JP5471129B2 - Chemical conversion electrogalvanized steel sheet and method for producing the same - Google Patents

Chemical conversion electrogalvanized steel sheet and method for producing the same Download PDF

Info

Publication number
JP5471129B2
JP5471129B2 JP2009179453A JP2009179453A JP5471129B2 JP 5471129 B2 JP5471129 B2 JP 5471129B2 JP 2009179453 A JP2009179453 A JP 2009179453A JP 2009179453 A JP2009179453 A JP 2009179453A JP 5471129 B2 JP5471129 B2 JP 5471129B2
Authority
JP
Japan
Prior art keywords
chemical conversion
steel sheet
electrogalvanized
maximum height
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009179453A
Other languages
Japanese (ja)
Other versions
JP2011032528A (en
Inventor
克利 高島
透 妹川
聡 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009179453A priority Critical patent/JP5471129B2/en
Publication of JP2011032528A publication Critical patent/JP2011032528A/en
Application granted granted Critical
Publication of JP5471129B2 publication Critical patent/JP5471129B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、化成処理電気亜鉛めっき鋼板およびその製造方法に関し、特に、導電性および耐食性の両特性について、同時にその向上を図ろうとするものである。   The present invention relates to a chemical conversion electrogalvanized steel sheet and a method for producing the same. In particular, the present invention intends to improve both conductivity and corrosion resistance at the same time.

通常、電気・電子製品にて使用される電気亜鉛めっき鋼板は、耐食性や耐指紋性を向上させるために化成処理が施されてきた。
また、近年、液晶・PDP (プラズマディスプレーパネル) など薄型テレビの更なる薄型化や大型化、OA機器の高周波数化等が進んできたため、電磁波が漏洩しやすくなってきている。そのため、電気亜鉛めっき鋼板の電磁波シールド特性に対する要求が高まっている。
Usually, electrogalvanized steel sheets used in electrical and electronic products have been subjected to chemical conversion treatment in order to improve corrosion resistance and fingerprint resistance.
In recent years, electromagnetic waves are becoming more likely to leak due to further thinning and size increase of flat-screen TVs such as liquid crystal displays and PDPs (plasma display panels) and higher frequency of OA equipment. Therefore, the request | requirement with respect to the electromagnetic wave shielding characteristic of an electrogalvanized steel plate is increasing.

従来、電気亜鉛めっき鋼板の上に、クロメート処理を施したもの(以下、クロメート鋼板という)が用いられてきたが、環境に対する負荷低減の要求の高まりから、クロメートを含まないクロメートフリー化成処理鋼板(以下、クロメートフリー鋼板という)に変更されてきている。クロメートフリー鋼板というのは、クロメート鋼板と同様に耐食性、耐指紋性などの機能を付与する目的で、亜鉛めっき鋼板表面に有機系もしくは無機系の皮膜、あるいはそれらの複合皮膜を被覆した鋼板のことである。   Conventionally, chromate-treated steel sheets (hereinafter referred to as chromate steel sheets) have been used on electrogalvanized steel sheets. However, due to the growing demand for reducing environmental impact, chromate-free chemical conversion steel sheets that do not contain chromate ( Hereinafter, it has been changed to a chromate-free steel plate). A chromate-free steel sheet is a steel sheet that is coated with an organic or inorganic film or a composite film on the surface of a galvanized steel sheet in order to provide functions such as corrosion resistance and fingerprint resistance in the same way as a chromate steel sheet. It is.

クロメートフリー鋼板は、十分な耐食性を発現させるために、クロメート鋼板と比較して膜厚を増加させる必要がある。そのため、その膜厚の増加によって導通部が形成されにくくなり、その結果、鋼板の電磁波シールド特性が低下してしまうという問題があった。
今日のように、デジタル家電における高周波数化が進展し、高い電磁波シールド性が求められるようになった現在、これまでのクロメートフリー鋼板では、導電性と耐食性両方の要求に応えることは困難である。
The chromate-free steel sheet needs to increase the film thickness as compared with the chromate steel sheet in order to develop sufficient corrosion resistance. For this reason, the increase in the film thickness makes it difficult to form the conductive portion, and as a result, there has been a problem that the electromagnetic wave shielding characteristics of the steel sheet are deteriorated.
As today's trend toward higher frequencies in digital home appliances has led to the need for high electromagnetic shielding properties, it is difficult for conventional chromate-free steel sheets to meet the requirements of both conductivity and corrosion resistance. .

これら電磁波シールド特性の低下は、主に化成処理鋼板同士の接合部における導通不良に起因することが分かっている。このため、高い電磁波シールド性を実現するためには、化成処理鋼板の導電性を高める必要がある。しかし、化成処理皮膜は有機又は無機成分による皮膜であり、多くの場合絶縁体であるため、導電性と耐食性との両立は難しい。そこで従来より、化成処理鋼板の導電性を確保するために、化成処理皮膜による被覆率を適切に制御する技術が提案されてきた。
たとえば、特許文献1、2には、金属表面粗度に応じて特定の厚みの皮膜を被覆する技術が示されている。また特許文献3には、金属表面形態と被覆率を制御する技術が示されている。
It has been found that the deterioration of these electromagnetic wave shielding characteristics is mainly caused by poor conduction at the joint between the chemical conversion treated steel sheets. For this reason, in order to implement | achieve high electromagnetic shielding property, it is necessary to improve the electroconductivity of a chemical conversion treatment steel plate. However, the chemical conversion coating is a coating made of an organic or inorganic component, and in many cases is an insulator, so that it is difficult to achieve both conductivity and corrosion resistance. Therefore, conventionally, in order to secure the conductivity of the chemical conversion treated steel sheet, a technique for appropriately controlling the coverage by the chemical conversion treatment film has been proposed.
For example, Patent Documents 1 and 2 disclose techniques for coating a film having a specific thickness according to the metal surface roughness. Patent Document 3 discloses a technique for controlling the metal surface form and coverage.

特開平10-330955号公報JP 10-330955 A 特開平10-330956号公報Japanese Patent Laid-Open No. 10-330956 特開2005-139551号公報JP 2005-139551 A

しかしながら、導電性と耐食性の両立に対する要求が厳しくなって来た現在、上記した特許文献で規定された被覆面積率では、両特性、特に耐食性を維持することは難しい。
というのは、特許文献1および2では、上記した絶縁体である耐食性の皮膜を、金属板に対して被覆率:70〜99%としているが、金属鋼板の露出部面積が比較的大きいため、十分な耐食性が得られない。
また、特許文献3では、金属材に対して被覆率70%以上100%未満としているため、99%を超えた範囲では、その耐食性には一定の向上が認められるが、その導電性は下地鋼板の粗度に依存している。これでは、10μm規模の面積でしか皮膜の管理ができない。そのため、数μm以下の局所的な腐食反応(耐食性)には、安定性の点で問題を残していた。
However, now that demands for both conductivity and corrosion resistance have become strict, it is difficult to maintain both characteristics, particularly corrosion resistance, with the covering area ratio defined in the above-mentioned patent document.
This is because, in Patent Documents 1 and 2, the above-described corrosion-resistant film that is an insulator has a coverage of 70 to 99% with respect to the metal plate, but the exposed area of the metal steel plate is relatively large. Sufficient corrosion resistance cannot be obtained.
Further, in Patent Document 3, since the coverage is 70% or more and less than 100% with respect to the metal material, a certain improvement in the corrosion resistance is recognized in the range exceeding 99%, but the conductivity is the underlying steel plate. Depends on the roughness of In this case, the film can be managed only in an area of 10 μm scale. Therefore, a local corrosion reaction (corrosion resistance) of several μm or less has left a problem in terms of stability.

本発明は、上記の現状に鑑み開発されたもので、化成処理後の導電性と耐食性が共に優れた化成処理電気亜鉛めっき鋼板を、工業レベルでの安定した生産が可能な製造方法と共に提供することを目的とする。   The present invention was developed in view of the above-mentioned present situation, and provides a chemical conversion-treated galvanized steel sheet having both excellent conductivity and corrosion resistance after chemical conversion, together with a manufacturing method capable of stable production at an industrial level. For the purpose.

化成処理電気亜鉛めっき鋼板に、導電性を発現させるためには、従来技術のように、下地鋼板の粗度や化成処理皮膜の厚みを制御することで、亜鉛の露出部を形成することが必要となる。この亜鉛の露出部は、主に下地鋼板の形状の凸部や、そのエッジ部で局部的に化成処理皮膜が薄くなることで形成される。ここで、凸部の領域は、スキンパスロールの形状及び調圧率などにもよるが、一般的に十から数十μmの範囲に及んでいる。また、下地鋼板の凹凸レベルは、化成処理皮膜の膜厚に相当している。つまり、化成処理電気亜鉛めっき鋼板の亜鉛露出部は、凸部のエッジや凸部全体で形成されていることがわかる。   In order to make the chemical conversion electrogalvanized steel sheet exhibit electrical conductivity, it is necessary to form the exposed part of zinc by controlling the roughness of the base steel sheet and the thickness of the chemical conversion film as in the prior art. It becomes. This exposed portion of zinc is formed mainly by thinning of the chemical conversion treatment film at the convex portion of the shape of the base steel plate or at the edge portion thereof. Here, the region of the convex portion generally ranges from ten to several tens of μm although it depends on the shape of the skin pass roll and the pressure regulation rate. Moreover, the unevenness | corrugation level of a base steel plate is equivalent to the film thickness of a chemical conversion treatment film. That is, it turns out that the zinc exposure part of a chemical conversion treatment electrogalvanized steel sheet is formed in the edge of a convex part, or the whole convex part.

発明者らは、上記した知見から、耐食性と導電性を両立できる亜鉛露出レベルについて詳細な検討を行った。その結果、良好な導電性を発現するためには、上記のような広域にわたる亜鉛露出部が重要なのではなく、局所的な亜鉛露出部が重要であることを新たに知得した。   Based on the above findings, the inventors have conducted detailed studies on the zinc exposure level that can achieve both corrosion resistance and electrical conductivity. As a result, in order to develop good electrical conductivity, it was newly found out that a zinc exposed portion over a wide area as described above is not important but a local zinc exposed portion is important.

そこで、発明者らは、局所的な亜鉛露出状態と導電性の関係についてさらに調査を進めた。その結果、下地鋼板の凸部に化成処理皮膜が被覆されていても、電気亜鉛めっきの亜鉛結晶に起因した微細な凹凸によって形成されるサブミクロンレベルの亜鉛露出部があれば、十分導電性が確保できることがわかった。これらを更に詳細に調査した結果、電気亜鉛めっきの亜鉛結晶に起因する最大高さ粗さ(Rz)を適正化することにより、導電性と耐食性を両立できることを突き止めた。   Therefore, the inventors further investigated the relationship between the local zinc exposure state and conductivity. As a result, even if the convex part of the base steel sheet is coated with a chemical conversion coating, if there is a submicron-level zinc exposed part formed by fine irregularities due to zinc crystals of electrogalvanization, sufficient conductivity is obtained. It turned out that it can secure. As a result of investigating these in more detail, it was found that by optimizing the maximum height roughness (Rz) due to the zinc crystal of electrogalvanizing, both conductivity and corrosion resistance can be achieved.

ここで、本発明の亜鉛結晶に起因する最大高さ粗さ(Rz)は、電気亜鉛めっき鋼板の3D-SEM (3D Scanning Electron Microscope エリオニクス社製 ERA-8800FE)による測定結果から求めることとする。この3D-SEMによる測定条件は、例えば、SEM観察領域を90×120μmとし、その領域の縦、横それぞれ中心の最大高さ粗さ(Rz)を測定し、平均値を算出する。この際、亜鉛結晶に起因する粗度を原板の粗さと分離し、局所的な亜鉛露出状態を最適化するため、カットオフ値を0.01 mmとした。この測定方法によって算出された最大高さ粗さ(Rz)は、本発明に従う電気亜鉛めっきの亜鉛結晶に起因する最大高さ粗さ(Rz)を効果的にあらわしていると考える。   Here, the maximum height roughness (Rz) resulting from the zinc crystal of the present invention is determined from the measurement result of 3D-SEM (3D Scanning Electron Microscope ERA-8800FE manufactured by Elionix Co., Ltd.) of the electrogalvanized steel sheet. The measurement conditions by this 3D-SEM are, for example, that the SEM observation area is 90 × 120 μm, the maximum height roughness (Rz) at the center of each of the areas is measured, and the average value is calculated. At this time, in order to separate the roughness due to the zinc crystal from the roughness of the original plate and optimize the local zinc exposure state, the cut-off value was set to 0.01 mm. It is considered that the maximum height roughness (Rz) calculated by this measuring method effectively represents the maximum height roughness (Rz) caused by the zinc crystal of electrogalvanizing according to the present invention.

つまり、化成処理皮膜の平均膜厚が十分薄く適正であれば、下地鋼板の凸状の部分では周囲に比較し膜厚が相対的に薄くなる。この結果、電気亜鉛めっき結晶による微細凹凸レベルでもごく僅かな亜鉛露出部が点在する。さらに最大高さ粗さ(Rz)が適正であれば、亜鉛露出部の面積が適度に大きくなり、その箇所に電流が流れやすくなるため、導電性が良好になると推定される。   In other words, if the average film thickness of the chemical conversion coating is sufficiently thin and appropriate, the film thickness is relatively thin at the convex portion of the base steel plate compared to the surrounding area. As a result, very few zinc exposed portions are scattered even at the fine unevenness level by the electrogalvanized crystal. Further, if the maximum height roughness (Rz) is appropriate, the area of the exposed zinc portion is appropriately increased, and it becomes easy for current to flow through the portion, so that the conductivity is estimated to be good.

さらに、電解電流密度を変化させることにより、カットオフ値を0.01 mmとしたときの最大高さ粗さ(Rz)を制御することで、化成処理鋼板表面の微小な亜鉛露出部を制御できることを併せて見出した。その結果、この微小な亜鉛露出部が化成処理鋼板の耐食性を劣化させることなく、導電性を良好に保持できることが究明された。
本発明はこれらの知見に基づいてなされたものである。
Furthermore, by controlling the maximum height roughness (Rz) when the cut-off value is 0.01 mm by changing the electrolytic current density, it is possible to control the minute zinc exposed part of the chemical conversion treated steel surface. I found it. As a result, it has been found that this minute zinc exposed portion can maintain good conductivity without deteriorating the corrosion resistance of the chemical conversion treated steel sheet.
The present invention has been made based on these findings.

すなわち、上記知見に基づく本発明の要旨構成は次のとおりである。
(1)鋼板表面に電気亜鉛めっき層および化成処理皮膜をそなえる化成処理電気亜鉛めっき鋼板であって、該電気亜鉛めっき層の最大高さ粗さ(Rz)が0.6〜1.1μm(但し、カットオフ値:0.01mm)で、かつ該化成処理皮膜の平均皮膜厚さが0.05〜1.0μmであって、さらに、該電気亜鉛めっき層の該化成処理皮膜に対する露出部の面積率が電気亜鉛めっき被覆面積の0.3〜1.0%であることを特徴とする化成処理電気亜鉛めっき鋼板。
That is, the gist configuration of the present invention based on the above knowledge is as follows.
(1) on the surface of the steel sheet to a chemical conversion treatment galvanized steel sheet Ru comprising a galvanized layer and the chemical conversion film, the maximum height roughness of the electrical galvanized layer (Rz) is 0.6~1.1Myuemu (however, cutting (Off value: 0.01 mm), and the average coating thickness of the chemical conversion coating is 0.05 to 1.0 μm, and the area ratio of the exposed portion of the electrogalvanized layer to the chemical conversion coating is electrogalvanized coating Chemical conversion electrogalvanized steel sheet characterized by 0.3 to 1.0% of the area.

(2)前記電気亜鉛めっき層の最大高さ粗さ(Rz)が0.8〜1.1μm(但し、カットオフ値:0.01mm)であることを特徴とする前記(1)に記載の化成処理電気亜鉛めっき鋼板。   (2) The chemical conversion electrozinc as described in (1) above, wherein the electrogalvanized layer has a maximum height roughness (Rz) of 0.8 to 1.1 μm (however, a cutoff value: 0.01 mm). Plated steel sheet.

)鋼板表面に電気亜鉛めっきを施し、ついで化成処理を施してなる化成処理電気亜鉛めっき鋼板の製造方法において、該電気亜鉛めっきを施すにあたり、電解浴を硫酸水溶液とし、電解電流密度を100〜200A/dm2の範囲として、該電気亜鉛めっき層の最大高さ粗さ(Rz)を0.6〜1.1μm(但し、カットオフ値:0.01mm)とし、さらに、該化成処理による皮膜の厚さが平均厚さで0.05〜1.0μmとすることを特徴とする化成処理電気亜鉛めっき鋼板の製造方法。 ( 3 ) In the method for producing a chemical conversion-treated electrogalvanized steel sheet obtained by subjecting the steel sheet surface to electrogalvanization and then chemical conversion treatment, the electrogalvanization is performed by using an electrolytic bath as a sulfuric acid aqueous solution and an electrolysis current density of 100. as a range of ~200A / dm 2, the maximum height roughness of the electrical galvanized layer (Rz) 0.6~1.1μm (where the cut-off value: 0.01 mm) and then, further, the coating by chemical conversion A method for producing a chemical conversion electrogalvanized steel sheet, characterized in that the average thickness is 0.05 to 1.0 μm .

)鋼板表面に電気亜鉛めっきを施し、ついで化成処理を施してなる化成処理電気亜鉛めっき鋼板の製造方法において、該電気亜鉛めっきを施すにあたり、電解浴を塩化物水溶液とし、電解電流密度を30〜60A/dm2の範囲として、該電気亜鉛めっき層の最大高さ粗さ(Rz)を0.6〜1.1μm(但し、カットオフ値:0.01mm)とし、さらに、該化成処理による皮膜の厚さが平均厚さで0.05〜1.0μmとすることを特徴とする化成処理電気亜鉛めっき鋼板の製造方法。 ( 4 ) In the method for producing a chemical conversion electrogalvanized steel sheet obtained by subjecting the steel sheet surface to electrogalvanization and then chemical conversion treatment, the electrogalvanization is performed by using an electrolytic bath as a chloride aqueous solution, as a range of 30~60A / dm 2, the maximum height roughness of the electrical galvanized layer (Rz) 0.6~1.1μm (where the cut-off value: 0.01 mm) and then, further, coating by chemical conversion The manufacturing method of the chemical conversion treatment electrogalvanized steel sheet characterized by making thickness of 0.05-1.0 micrometer by average thickness .

前記電気亜鉛めっき層の最大高さ粗さ(Rz)を0.8〜1.1μm(但し、カットオフ値:0.01mm)とすることを特徴とする前記()または()に記載の化成処理電気亜鉛めっき鋼板の製造方法。 ( 5 ) The maximum height roughness (Rz) of the electrogalvanized layer is 0.8 to 1.1 μm (however, the cut-off value is 0.01 mm), as described in ( 3 ) or ( 4 ) above A method for producing a chemical conversion electrogalvanized steel sheet.

本発明によれば、家電製品、電子・電気機器等の用途に供して好適な耐食性および導電性が共に優れた化成処理電気亜鉛めっき鋼板を提供することができる。また、本発明の製造方法によれば、化成処理電気亜鉛めっき鋼板を、工業的レベルで容易かつ安定的に生産することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide for the use of household appliances, an electronic / electrical apparatus, etc., and can provide the chemical conversion treatment electrogalvanized steel plate excellent in both corrosion resistance and electroconductivity suitable. Moreover, according to the manufacturing method of the present invention, the chemical conversion electrogalvanized steel sheet can be easily and stably produced at an industrial level.

化成処理鋼板の亜鉛露出部の面積率とカットオフ値を0.01 mmとしたときの最大高さ粗さ (Rz)が、鋼板の耐食性および導電性に及ぼす影響を示すグラフである。2 is a graph showing the influence of the maximum height roughness (Rz) on the corrosion resistance and conductivity of a steel sheet when the area ratio and the cut-off value of a zinc exposed portion of the chemical conversion steel sheet are 0.01 mm.

以下、本発明を具体的に説明する。
本発明は、化成処理膜中の亜鉛露出部の面積率が、電気亜鉛めっき部に対し0.3〜1.0%で、かつ電気亜鉛めっきの最大高さ粗さ(Rz)が0.6〜1.1μm(カットオフ値:0.01mm)であることを最大の特徴とする。
Hereinafter, the present invention will be specifically described.
In the present invention, the area ratio of the zinc exposed portion in the chemical conversion film is 0.3 to 1.0% with respect to the electrogalvanized portion, and the maximum height roughness (Rz) of electrogalvanized is 0.6 to 1.1 μm (cut-off) Value: 0.01 mm) is the greatest feature.

ここで、本発明の亜鉛露出部とは、化成処理鋼板のXPS(X-ray Photoelectron Spectroscopy 島津/KRATOS社製 AXIS-HS)による測定結果から求めることができる。例えば、上記したXPSを用い、分析範囲250×500μm、X線源はモノクロAlKα線、表面の不純物除去のためスパッタリングを1分間程度行い、ナロースペクトルから求めた定量結果と、事前に定性分析で検出された化成皮膜の構成元素とを比較して求める。つまり、化成皮膜の構成元素をA、B、C・・・とすると、「亜鉛 /(A+B+C+・・・+亜鉛)原子%」が亜鉛露出部の値となり、本発明では、この値を亜鉛露出部の面積率(%)とする。   Here, the zinc exposed portion of the present invention can be obtained from the measurement result of XPS (X-ray Photoelectron Spectroscopy Shimadzu / AXIS-HS manufactured by KRATOS) of the chemical conversion treated steel sheet. For example, using the above-mentioned XPS, the analysis range is 250 × 500μm, the X-ray source is monochrome AlKα ray, sputtering is performed for about 1 minute to remove surface impurities, and the quantitative result obtained from the narrow spectrum and detected by qualitative analysis in advance It is obtained by comparing with the constituent elements of the formed chemical conversion film. In other words, when the constituent elements of the chemical conversion film are A, B, C..., “Zinc / (A + B + C +... + Zinc) atomic%” is the value of the zinc exposed portion, and in the present invention, this value is the zinc exposed The area ratio (%) of the part.

本発明の化成処理めっき鋼板においては、化成処理めっき鋼板表面の亜鉛露出部の面積率を0.3〜1.0%に規定する。というのは、0.3%未満では、導通部を形成する箇所としては不足していて、化成処理鋼板の導電性を良好にする効果が低くなる。一方、1.0%を超えると、亜鉛の露出が増加して耐食性が劣化し、白錆発生までの時間が短くなってしまう。   In the chemical conversion plated steel sheet of the present invention, the area ratio of the zinc exposed portion on the surface of the chemical conversion plated steel sheet is regulated to 0.3 to 1.0%. This is because if it is less than 0.3%, it is insufficient as a portion for forming a conducting part, and the effect of improving the electrical conductivity of the chemical conversion treated steel sheet becomes low. On the other hand, if it exceeds 1.0%, the exposure of zinc increases, the corrosion resistance deteriorates, and the time until the occurrence of white rust is shortened.

本発明の電気亜鉛めっき部における最大高さ粗さ(Rz)は、0.6〜1.1μm(カットオフ値:0.01mm)と規定する。というのは、0.6μm未満では、亜鉛露出部を充分に得られずに、導電性を良好にする効果が低下する。一方、1.1μmを超えると、化成処理後の亜鉛露出部の面積が大きくなり、耐食性が劣化し、白錆発生までの時間が短くなってしまう。好ましい最大高さ粗さ(Rz)は、0.8〜1.1μm(カットオフ値:0.01mm)である。
なお、本発明において、カットオフ値を「0.01mm」としたのは、前述したとおり、耐食性および導電性が共に優れた化成処理電気亜鉛めっき鋼板の、局所的な亜鉛露出状態を実現するためであり、従来、このような小さなカットオフ値が用いられた例はない。
The maximum height roughness (Rz) in the electrogalvanized part of the present invention is defined as 0.6 to 1.1 μm (cutoff value: 0.01 mm). This is because if the thickness is less than 0.6 μm, the zinc exposed portion cannot be sufficiently obtained, and the effect of improving the conductivity is lowered. On the other hand, if it exceeds 1.1 μm, the area of the exposed zinc portion after the chemical conversion treatment becomes large, the corrosion resistance is deteriorated, and the time until the occurrence of white rust is shortened. A preferable maximum height roughness (Rz) is 0.8 to 1.1 μm (cutoff value: 0.01 mm).
In the present invention, the cut-off value was set to “0.01 mm” in order to realize a local zinc exposure state of the chemically treated electrogalvanized steel sheet having excellent corrosion resistance and conductivity as described above. There is no example in which such a small cut-off value has been used.

さらに、本発明における化成皮膜の平均皮膜厚さは0.05〜1.0μmが好ましい。というのは、1.0μmを超えた膜厚になると、亜鉛露出部が減少して、導電性が劣化するおそれがあり、一方、0.05μmに満たないと、亜鉛露出部が増加して、耐食性が劣化するおそれが増えるからである。
なお、本発明での平均化成皮膜厚さは、断面の電子顕微鏡写真を撮影し、10箇所の膜厚を測定し、平均している。
Furthermore, the average film thickness of the chemical conversion film in the present invention is preferably 0.05 to 1.0 μm. This is because when the film thickness exceeds 1.0 μm, the exposed zinc portion may decrease and the conductivity may be deteriorated.On the other hand, if the thickness is less than 0.05 μm, the exposed zinc portion increases and the corrosion resistance is reduced. This is because the risk of deterioration increases.
In addition, the average chemical conversion film thickness in the present invention is obtained by taking an electron micrograph of a cross section, measuring the film thickness at 10 locations, and averaging.

本発明における基材となる鋼板は、従来公知のめっき用鋼板であって、冷延板、熱延板、熱延焼鈍板等がいずれも好適に使用できる。また、板厚は0.1〜5.0mmが好ましい。   The steel plate used as the base material in the present invention is a conventionally known steel plate for plating, and any of a cold-rolled plate, a hot-rolled plate, a hot-rolled annealed plate and the like can be suitably used. The plate thickness is preferably 0.1 to 5.0 mm.

本発明における化成皮膜の構成および製造方法は、特に制限はなく、通常公知の化成皮膜およびその製造方法が使用できる。つまり、無機高分子や有機高分子樹脂のマトリクスに、化成処理めっき鋼板の用途に応じて有機顔料ないしは無機顔料を分散したものであってもよいし、その皮膜は単層でも、複数の層を順次積層したものであってもよい。   There is no restriction | limiting in particular in the structure and manufacturing method of a chemical conversion film in this invention, A conventionally well-known chemical conversion film and its manufacturing method can be used. That is, an organic pigment or an inorganic pigment may be dispersed in a matrix of an inorganic polymer or an organic polymer resin according to the use of the chemical conversion coated steel sheet, and the film may be a single layer or a plurality of layers. Those sequentially laminated may be used.

化成処理前の電気亜鉛めっき鋼板の製造においては、その前処理として、鋼板表面を清浄化するための脱脂処理および水洗、さらに鋼板表面を活性化するための酸洗処理および水洗を施した後、電気亜鉛めっきを実施する。   In the production of the electrogalvanized steel sheet before chemical conversion treatment, as its pretreatment, after degreasing treatment and water washing for cleaning the steel sheet surface, and further pickling treatment and water washing for activating the steel sheet surface, Conduct electrogalvanization.

なお、上記した酸洗処理には、硫酸、塩酸、硝酸、及びこれらの混合物等各種の酸が使用できるが、硫酸、塩酸あるいはこれらの混合が望ましい。酸の濃度は特に限定しないが、酸化皮膜の除去能力、過酸洗による肌荒れ防止等を考慮すると、1〜20 mass% 程度が望ましい。また、その処理温度も特に限定しないが、10℃〜70℃程度が現実的である。なお、酸洗処理液には、消泡剤、促進剤、抑制剤等を含有しても良い。   Various acids such as sulfuric acid, hydrochloric acid, nitric acid, and mixtures thereof can be used for the pickling treatment described above, but sulfuric acid, hydrochloric acid, or a mixture thereof is desirable. The concentration of the acid is not particularly limited, but it is preferably about 1 to 20 mass% in consideration of the ability to remove the oxide film and prevention of rough skin by peracid washing. Further, the treatment temperature is not particularly limited, but about 10 ° C. to 70 ° C. is realistic. The pickling solution may contain an antifoaming agent, an accelerator, an inhibitor, and the like.

本発明における電気亜鉛めっきにおいて、めっき浴種においては、特に規定はしないが、酸性めっき浴としては硫酸浴、塩化物浴、あるいは両者の混合浴などが望ましい。
ここで、硫酸浴の硫酸水溶液中では、電解電流密度を100〜200A/dm2とする必要がある。というのは、硫酸浴において、電解電流密度が100A/dm2未満の場合、低傾斜角の亜鉛の配向性が増加し、亜鉛の微小凹凸が平滑化してしまう、その結果、化成処理鋼板の微小な亜鉛露出部が低くなってしまうからである。一方、電解電流密度が200A/dm2を超えた場合は、最大高さ粗さ(カットオフ値:0.01mm)が基準値以下となりやすく、導電性が低下しやすくなるからである。
In the electrogalvanizing in the present invention, the type of plating bath is not particularly defined, but as the acidic plating bath, a sulfuric acid bath, a chloride bath, a mixed bath of both, or the like is desirable.
Here, in the sulfuric acid aqueous solution of the sulfuric acid bath, the electrolysis current density needs to be 100 to 200 A / dm 2 . This is because, when the electrolysis current density is less than 100 A / dm 2 in a sulfuric acid bath, the orientation of zinc at a low inclination angle increases, and the fine irregularities of zinc are smoothed. This is because the exposed zinc exposed portion is lowered. On the other hand, when the electrolytic current density exceeds 200 A / dm 2 , the maximum height roughness (cutoff value: 0.01 mm) tends to be below the reference value, and the conductivity tends to decrease.

また、塩化物浴の塩化物水溶液中では、電解電流密度を30〜60 A/dm2とする必要がある。というのは、塩化物浴においては、電解電流密度が30A/dm2未満の場合、亜鉛析出の活性化過電圧が低下し、核生成速度に比較して結晶成長速度が速くなるため、亜鉛の結晶核が異常に粗大化して、亜鉛の結晶間に被覆されない部分が生じ、亜鉛露出部が増加する、その結果、耐食性が劣化するおそれが増えるからである。一方、電解電流密度が60A/dm2を超えた場合は、最大高さ粗さ(カットオフ値:0.01mm)が基準値以下となりやすく、導電性が低下しやすくなるからである。 Moreover, in the chloride aqueous solution of a chloride bath, it is necessary to make electrolysis current density 30-30 A / dm < 2 >. This is because in a chloride bath, when the electrolysis current density is less than 30 A / dm 2 , the activation overvoltage of zinc precipitation decreases, and the crystal growth rate increases compared to the nucleation rate. This is because the nucleus is abnormally coarsened, and a portion not covered between the zinc crystals is generated, and the exposed zinc portion is increased. As a result, the corrosion resistance is likely to deteriorate. On the other hand, when the electrolytic current density exceeds 60 A / dm 2 , the maximum height roughness (cutoff value: 0.01 mm) tends to be below the reference value, and the conductivity tends to decrease.

さらに、めっき浴によらず、上記の電解電流密度が300A/dm2を超えると、めっきヤケが生じやすくなり好ましくない。 Furthermore, it is not preferable that the electrolytic current density exceeds 300 A / dm 2 regardless of the plating bath, because plating burn is likely to occur.

めっき浴内の亜鉛濃度は1.0〜2.0 mol/L程度で良い。めっき浴条件については、特に限定しないが、例えば浴温を30〜70℃、pHを1.0〜4.5、相対流速を0〜4.0m/secとすれば良い。さらに電気亜鉛めっき層を形成するに際し、電解を複数回に分割して行っても良い。電気亜鉛めっきの付着量についても特に限定しないが、通常5〜40g/m2程度が好適である。 The zinc concentration in the plating bath may be about 1.0 to 2.0 mol / L. The plating bath conditions are not particularly limited. For example, the bath temperature may be 30 to 70 ° C., the pH may be 1.0 to 4.5, and the relative flow rate may be 0 to 4.0 m / sec. Furthermore, when forming the electrogalvanized layer, the electrolysis may be divided into a plurality of times. The amount of electrogalvanized adhesion is not particularly limited, but usually about 5 to 40 g / m 2 is preferable.

めっき用鋼板として、厚さ:0.7 mmの冷延鋼板を使用した。これをアルカリで脱脂し、水洗した後、硫酸:50 g/Lを添加した酸洗液にて酸洗処理を5秒間実施した。酸洗液の温度は35℃から40℃の範囲である。この酸洗処理の後、水洗し、以下の条件で電気亜鉛めっきを施した。電解条件、pH、めっき浴の種類等を表1に示す。また、電気亜鉛めっき層の最大高さ粗さ(Rz)を評価した、結果を表1に併記する。   A cold rolled steel sheet having a thickness of 0.7 mm was used as the steel sheet for plating. This was degreased with an alkali, washed with water, and then pickled with a pickling solution containing sulfuric acid: 50 g / L for 5 seconds. The temperature of the pickling solution is in the range of 35 ° C to 40 ° C. After this pickling treatment, it was washed with water and electrogalvanized under the following conditions. Table 1 shows the electrolysis conditions, pH, type of plating bath, and the like. Moreover, the maximum height roughness (Rz) of the electrogalvanized layer was evaluated, and the results are also shown in Table 1.

〔試験条件〕
めっき浴:Zn2+ 1.0〜2.0 mol/Lを含有する硫酸浴および塩化物浴
温度:50 ℃
pH:1.0 〜 4.0
相対流速:1.5 m/sec
電流密度:15〜200 A/dm2
電気量:150〜1500 C/dm2
以上の条件で作製した電気亜鉛めっき鋼板について、ロール塗布装置を用いて、P2O5換算で0.32 mol/Lの第一リン酸、SiO2換算で0.50 mol/Lのコロイダルシリカ、及び0.16 mol/LのMnを含有する処理液を塗布した後、140℃で乾燥して、リン酸含有皮膜を形成した。Mnは第一リン酸塩で供給した。
〔Test conditions〕
Plating bath: Sulfuric acid bath and chloride bath containing Zn 2+ 1.0-2.0 mol / L Temperature: 50 ℃
pH: 1.0 to 4.0
Relative flow velocity: 1.5 m / sec
Current density: 15-200 A / dm 2
Electricity: 150-1500 C / dm 2
For the electrogalvanized steel sheet produced under the above conditions, using a roll coater, 0.32 mol / L primary phosphoric acid in terms of P 2 O 5 , 0.50 mol / L colloidal silica in terms of SiO 2 , and 0.16 mol After applying a treatment solution containing / L of Mn, it was dried at 140 ° C. to form a phosphoric acid-containing film. Mn was supplied as primary phosphate.

次に、リン酸含有皮膜の上に、エポキシ系樹脂を含有する有機樹脂溶液を塗布し、140℃で焼き付け、シリカ含有有機樹脂皮膜を形成した。形成されたリン酸含有皮膜(下層化成皮膜)、シリカ含有有機樹脂皮膜(上層化成皮膜)の合計平均膜厚を表1に併記する。
また、上記で得られた化成処理電気亜鉛めっき鋼板の亜鉛露出部面積率(%)、耐食性、および導電性について調べた結果も表1に併記する。なお、最大高さ粗さ(Rz)および亜鉛露出部面積率(%)は、前記した方法に従い求めている。
Next, an organic resin solution containing an epoxy resin was applied onto the phosphoric acid-containing film and baked at 140 ° C. to form a silica-containing organic resin film. The total average film thicknesses of the formed phosphoric acid-containing film (lower chemical conversion film) and silica-containing organic resin film (upper chemical conversion film) are also shown in Table 1.
Moreover, the result of having investigated about the zinc exposed part area ratio (%), corrosion resistance, and electroconductivity of the chemical conversion treatment electrogalvanized steel plate obtained above is also written together in Table 1. The maximum height roughness (Rz) and the zinc exposed part area ratio (%) are obtained according to the above-described method.

耐食性は、各化成処理鋼板の平板について、JIS Z 2371に準じて塩水噴霧を実施し、48時間での白錆発生面積率を求め、白錆発生面積率に応じて以下のように評価した。
◎:白錆発生なし
○:白錆発生面積率0%を超え5%以下
△:白錆発生面積率5%を超え20%以下
×:白錆発生面積率20%を超え
Corrosion resistance was evaluated as follows according to the white rust occurrence area ratio by performing salt water spraying on the flat plate of each chemical conversion treated steel sheet according to JIS Z 2371, obtaining the white rust occurrence area ratio in 48 hours.
◎: No white rust occurrence ○: White rust occurrence area rate exceeding 0% and 5% or less △: White rust occurrence area rate exceeding 5% and 20% or less ×: White rust occurrence area rate exceeding 20%

導電性は、各化成処理鋼板を、低抵抗測定装置(ロレスタGP:三菱化学(株)製:ESPプローブ)を用い、表面抵抗値を測定した。その時、プローブ先端にかかる荷重を20g/sで増加させ、表面抵抗値が10-4Ω以下になった時の荷重を測定し、導電性は10点測定の平均荷重で評価した。
◎:導通時荷重200g以下
○:導通時荷重200gを超え300g以下
×:導通時荷重300gを超え
For conductivity, the surface resistance value of each chemical conversion treated steel sheet was measured using a low resistance measuring device (Loresta GP: manufactured by Mitsubishi Chemical Corporation: ESP probe). At that time, the load applied to the probe tip was increased at 20 g / s, the load when the surface resistance value was 10 −4 Ω or less was measured, and the conductivity was evaluated by the average load of 10 points measurement.
◎ : Conductive load 200g or less ○ : Conductive load 200g or more and 300g or less × : Conductive load 300g or less

また、亜鉛露出部とカットオフ値を0.01 mmとしたときの最大高さ粗さ(Rz)の関係を図1に示す。なお、図中の◎印は、耐食性が◎か○、および導電性が◎の評価結果である場合を、また、○印は、耐食性が◎か○、および導電性が○の評価結果である場合を、さらに×印は、耐食性が△か×、または導電性が×の評価結果の場合を示す。   Further, FIG. 1 shows the relationship between the zinc exposed portion and the maximum height roughness (Rz) when the cutoff value is 0.01 mm. In the figure, ◎ indicates the case where the corrosion resistance is ◎ or ○, and the conductivity is ◎, and ○ indicates the corrosion resistance is ◎ or 、, and the conductivity is ○. Further, the case of x indicates a case where the corrosion resistance is Δ or x or the evaluation result is that the conductivity is x.

Figure 0005471129
Figure 0005471129

表1および図1に示したように、本発明に従う化成処理電気亜鉛めっき鋼板は、いずれも優れた耐食性と同時に導電性を有していることが分かる。   As shown in Table 1 and FIG. 1, it can be seen that all of the chemical conversion electrogalvanized steel sheets according to the present invention have excellent corrosion resistance and conductivity.

本発明の化成処理電気亜鉛めっき鋼板は、耐食性および耐白錆と同時に導電性に優れているので、家電製品、自動車部品、あるいは建材等の用途に用いて好適である。   Since the chemical conversion electrogalvanized steel sheet of the present invention is excellent in corrosion resistance and white rust resistance as well as in electrical conductivity, it is suitable for use in home appliances, automobile parts, building materials and the like.

Claims (5)

鋼板表面に電気亜鉛めっき層および化成処理皮膜をそなえる化成処理電気亜鉛めっき鋼板であって、該電気亜鉛めっき層の最大高さ粗さ(Rz)が0.6〜1.1μm(但し、カットオフ値:0.01mm)で、かつ該化成処理皮膜の平均皮膜厚さが0.05〜1.0μmであって、さらに、該電気亜鉛めっき層の該化成処理皮膜に対する露出部の面積率が電気亜鉛めっき被覆面積の0.3〜1.0%であることを特徴とする化成処理電気亜鉛めっき鋼板。 Surface of the steel sheet to a chemical conversion treatment galvanized steel sheet Ru comprising a galvanized layer and the chemical conversion film, the maximum height roughness of the electrical galvanized layer (Rz) is 0.6~1.1Myuemu (However, the cut-off value: 0.01 mm), the average film thickness of the chemical conversion film is 0.05 to 1.0 μm, and the area ratio of the exposed portion of the electrogalvanized layer to the chemical conversion film is 0.3 of the electrogalvanized coating area. Chemical conversion electrogalvanized steel sheet characterized by being -1.0%. 前記電気亜鉛めっき層の最大高さ粗さ(Rz)が0.8〜1.1μm(但し、カットオフ値:0.01mm)であることを特徴とする請求項1に記載の化成処理電気亜鉛めっき鋼板。   2. The chemical conversion electrogalvanized steel sheet according to claim 1, wherein a maximum height roughness (Rz) of the electrogalvanized layer is 0.8 to 1.1 μm (however, a cutoff value: 0.01 mm). 鋼板表面に電気亜鉛めっきを施し、ついで化成処理を施してなる化成処理電気亜鉛めっき鋼板の製造方法において、該電気亜鉛めっきを施すにあたり、電解浴を硫酸水溶液とし、電解電流密度を100〜200A/dm2の範囲として、該電気亜鉛めっき層の最大高さ粗さ(Rz)を0.6〜1.1μm(但し、カットオフ値:0.01mm)とし、さらに、該化成処理による皮膜の厚さが平均厚さで0.05〜1.0μmとすることを特徴とする化成処理電気亜鉛めっき鋼板の製造方法。 In the manufacturing method of the chemical conversion electrogalvanized steel sheet, which is obtained by subjecting the steel sheet surface to electrogalvanization and then chemical conversion treatment. In applying the electrogalvanization, the electrolytic bath is a sulfuric acid aqueous solution, and the electrolysis current density is 100 to 200 A / in the range of dm 2, the maximum height roughness of the electrical galvanized layer (Rz) 0.6~1.1μm (where the cut-off value: 0.01 mm) and then, further, the thickness of the coating by chemical conversion The manufacturing method of the chemical conversion treatment electrogalvanized steel sheet characterized by setting it as 0.05-1.0 micrometer by average thickness . 鋼板表面に電気亜鉛めっきを施し、ついで化成処理を施してなる化成処理電気亜鉛めっき鋼板の製造方法において、該電気亜鉛めっきを施すにあたり、電解浴を塩化物水溶液とし、電解電流密度を30〜60A/dm2の範囲として、該電気亜鉛めっき層の最大高さ粗さ(Rz)を0.6〜1.1μm(但し、カットオフ値:0.01mm)とし、さらに、該化成処理による皮膜の厚さが平均厚さで0.05〜1.0μmとすることを特徴とする化成処理電気亜鉛めっき鋼板の製造方法。 In the manufacturing method of the chemical conversion electrogalvanized steel sheet, which is obtained by subjecting the steel sheet surface to electrogalvanization and then chemical conversion treatment. In applying the electrogalvanization, the electrolytic bath is a chloride aqueous solution, and the electrolysis current density is 30 to 60 A. in the range of / dm 2, the maximum height roughness of the electrical galvanized layer (Rz) 0.6~1.1μm (where the cut-off value: 0.01 mm) and then, further, the thickness of the coating by chemical conversion Has a mean thickness of 0.05 to 1.0 μm . 前記電気亜鉛めっき層の最大高さ粗さ(Rz)を0.8〜1.1μm(但し、カットオフ値:0.01mm)とすることを特徴とする請求項3または4に記載の化成処理電気亜鉛めっき鋼板の製造方法。5. The chemical conversion electrogalvanized steel sheet according to claim 3 or 4, wherein the maximum height roughness (Rz) of the electrogalvanized layer is 0.8 to 1.1 [mu] m (however, a cut-off value is 0.01 mm). Manufacturing method.
JP2009179453A 2009-07-31 2009-07-31 Chemical conversion electrogalvanized steel sheet and method for producing the same Expired - Fee Related JP5471129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179453A JP5471129B2 (en) 2009-07-31 2009-07-31 Chemical conversion electrogalvanized steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179453A JP5471129B2 (en) 2009-07-31 2009-07-31 Chemical conversion electrogalvanized steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011032528A JP2011032528A (en) 2011-02-17
JP5471129B2 true JP5471129B2 (en) 2014-04-16

Family

ID=43761892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179453A Expired - Fee Related JP5471129B2 (en) 2009-07-31 2009-07-31 Chemical conversion electrogalvanized steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5471129B2 (en)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04333576A (en) * 1991-05-09 1992-11-20 Kawasaki Steel Corp Production of surface-treated steel sheet having excellent adhesive property
JP2727861B2 (en) * 1992-03-30 1998-03-18 日本鋼管株式会社 Electrogalvanized steel sheet with excellent blackening resistance and good appearance after chemical conversion treatment
JPH09256192A (en) * 1996-03-18 1997-09-30 Kobe Steel Ltd Production of electrogalvanized steel sheet and surface treated galvanized steel sheet excellent in uniformity in plating appearance
JP2000054186A (en) * 1998-07-31 2000-02-22 Nkk Corp Electrogalvanized steel sheet excellent in blackening- resistance and good in whiteness degree and appearance after chemical conversion treatment of plated film and its production
JP2000256890A (en) * 1999-03-04 2000-09-19 Nkk Corp Production of electrogalvanized steel sheet
US6607844B1 (en) * 1999-03-15 2003-08-19 Kobe Steel, Ltd. Zn-Mg electroplated metal sheet and fabrication process therefor
JP3456459B2 (en) * 2000-01-31 2003-10-14 Jfeスチール株式会社 Surface-treated steel sheet with excellent drawability and ironability after drawing
JP2002080975A (en) * 2000-09-07 2002-03-22 Sumitomo Metal Ind Ltd Surface treated steel sheet for motor case
JP3499544B2 (en) * 2001-08-15 2004-02-23 株式会社神戸製鋼所 Electrical Zn-plated steel sheet with excellent white rust resistance and method for producing the same
JP2005226121A (en) * 2004-02-13 2005-08-25 Jfe Steel Kk Galvanized steel sheet having excellent press formability
JP4349149B2 (en) * 2004-02-25 2009-10-21 Jfeスチール株式会社 Method for producing surface-treated steel sheet having excellent conductivity
JP4923431B2 (en) * 2005-03-31 2012-04-25 Jfeスチール株式会社 Surface-treated steel sheet for organic resin-coated steel sheets
JP2007023353A (en) * 2005-07-19 2007-02-01 Yuken Industry Co Ltd Non-chromium reactive chemical conversion treatment of galvanized member
JP2007168273A (en) * 2005-12-22 2007-07-05 Jfe Steel Kk Coated steel plate
JP2007321222A (en) * 2006-06-04 2007-12-13 Jfe Steel Kk Surface treated steel sheet having excellent corrosion resistance and water resistance
JP5042555B2 (en) * 2006-08-03 2012-10-03 新日本製鐵株式会社 Zinc-based plated steel sheet having a thin film primary anticorrosive coating layer with excellent surface conductivity and method for producing the same
JP2009052080A (en) * 2007-08-27 2009-03-12 Jfe Steel Kk Surface-treated steel sheet having excellent corrosion resistance and conductivity
JP5046799B2 (en) * 2007-08-27 2012-10-10 株式会社神戸製鋼所 Non-chromate chemical conversion electroplated steel sheet with excellent white rust resistance
JP2009209419A (en) * 2008-03-05 2009-09-17 Nisshin Steel Co Ltd Electrogalvanized steel having excellent color tone and method of manufacturing the same

Also Published As

Publication number Publication date
JP2011032528A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5042098B2 (en) Resin-coated metal plate with excellent conductivity and method for producing the same
WO2009101707A1 (en) Galvanized steel sheet with thin primary corrosion-proof coating layer, excelling in surface conductivity, and process for producing the same
Castano et al. A comparative study on the corrosion resistance of cerium-based conversion coatings on AZ91D and AZ31B magnesium alloys
JP5369986B2 (en) Painted metal material and casing made of it
JP4601268B2 (en) Surface-treated galvanized steel sheet
JP4379005B2 (en) Method for producing tin-based plated steel sheet having Si-containing chemical conversion film
JP5471129B2 (en) Chemical conversion electrogalvanized steel sheet and method for producing the same
JP2007168273A (en) Coated steel plate
JP5703815B2 (en) Surface-treated steel sheet, electromagnetic wave shielding member, and electromagnetic wave shielding housing
JP5000384B2 (en) Conductor roll for continuous electroplating equipment, continuous electroplating equipment for metal steel strip, electroplated metal steel strip, and surface-treated steel sheet
JP5332543B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP2006299351A (en) Steel sheet having excellent galling resistance and chemical conversion treatability
JP4935099B2 (en) Metal plating material
JP5772465B2 (en) Method for producing electrogalvanized steel sheet
KR20070037506A (en) Black steel sheet excellent in electromagnetic wave shielding property, electromagnetic wave shielding member and electromagnetic wave shielding case
JP4692142B2 (en) Electromagnetic shielding member and electromagnetic shielding case
JP2007138191A (en) Coated steel sheet, member and panel for thin television
JP2014208906A (en) Laminated steel sheet excellent in corrosion resistance, processability, scratch resistance and abrasion resistance
EP3819407B1 (en) Manufacturing method of surface-treated zinc-nickel alloy electroplated steel sheet having excellent corrosion resistivity and paintability
JP6515383B2 (en) Black zinc alloy plated steel sheet and manufacturing method thereof
JP2001040494A (en) Electrogalvanized steel sheet excellent in surface appearance and its production
WO2021149821A1 (en) Roughened nickel-plated sheet
JP2010013706A (en) Process for producing tin-plated steel plate, and tin-plated steel plate
JPH0776794A (en) Electrogalvanized steel sheet excellent in uniform appearance
JP5609587B2 (en) Electrogalvanized steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees