 91 is attached to the static elimination needle holder 92 and disposed. The static elimination needle holder 92 is an insulating member mainly composed of PBT (polybutylene terephthalate) whose insulation is ensured, and prevents high pressure from leaking directly between the secondary transfer roller 56 and the static elimination needle 91.

除電針91は、除電バイアスを印加されてコロナ放電を発生し、コロナ放電に伴う荷電粒子を記録材Pの裏面に照射する。除電バイアスは、二次転写部N2を通過した下流で、記録材Pの帯電電荷を除電することで、中間転写ベルト51に対する静電吸着力を低下させて、記録材Pの分離性を向上させる。   The static elimination needle 91 is applied with a static elimination bias to generate corona discharge, and irradiates the back surface of the recording material P with charged particles accompanying the corona discharge. The neutralizing bias neutralizes the charged charge of the recording material P downstream after passing through the secondary transfer portion N2, thereby reducing the electrostatic adsorption force to the intermediate transfer belt 51 and improving the separation property of the recording material P. .

<実施例1>
図4は二次転写バイアスを設定する制御のフローチャート、図5は二次転写バイアスを設定するPTVC制御の説明図、図6は除電針に除電バイアスを印加した場合の転写電界の説明図である。本実施例では、転写材である記録材を除電する除電手段として除電針91を用いる構成である。
<Example 1>
4 is a flowchart of control for setting the secondary transfer bias, FIG. 5 is an explanatory diagram of PTVC control for setting the secondary transfer bias, and FIG. 6 is an explanatory diagram of a transfer electric field when the static elimination bias is applied to the static elimination needle. . In the present embodiment, a static elimination needle 91 is used as a static elimination means for neutralizing a recording material as a transfer material.

を参照して図4に示すように、制御部110は、画像形成(S17)に先立たせて、二次転写部N2に電圧を印加して、画像形成時の二次転写ローラ56に印加する二次転写バイアスを設定する(S14)。 As shown in FIG. 4 with reference to FIG. 3 , the control unit 110 applies a voltage to the secondary transfer unit N2 prior to image formation (S17) to the secondary transfer roller 56 during image formation. The secondary transfer bias to be applied is set (S14).

転写電源D2は、高電圧回路120から定電圧制御された二次転写バイアスを出力し、電流検知回路121を通じて二次転写ローラ56の芯金に印加する。電流検知回路121は、電流検知回路121から二次転写ローラ56へ流れ込む電流値に応じたアナログ電圧を制御部110に出力する。 The transfer power supply D <b> 2 outputs a secondary transfer bias controlled at a constant voltage from the high voltage circuit 120 and applies it to the core metal of the secondary transfer roller 56 through the current detection circuit 121. The current detection circuit 121 outputs an analog voltage corresponding to the current value flowing from the current detection circuit 121 to the secondary transfer roller 56 to the control unit 110.

制御部110は、高電圧回路120を制御して所定の定電圧を出力させ、そのときの電流検知回路121の出力を検知して、転写部N2に流れる電流が所定値となるような二次転写バイアスを演算して、高電圧回路120に設定する設定部の機能を有する。   The control unit 110 controls the high voltage circuit 120 to output a predetermined constant voltage, detects the output of the current detection circuit 121 at that time, and performs a secondary operation such that the current flowing through the transfer unit N2 becomes a predetermined value. It has a function of a setting unit that calculates the transfer bias and sets it in the high voltage circuit 120.

制御部110は、非画像形成時の一例である前回転時(S11)にPTVC制御を行う(S14)。   The controller 110 performs PTVC control (S14) during pre-rotation (S11), which is an example of non-image formation.

図3を参照して図5に示すように、制御部110は、転写電源D2の出力電圧を多段階に切り替え、各段階の出力電圧に対する出力電流値を電流検知回路121によって検知する。テスト電圧の一例として、第1電圧V1=2.5kV、第2電圧V2=2kV、第3電圧V3=1.5kVの三段階に転写電源D2の出力電圧を切り替えるが、必ずしもV3<V2<V1とする必要は無い。 As shown in FIG. 5 with reference to FIG. 3, the control unit 110 switches the output voltage of the transfer power supply D <b> 2 in multiple stages, and the current detection circuit 121 detects the output current value for the output voltage at each stage. As an example of the test voltage, the output voltage of the transfer power supply D2 is switched in three stages of a first voltage V1 = 2.5 kV, a second voltage V2 = 2 kV, and a third voltage V3 = 1.5 kV, but V3 <V2 <V1 There is no need to.

第1電圧V1を二次転写ローラ56の1周分印加し、そのときの電流値を電流検知回路121によって検知して平均化処理することにより、第1電圧V1に対する電流値I1を求める。その後、同様な手順を用いて、第2電圧V2に対する電流値I2、第3電圧V3に対する電流値I3をそれぞれ求める。   The first voltage V1 is applied for one turn of the secondary transfer roller 56, and the current value at that time is detected by the current detection circuit 121 and averaged to obtain the current value I1 for the first voltage V1. Thereafter, using a similar procedure, a current value I2 for the second voltage V2 and a current value I3 for the third voltage V3 are obtained.

制御部110は、3つの測定ポイントにおける印加電圧V1、V2、V3と電流検知回路121により検知される電流値I1、I2、I3とを用いて、二次転写部N2の電圧−電流特性(V−I特性)を導き出す。3つの測定ポイントの間隔では、3つの測定ポイントの測定データを線形補完する演算処理により導き出す。   The control unit 110 uses the applied voltages V1, V2, and V3 at the three measurement points and the current values I1, I2, and I3 detected by the current detection circuit 121, and uses the voltage-current characteristics (V of the secondary transfer unit N2). -I characteristics). In the interval between the three measurement points, the measurement data of the three measurement points are derived by a calculation process that linearly complements.

このようにして求めたV−I特性は、制御部110に内蔵された記憶装置(RAM等)109に一旦記憶される。   The VI characteristic thus obtained is temporarily stored in a storage device (RAM or the like) 109 built in the control unit 110.

ここで、記憶装置109には、二次転写部N2において必要な転写電流が、予め記録材Pの種類ごとに定められており、記録材Pの型番名に対応付けたテーブルで記憶されている。例えば、弊社推奨紙カラーレーザーコピア用紙(坪量81.3g/m)に対応付けて60μAが記憶されている。 Here, in the storage device 109, a transfer current required in the secondary transfer unit N2 is determined in advance for each type of the recording material P, and stored in a table associated with the model name of the recording material P. . For example, 60 μA is stored in association with our recommended paper color laser copier paper (basis weight 81.3 g / m 2 ).

制御部110は、二次転写部N2に60μAの転写電流を流すために必要な、二次転写ローラ56に印加する二次転写バイアスVbを、記憶装置109から読み出した二次転写部N2のV−I特性から求める。   The control unit 110 reads the secondary transfer bias Vb applied to the secondary transfer roller 56 necessary for flowing a transfer current of 60 μA to the secondary transfer unit N2 from the storage device 109, and outputs the V of the secondary transfer unit N2. Obtained from -I characteristics.

記録材Pに中間転写ベルト51上のトナー像を転写するのに必要な転写電流をIbとするとき、例えばIb<I2の場合、下記(1)式から基準電圧Vbを求める。
Vb=(Ib−I2)×(V3−V2)/(I3−I2)+V2 ・・(1)
When the transfer current necessary for transferring the toner image on the intermediate transfer belt 51 to the recording material P is Ib, for example, when Ib <I2, the reference voltage Vb is obtained from the following equation (1).
Vb = (Ib−I2) × (V3−V2) / (I3−I2) + V2 (1)

また、Ib≧I2の場合、下記(2)式から基準電圧Vbを求める。
Vb=(Ib−I1)×(V2−V1)/(I2−I1)+V1 ・・(2)
When Ib ≧ I2, the reference voltage Vb is obtained from the following equation (2).
Vb = (Ib−I1) × (V2−V1) / (I2−I1) + V1 (2)

以上のように、制御部110は、二次転写バイアスVbを演算して画像形成時の除電電源D5に設定する。画像形成時には、制御部110が設定した二次転写バイアスVbを転写電源D2が二次転写ローラ56に印加して、記録材Pに対するトナー像の二次転写工程を行う。 As described above, the control unit 110 calculates the secondary transfer bias Vb and sets it to the charge removal power source D5 during image formation. At the time of image formation, the secondary transfer bias Vb set by the controller 110 is applied to the secondary transfer roller 56 by the transfer power source D2 , and a secondary transfer process of the toner image onto the recording material P is performed.

図3を参照して図5に示すように、制御部110は、上記の3つの測定ポイントで電流値を測定する過程(S14)において、除電針91に対して除電バイアスを印加し続ける(S13)。   As shown in FIG. 5 with reference to FIG. 3, the control unit 110 continues to apply a static elimination bias to the static elimination needle 91 in the process of measuring the current value at the three measurement points (S14) (S13). ).

判断手段の一例である制御部110は、坪量63g/m以下の薄紙が指定されると(S15のYES)、画像形成時(S17)の除電針91に除電バイアスとして−3kVの定電圧バイアスを印加する(S16)。しかし、二次転写部N2の下流側における記録材Pの分離性が十分に確保される厚紙〜普通紙の場合(S15のNO)、除電針91を接地電位に接続する。 When a basis weight of 63 g / m 2 or less is specified (YES in S15), the control unit 110, which is an example of a determination unit, determines a constant voltage of −3 kV as a neutralization bias to the neutralization needle 91 during image formation (S17). A bias is applied (S16). However, in the case of thick paper to plain paper in which the separation property of the recording material P on the downstream side of the secondary transfer portion N2 is sufficiently secured (NO in S15), the static elimination needle 91 is connected to the ground potential.

そして、薄紙に画像形成を行う場合(S12のYES)、除電針91に−3kVの除電バイアスを印加した(S13)状態で上述のPTVC制御を実行する。しかし、厚紙〜普通紙の場合(S12のNO)、除電針91を接地電位に接続して上述のPTVC制御を実行する。これにより、画像形成時の除電針91における除電バイアスの有無による漏れ電流の変化を相殺した二次転写バイアスVbを設定する。このように、本実施例では、トナー像が転写部材に転写されるときの除電針91の電位状態と同じ状態でPTVC制御が実行される。   When image formation is performed on thin paper (YES in S12), the above-described PTVC control is executed in a state in which a static elimination bias of −3 kV is applied to the static elimination needle 91 (S13). However, in the case of thick paper to plain paper (NO in S12), the above-described PTVC control is executed by connecting the static elimination needle 91 to the ground potential. As a result, the secondary transfer bias Vb that offsets the change in leakage current due to the presence / absence of the neutralizing bias in the neutralizing needle 91 during image formation is set. Thus, in this embodiment, PTVC control is executed in the same state as the potential state of the charge eliminating needle 91 when the toner image is transferred to the transfer member.

ここで、二次転写バイアスとして1.7kVを印加し、除電バイアスとして−3kVを印加した状態で、薄紙の記録材Pにトナー像を転写する実験を行った。このとき、除電電源D5から二次転写ローラ56へ出力されて電流検知回路121に検知される総電流量及び漏れ電流を測定したところ、総電流量は約85μAであった。しかし、除電針91に対して約5μAの漏れ電流が流入したため、記録材Pへトナー像を転写するために使用されて対向ローラ54に流入した対向電流量は約80μAであった。   Here, an experiment was performed in which a toner image was transferred to a thin recording material P in a state where 1.7 kV was applied as a secondary transfer bias and −3 kV was applied as a neutralizing bias. At this time, when the total current amount and leakage current output from the static elimination power source D5 to the secondary transfer roller 56 and detected by the current detection circuit 121 were measured, the total current amount was about 85 μA. However, since a leakage current of about 5 μA flowed into the static elimination needle 91, the counter current amount used to transfer the toner image to the recording material P and flowed into the counter roller 54 was about 80 μA.

一方、除電針91を接地電位に接続した状態で、同じ記録材Pに同じトナー像を転写して、二次転写ローラ56に流れ込む総電流量及び漏れ電流を測定した。このとき、対向ローラ54に80μAの電流が流れ込むように二次転写バイアスを変化させたところ、除電電源D5から二次転写ローラ56へ出力されて電流検知回路121に検知された総電流量は約83μAとなった。そして、除電針91に対して流入した漏れ電流は3μAであった。   On the other hand, with the charge eliminating needle 91 connected to the ground potential, the same toner image was transferred to the same recording material P, and the total amount of current flowing into the secondary transfer roller 56 and the leakage current were measured. At this time, when the secondary transfer bias is changed so that a current of 80 μA flows into the opposing roller 54, the total amount of current output from the static elimination power source D5 to the secondary transfer roller 56 and detected by the current detection circuit 121 is about. It was 83 μA. The leakage current flowing into the static elimination needle 91 was 3 μA.

従って、除電針91に除電バイアスを印加する場合としない場合とでは、二次転写部N2で等しい記録材に等しいトナー像を転写する際に、二次転写ローラ56へ印加すべき二次転写バイアスが違ってくる。除電針91に除電バイアスを印加して画像形成を行う場合、除電針91へ流れ込む漏れ電流を補うように、少し高い二次転写バイアスが必要となる。   Therefore, in the case where the static elimination bias is applied to the static elimination needle 91, the secondary transfer bias to be applied to the secondary transfer roller 56 when transferring the same toner image to the same recording material in the secondary transfer portion N2. Is different. When image formation is performed by applying a charge removal bias to the charge removal needle 91, a slightly higher secondary transfer bias is required to compensate for the leakage current flowing into the charge removal needle 91.

逆に言えば、除電針91に除電バイアスを印加しないで設定した二次転写バイアスは、除電針91に除電バイアスを印加して実際にトナー像を転写すると、除電針91に流れ込む漏れ電流の増加量に相当するだけ電圧不足になる。   In other words, the secondary transfer bias set without applying the neutralization bias to the static elimination needle 91 increases the leakage current flowing into the static elimination needle 91 when the neutralization bias is applied to the static elimination needle 91 and the toner image is actually transferred. The voltage becomes insufficient as much as the amount.

図6に示すように、除電針91に除電バイアスを印加する場合としない場合とでは、二次転写部N2での電界分布が異なるため、二次転写電流の流れ方が変化する。   As shown in FIG. 6, since the electric field distribution in the secondary transfer portion N2 is different between when the static elimination bias is applied to the static elimination needle 91 and how the secondary transfer current flows.

図6の(a)に示すように、除電針91に除電バイアスを印加しない場合、二次転写ローラ56内部の等電位面は、中間転写ベルト51を介して対向ローラ54に接触する二次転写部N2に平行となる。対向ローラ54の抵抗が低いため、対向ローラ54の表面は、ほぼ等電位面とみなせるからである。   As shown in FIG. 6A, when no static elimination bias is applied to the static elimination needle 91, the equipotential surface inside the secondary transfer roller 56 is in contact with the opposing roller 54 via the intermediate transfer belt 51. It becomes parallel to the part N2. This is because the resistance of the counter roller 54 is low, so that the surface of the counter roller 54 can be regarded as an almost equipotential surface.

そして、二次転写ローラ56の内部では、電流は等電位面に対して垂直な方向に流れるため、二次転写部N2に対して垂直に電流が流れ込むようになり、二次転写部N2のニップ面内で均一な電流分布が形成される。   Since the current flows in the direction perpendicular to the equipotential surface inside the secondary transfer roller 56, the current flows perpendicularly to the secondary transfer portion N2, and the nip of the secondary transfer portion N2 is reached. A uniform current distribution is formed in the plane.

図6の(b)に示すように、除電針91に除電バイアスを印加した場合、プラス電位の二次転写ローラ56の近傍にマイナス電位の除電針91が存在するため、二次転写ローラ56の下流側の電位が、上流側よりも低下する。   As shown in FIG. 6B, when a neutralization bias is applied to the neutralization needle 91, the neutralization needle 91 having a negative potential is present near the secondary transfer roller 56 having a positive potential. The potential on the downstream side is lower than that on the upstream side.

このため、二次転写ローラ56内部の等電位面は、除電バイアスを印加しない(a)の場合に比べて、除電針91に平行な方向に傾いてくる。そして、二次転写ローラ56の内部では、電流は等電位面に対して垂直な方向に流れるため、電流は二次転写部N2の上流部分に集中する。   For this reason, the equipotential surface inside the secondary transfer roller 56 is inclined in a direction parallel to the static elimination needle 91 as compared with the case (a) where no static elimination bias is applied. Since the current flows in the direction perpendicular to the equipotential surface inside the secondary transfer roller 56, the current is concentrated on the upstream portion of the secondary transfer portion N2.

記録材Pは帯電していない状態で二次転写部N2に搬送されてくるため、二次転写部N2の上流部分では二次転写ローラ56と記録材Pとの電位差が最も大きくなる。二次転写部N2の上流部分に電流が集中すると、二次転写ローラ56から記録材Pへ移動する電荷量が大きくなり、二次転写電流が増加することから、二次転写部N2の見かけ上のインピーダンスが低くなる。そして、除電バイアスを印加することで二次転写部N2の見かけ上のインピーダンスが低くなって転写電源D2から出力される二次転写電流が増加する。 Since the recording material P is conveyed to the secondary transfer portion N2 in an uncharged state, the potential difference between the secondary transfer roller 56 and the recording material P becomes the largest in the upstream portion of the secondary transfer portion N2. When the current concentrates on the upstream portion of the secondary transfer portion N2, the amount of charge moving from the secondary transfer roller 56 to the recording material P increases, and the secondary transfer current increases. Therefore, the appearance of the secondary transfer portion N2 is apparent. Impedance is low. Then, by applying the static elimination bias, the apparent impedance of the secondary transfer portion N2 is lowered, and the secondary transfer current output from the transfer power supply D2 is increased.

除電バイアスを印加しない場合は、総電流量が約83μAであったのに対して、除電バイアスを印加した場合には、約85μAであったのは、このような理由によると考えられる。そして、除電バイアスを印加した場合は、二次転写ローラ56、中間転写ベルト51等の二次転写部N2を構成する部材の抵抗値が変化しないにもかかわらず、二次転写部N2の見かけ上のインピーダンスが変動すると考えられる。   This is because the total current amount was about 83 μA when no neutralization bias was applied, whereas it was about 85 μA when the neutralization bias was applied. When the neutralizing bias is applied, the apparent value of the secondary transfer portion N2 appears even though the resistance values of the members constituting the secondary transfer portion N2 such as the secondary transfer roller 56 and the intermediate transfer belt 51 do not change. It is thought that the impedance of fluctuates.

このため、図4に示すように、実施例1では、除電バイアスを印加する薄紙への画像形成前(S12のYES)には、除電バイアスを印加した(S13)状態で、二次転写バイアスを設定するPTVC制御を行う(S14)。そして、除電バイアスを印加しない普通紙〜厚紙への画像形成前(S12のNO)には、除電バイアスを印加した状態で二次転写バイアスを設定するPTVC制御を行う(S14)。   Therefore, as shown in FIG. 4, in Example 1, the secondary transfer bias is applied in a state where the neutralizing bias is applied (S13) before image formation on the thin paper to which the neutralizing bias is applied (YES in S12). The PTVC to be set is performed (S14). Then, before image formation on plain paper to thick paper to which no neutralization bias is applied (NO in S12), PTVC control for setting a secondary transfer bias in a state where the neutralization bias is applied is performed (S14).

これにより、より精度良く二次転写バイアスを設定して、転写不良を発生することなく高品質の画像を出力することが可能になる。   This makes it possible to set the secondary transfer bias with higher accuracy and output a high-quality image without causing a transfer failure.

ところで、除電針91には、定電流バイアスを印加するよりも、定電圧バイアスを印加する方が望ましい。近傍に記録材Pが無い状態で除電針91に除電バイアスを印加すると、二次転写ローラ56、中間転写ベルト51等と除電針91との間で放電が発生している状態で二次転写部N2から正極性に帯電した記録材Pが搬送されてくる。   Incidentally, it is preferable to apply a constant voltage bias to the static elimination needle 91 rather than a constant current bias. When a neutralization bias is applied to the static elimination needle 91 in the absence of the recording material P in the vicinity, the secondary transfer portion is in a state where a discharge is generated between the secondary transfer roller 56, the intermediate transfer belt 51 and the static elimination needle 91. The recording material P charged to the positive polarity is conveyed from N2.

すると、記録材Pの先端が除電針91の近傍に到達した瞬間、周囲の荷電粒子が一気に記録材Pへ流れ込んで瞬間的に除電針91に流入する電流が増加する。このため、除電針91に定電流を供給している場合は、除電針91の電位が急低下してしまい、肝心の記録材Pの先端に対して十分な除電・分離促進効果を発揮できない。   Then, at the moment when the tip of the recording material P reaches the vicinity of the static elimination needle 91, the surrounding charged particles flow into the recording material P all at once, and the current that instantaneously flows into the static elimination needle 91 increases. For this reason, when a constant current is supplied to the static elimination needle 91, the potential of the static elimination needle 91 is suddenly lowered, and a sufficient neutralization / separation promoting effect cannot be exhibited with respect to the leading end of the recording material P.

これに対して、除電針91に定電圧を供給している場合は、記録材Pの先端で除電針91の電位が低下しないため、記録材Pの先端に対して必要十分な荷電粒子を供給することができ、十分な除電・分離促進効果が発揮される。坪量63g/m以下の薄紙においては、比較的、記録材Pの剛性が低いことから、記録材Pの先端が中間転写ベルト51に吸着して連れ回り易くなる。このため、除電バイアスを定電圧制御とすることにより、記録材Pの先端における除電効率を高く維持して、坪量の低い薄紙の分離性を向上できる。 On the other hand, when a constant voltage is supplied to the static elimination needle 91, the potential of the static elimination needle 91 does not decrease at the tip of the recording material P, so that necessary and sufficient charged particles are supplied to the tip of the recording material P. And a sufficient neutralization / separation promoting effect is exhibited. For thin paper having a basis weight of 63 g / m 2 or less, since the rigidity of the recording material P is relatively low, the leading edge of the recording material P is attracted to the intermediate transfer belt 51 and is easily rotated. For this reason, by setting the static elimination bias to constant voltage control, the static elimination efficiency at the front end of the recording material P can be maintained high, and the separation of thin paper having a low basis weight can be improved.

除電針91に除電バイアスを印加して画像形成を行う際に、除電針91に除電バイアスが印加された状態で二次転写ローラ56に印加する二次転写バイアスのPTVC制御を行う。これにより、二次転写ローラ56に流れる電流に対して除電バイアスの影響を加味して、二次転写バイアスの最適制御を行うことが可能になる。二次転写部N2の近傍に除電針91が配設され、除電針91に除電バイアスが印加されている状態でも、中間転写ベルト51上のトナー像を記録材Pに良好に転写できる。これにより、転写不良のない高画質な画像を得られる。   When image formation is performed by applying a charge removal bias to the charge removal needle 91, PTVC control of the secondary transfer bias applied to the secondary transfer roller 56 in a state where the charge removal bias is applied to the charge removal needle 91 is performed. As a result, the secondary transfer bias can be optimally controlled by taking into account the effect of the static elimination bias on the current flowing through the secondary transfer roller 56. The toner image on the intermediate transfer belt 51 can be satisfactorily transferred to the recording material P even when the static elimination needle 91 is disposed in the vicinity of the secondary transfer portion N2 and the static elimination bias is applied to the static elimination needle 91. As a result, a high-quality image free from transfer defects can be obtained.

なお、記憶装置109には、記録材Pの型番名(送り方向に応じた幅方向サイズを含む)に対応付けて記録材Pに60μAを流す際に加算すべき二次転写バイアス(記録材分担電圧Vp)を予め記憶させてもよい。そして、記憶装置109から読み出した記録材分担電圧VpをPTVC制御で求めた二次転写バイアスVbに加算して、画像形成時の二次転写ローラ56に印加する二次転写バイアスを設定してもよい。   The storage device 109 stores a secondary transfer bias (recording material sharing) to be added when 60 μA is applied to the recording material P in association with the model name of the recording material P (including the width direction size corresponding to the feeding direction). The voltage Vp) may be stored in advance. Even if the secondary transfer bias applied to the secondary transfer roller 56 at the time of image formation is set by adding the recording material sharing voltage Vp read from the storage device 109 to the secondary transfer bias Vb obtained by PTVC control. Good.

<実施例2>
図7は実施例2における記録材給送装置の説明図である。
<Example 2>
FIG. 7 is an explanatory diagram of the recording material feeding apparatus according to the second embodiment.

図7に示すように、記録材給送装置8Bは、記録材カセット81に厚み検知センサSpを備える以外は図1に示す画像形成装置100と同様に構成される。従って、図7中、実施例1と共通する構成には図1と共通の符号を付して重複する説明を省略する。   As shown in FIG. 7, the recording material feeding device 8B is configured in the same manner as the image forming apparatus 100 shown in FIG. 1 except that the recording material cassette 81 includes a thickness detection sensor Sp. Therefore, in FIG. 7, the same reference numerals as those in FIG.

記録材カセット81に付設された厚み検知センサSpは、記録材Pの厚みを検知する。制御部110は、厚み検知センサSpの出力に応じて画像形成される記録材Pが薄紙か否かを判定する。   A thickness detection sensor Sp attached to the recording material cassette 81 detects the thickness of the recording material P. The control unit 110 determines whether the recording material P on which an image is formed is thin paper according to the output of the thickness detection sensor Sp.

図4に示すように、制御部110は、薄紙の場合(S12のYES、S15のYES)には、除電針91に除電バイアスを印加してPTVC制御を行う。そして、PTVC制御によって設定した二次転写バイアスを二次転写ローラ56に印加して、除電針91に除電バイアスを印加した状態で画像形成を行う(S17)。   As shown in FIG. 4, in the case of thin paper (YES in S12, YES in S15), the control unit 110 applies a static elimination bias to the static elimination needle 91 to perform PTVC control. Then, the secondary transfer bias set by the PTVC control is applied to the secondary transfer roller 56, and image formation is performed in a state where the static elimination bias is applied to the static elimination needle 91 (S17).

しかし、薄紙ではない場合(S12のNO、S15のNO)には、除電針91に除電バイアスを印加しないでPTVC制御を行い(S14)、除電針91に除電バイアスを印加しないで画像形成を行う(S17)。   However, if the paper is not thin (NO in S12, NO in S15), PTVC control is performed without applying a static elimination bias to the static elimination needle 91 (S14), and image formation is performed without applying the static elimination bias to the static elimination needle 91. (S17).

検知センサSpは、例えば、特開平3−192050号公報等に示されるような機構のものを使用することができる。ここでは、給紙路に向けてセンサアームを突出させて配置した機構を用いており、給紙路内を搬送される記録材Pが、センサアームを揺動させる角度を検知して、記録材Pの厚さの検知を行う。   As the detection sensor Sp, for example, a sensor having a mechanism as disclosed in JP-A-3-192050 can be used. Here, a mechanism is used in which a sensor arm is protruded toward the paper feed path, and the recording material P conveyed in the paper feed path detects the angle at which the sensor arm is swung to detect the recording material. The thickness of P is detected.

あるいは、記録材Pの厚さの検知装置としては、例えば、フォトセンサを構成する発光部と受光部とを、給紙路の上下に配置し、記録材Pに透過する光の強さを検知して、記録材Pの厚さの情報として用いることも可能である。   Alternatively, as a detection device for the thickness of the recording material P, for example, a light emitting portion and a light receiving portion constituting a photosensor are arranged above and below the paper feed path to detect the intensity of light transmitted through the recording material P. Thus, it can be used as information on the thickness of the recording material P.

実施例2では、記録材Pの厚みが50μm以下の薄紙と判別された場合に限り、二次転写部N2での分離性を向上させるため、除電針91に対して除電バイアスを−3kV印加する。一方、記録材Pの厚みが50μmを超えると判別された場合には、除電針91に対して除電バイアスを印加しない。   In Example 2, only when it is determined that the recording material P is thin paper having a thickness of 50 μm or less, a neutralization bias of −3 kV is applied to the neutralization needle 91 in order to improve the separation at the secondary transfer portion N2. . On the other hand, if it is determined that the thickness of the recording material P exceeds 50 μm, the neutralizing bias is not applied to the neutralizing needle 91.

<実施例3>
図8は実施例3におけるPTCV制御の説明図である。実施例3では、複数段階の電圧を転写手段に印加して転写手段を流れる電流を測定することにより求めた電圧電流特性に基づいて画像形成時の電圧条件が設定される。そして、複数段階のうちの最大電圧に対してのみ除電手段に所定の電圧を印加した場合と印加しない場合との電流を測定する。
<Example 3>
FIG. 8 is an explanatory diagram of PTCV control in the third embodiment. In the third embodiment, a voltage condition at the time of image formation is set based on a voltage-current characteristic obtained by applying a plurality of stages of voltages to the transfer unit and measuring a current flowing through the transfer unit. Then, the current is measured when a predetermined voltage is applied to the static eliminator only with respect to the maximum voltage of the plurality of stages and when it is not applied.

実施例3では、図7の記録材カセット81内に、厚みの異なる複数種類の紙が混在する場合に、厚み検知センサSpを用いて記録材Pごとに薄紙か否かを判断して、除電バイアスをON/OFFして画像形成を行う。   In the third embodiment, when a plurality of types of paper having different thicknesses coexist in the recording material cassette 81 of FIG. 7, the thickness detection sensor Sp is used to determine whether the recording material P is thin or not, thereby eliminating static electricity. Image formation is performed with bias ON / OFF.

あるいは、複数の記録材カセットの1つに薄紙が収納されて、普通紙への連続画像形成の途中で薄紙への画像形成が開始される場合に、画像形成しようとする記録材Pが薄紙か否かに対応して、自動的に除電バイアスをON/OFFして画像形成を行う。記録材を送り出す記録材カセットの区別に応じて、自動的に除電バイアスをON/OFFして画像形成を行う。   Alternatively, when thin paper is stored in one of the plurality of recording material cassettes and image formation on thin paper is started in the middle of continuous image formation on plain paper, whether the recording material P to be imaged is thin paper Corresponding to whether or not, image formation is performed by automatically turning on / off the static elimination bias. According to the distinction between the recording material cassettes that send out the recording material, the image forming is performed by automatically turning on / off the static elimination bias.

このような普通紙と薄紙との混在した連続画像形成に対処するため、連続画像形成の開始直前に実行される前回転において、除電針91に対して除電バイアスを印加した場合と印加しない場合との両方でPTVC制御を行う。   In order to cope with such continuous image formation in which plain paper and thin paper are mixed, in the pre-rotation executed immediately before the start of continuous image formation, a case where a neutralization bias is applied to the static elimination needle 91 and a case where it is not applied. Both perform PTVC control.

すなわち、画像形成に先立たせて、除電針91に除電バイアスを印加する場合の二次転写バイアスVb1と、除電針91に除電バイアスを印加しない場合の二次転写バイアスVb2とをそれぞれPTVC制御により準備して除電電源D5に設定可能にしておく。   In other words, prior to image formation, a secondary transfer bias Vb1 when a static elimination bias is applied to the static elimination needle 91 and a secondary transfer bias Vb2 when no static elimination bias is applied to the static elimination needle 91 are prepared by PTVC control. Thus, the static elimination power source D5 can be set.

そして、連続画像形成中に刻々得られる「二次転写部N2に給送される記録材が薄紙か否かの判別結果」に応じて、二次転写バイアスVb1、Vb2を切り替える。これに伴って、薄紙か否かにかかわらず同等の記録材分離性が確保されるように、除電バイアスのON/OFFを切り替える。   Then, the secondary transfer biases Vb1 and Vb2 are switched in accordance with the “result of determination as to whether or not the recording material fed to the secondary transfer unit N2 is thin paper” obtained during continuous image formation. Along with this, ON / OFF of the neutralization bias is switched so as to ensure equivalent recording material separation regardless of whether the paper is thin.

図3を参照して図8に示すように、転写電源D2が出力する定電圧制御された測定用電圧を、第1電圧V1、第2電圧V2、第3電圧V3の3段階に切り替えて、二次転写ローラ56に印加するPTVC制御を実行する。   As shown in FIG. 8 with reference to FIG. 3, the voltage for measurement controlled by the constant voltage output from the transfer power source D2 is switched to three stages of the first voltage V1, the second voltage V2, and the third voltage V3, The PTVC control applied to the secondary transfer roller 56 is executed.

まず、除電バイアスを印加しない状態で、二次転写ローラ56の1周分づつ二次転写ローラ56に第1電圧V1、第2電圧V2、第3電圧V3を印加して、電流検知回路121がそれぞれの電流を検知する。検知電流は、除電バイアスを印加しない状態で、第1、第2、第3電圧を印加した際に検知された電流I1、I2、I3(図中●印)がプロットされる。   First, the first voltage V1, the second voltage V2, and the third voltage V3 are applied to the secondary transfer roller 56 for each round of the secondary transfer roller 56 in a state in which the neutralizing bias is not applied, and the current detection circuit 121 Each current is detected. The detected current is plotted with currents I1, I2, and I3 (marked with ● in the figure) detected when the first, second, and third voltages are applied in a state in which the neutralizing bias is not applied.

続けて、除電針91に除電バイアスを印加した状態で、第1電圧V1のみを二次転写ローラ56に1周分印加して、電流検知回路121によって二次転写ローラ56へ流れ込む電流を測定する。除電バイアスを印加した状態で二次転写ローラ56に第1電圧V1を印加した際に検知される電流I1n(図中○印)がプロットされる。   Subsequently, with the neutralization bias applied to the neutralization needle 91, only the first voltage V1 is applied to the secondary transfer roller 56 for one round, and the current flowing into the secondary transfer roller 56 is measured by the current detection circuit 121. . A current I1n (circled in the figure) detected when the first voltage V1 is applied to the secondary transfer roller 56 in a state where the neutralizing bias is applied is plotted.

実施例3では、二次転写ローラ56に印加する測定用電圧は、V3=1.5kV、V2=2kV、V1=2.5kVとした。   In Example 3, the measurement voltages applied to the secondary transfer roller 56 were V3 = 1.5 kV, V2 = 2 kV, and V1 = 2.5 kV.

このとき、I1、I2、I3の3点の電圧−電流データを補間演算して、記録材Pにトナー像を形成するために必要な転写電流であるターゲット電流Ibに対応する二次転写バイアスVb2を定める。二次転写バイアスVb2は、記録材Pの厚みが50μmを超えるために除電針91へ除電バイアスを印加しない画像形成時に、二次転写ローラ56に印加される。   At this time, voltage-current data at three points I1, I2, and I3 are interpolated and a secondary transfer bias Vb2 corresponding to a target current Ib that is a transfer current necessary for forming a toner image on the recording material P. Determine. The secondary transfer bias Vb2 is applied to the secondary transfer roller 56 at the time of image formation in which the charge removal bias 91 is not applied to the charge removal needle 91 because the thickness of the recording material P exceeds 50 μm.

また、I1n、I2、I3の3点から同じターゲット電流Ibに対応する二次転写バイアスVb1が補間演算される。二次転写バイアスVb1は、記録材Pの厚みが50μm以下で二次転写部N2における記録材Pの分離性を確保するために除電針91へ除電バイアスを印加する画像形成時に、二次転写ローラ56に印加される。   Further, the secondary transfer bias Vb1 corresponding to the same target current Ib is interpolated from three points I1n, I2, and I3. The secondary transfer bias Vb1 is a secondary transfer roller at the time of image formation in which the recording material P has a thickness of 50 μm or less and a neutralizing bias is applied to the neutralizing needle 91 in order to ensure separation of the recording material P in the secondary transfer portion N2. 56 is applied.

図6を参照して説明したように、除電針91に除電バイアスを印加すると、印加しない場合に比較して、二次転写部N2の見かけ上のインピーダンスが低くなる。しかし、二次転写部N2の見かけ上のインピーダンスが低下する挙動は、プラス電圧を印加された二次転写ローラ56とマイナス電圧を印加された除電針91の電位差が大きい際により顕著となるが、電位差が小さければ目立たない。   As described with reference to FIG. 6, when a static elimination bias is applied to the static elimination needle 91, the apparent impedance of the secondary transfer portion N <b> 2 becomes lower than when no neutralization bias is applied. However, the behavior in which the apparent impedance of the secondary transfer portion N2 is lowered becomes more prominent when the potential difference between the secondary transfer roller 56 to which a positive voltage is applied and the static elimination needle 91 to which a negative voltage is applied is large. It is not noticeable if the potential difference is small.

従って、除電バイアスを印加した状態で電流検知する際には、最大電圧となる第1電圧を印加した際の電流のみ検知することでも、PTVC制御において大幅な精度低下は発生しない。   Therefore, when the current is detected in a state where the neutralizing bias is applied, even if only the current when the first voltage that is the maximum voltage is applied is detected, the accuracy in the PTVC control is not significantly reduced.

実施例3の制御によれば、記録材の厚さに応じて頻繁に除電バイアスを切り替える場合に、最適な二次転写バイアスを設定できる。また、除電バイアスを印加しない状態で3段階に検知電圧を切り替えて電流−電圧特性を実測可能なことから、最適な二次転写バイアスの設定が可能である。さらには、除電バイアスを印加した状態の電流検知を、1段階にのみに限定することで、二次転写ローラ56の2周分の電圧印加と電流測定とを省略して、PTVC制御に要する時間を削減して、画像形成装置100の生産性を高める効果がある。   According to the control of the third embodiment, an optimum secondary transfer bias can be set when the static elimination bias is frequently switched according to the thickness of the recording material. In addition, since the current-voltage characteristics can be measured by switching the detection voltage in three stages without applying the neutralizing bias, the optimum secondary transfer bias can be set. Furthermore, by limiting the current detection in a state where the neutralizing bias is applied to only one stage, it is possible to omit the voltage application and current measurement for the second rotation of the secondary transfer roller 56, and the time required for PTVC control. And the productivity of the image forming apparatus 100 is improved.

<実施例4>
実施例1〜3は中間転写方式の画像形成装置の二次転写部において、記録材の厚さに応じて除電バイアス及び二次転写バイアスを切り替える制御を説明した。しかし、本発明は、直接転写方式の画像形成装置にも適用しうる。
<Example 4>
In the first to third embodiments, the control for switching between the static elimination bias and the secondary transfer bias in accordance with the thickness of the recording material in the secondary transfer portion of the intermediate transfer type image forming apparatus has been described. However, the present invention can also be applied to a direct transfer type image forming apparatus.

実施例4の画像形成装置は、感光ドラムに形成したブラックトナー像を、感光ドラムに転写ローラを圧接した転写部で記録材へ直接転写する。このような構成においても、転写部の下流側に除電針を配置し、記録材の分離性に応じて、除電針へ印加する除電バイアスをON/OFFすることができる。そして、画像形成時の転写ローラへ印加する転写バイアスを画像形成に先立たせてPTVC制御を行って設定する場合、画像形成時の除電バイアスのON/OFFに合わせて、PTVC制御においても除電バイアスをON/OFFさせる。これにより、PTVC制御によって設定される転写バイアスが記録材の分離性と無関係に最適化される。   In the image forming apparatus according to the fourth exemplary embodiment, the black toner image formed on the photosensitive drum is directly transferred onto the recording material by the transfer unit in which the transfer roller is pressed against the photosensitive drum. Even in such a configuration, it is possible to dispose the charge eliminating needle downstream of the transfer unit and to turn on / off the charge eliminating bias applied to the charge eliminating needle in accordance with the separability of the recording material. When the transfer bias applied to the transfer roller during image formation is set by performing PTVC control prior to image formation, the charge removal bias is also applied in PTVC control in accordance with ON / OFF of the charge removal bias during image formation. Turn ON / OFF. Thereby, the transfer bias set by the PTVC control is optimized irrespective of the separation property of the recording material.

<実施例5>
図9は実施例5におけるPTVC制御の説明図である。
<Example 5>
FIG. 9 is an explanatory diagram of PTVC control in the fifth embodiment.

実施例1〜実施例4では、除電針91に定電圧制御された一定の除電バイアス−3kVを印加して行う画像形成及びPTVC制御を説明した。   In the first to fourth embodiments, image formation and PTVC control performed by applying a constant neutralization bias of −3 kV that is constant voltage controlled to the static elimination needle 91 have been described.

これに対して、実施例5では、測定用電圧が印加された二次転写ローラ56と除電針91との電位差が一定になるように、測定用電圧に応じて、除電針91に印加する電圧を変化させてPTVC制御を実行する。   On the other hand, in Example 5, the voltage applied to the static elimination needle 91 according to the measurement voltage so that the potential difference between the secondary transfer roller 56 to which the measurement voltage is applied and the static elimination needle 91 becomes constant. Is changed to execute PTVC control.

これにより、二次転写ローラ56から除電針91へ流れ込む漏れ電流を一定に保って、二次転写部N2を流れてトナー像の転写に関与する転写電流における漏れ電流の違いによる誤差を相殺している。画像形成時の二次転写ローラ56に印加される電圧が大きく変化した場合でも、漏れ電流を一定に保って過不足の無い二次転写バイアスが二次転写ローラ56に印加されるようにしている。   As a result, the leakage current flowing from the secondary transfer roller 56 to the static elimination needle 91 is kept constant, and the error due to the difference in leakage current in the transfer current flowing through the secondary transfer portion N2 and involved in the transfer of the toner image is offset. Yes. Even when the voltage applied to the secondary transfer roller 56 at the time of image formation varies greatly, the secondary transfer bias 56 is applied to the secondary transfer roller 56 without any excess or deficiency while keeping the leakage current constant. .

図3を参照して図9に示すように、転写電源D2が出力する定電圧制御された測定用電圧を、第1電圧V1、第2電圧V2、第3電圧V3の3段階に切り替えて、二次転写ローラ56に印加するPTVC制御を実行する。   As shown in FIG. 9 with reference to FIG. 3, the constant voltage controlled measurement voltage output from the transfer power source D2 is switched to three stages of the first voltage V1, the second voltage V2, and the third voltage V3, The PTVC control applied to the secondary transfer roller 56 is executed.

二次転写ローラ56の1周分づつ第1電圧V1、第2電圧V2、第3電圧V3を印加して電流検知回路121がそれぞれの電流を検知する。このとき、除電針91には、第1電圧V1、第2電圧V2、第3電圧V3との電位差が一定値となるように、除電バイアスVc1、Vc2、Vc3が印加される。検知電流は、第1、第2、第3電圧を印加した際に検知された電流I1、I2、I3(図中●印)がプロットされる。   The first voltage V1, the second voltage V2, and the third voltage V3 are applied for each round of the secondary transfer roller 56, and the current detection circuit 121 detects each current. At this time, the neutralization biases Vc1, Vc2, and Vc3 are applied to the static elimination needle 91 so that the potential difference between the first voltage V1, the second voltage V2, and the third voltage V3 becomes a constant value. As the detection current, currents I1, I2, and I3 (marked with ● in the figure) detected when the first, second, and third voltages are applied are plotted.

V1−I1、V2−I2、V3−I3の3つのV−Iデータを用いて、ターゲット電流Ibに対応する二次転写バイアスVbが補間演算される。同時に、V1−Vc1、V2−Vc2、V3−Vc3の3つのV−Vcデータを用いて、二次転写バイアスVbに対応する除電バイアスVcbが補間演算される。   The secondary transfer bias Vb corresponding to the target current Ib is interpolated using the three pieces of V-I data V1-I1, V2-I2, and V3-I3. At the same time, the neutralization bias Vcb corresponding to the secondary transfer bias Vb is interpolated using the three V-Vc data of V1-Vc1, V2-Vc2, and V3-Vc3.

画像形成時には、除電針91に除電バイアスVcbを印加した状態で二次転写ローラ56に二次転写バイアスVbを印加してトナー像を記録材Pに二次転写する。   At the time of image formation, the secondary transfer bias Vb is applied to the secondary transfer roller 56 with the static elimination bias Vcb applied to the static elimination needle 91, and the toner image is secondarily transferred to the recording material P.

実施例5では、第1電圧V1、第2電圧V2、第3電圧V3に応じて、PTVC制御時の除電針91に表1のような電圧を印加した。   In Example 5, the voltages shown in Table 1 were applied to the charge removal needle 91 during PTVC control according to the first voltage V1, the second voltage V2, and the third voltage V3.

Figure 0005473291
Figure 0005473291

実施例5の制御では、幅広い種類の記録材Pに対応するために、二次転写部N2においてトナー像が転写されて記録材Pが分離される過程で、記録材Pの最適な分離性能が発揮される。   In the control of the fifth embodiment, in order to deal with a wide variety of recording materials P, the optimum separation performance of the recording material P is achieved in the process in which the toner image is transferred and the recording material P is separated in the secondary transfer portion N2. Demonstrated.

第1実施形態の画像形成装置の構成の説明図である。It is explanatory drawing of a structure of the image forming apparatus of 1st Embodiment. 画像形成部の構成の説明図である。It is explanatory drawing of a structure of an image formation part. 二次転写部及び除電針の構成の説明図である。It is explanatory drawing of a structure of a secondary transfer part and a static elimination needle. 二次転写バイアスを設定する制御のフローチャートである。6 is a flowchart of control for setting a secondary transfer bias. 二次転写バイアスを設定するPTVC制御の説明図である。It is explanatory drawing of PTVC control which sets a secondary transfer bias. 除電針に除電バイアスを印加した場合の転写電界の説明図である。It is explanatory drawing of the transfer electric field at the time of applying a static elimination bias to a static elimination needle. 実施例2における記録材給送装置の説明図である。FIG. 6 is an explanatory diagram of a recording material feeding device in Embodiment 2. 実施例3におけるATCV制御の説明図である。It is explanatory drawing of ATCV control in Example 3. FIG. 実施例5におけるPTVC制御の説明図である。It is explanatory drawing of PTVC control in Example 5. FIG.

符号の説明Explanation of symbols

1a、1b、1c、1d 感光ドラム
2a、2b、2c、2d 帯電ローラ
3a、3b、3c、3d 露光装置
4a、4b、4c、4d 現像装置
7 定着装置
8 記録材給送装置
51 像担持体(中間転写ベルト)
52 駆動ローラ
53 テンションローラ
54 対向ローラ
55a、55b、55c、55d 一次転写ローラ
56 転写部材(二次転写ローラ)
81 記録材カセット
91 除電針
92 除電針ホルダ
D2 転写電源
D5 除電電源
121 電流検知回路
1a, 1b, 1c, 1d Photosensitive drums 2a, 2b, 2c, 2d Charging rollers 3a, 3b, 3c, 3d Exposure devices 4a, 4b, 4c, 4d Developing device 7 Fixing device 8 Recording material feeding device 51 Image carrier ( Intermediate transfer belt)
52 Driving roller 53 Tension roller 54 Opposing rollers 55a, 55b, 55c, 55d Primary transfer roller 56 Transfer member (secondary transfer roller)
81 Recording material cassette 91 Static elimination needle 92 Static elimination needle holder D2 Transfer power supply D5 Static elimination power supply 121 Current detection circuit

Claims (4)

像担持体と、
前記像担持体にトナー像を形成するトナー像形成手段と、
前記像担持体に形成されたトナー像を転写材に転写する転写部材と、
写材の移動方向において前記転写部材よりも下流側に配置され、転写材を除電するための除電部材と、
前記転写部材に印加する電圧を出力する転写電源と、
前記除電部材に印加する電圧を出力する除電電源と、
前記転写部材にテスト電圧を印加して、画像形成時の前記転写部材に印加する転写電圧を設定する設定部と、
使用される転写材の坪量を判断する判断手段と、を有し、
前記設定部は、使用される転写材の坪量が所定値以下の薄紙の場合には、前記除電電源が前記除電部材に電圧を印加した状態で前記転写部材にテスト電圧を印加して前記転写電圧の設定を行使用される転写材の坪量が前記所定値より大きい場合には、前記除電電源が前記除電部材に電圧を印加しない状態で前記転写電圧の設定を行うことを特徴とする画像形成装置。
An image carrier;
Toner image forming means for forming a toner image on the image carrier;
A transcription member you transferred to the transfer material a toner image formed on the image bearing member,
Rolling than the transfer member in the direction of movement of Utsushizai positioned downstream, and neutralizing member for rolling neutralizes the Utsushizai,
A transfer power source for outputting a voltage applied to the transfer member;
A static elimination power source that outputs a voltage to be applied to the static elimination member ;
A setting unit for applying a test voltage to the transfer member and setting a transfer voltage to be applied to the transfer member during image formation;
Judging means for judging the basis weight of the transfer material used ,
The setting unit, when the basis weight of the transfer material used is a predetermined value or less of the thin paper, the applied test voltage before Symbol transfer member in a state where the neutralization power is applied a voltage to the charge removing member set preferences transfer voltage, if the basis weight of the transfer material to be used is larger than the predetermined value, characterized in that the neutralizing power to set the transfer voltage in a state where no voltage is applied to the charge removing member An image forming apparatus.
記設定部は、前記転写部材に印加した複数の異なるテスト電圧のそれぞれに対して前記除電部材に印加される電圧が所定の電位差を持つように前記除電電源を制御することを特徴とする請求項に記載の画像形成装置。 Before Symbol setting unit claims, characterized in that the voltage applied to the charge removing member for each of a plurality of different test voltage applied to the transfer member to control the neutralization power to have a predetermined potential difference Item 2. The image forming apparatus according to Item 1 . 前記設定部は、前記転写部材に複数の異なるテスト電圧を印加したときに前記転写部材に流れる電流を測定して求めた電圧電流特性に基づいて前記転写電圧を設定する際に、前記複数の異なるテスト電圧のうちの最大電圧に対してのみ前記除電部材に電圧を印加した場合の前記転写部材に流れる電流と前記除電部材に電圧を印加しない場合の前記転写部材に流れる電流とを、測定することを特徴とする請求項に記載の画像形成装置。 The setting unit sets the transfer voltage when setting the transfer voltage based on a voltage-current characteristic obtained by measuring a current flowing through the transfer member when a plurality of different test voltages are applied to the transfer member. only the maximum voltage of the test voltage, and a current flowing through the transfer member when no voltage is applied to the charge eliminating member and the current flowing through the transfer member in the case of applying a voltage to the charge removing member, is measured The image forming apparatus according to claim 2 . 前記設定部は、前記除電部材に印加する前記除電電源の電圧を定電圧制御で出力することを特徴とする請求項1乃至3のいずれか1項に記載の画像形成装置。 The setting unit, an image forming apparatus according to any one of claims 1 to 3, characterized in that outputs the voltage of the charge eliminating power supply to be applied to the charge eliminating member in the constant voltage control.
JP2008266689A 2008-10-15 2008-10-15 Image forming apparatus Expired - Fee Related JP5473291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008266689A JP5473291B2 (en) 2008-10-15 2008-10-15 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008266689A JP5473291B2 (en) 2008-10-15 2008-10-15 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2010096921A JP2010096921A (en) 2010-04-30
JP5473291B2 true JP5473291B2 (en) 2014-04-16

Family

ID=42258657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008266689A Expired - Fee Related JP5473291B2 (en) 2008-10-15 2008-10-15 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP5473291B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392308B2 (en) * 2011-06-29 2014-01-22 コニカミノルタ株式会社 Image forming apparatus
JP6381423B2 (en) 2014-11-25 2018-08-29 キヤノン株式会社 Image forming apparatus
JP6586753B2 (en) * 2015-03-18 2019-10-09 株式会社リコー Transfer separation apparatus, image forming apparatus, and adjustment method
JP6938145B2 (en) * 2016-01-15 2021-09-22 キヤノン株式会社 Image forming device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320624A (en) * 1995-05-24 1996-12-03 Canon Inc Image forming device
JPH09114337A (en) * 1995-10-18 1997-05-02 Fuji Xerox Co Ltd Image forming device
JP2000039782A (en) * 1998-07-22 2000-02-08 Canon Inc Image forming device
JP4393212B2 (en) * 2003-02-26 2010-01-06 キヤノン株式会社 Image forming apparatus
JP2007171425A (en) * 2005-12-20 2007-07-05 Canon Inc Image forming apparatus

Also Published As

Publication number Publication date
JP2010096921A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
US9291955B2 (en) Image forming apparatus and transfer bias application device therein
JP5361435B2 (en) Image forming apparatus
JP6286868B2 (en) Image forming apparatus
JP5904088B2 (en) Image forming apparatus
JP2019200283A (en) Image forming device
JP5473291B2 (en) Image forming apparatus
JP4500511B2 (en) Image forming apparatus
CN1542566B (en) Image forming apparatus
JP5183323B2 (en) Image forming apparatus
JP6149512B2 (en) Image forming apparatus
JP5590864B2 (en) Image forming apparatus
JP5382492B2 (en) Image forming apparatus
JP2008134393A (en) Image forming apparatus
JP2004205583A (en) Image forming apparatus
JP5627173B2 (en) Image forming apparatus
JP2019086596A (en) Image forming apparatus
US20200409291A1 (en) Image forming apparatus
JP2020177161A (en) Image forming apparatus
US11835912B2 (en) Image forming apparatus
JP2013186340A (en) Image forming apparatus
US20240061364A1 (en) Image forming apparatus
JP4667099B2 (en) Image forming apparatus
JP4110190B2 (en) Transfer device and image forming apparatus
JP2011237712A (en) Image forming apparatus
JP4194130B2 (en) Color image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111012

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R151 Written notification of patent or utility model registration

Ref document number: 5473291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees