JP2005226121A - Galvanized steel sheet having excellent press formability - Google Patents

Galvanized steel sheet having excellent press formability Download PDF

Info

Publication number
JP2005226121A
JP2005226121A JP2004035932A JP2004035932A JP2005226121A JP 2005226121 A JP2005226121 A JP 2005226121A JP 2004035932 A JP2004035932 A JP 2004035932A JP 2004035932 A JP2004035932 A JP 2004035932A JP 2005226121 A JP2005226121 A JP 2005226121A
Authority
JP
Japan
Prior art keywords
steel sheet
zinc
ppi
phosphate
roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004035932A
Other languages
Japanese (ja)
Inventor
Shinji Otsuka
真司 大塚
Satoshi Ando
聡 安藤
Akira Kawada
章 河田
Taizo Yamashita
泰三 山下
Yoshiharu Sugimoto
芳春 杉本
Chiaki Kato
千昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004035932A priority Critical patent/JP2005226121A/en
Publication of JP2005226121A publication Critical patent/JP2005226121A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvanized steel sheet having excellent press formability. <P>SOLUTION: Regarding the galvanized steel sheet in which the surface of galvanizing is provided with a phosphate film essentially consisting of zinc phosphate, the difference between the number of peaks PPI (0.080) in the case the cutoff in the peak count PPI of the surface roughness in the galvanized steel sheet is controlled to 0.080 μm, and the number of peaks PPI (0.318) in the case the cutoff in the peak count PPI is controlled to 0.318 μm is ≥40. The surface roughness Ra of the galvanized steel sheet satisfies 0.7 μm≤Ra≤1.7 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車車体等の用途に使用されるプレス成形性に優れた亜鉛系めっき鋼板に関するものである。   The present invention relates to a zinc-based plated steel sheet excellent in press formability used for applications such as automobile bodies.

従来鋼板をプレス成形する際には、プレス油、またはワックス等を含有した比較的粘度の高い潤滑油が広く一般的に使用されている。又、防錆性を高めるために鋼板表面に亜鉛含有金属のめっきを施した鋼板(以下、亜鉛系めっき鋼板と称する)をプレス等により成形したのち使用される場合が増加しつつある。   Conventionally, when press forming a steel sheet, press oil or lubricating oil containing wax or the like and having a relatively high viscosity is widely used. In addition, in order to enhance the rust prevention property, the use of a steel plate having a zinc-containing metal plated surface (hereinafter referred to as a zinc-based plated steel plate) formed by pressing or the like is increasing.

ところが亜鉛系めっき鋼板はめっき層に含有される亜鉛が比較的柔らかく且つ融点も低いため、プレス成形の際に金型に亜鉛が凝着し易い性質を有しており、通常のプレス油等による潤滑では鋼板上のめっきと金型とのかじりを防止することが困難である。   However, the zinc-based plated steel sheet has a property that zinc contained in the plating layer is relatively soft and has a low melting point, so that the zinc easily adheres to the mold during press molding. With lubrication, it is difficult to prevent galling between the plating on the steel sheet and the mold.

近年、自動車車体等の製造工程においては、生産性を向上し、製造コストを低減するために、従来になく高速でプレス加工が行われている。また、複雑な形状の部品を一体プレスで成形することにより、組み立て工程を簡略化し、製造コストの低減を計るといったニーズが強まり、ますますプレス油、潤滑油などの従来技術による潤滑方法のみでは前述のプレス成形への対応が困難となっている。   In recent years, in a manufacturing process of an automobile body or the like, press processing is performed at a higher speed than ever before in order to improve productivity and reduce manufacturing costs. In addition, the need to simplify the assembly process and reduce manufacturing costs by molding parts with complex shapes with an integrated press increases, and the above-mentioned conventional lubrication methods such as press oil and lubricating oil are increasingly used. It is difficult to respond to press molding.

一方、自動車車体等の防錆性を高めることを目的として亜鉛系めっき鋼板の自動車車体などに対する使用比率はますます増加する傾向にあり、前述の複雑な形状の部品(以下、難成形部品)等のプレス成形性の改良が重要となっている。その改善方法として、亜鉛めっき上にリン酸亜鉛を主体とするリン酸塩皮膜を形成させる技術が知られているが、特許文献1には、リン酸亜鉛皮膜に、さらに鉄、コバルト、ニッケル、カルシウム、マグネシウム、マンガンの内の1種以上を含有させるリン酸亜鉛複合皮膜とすることで、結晶水の脱水による吸熱ピーク温度を高温側にシフトさせてリン酸亜鉛複合皮膜の耐熱性を向上させることにより、高速プレス成形性に優れた亜鉛含有めっき鋼板複合体が得られることが開示されている。   On the other hand, the use ratio of galvanized steel sheets to automobile bodies is increasing more and more for the purpose of improving rust prevention of automobile bodies, etc., and the above-mentioned complicated shape parts (hereinafter difficult to form parts) etc. Improvement of press formability is important. As an improvement method thereof, a technique for forming a phosphate film mainly composed of zinc phosphate on galvanizing is known. However, Patent Document 1 discloses that a zinc phosphate film, iron, cobalt, nickel, By using a zinc phosphate composite film containing at least one of calcium, magnesium, and manganese, the endothermic peak temperature due to dehydration of crystal water is shifted to the high temperature side to improve the heat resistance of the zinc phosphate composite film. Thus, it is disclosed that a zinc-containing plated steel sheet composite having excellent high-speed press formability can be obtained.

また特許文献2に、リン酸塩処理亜鉛系めっき鋼板の高面圧下でのビード摺動特性を改善し、さらに加工性に優れるリン酸塩処理亜鉛系めっき鋼板を提供する技術が開示されている。   Patent Document 2 discloses a technique for improving a bead sliding property under a high surface pressure of a phosphate-treated zinc-based plated steel sheet and providing a phosphate-treated zinc-based plated steel sheet having excellent workability. .

さらに特許文献3に、非晶質のリン酸塩皮膜を有する亜鉛系めっき鋼板の表面粗度Ra、リン酸塩皮膜の付着量Cp及び両者の関係を特定範囲に規定することで、フラッシュめっき装置等の特別な設備を用いることなく製造でき、優れた潤滑性を発揮する亜鉛系めっき鋼板を提供する技術が開示されている。   Further, in Patent Document 3, the surface roughness Ra of the zinc-based plated steel sheet having an amorphous phosphate film, the adhesion amount Cp of the phosphate film, and the relationship between the two are specified in a specific range, thereby providing a flash plating apparatus. A technology for providing a galvanized steel sheet that can be manufactured without using special equipment such as the above and exhibits excellent lubricity is disclosed.

しかし、特許文献1に開示されるリン酸亜鉛複合皮膜では、難成形部品のプレス成形における高面圧、曲げ戻し変形条件下では、金型による強いせん断変形によってリン酸亜鉛複合皮膜(リン酸塩皮膜)の剥離が生じ、皮膜特性が発現されない場合が多い。   However, in the zinc phosphate composite coating disclosed in Patent Document 1, the zinc phosphate composite coating (phosphate) is caused by strong shear deformation by a mold under high surface pressure and unbending deformation conditions in press molding of difficult-to-mold parts. In many cases, the film characteristics are not exhibited.

特許文献2に開示されるリン酸塩処理亜鉛系めっき鋼板はMgを添加することによりリン酸塩が粒状結晶を有することを特徴としているために、Raが低い領域(0.2μm≦Ra≦0.7μm)において良好なプレス成形性を有すると考えられる。このような鋼板の場合、ビード径が大きく摺動長が長くなると、摺動により軟質な亜鉛層が変形し、早期に表面が平坦化される。その結果摺動後期ではRaが低くなり、ミクロプールが形成されず油の保持量が少なくなり金型と鋼板とのミクロな凝着が起こり、かじりが発生しやすくなる。   Since the phosphate-treated zinc-based plated steel sheet disclosed in Patent Document 2 is characterized in that the phosphate has granular crystals by adding Mg, the region where Ra is low (0.2 μm ≦ Ra ≦ 0 .7 μm) is considered to have good press formability. In the case of such a steel plate, when the bead diameter is large and the sliding length is long, the soft zinc layer is deformed by sliding, and the surface is flattened at an early stage. As a result, Ra becomes low in the later stage of sliding, the micropool is not formed, the amount of oil retained is reduced, and micro adhesion between the mold and the steel sheet occurs, and galling is likely to occur.

さらに、特許文献3に開示される亜鉛系めっき鋼板もダブルビードなど難成形性部品に使用される場合においては必ずしも優れたプレス性を得ることができない。   Furthermore, when the galvanized steel sheet disclosed in Patent Document 3 is used for difficult-to-form parts such as double beads, excellent pressability cannot always be obtained.

以下に先行技術文献情報について記載する。
特開平07−138764号公報 特開2003−119569号公報 特開平11−343581号公報
The prior art document information is described below.
Japanese Patent Laid-Open No. 07-138764 JP 2003-119568 A JP-A-11-334581

本発明は、プレス成形性に優れた亜鉛系めっき鋼板、特に難成形部品へのプレス成形に対応しうるプレス成形性に優れた亜鉛系めっき鋼板を提供することを目的とする。   An object of the present invention is to provide a zinc-based plated steel sheet excellent in press formability, in particular, a zinc-based plated steel sheet excellent in press formability that can be used for press forming on difficult-to-form parts.

本発明者らは前述の諸問題を解決すべく、亜鉛系めっき鋼板の表面形状など鋭意検討を重ねた結果、亜鉛系めっき鋼板表面の微細な凹凸を増やすことにより著しくプレス成形性に優れた亜鉛系めっき鋼板が得られることを見出した。本発明は、この知見に基づくものである。   As a result of intensive investigations such as the surface shape of a zinc-based plated steel sheet, the inventors of the present invention have solved the problems described above. It discovered that a system plating steel plate was obtained. The present invention is based on this finding.

上記課題を解決する本発明の手段は以下の通りである。   Means of the present invention for solving the above problems are as follows.

(1)亜鉛系めっき表面にリン酸亜鉛を主体とするリン酸塩皮膜を有する亜鉛系めっき鋼板において、前記亜鉛系めっき鋼板の表面粗さのピークカウントPPIのカットオフを0.080μmとしたときの山の数PPI(0.080)と、ピークカウントPPIのカットオフを0.318μmとしたときの山の数PPI(0.318)の差が40以上であることを特徴とするプレス成形性に優れた亜鉛系めっき鋼板。   (1) In a zinc-based plated steel sheet having a phosphate coating mainly composed of zinc phosphate on the zinc-based plated surface, when the cutoff of the peak count PPI of the surface roughness of the zinc-based plated steel sheet is 0.080 μm The difference between the number of peaks PPI (0.080) and the number of peaks PPI (0.318) when the cutoff of the peak count PPI is 0.318 μm is 40 or more. Excellent galvanized steel sheet.

(2)前記(1)において、前記亜鉛系めっき鋼板の表面粗度Raが0.7μm≦Ra≦1.7μmであることを特徴とするプレス成形性に優れた亜鉛系めっき鋼板。   (2) In the above (1), the surface roughness Ra of the zinc-based plated steel sheet is 0.7 μm ≦ Ra ≦ 1.7 μm.

(3)前記(1)又は(2)において、前記リン酸塩皮膜の付着量は0.2〜3g/m2であることを特徴とするプレス成形性に優れた亜鉛系めっき鋼板。 (3) In the above (1) or (2), the amount of the phosphate coating deposited is 0.2 to 3 g / m 2 .

なお、本発明において、ピークカウントPPIは、米国のSAE規格で定められた、表面粗さの粗さ曲線における1インチあたりの山数(peaks per inch)を示している。図1に、上記SAE規格に関して米国のThe Engineering Society for Advancing Mobility Land Sea Air and Space:SAE J911-JUN 86 「SURFACE TEXTURE MEASUREMENT OF COLD ROLLED SHEET STEEL」で定められたPPIの定義に関する表面粗さの粗さ曲線を示す。すなわち、図1において粗さ曲線の平均線から、正負、両方向に一定の基準レベルHを設け、負の基準レベルを越えた後、正の基準レベルを超えたとき、1カウントとする。このカウントを評価長さLnに達するまで繰り返し、数えた個数で表示したものをPPIと定義する。本発明においては、Ln=1inch(=25.4mm)、とし、H(ピークカウントレベル:粗さ曲線の平均線から基準レベル間の幅)を0.318μm、0.080μmとしたときのピークカウントをそれぞれPPI(0.318)、PPI(0.080)と記載する。   In the present invention, the peak count PPI indicates the number of peaks per inch (peaks per inch) in the roughness curve of the surface roughness defined by the US SAE standard. Figure 1 shows the roughness of the surface roughness related to the definition of PPI defined by the SAE J911-JUN 86 “SURFACE TEXTURE MEASUREMENT OF COLD ROLLED SHEET STEEL” for the SAE standard. The height curve is shown. That is, in FIG. 1, a constant reference level H is provided in both the positive and negative directions from the average line of the roughness curve, and after exceeding the negative reference level, 1 count is counted when the positive reference level is exceeded. This count is repeated until the evaluation length Ln is reached, and what is displayed by the counted number is defined as PPI. In the present invention, Ln = 1 inch (= 25.4 mm), and H (peak count level: the width between the average line of the roughness curve and the reference level) is 0.318 μm and 0.080 μm. Are described as PPI (0.318) and PPI (0.080), respectively.

また本発明における表面粗度(算術平均粗さ)Raは、JIS B 0601-1994に基づく。   The surface roughness (arithmetic average roughness) Ra in the present invention is based on JIS B 0601-1994.

本発明に係る亜鉛系めっき鋼板は、所定の粗さを有することで、高面圧で、曲げ戻し変形のあるプレス成形であっても、皮膜が平坦になっても該平坦部に多数のミクロプールが分散して存在することで、油保持能力が向上し、摺動時に金型とめっき鋼板表面の間に油が供給されるため、優れたプレス成形性が発現される。   The galvanized steel sheet according to the present invention has a predetermined roughness, so that even if it is press-molding with high surface pressure and bending back deformation, even if the film becomes flat, a large number of microscopic parts are formed on the flat part. The presence of the pool in a dispersed manner improves the oil holding capacity, and oil is supplied between the mold and the surface of the plated steel sheet during sliding, so that excellent press formability is exhibited.

本発明に係る亜鉛系めっき鋼板は、従来のプレス油、潤滑油、リン酸塩皮膜の技術では対応しきれないプレス成形用途への適用が可能となり、近年のプレス事情、例えば複雑な形状の一体成形化などを行う難成形部品への適用が可能であり、これによって、プレス成形の低コスト化を図りながら、高品質のプレス成形品が得られ、生産性の向上を図ることが可能となる。   The galvanized steel sheet according to the present invention can be applied to press forming applications that cannot be handled by conventional press oil, lubricating oil, and phosphate coating technologies. It can be applied to difficult-to-mold parts such as molding, and it is possible to obtain high-quality press-molded products and improve productivity while reducing the cost of press molding. .

また、本発明に係る亜鉛系めっき鋼板は、塗装品質も良好であるので、プレス成形を施した後、またはプレス成形を施すことなく、塗装用途にも使用できる。   Moreover, since the zinc-based plated steel sheet according to the present invention has good coating quality, it can also be used for coating applications after press molding or without press molding.

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

リン酸塩皮膜の潤滑作用自体は公知である。亜鉛系めっき鋼板にリン酸と亜鉛からなる単純なリン酸亜鉛皮膜を形成することで、通常のプレス成型性を評価する単純な形状の成形を行う深絞り試験においては、リン酸亜鉛皮膜の潤滑作用によって十分実用に耐えうるプレス成形性を発現できる。   The lubricating action of the phosphate coating itself is known. By forming a simple zinc phosphate film consisting of phosphoric acid and zinc on a galvanized steel sheet, the zinc phosphate film is lubricated in a deep drawing test for forming a simple shape that evaluates normal press formability. The press formability that can withstand practical use can be expressed by the action.

しかし、従来の前記リン酸亜鉛皮膜では、難成形部品の特に面圧の高いビード部で、かじりが生じ材料の流入が阻害され、プレス割れとなる場合があった。この理由は次のように考えられる。   However, in the conventional zinc phosphate coating, galling occurs in the bead portion of the difficult-to-mold part, which has a particularly high surface pressure, and the flow of the material is hindered, which may cause press cracks. The reason is considered as follows.

亜鉛めっき鋼板、例えば電気亜鉛めっき鋼板にリン酸塩皮膜を形成させ、高い面圧でプレス成形をした場合、強いせん断力が発生し、リン酸塩皮膜が破壊される。このことによりリン酸塩皮膜本来の潤滑性が損なわれるだけではなく、リン酸塩皮膜の損傷した部位において純亜鉛層が露出し、プレス金型と亜鉛の直接接触による亜鉛の凝着を引き起こすことによりかじりが発生し、ついにはプレス割れに至るものと考えられる。   When a phosphate film is formed on a galvanized steel sheet, for example, an electrogalvanized steel sheet, and press molding is performed at a high surface pressure, a strong shearing force is generated and the phosphate film is destroyed. This not only impairs the original lubricity of the phosphate coating, but also exposes a pure zinc layer at the damaged portion of the phosphate coating, causing zinc adhesion due to direct contact between the press die and zinc. It is thought that galling occurs due to this, and eventually press cracks occur.

特に難成形部品のプレス成形においては、ビード部が高面圧であるだけではなく、ダブルビードと呼ばれるビード部が2重になっている金型の場合がある。ダブルビードの金型プレスにおいてはプレス成形時において同一部位が2回摺動を受けることになるため、1回目のビード通過で皮膜が破壊され、2回目のビード通過時に金型と亜鉛との直接接触による亜鉛の凝着が起こり、プレス割れが起こりやすい。   In particular, in press molding of difficult-to-mold parts, there are cases where the bead portion has not only a high surface pressure but also a mold having double bead portions called double beads. In a double bead die press, the same part is slid twice during press molding, so the coating is destroyed by the first bead passage, and the die and zinc are directly passed by the second bead passage. Zinc adhesion due to contact occurs, and press cracking is likely to occur.

本発明では亜鉛系めっき表面にリン酸亜鉛を主体とするリン酸塩皮膜を有する亜鉛系めっき鋼板において、該めっき鋼板表面に微細な凹凸のみを増加させた鋼板であり、それによって、1回目のビード通過により皮膜が変形されても、単に平坦になるだけではなく、鋼板表面全面に前記微細凹凸に由来する多数のミクロプールが分散して存在して、油保持量が多くなるため、2回目のビード通過において金型と鋼板表面の亜鉛との凝着を抑制することができる。また、ビード径が大きく摺動距離が長い場合にも前述のミクロプールが形成され、油保持量が多く保たれるため、金型と鋼板とのミクロな凝着を起こりにくくすることができる。   In the present invention, a zinc-based plated steel sheet having a phosphate coating mainly composed of zinc phosphate on the zinc-based plated surface is a steel sheet in which only fine irregularities are increased on the surface of the plated steel sheet. Even if the coating is deformed by passing the bead, it is not only flattened, but a large number of micropools derived from the fine irregularities are dispersed and present on the entire surface of the steel sheet, so that the oil retention amount is increased. Adhesion between the mold and zinc on the steel sheet surface can be suppressed during the passage of the beads. Further, even when the bead diameter is large and the sliding distance is long, the above-described micropool is formed and the oil retention amount is kept large, so that micro adhesion between the mold and the steel plate can be made difficult to occur.

図2を参照して、本発明の亜鉛系めっき鋼板が優れたプレス成形性を発現する機構について説明する。図2には、(a)比較例の亜鉛系めっき鋼板(以下、比較鋼板とも記載する。)、(b)本発明例の亜鉛系めっき鋼板(以下、発明例鋼板とも記載する。)の各々について、(1)摺動前粗さプロファイル、(2)摺動後粗さプロファイル及び(3)摺動後の表面ミクロピット分布状態の各々を模式的に示している。なお、リン酸塩皮膜そのものが有する微細凹凸は、前述のめっき鋼板表面に付与される微細凹凸に比べるとさらに微細であるため、図2では、リン酸塩皮膜そのものが有する微細凹凸は省略されている。   With reference to FIG. 2, the mechanism in which the zinc-based plated steel sheet of the present invention exhibits excellent press formability will be described. 2, each of (a) a zinc-based plated steel sheet of a comparative example (hereinafter also referred to as a comparative steel sheet) and (b) a zinc-based plated steel sheet of the present invention example (hereinafter also referred to as an inventive example steel sheet). Each of (1) roughness profile before sliding, (2) roughness profile after sliding, and (3) surface micropit distribution state after sliding are schematically shown. In addition, since the fine unevenness | corrugation which the phosphate film itself has is further finer than the fine unevenness | corrugation provided on the above-mentioned plated steel plate surface, in FIG. 2, the fine unevenness | corrugation which the phosphate film itself has is abbreviate | omitted. Yes.

図2−(1)は摺動前粗さプロファイルを示す。図中、H=0.635、H=0.318、H=0.080で示される直線は、粗さ曲線の平均線から、正負、両方向に設けたピークカウントレベルH=0.635μm、H=0.318μm、H=0.080μmに対応する直線である。(a)の比較例鋼板、(b)の本発明例鋼板共に通常のPPIカウント数は25で同じであるが、本発明で規定されるパラメーター、すなわちPPI(0.080)とPPI(0.318)の差、PPI(0.080)−PPI(0.318)は、(a)の比較例鋼板は0であり、(b)の本発明例鋼板は、表面の微細凹凸が多数あるため、60である。通常のPPIは、ピークカウントレベルH=0.635μmを超えるピーク数である。本明細書では、PPI(0.635)と記載する。なお、以下の記載において、H(ピークレベル)を記載しないPPIは、H(ピークレベル):0.635μmを超える全てのピーク数のカウントである。   FIG. 2- (1) shows the roughness profile before sliding. In the figure, the straight lines indicated by H = 0.635, H = 0.318, and H = 0.080 are the peak count levels H = 0.635 μm, H provided in both positive and negative directions from the average line of the roughness curve. = 0.318 μm and H = 0.080 μm. The normal PPI count number is the same for both the comparative steel plate of (a) and the inventive steel plate of (b) at 25, but the parameters defined in the present invention, namely PPI (0.080) and PPI (0. 318), PPI (0.080) -PPI (0.318), the comparative steel plate of (a) is 0, and the inventive steel plate of (b) has many fine irregularities on the surface. , 60. The normal PPI is the number of peaks exceeding the peak count level H = 0.635 μm. In this specification, it is described as PPI (0.635). In the following description, PPI that does not describe H (peak level) is a count of all peaks that exceed H (peak level): 0.635 μm.

このような表面プロファイルを有する亜鉛系めっき鋼板がプレスにより摺動をうけると、表面が加工を受けるため、比較例鋼板(a)と本発明例鋼板(b)が同等の変形を受けたと仮定、ここでは粗さ曲線の平均線より突起している表面の凸部部分が粗さ曲線の平均線まで変形を受けたと仮定した場合、図2−(2)摺動後粗さプロファイルに示すように、リン酸塩皮膜の下層にあたる亜鉛層が軟質であるため、表面が変形し、表層部が平坦化する。(a)の比較例鋼板では、摺動後の平坦部同士の距離が長くなっているが、(b)の本発明例鋼板は微細凹凸が存在するために平坦部同士の距離が短くなっている。このときの摺動後表面を模式的に表すと、図2−(3)で示すようになる。   Assuming that the zinc-based plated steel sheet having such a surface profile is slid by pressing, the surface is subjected to processing, so that the comparative example steel sheet (a) and the present invention example steel sheet (b) were subjected to equivalent deformation, Here, assuming that the convex portion of the surface protruding from the average line of the roughness curve has been deformed to the average line of the roughness curve, as shown in FIG. Since the zinc layer, which is the lower layer of the phosphate film, is soft, the surface is deformed and the surface layer portion is flattened. In the comparative example steel plate of (a), the distance between the flat portions after sliding is longer, but the distance between the flat portions becomes shorter because the present invention example steel plate of (b) has fine irregularities. Yes. The surface after sliding at this time is schematically represented as shown in FIG.

図2−(3)において、(a)の比較例鋼板では油を保持できる部位であるミクロピットが散在しているのに対して、(b)の本発明例鋼板の表面は微細な凹凸が平坦化された後も残るため、それに由来するミクロピットが表面全面に分散して存在する。その結果、(b)の本発明例鋼板は、摺動時に金型とめっき鋼板表面の間に油が絶えず供給されるため、たとえリン酸塩皮膜が脱離し亜鉛層が露出しても、金型と亜鉛間の凝着が抑制される。その結果従来技術では達成し得なかった高面圧成形に耐え得るプレス成形性に優れたリン酸塩皮膜を有する亜鉛系めっき鋼板を得ることができるものと推定される。   In FIG. 2-(3), the comparative example steel plate of (a) has scattered micropits that are parts capable of holding oil, whereas the surface of the steel plate of the present invention example of (b) has fine irregularities. Since it remains after flattening, micropits derived from it remain dispersed over the entire surface. As a result, since the steel sheet of the present invention (b) is constantly supplied with oil between the mold and the surface of the plated steel sheet during sliding, even if the phosphate film is detached and the zinc layer is exposed, Adhesion between mold and zinc is suppressed. As a result, it is presumed that a zinc-based plated steel sheet having a phosphate film excellent in press formability that can withstand high surface pressure forming that could not be achieved by the prior art can be obtained.

通常、PPIを測定する場合、PPI数は、図1中に示されるH(ピークカウントレベル):0.635μmを超える全てのピーク数をカウントする。本発明者らは厳しいプレス条件の場合、例えば繰り返し摺動を受ける場合は、上述の機構で示されるように、変形を受けた後に微細凹凸を存在させることでプレス成形性が向上し、本発明の課題を達成することが可能であることに着目し、ビードにより引き抜き加工を施し、表面を平坦化した後の状態における摩擦係数を測定し、最適な微細凹凸を表現できるピークカウントレベルを検討した。その結果、PPI(0.080)とPPI(0.318)の差:PPI(0.080)−PPI(0.318)が摺動を受けた後の表面の平坦化後の凹部の分布を適切に表現出来ると結論した。この値の最適値は40以上であり、さらに好ましくは45以上である。PPI(0.080)とPPI(0.318)の差が40より小さいと油を保持することができるミクロプールが減少することにより優れたプレス成形性を有することが出来なくなる。   Normally, when PPI is measured, the number of PPI is H (peak count level) shown in FIG. 1: all peaks exceeding 0.635 μm are counted. In the case of severe press conditions, for example, when repeatedly subjected to sliding, the present invention improves the press formability by making fine irregularities present after being deformed, as shown by the mechanism described above. Focusing on the fact that it is possible to achieve the above problems, we measured the coefficient of friction in the state after flattening the surface by beading with a bead, and examined the peak count level that can express the optimal fine irregularities . As a result, the difference between the PPI (0.080) and the PPI (0.318): the distribution of the recesses after the flattening of the surface after the PPI (0.080) -PPI (0.318) is subjected to sliding. I concluded that I could express it properly. The optimum value of this value is 40 or more, more preferably 45 or more. If the difference between PPI (0.080) and PPI (0.318) is less than 40, the micro pool that can hold the oil is reduced, so that excellent press formability cannot be obtained.

本発明の亜鉛系めっき鋼板の表面粗度Raは0.7μm≦Ra≦1.7μmであることが好ましい。Raが0.7μmより小さい場合、防錆油の蓄油能力が低くなり、十分な潤滑性改善効果が認められなくなる。Raが1.7μmより大きい場合、調質圧延における加工度が高くなり、加工硬化によって原板の加工性が低下することになる。   The surface roughness Ra of the galvanized steel sheet of the present invention is preferably 0.7 μm ≦ Ra ≦ 1.7 μm. When Ra is smaller than 0.7 μm, the oil storage capacity of the rust preventive oil becomes low, and a sufficient lubricity improving effect is not recognized. When Ra is larger than 1.7 μm, the degree of processing in temper rolling increases, and the workability of the original sheet decreases due to work hardening.

本発明における亜鉛系めっき鋼板は、亜鉛、又は亜鉛と他の金属、例えばニッケル、鉄、アルミニウム、マンガン、クロム、鉛、アンチモン等の内から選ばれる少なくとも一種の金属との合金、及び不可避不純物によりめっきされた鋼板から選ばれる。   The zinc-based plated steel sheet in the present invention is made of zinc or an alloy of at least one metal selected from zinc and other metals such as nickel, iron, aluminum, manganese, chromium, lead, and antimony, and unavoidable impurities. Selected from plated steel sheet.

本発明におけるリン酸塩皮膜は、亜鉛以外の金属として鉄、コバルト、ニッケル、カルシウム、マグネシウム、及びマンガンなどを含んでいても良い。   The phosphate film in the present invention may contain iron, cobalt, nickel, calcium, magnesium, manganese, etc. as metals other than zinc.

前記リン酸塩皮膜の付着量には特に制限はないが、0.2〜3g/m2の付着量で前記亜鉛系めっき鋼板上に形成させることが好ましい。リン酸塩皮膜の付着量が0.2g/m2未満ではプレス成形性が不十分になることがあり、その付着量が3g/m2を超えるとプレス成形時にプレス型内に破壊されたリン酸塩皮膜が堆積し、異物として亜鉛系めっき鋼板表面に押し込まれるため、プレス傷が発生しやすくなることがある。 Although there is no restriction | limiting in particular in the adhesion amount of the said phosphate membrane | film | coat, It is preferable to form on the said galvanized steel plate with the adhesion amount of 0.2-3 g / m < 2 >. If the adhesion amount of the phosphate film is less than 0.2 g / m 2 , the press formability may be insufficient, and if the adhesion amount exceeds 3 g / m 2 , phosphorus destroyed in the press die during press molding. Since the acid salt film is deposited and pushed into the surface of the galvanized steel sheet as a foreign substance, press scratches may easily occur.

また、リン酸塩皮膜の付着量が前記範囲内にあると、塗膜密着性、塗膜鮮映性、塗装後耐食性などの塗膜品質を損なうことがなく、塗装性に優れるので、塗装用途への使用にも適する。   In addition, if the amount of phosphate coating is within the above range, coating quality such as coating adhesion, coating clarity, and post-coating corrosion resistance will not be impaired, and coating properties will be excellent. Also suitable for use in.

本発明で規定する粗さを有する亜鉛系めっき鋼板を製造する方法は特に制限されるものではないが、電気亜鉛めっき鋼板の場合はめっき前の原板(めっき原板)の粗さとめっき後の粗さは一定の対応関係があるので、電気亜鉛めっき前の原板の調圧条件を制御し、次に電気亜鉛めっき、リン酸塩処理を施することで、電気亜鉛めっき鋼板に所要の粗さを付与することが好ましい。   The method for producing a galvanized steel sheet having the roughness specified in the present invention is not particularly limited. In the case of an electrogalvanized steel sheet, the roughness of the original plate (plating original plate) before plating and the roughness after plating. Since there is a certain correspondence relationship, pressure regulation conditions of the original plate before electrogalvanizing are controlled, and then electrogalvanizing and phosphating are performed to give the required roughness to the electrogalvanized steel sheet. It is preferable to do.

例えば、めっき原板の調圧条件の制御は、めっき原板を2回調質圧延することで可能である。第1回目の調質圧延は、ピークカウントPPIの大きい圧延ロールを用いて圧延し、鋼板表面に微細な凹凸を付与する。第2回目の調質圧延は、第1回目の調質圧延で使用した圧延ロールよりも、表面粗さRaが大きく、ピークカウントPPIの小さい圧延ロールを用いて圧延する。2回目の調質圧延により、目的とする鋼板の表面粗さRaを得るだけではなく、ロールと鋼板との非接触部において、1回目の調質圧延によって得られた微細凹凸が残存されることで、図2−(1)の(b)本発明に示されるような表面の微細凹凸が多数存在する粗さプロファイルが得られる。   For example, it is possible to control the pressure adjusting conditions of the plating original plate by temper rolling the plating original plate twice. In the first temper rolling, rolling is performed using a rolling roll having a large peak count PPI, and fine irregularities are imparted to the steel sheet surface. The second temper rolling is performed using a rolling roll having a surface roughness Ra larger and a smaller peak count PPI than the rolling roll used in the first temper rolling. The second temper rolling not only obtains the target surface roughness Ra of the steel sheet, but also the fine irregularities obtained by the first temper rolling remain in the non-contact portion between the roll and the steel sheet. Thus, a roughness profile having a large number of fine irregularities on the surface as shown in FIG.

電気亜鉛めっき及びリン酸塩皮膜を形成後にピークカウントPPIが本発明で規定する範囲にするには、1回目の調質圧延は表面粗さRaが1.0〜2.9μm、ピークカウントPPIが225〜600の放電加工ロール、2回目の調質圧延はRaが2.9〜5.0μm、PPIが100〜225の放電加工ロールを各々用い、2回目の調質圧延終了時の伸張率(合計伸長率)が0.4〜0.7%となるように調質圧延を行えばよい。なお、前記PPIはH(ピークレベル):0.635μmを超える全てのピーク数のカウントである。   In order to make the peak count PPI within the range specified by the present invention after forming the electrogalvanized and phosphate coatings, the first temper rolling has a surface roughness Ra of 1.0 to 2.9 μm and a peak count PPI of The 225 to 600 electric discharge machining rolls and the second temper rolling use Ra 2.9 to 5.0 μm and the PPIs 100 to 225, respectively, and the elongation ratio at the end of the second temper rolling ( The temper rolling may be performed so that the total elongation ratio is 0.4 to 0.7%. The PPI is a count of all peaks exceeding H (peak level): 0.635 μm.

圧延ロールに粗さを付与する際に、ロール表面に、図2−(1)の(b)本発明に示す粗さプロファイルに対応する粗さプロファイルを有する粗さを付与し、この圧延ロールを使用して1回の調質圧延で所要の粗さを付与してもよい。   When the roughness is imparted to the rolling roll, the surface of the roll is imparted with a roughness having a roughness profile corresponding to the roughness profile shown in FIG. You may use and give required roughness by one temper rolling.

亜鉛系めっき鋼板表面に前記リン酸亜鉛を主体とするリン酸塩皮膜を形成した後、更にその上に潤滑油の層を形成させることが好ましい。潤滑油の付着量が0.2〜3g/m2の塗布量で塗布形成させることが好ましい。塗布される潤滑油の種類には特に制限は無いが、比較的低融点の鉱油、天然油脂、合成エステル油及びワックスの内から選ばれることが好ましい。尚、これらの潤滑油には防錆添加剤、極圧添加剤等の各種添加剤を含んだものも使用できる。潤滑油の塗布量が0.2g/m2未満ではプレス成形性能が不十分になることがあり、3g/m2を超えるとプレス成形性能が飽和に達し、経済的に不利になることがある。 After forming the phosphate film mainly composed of zinc phosphate on the surface of the zinc-based plated steel sheet, it is preferable to further form a lubricating oil layer thereon. It is preferable to apply and form the lubricant with an application amount of 0.2 to 3 g / m 2 . The type of lubricating oil to be applied is not particularly limited, but is preferably selected from mineral oils having a relatively low melting point, natural fats and oils, synthetic ester oils, and waxes. These lubricating oils can be used containing various additives such as rust preventive additives and extreme pressure additives. If the application amount of the lubricating oil is less than 0.2 g / m 2 , the press molding performance may be insufficient. If it exceeds 3 g / m 2 , the press molding performance may reach saturation, which may be economically disadvantageous. .

下記実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例により特に限定されるものではない。   The present invention is specifically described by the following examples, but the scope of the present invention is not particularly limited by these examples.

1.基体(冷延鋼板)
電気亜鉛めっき前の原板の調圧条件を制御することによって本発明の特徴である表面粗さを有する鋼板を得た。本発明例ではめっき前の原板を2回調圧することにより所定の粗さを得た。具体的には、第1回目の調質圧延では表面粗さRaが2.3μm、ピークカウントPPIが270の放電加工ロールを用いて圧延を行い、第2回目の調質圧延は表面粗さRaが3.4、4.0、ピークカウントPPIが180〜220の放電加工ロールを用いて圧延を行い、2回目の調質圧延終了時の伸張率(合計伸長率)が0.4〜0.7%となるようにして調質圧延を行った。また比較例鋼板については、前記本発明例の第1回目の調質圧延で使用した圧延ロール、または第2回目の調質圧延で使用したロールのいずれかを用いて、1回の調質圧延で伸張率が0.5〜0.7%となるように圧延を行った(比較例)。このように調質圧延により粗さを変えて製造したサンプルを基体とした。調質圧延後の基体の板厚は0.8mmで、材質は軟質の極低炭素鋼である。
1. Substrate (cold rolled steel sheet)
By controlling the pressure regulation conditions of the original plate before electrogalvanization, a steel plate having the surface roughness that is a feature of the present invention was obtained. In the present invention example, a predetermined roughness was obtained by adjusting the pressure of the original plate before plating twice. Specifically, the first temper rolling is performed using an electric discharge roll having a surface roughness Ra of 2.3 μm and a peak count PPI of 270, and the second temper rolling is performed with a surface roughness Ra. Is 3.4 and 4.0, and rolling is performed using an electric discharge machining roll having a peak count PPI of 180 to 220, and the elongation ratio (total elongation ratio) at the end of the second temper rolling is 0.4 to 0.00. The temper rolling was performed so as to be 7%. Further, for the comparative steel sheet, one temper rolling was performed using either the rolling roll used in the first temper rolling of the invention example or the roll used in the second temper rolling. Then, rolling was performed so that the elongation ratio was 0.5 to 0.7% (comparative example). Thus, the sample manufactured by changing the roughness by temper rolling was used as a substrate. The thickness of the substrate after the temper rolling is 0.8 mm, and the material is soft ultra-low carbon steel.

2.電気亜鉛めっき
2-1前処理
電解によりアルカリ脱脂した後、硫酸70g/リットルの水溶液中で5秒間酸洗した。
2-2電気亜鉛めっき
液循環型のめっき実験装置を用い、実ラインで複数の電解槽でめっきすることを想定して、めっき時の通電をオン、オフさせた。電流密度は60A/dm2でオン時間1秒を15回繰り返し、めっき量を50g/m2とした。また、めっき液は、硫酸亜鉛7水和物が400g/リットル、pHを硫酸にて1.4とした、50℃の硫酸酸性めっき浴を調整したものを用い、めっき浴と鋼板の相対流速は1.5m/sとした。
2. Electro-galvanizing 2-1 pretreatment After alkaline degreasing by electrolysis, it was pickled in an aqueous solution of 70 g / liter sulfuric acid for 5 seconds.
2-2 Electro-galvanization Using a liquid circulation type plating experimental apparatus, energization during plating was turned on and off on the assumption that plating was performed in a plurality of electrolytic cells on an actual line. The current density was 60 A / dm 2 , the on-time of 1 second was repeated 15 times, and the plating amount was 50 g / m 2 . The plating solution was prepared by adjusting a sulfuric acid acidic plating bath at 50 ° C. with zinc sulfate heptahydrate 400 g / liter and pH 1.4 with sulfuric acid. It was set to 1.5 m / s.

3.リン酸塩皮膜形成処理
3−1.表調処理
基体を市販のチタンコロイドである表調処理液プレパレンZN(日本パーカライジング株式会社製)を3g/リットルの濃度に水で希釈し、処理温度40℃、処理時間10秒間で、スプレー圧1kgf/cm2の条件でスプレー処理を行った。
3−2.リン酸塩皮膜形成処理
前記表調処理を施したそれぞれの基体を市販のPB−PP100(日本パーカライジング株式会社製)を50g/リットルの濃度に水で希釈し、処理温度57℃、処理時間30秒間のスプレー法にてリン酸塩皮膜形成処理を行った。
3. 3. Phosphate film formation treatment 3-1. Surface tone treatment Surface tone treatment solution preparen ZN (manufactured by Nihon Parkerizing Co., Ltd.), a commercially available titanium colloid, is diluted with water to a concentration of 3 g / liter, treatment temperature is 40 ° C., treatment time is 10 seconds, spray pressure is 1 kgf. The spray treatment was performed under the conditions of / cm 2 .
3-2. Phosphate film forming treatment Each substrate subjected to the surface tone treatment was diluted with commercially available PB-PP100 (manufactured by Nippon Parkerizing Co., Ltd.) with water to a concentration of 50 g / liter, treatment temperature 57 ° C., treatment time 30 seconds. The phosphate film formation process was performed by the spray method.

前記に従い電気亜鉛めっき、リン酸塩皮膜形成処理を行うことにより、粗さの異なるリン酸塩皮膜を有する亜鉛系めっき鋼板を作成した。亜鉛系めっき鋼板の粗さを表1に示した。   By performing electrogalvanization and phosphate film formation treatment according to the above, zinc-based plated steel sheets having phosphate films with different roughnesses were prepared. Table 1 shows the roughness of the galvanized steel sheet.

4.評価試験方法
亜鉛系めっき鋼板のリン酸塩皮膜重量、プレス成形性、塗装品質の評価を下記の様に行った。
4−1.リン酸塩皮膜重量
リン酸塩皮膜重量は下記に示す方法で求めた。
(1)予め試験片を精密天秤にて重量(W1:g)を測定し、この試験片を重クロム酸アンモニウム20g/リットル、25%アンモニア水490g/リットルを含む脱イオン水溶液に常温で15分間浸漬し、リン酸塩結晶を溶解した。
(2)これに水洗を施して試験片に残存している重クロム酸アンモニウム水溶液を除去し、乾燥した。
(3)再度、精密天秤にて試験片の重量(W2:g)を測定し、その重量差(W1−W2)より単位面積あたりの皮膜重量を算出した。
4−2.粗さ測定
算術平均粗さ:Raは、JIS B 0601-1994に基づき測定をおこなった。またPPIは米国のSAE規格で規定された方法に従って測定を行った。
4). Evaluation Test Method The phosphate film weight, press formability, and coating quality of the zinc-based plated steel sheet were evaluated as follows.
4-1. Phosphate film weight The phosphate film weight was determined by the method described below.
(1) The weight (W1: g) of the test piece was measured in advance with a precision balance, and the test piece was placed in a deionized aqueous solution containing 20 g / liter of ammonium dichromate and 490 g / liter of 25% aqueous ammonia at room temperature for 15 minutes. Immersion and dissolved the phosphate crystals.
(2) This was washed with water to remove the ammonium dichromate aqueous solution remaining on the test piece and dried.
(3) The weight (W2: g) of the test piece was again measured with a precision balance, and the coating weight per unit area was calculated from the weight difference (W1-W2).
4-2. Roughness measurement Arithmetic mean roughness: Ra was measured based on JIS B 0601-1994. PPI was measured according to a method defined in the US SAE standard.

4−3.プレス成形性
処理された亜鉛系めっき鋼板のプレス成形性は、高面圧で曲げ戻し変形のあるプレス成形を模した試験である下記に示す条件の試験を行い評価した。
4−3−1.ドロービード試験
30mm×250mmの試験片に、潤滑油としてフックス社製アンチコリットPL3802を1.5g/m2塗布し、ビード先端半径5mm、ビード高さ3mm、押し付け力2000kgf、引抜速度200mm/分でドロービードテストを行い、引き抜き抵抗(R)を求めた。結果を表1及び図3に示した。
4−3−2.加工後摺動性
前記ドロービード試験を押し付け力1000kgfに変えた以外は同一の条件で試験を行い、得られた試験片のビードにより摺動を受けた面を対象面として、平板摺動試験(ビード:3×10mm、押し付け圧:130.4Mpa、引抜速度1.0m/分)を行い、そのときの引き抜き力(F)を測定し、摩擦係数(μ=F/N)(F:引き抜き力、N:押し付け力)を測定した。結果を表1及び図4に示した。
4-3. Press Formability The press formability of the treated galvanized steel sheet was evaluated by performing tests under the following conditions, which are tests simulating press forming with high surface pressure and bending back deformation.
4-3-1. Draw bead test A 30 mm x 250 mm test piece was coated with 1.5 g / m 2 of Fuchs anticorrit PL3802 as a lubricating oil, a bead tip radius of 5 mm, a bead height of 3 mm, a pressing force of 2000 kgf, and a draw speed of 200 mm / min. A test was conducted to determine the pulling resistance (R). The results are shown in Table 1 and FIG.
4-3-2. Slidability after processing The test was performed under the same conditions except that the draw bead test was changed to a pressing force of 1000 kgf, and a flat sliding test (bead : 3 × 10 mm, pressing pressure: 130.4 Mpa, pulling speed 1.0 m / min), the pulling force (F) at that time is measured, and the coefficient of friction (μ = F / N) (F: pulling force, N: pressing force). The results are shown in Table 1 and FIG.

Figure 2005226121
Figure 2005226121

表1、図3及び図4から明らかなように、本発明で規定する粗さを付与された発明例(No.1〜7)は、引き抜き抵抗R及びドロービード後摩擦係数μの両方が小さく、プレス成形性に良好な結果を示していた。一方、本発明で規定する粗さが付与されていない比較例(No.8〜14)は、引き抜き抵抗R及びドロービード後摩擦係数μの両方が大きく、プレス成形性の評価結果は発明例に比べてかなり劣っていた。   As is apparent from Table 1, FIG. 3 and FIG. 4, the invention examples (Nos. 1 to 7) to which the roughness specified in the present invention is applied, both the drawing resistance R and the draw bead friction coefficient μ are small, The press moldability was good. On the other hand, in the comparative examples (Nos. 8 to 14) to which the roughness specified in the present invention is not given, both the drawing resistance R and the coefficient of friction after draw bead μ are large, and the evaluation results of press formability are higher than those of the inventive examples. It was quite inferior.

発明例について塗装品質として、自動車用カチオン電着塗装20μm後、(i)1mm碁盤目カットしてテープ剥離で塗料密着性を評価し、(ii)クロスカット塩水噴霧での塗膜膨れ幅を測定し、塗装後耐食性を評価したところ、通常のリン酸塩皮膜が形成された亜鉛めっき鋼板と同等の品質であった。   As for the coating quality of the inventive example, after 20 μm of cationic electrodeposition coating for automobiles, (i) cut 1 mm grid and evaluate paint adhesion by peeling tape, and (ii) measure the swollen width of paint film by cross-cut salt spray When the corrosion resistance after coating was evaluated, the quality was equivalent to that of a galvanized steel sheet on which a normal phosphate film was formed.

本発明に係る亜鉛系めっき鋼板は、優れたプレス成形性が要求される自動車車体等の用途に使用する亜鉛系めっき鋼板として利用することができる。   The zinc-based plated steel sheet according to the present invention can be used as a zinc-based plated steel sheet used for applications such as automobile bodies that require excellent press formability.

本発明に係る亜鉛系めっき鋼板は、一体成形、ダブルビード金型を使用してプレス成形を行う難成形部品の用途に使用する亜鉛系めっき鋼板として利用することができる。   The galvanized steel sheet according to the present invention can be used as a galvanized steel sheet used for difficult-to-mold parts that are integrally formed and press-formed using a double bead mold.

本発明に係る亜鉛系めっき鋼板は、塗装品質も良好であるので、プレス成形を施した後、またはプレス成形を施すことなく、塗装を行う用途に使用される亜鉛系めっき鋼板として利用することができる。   Since the zinc-based plated steel sheet according to the present invention has good coating quality, it can be used as a zinc-based plated steel sheet used for coating purposes after performing press molding or without performing press molding. it can.

表面粗さの粗さ曲線においてPPIの定義を説明する図である。It is a figure explaining the definition of PPI in the roughness curve of surface roughness. 本発明の亜鉛系めっき鋼板が優れたプレス成形性を発現する機構について説明する図で、(a)比較例の亜鉛系めっき鋼板、(b)本発明例の亜鉛系めっき鋼板(の各々について、(1)摺動前粗さプロファイル、(2)摺動後粗さプロファイル及び(3)摺動後の表面ミクロピット分布状態の各々を模式的に示している。It is a figure explaining the mechanism in which the zinc-based plated steel sheet of the present invention exhibits excellent press formability, (a) a zinc-based plated steel sheet of a comparative example, (b) a zinc-based plated steel sheet of the present invention example (each of Each of (1) roughness profile before sliding, (2) roughness profile after sliding, and (3) surface micropit distribution state after sliding is schematically shown. PPI(0.080)−PPI(0.318)と、引き抜き抵抗Rの関係を説明する図である。It is a figure explaining the relationship between PPI (0.080) -PPI (0.318) and the extraction resistance R. FIG. PPI(0.080)−PPI(0.318)と、ドロービード後摩擦係数μの関係を説明する図である。It is a figure explaining the relationship between PPI (0.080) -PPI (0.318) and the friction coefficient μ after a draw bead.

Claims (3)

亜鉛系めっき表面にリン酸亜鉛を主体とするリン酸塩皮膜を有する亜鉛系めっき鋼板において、前記亜鉛系めっき鋼板の表面粗さのピークカウントPPIのカットオフを0.080μmとしたときの山の数PPI(0.080)と、ピークカウントPPIのカットオフを0.318μmとしたときの山の数PPI(0.318)の差が40以上であることを特徴とするプレス成形性に優れた亜鉛系めっき鋼板。 In a zinc-based plated steel sheet having a phosphate coating mainly composed of zinc phosphate on the zinc-based plated surface, the peak of the peak count PPI of the surface roughness of the zinc-based plated steel sheet is 0.080 μm. The difference between the number PPI (0.080) and the peak number PPI (0.318) when the cutoff of the peak count PPI is 0.318 μm is 40 or more, and the press formability is excellent. Galvanized steel sheet. 前記亜鉛系めっき鋼板の表面粗度Raが0.7μm≦Ra≦1.7μmであることを特徴とする請求項1記載のプレス成形性に優れた亜鉛系めっき鋼板。 2. The zinc-based plated steel sheet having excellent press formability according to claim 1, wherein the surface roughness Ra of the zinc-based plated steel sheet is 0.7 μm ≦ Ra ≦ 1.7 μm. 前記リン酸塩皮膜の付着量は0.2〜3g/m2であることを特徴とする請求項1又は2記載のプレス成形性に優れた亜鉛系めっき鋼板。 Coverages good galvanized steel sheet in press formability according to claim 1 or 2, characterized in that a 0.2 to 3 g / m 2 of the phosphate film.
JP2004035932A 2004-02-13 2004-02-13 Galvanized steel sheet having excellent press formability Pending JP2005226121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035932A JP2005226121A (en) 2004-02-13 2004-02-13 Galvanized steel sheet having excellent press formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035932A JP2005226121A (en) 2004-02-13 2004-02-13 Galvanized steel sheet having excellent press formability

Publications (1)

Publication Number Publication Date
JP2005226121A true JP2005226121A (en) 2005-08-25

Family

ID=35001069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035932A Pending JP2005226121A (en) 2004-02-13 2004-02-13 Galvanized steel sheet having excellent press formability

Country Status (1)

Country Link
JP (1) JP2005226121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032528A (en) * 2009-07-31 2011-02-17 Jfe Steel Corp Chemical conversion treated electrogalvanized steel sheet and method of manufacturing the same
WO2022123930A1 (en) * 2020-12-09 2022-06-16 Jfeスチール株式会社 Steel sheet and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032528A (en) * 2009-07-31 2011-02-17 Jfe Steel Corp Chemical conversion treated electrogalvanized steel sheet and method of manufacturing the same
WO2022123930A1 (en) * 2020-12-09 2022-06-16 Jfeスチール株式会社 Steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
RU2636217C1 (en) Method of manufacturing details with low side strain of electro-galvanized metal sheet and relevant detail and vehicle
CN108136454A (en) The manufacturing method of surface quality and the excellent coated steel sheet of punching formation property and the coated steel sheet manufactured by this method
WO2015087921A1 (en) Al-plated steel sheet for hot pressing and process for manufacturing al-plated steel sheet for hot pressing
JP7273206B2 (en) Method for manufacturing hot-dip galvanized steel sheet with excellent press formability and clear image after painting, and hot-dip galvanized steel sheet manufactured by this method
KR20120063529A (en) Alloyed hot-dip galvanized steel sheet having excellent formability and post-adhesion detachment resistance, and manufacturing method therefor
JP5482463B2 (en) Highly lubricated steel sheet for multistage forming
JP2005226121A (en) Galvanized steel sheet having excellent press formability
JP6682691B1 (en) Surface-treated galvanized steel sheet and method for producing the same
JP2006299351A (en) Steel sheet having excellent galling resistance and chemical conversion treatability
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP2003268521A (en) HOT DIP Sn-Zn PLATED STEEL SHEET
JP3314606B2 (en) Galvanized steel sheet with excellent lubricity and its manufacturing method
JP3097472B2 (en) Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same
JP2692604B2 (en) Steel plate with excellent press formability
JP4269758B2 (en) Galvanized steel sheet and method for producing the same
CN111455299B (en) Method for improving electrophoretic pinhole voltage of alloyed galvanized steel sheet
WO2021065026A1 (en) Surface-treated zinc-based plated steel sheet and method for manufacturing same
JP7264324B1 (en) Galvanized steel sheet
JP3846292B2 (en) Galvanized steel sheet with excellent press formability, paint adhesion and post-coating corrosion resistance
JPS6333593A (en) Plated steel sheet having superior press formability and sharpness after coating
JP3858706B2 (en) Galvanized steel sheet with excellent press formability
KR100785989B1 (en) Manufacturing method of lubricant inorganic pre-phosphates coated galvanized steel sheet having a high formability and the steel sheet thereof
JP2005023336A (en) Galvanized steel sheet having excellent press formability
JP2608482B2 (en) Electrogalvanized steel sheet excellent in lubricity and method for producing the same
JP2005305539A (en) Method for producing high strength automobile member

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20060921

Free format text: JAPANESE INTERMEDIATE CODE: A7421