JP5471097B2 - Bonding method of metal substrate and glass substrate - Google Patents

Bonding method of metal substrate and glass substrate Download PDF

Info

Publication number
JP5471097B2
JP5471097B2 JP2009163658A JP2009163658A JP5471097B2 JP 5471097 B2 JP5471097 B2 JP 5471097B2 JP 2009163658 A JP2009163658 A JP 2009163658A JP 2009163658 A JP2009163658 A JP 2009163658A JP 5471097 B2 JP5471097 B2 JP 5471097B2
Authority
JP
Japan
Prior art keywords
substrate
metal substrate
metal
glass
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009163658A
Other languages
Japanese (ja)
Other versions
JP2011018608A (en
Inventor
秀夫 倉島
康哲 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2009163658A priority Critical patent/JP5471097B2/en
Publication of JP2011018608A publication Critical patent/JP2011018608A/en
Application granted granted Critical
Publication of JP5471097B2 publication Critical patent/JP5471097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、金属基板とガラス基板との接合方法に関するものであり、より詳細には、封止材を用いて、金属基板とガラス基板とを接合する方法に関するものである。   The present invention relates to a method for joining a metal substrate and a glass substrate, and more particularly, to a method for joining a metal substrate and a glass substrate using a sealing material.

ガラス基板は、透明である特性を活かして種々の用途に使用されているが、その用途によっては、金属基板に接合されて使用される。その代表的な用途して、色素増感型太陽電池を挙げることができる。   A glass substrate is used for various applications by taking advantage of its transparent property. Depending on the application, the glass substrate is used by being bonded to a metal substrate. A typical example thereof is a dye-sensitized solar cell.

例えば、色素増感型太陽電池として図1に示す構造のものが知られている。即ち、図1において、この色素増感型太陽電池は、光電極基板1(負極)と対極基板3(正極)とが、電解質液5を間に挟んで対峙した構造を有しており、光電極基板1と対極基板3との周縁部分は、電解質液5が漏洩しないように、封止材7で接合されて封止されている。   For example, a dye-sensitized solar cell having a structure shown in FIG. 1 is known. That is, in FIG. 1, this dye-sensitized solar cell has a structure in which a photoelectrode substrate 1 (negative electrode) and a counter electrode substrate 3 (positive electrode) face each other with an electrolyte solution 5 interposed therebetween. The peripheral portions of the electrode substrate 1 and the counter electrode substrate 3 are joined and sealed with a sealing material 7 so that the electrolyte solution 5 does not leak.

このような色素増感型太陽電池において、光電極基板1は、アルミニウム板等の金属板1a上に、二酸化チタンなどの酸化物半導体の多孔質層1bが設けられており、この多孔質層1bの表面には増感色素(例えばRu色素)1cが吸着担持されている。また、対極基板3は、ガラス板3aの表面にITO等の透明導電膜3bが形成され、さらにその上には、プラチナや白金等の蒸着膜が電子還元性導電層3cとして形成されており、透明導電膜3bと電子還元性導電層3cとが電極層として機能する。   In such a dye-sensitized solar cell, the photoelectrode substrate 1 is provided with a porous layer 1b of an oxide semiconductor such as titanium dioxide on a metal plate 1a such as an aluminum plate, and this porous layer 1b. A sensitizing dye (for example, Ru dye) 1c is adsorbed and supported on the surface. Further, the counter electrode substrate 3 has a transparent conductive film 3b such as ITO formed on the surface of the glass plate 3a, and further, a deposited film such as platinum or platinum is formed thereon as an electron reducing conductive layer 3c. The transparent conductive film 3b and the electron reducing conductive layer 3c function as an electrode layer.

即ち、上記の色素増感型太陽電池においては、対極基板3側からの可視光の照射によって、色素1cが励起され、励起された色素1cの電子は、酸化物半導体層1bの伝導帯へ注入され、金属板1aから外部負荷(図示せず)を通って対極基板3に移動し、透明導電膜3bから導電層3cを通って電解質液5中のイオンによって運ばれ、色素1cに戻る。この繰り返しにより、外部負荷により電気エネルギーが取り出されるわけである。   That is, in the above dye-sensitized solar cell, the dye 1c is excited by irradiation of visible light from the counter electrode substrate 3 side, and the excited electrons of the dye 1c are injected into the conduction band of the oxide semiconductor layer 1b. Then, it moves from the metal plate 1a to the counter electrode substrate 3 through an external load (not shown), is carried from the transparent conductive film 3b through the conductive layer 3c by ions in the electrolyte solution 5, and returns to the dye 1c. By repeating this, electric energy is extracted by an external load.

ところで、上記の色素増感型太陽電池では、色素1cで増感された酸化物半導体層1bを表面に有する金属板1aに透明導電膜3b及び電子還元性導電層3cを表面に有するガラス板3aを接合することが必要であり、この接合は、一般に両基板3a,1aの周縁部の間に熱可塑性樹脂のシート乃至フィルムを挟んでのヒートシールにより行われる。即ち、これにより、両基板の接合と同時に封止を行うことができる(熱可塑性樹脂が封止材7となる)。   By the way, in said dye-sensitized solar cell, the glass plate 3a which has the transparent conductive film 3b and the electron reducible conductive layer 3c on the surface in the metal plate 1a which has the oxide semiconductor layer 1b sensitized with the pigment | dye 1c on the surface. In general, this bonding is performed by heat sealing by sandwiching a sheet or film of a thermoplastic resin between the peripheral portions of both the substrates 3a and 1a. That is, by this, sealing can be performed simultaneously with the joining of the two substrates (the thermoplastic resin becomes the sealing material 7).

しかしながら、上記のように、ヒートシールによりガラス製の基板に金属製の基板を接合した場合、ガラス製基板と金属製基板との線膨張係数が大きく異なることから、接合された基板に反りなどの変形が生じてしまい、ガラス基板の破損やシール不良などが発生するという問題がある。例えば、アルミニウム板の線膨張係数は、23ppm/℃であり、Znは33ppm/℃、ステンレススチール(SUS304)は17.3ppm/℃、Cuは16.5ppm/℃、鉄は10〜12ppm/℃であるのに対し、石英ガラスの線膨張係数は0.5ppm/℃、パイレックスガラスでは3.3ppm/℃、最も線膨張係数が大きい青板ガラスで9ppm/℃であり、ガラス製基板と金属製基板との線熱膨張係数はかなりの差がある。   However, as described above, when a metal substrate is bonded to a glass substrate by heat sealing, the linear expansion coefficients of the glass substrate and the metal substrate are greatly different. There is a problem that deformation occurs, and the glass substrate is damaged or a sealing failure occurs. For example, the linear expansion coefficient of an aluminum plate is 23 ppm / ° C, Zn is 33 ppm / ° C, Stainless steel (SUS304) is 17.3 ppm / ° C, Cu is 16.5 ppm / ° C, and iron is 10-12 ppm / ° C. On the other hand, the linear expansion coefficient of quartz glass is 0.5 ppm / ° C., Pyrex glass is 3.3 ppm / ° C., and blue plate glass having the largest linear expansion coefficient is 9 ppm / ° C. There is a considerable difference in the coefficient of linear thermal expansion.

一般に、ガラス製基板と他の基板との接合や、上記のような太陽電池における封止をレーザー溶着によって行うことは知られているが(特許文献1,2参照)、ガラス製基板と金属製基板を接合するに際して、線膨張係数差による変形を防止するように考慮された接合手段は知られていない。   In general, it is known that bonding between a glass substrate and another substrate and sealing in a solar cell as described above are performed by laser welding (see Patent Documents 1 and 2). When joining substrates, there is no known joining means that is considered to prevent deformation due to a difference in linear expansion coefficient.

特公平5−75707号Japanese Patent Publication No. 5-75707 特開2007−42460号JP 2007-42460

従って、本発明の目的は、ガラス基板と金属基板とを熱膨張差に起因する変形を生じさせることなく接合することが可能な方法を提供することにある。   Accordingly, an object of the present invention is to provide a method capable of joining a glass substrate and a metal substrate without causing deformation due to a difference in thermal expansion.

本発明によれば、金属基板とガラス基板とを熱可塑性樹脂製の封止材を介して接合する方法において、
前記ガラス基板を加熱して該ガラス基板の温度を昇温しておき、この状態で該ガラス基板を封止材が配置されている前記金属基板の表面に押圧し、同時に該金属基板を前記封止材の融点以上の温度に加熱し、次いで該金属基板の加熱を停止し、該金属基板を選択的に冷却することを特徴とする金属基板とガラス基板との接合方法が提供される。
According to the present invention, in a method of joining a metal substrate and a glass substrate through a sealing material made of a thermoplastic resin ,
The glass substrate is heated to raise the temperature of the glass substrate, and in this state, the glass substrate is pressed against the surface of the metal substrate on which the sealing material is disposed, and at the same time, the metal substrate is sealed with the seal. There is provided a method for joining a metal substrate and a glass substrate, characterized in that the metal substrate is heated to a temperature equal to or higher than the melting point of the stopper, and then the heating of the metal substrate is stopped to selectively cool the metal substrate.

本発明の接合方法においては、
(1)前記金属基板の加熱を高周波加熱手段により行うこと、
(2)前記金属基板の冷却を、前記高周波加熱手段の冷却に用いられている冷媒により行うこと、
(3)前記金属基板の加熱を、前記封止材が配置されている部分について選択的に行うこと、
(4)前記ガラス基板として、ガラス板の一方の表面に透明導電膜及び電子還元性導電層からなる電極層が形成されているガラス製電極基板を使用し、前記金属基板として、金属板の表面に色素で増感された半導体多孔質層が形成された金属製光電極基板を使用し、前記電極層と半導体多孔質層とが対面するように該ガラス製電極基板と金属製光電極基板とを配置し、前記封止材を介して、該ガラス製電極基板と金属製光電極基板との周縁部を接合すること、
が好適である。
In the joining method of the present invention,
(1) The metal substrate is heated by high-frequency heating means,
(2) cooling the metal substrate with a refrigerant used for cooling the high-frequency heating means;
(3) heating the metal substrate selectively with respect to a portion where the sealing material is disposed;
(4) As the glass substrate, a glass electrode substrate in which an electrode layer composed of a transparent conductive film and an electron reducing conductive layer is formed on one surface of the glass plate is used, and the surface of the metal plate is used as the metal substrate. A metal photoelectrode substrate on which a semiconductor porous layer sensitized with a dye is formed, and the glass electrode substrate and the metal photoelectrode substrate are arranged so that the electrode layer and the semiconductor porous layer face each other. And bonding the periphery of the glass electrode substrate and the metal photoelectrode substrate through the sealing material,
Is preferred.

本発明の接合方法は、ガラス基板と金属基板との接合を、封止材(例えばヒートシール性の熱可塑性樹脂)の熱溶着を利用して接合するものであるが、極めて重要な特徴は、溶融している封止材を間に挟んでガラス基板と金属基板とが圧着されている状態で、金属基板を選択的に冷却するという手段を採用している点にある。即ち、このように金属基板を冷却することにより、金属基板の温度は、金属基板の熱伝導性がガラス基板に比して著しく高いこともあって、ガラス基板に比して急激に降下し、この結果、溶融した封止材が固化する際には、熱膨張係数の大きい金属基板の温度は、熱膨張係数の小さいガラス基板の温度よりもかなり低温となっている。従って、このような温度差が生じている結果として、封止材が固化した状態において、金属基板とガラス基板との間での熱膨張差が有効に緩和され(封止材が固化してから常温になる間の金属基板とガラス基板との収縮がほぼ同程度となる)、この熱膨張差によるシール破壊(封止材の変形や破断)が有効に防止され、また、熱膨張差に起因する金属基板の反りなどを有効に防止することができるのである。   In the bonding method of the present invention, the bonding between the glass substrate and the metal substrate is performed by using thermal welding of a sealing material (for example, a heat-sealable thermoplastic resin). The point is that the metal substrate is selectively cooled in a state where the glass substrate and the metal substrate are pressure-bonded with the molten sealing material interposed therebetween. That is, by cooling the metal substrate in this way, the temperature of the metal substrate drops sharply compared to the glass substrate, since the thermal conductivity of the metal substrate is significantly higher than the glass substrate, As a result, when the molten sealing material solidifies, the temperature of the metal substrate having a large thermal expansion coefficient is considerably lower than the temperature of the glass substrate having a small thermal expansion coefficient. Therefore, as a result of such a temperature difference, in the state where the sealing material is solidified, the thermal expansion difference between the metal substrate and the glass substrate is effectively relaxed (after the sealing material is solidified). The shrinkage between the metal substrate and the glass substrate during normal temperature is almost the same), and seal breakage (deformation or breakage of the sealing material) due to this thermal expansion difference is effectively prevented, and also due to the thermal expansion difference Therefore, it is possible to effectively prevent warping of the metal substrate.

また、本発明においては、金属基板の加熱を高周波加熱手段により行うことが好ましい。高周波加熱手段は、コイルに高周波電流を流しての誘導加熱によって加熱を行うものであるが、この加熱手段には、冷却管が設けられており、冷却管に水等の冷媒を常時流しておくことにより、コイル自体の加熱が防止される構造となっている。即ち、このような高周波加熱手段を用いた場合には、この高周波加熱手段の内部に循環されている冷媒を利用して金属基板の選択的冷却を直ちに開始することができる。電源OFFにより、高周波加熱コイルの温度は直ちに常温程度に低下するため、コイルの近傍に循環されている冷媒が直ちに金属基板の冷却に寄与することとなるからである。
また、高周波加熱手段の使用により、金属基板の封止材が設けられている部分について選択的に加熱することが可能となり、熱効率の上でも有利となる。
Moreover, in this invention, it is preferable to heat a metal substrate by a high frequency heating means. The high-frequency heating means performs heating by induction heating with a high-frequency current flowing through the coil. The heating means is provided with a cooling pipe, and a coolant such as water is always supplied to the cooling pipe. Thus, the coil itself is prevented from being heated. That is, when such a high-frequency heating means is used, selective cooling of the metal substrate can be started immediately using the refrigerant circulated inside the high-frequency heating means. This is because when the power is turned off, the temperature of the high-frequency heating coil immediately decreases to about room temperature, so that the refrigerant circulating in the vicinity of the coil immediately contributes to cooling of the metal substrate.
Further, the use of the high-frequency heating means makes it possible to selectively heat the portion of the metal substrate on which the sealing material is provided, which is advantageous in terms of thermal efficiency.

さらに、本発明では、金属基板の加熱に先立って、ガラス基板を予め加熱しておくため、金属基板の加熱条件を低減させることができる。即ち、金属基板とガラス基板との間に配置されている封止材が溶融するように金属基板を加熱することが必要であるが、ガラス基板を予め加熱しておくことにより、金属基板の加熱の程度を低くすることができる。   Furthermore, in the present invention, since the glass substrate is heated in advance prior to the heating of the metal substrate, the heating conditions for the metal substrate can be reduced. That is, it is necessary to heat the metal substrate so that the sealing material disposed between the metal substrate and the glass substrate is melted, but by heating the glass substrate in advance, Can be reduced.

かかる本発明の接合方法は、特に色素増感型太陽電池の製造工程に好適に適用され、例えば、前記ガラス基板として、ガラス板の一方の表面に透明導電膜及び電子還元性導電層からなる電極層が形成されているガラス製電極基板を使用し、前記金属基板として、金属板の表面に色素で増感された半導体多孔質層が形成された金属製光電極基板を使用し、封止材を介して、これらの電極基板の接合に、本発明を有利に適用することができる。   Such a joining method of the present invention is particularly suitably applied to a production process of a dye-sensitized solar cell. For example, as the glass substrate, an electrode comprising a transparent conductive film and an electron reducing conductive layer on one surface of a glass plate. A glass electrode substrate in which a layer is formed, and a metal photoelectrode substrate in which a semiconductor porous layer sensitized with a dye is formed on the surface of the metal plate as the metal substrate, and a sealing material Thus, the present invention can be advantageously applied to the bonding of these electrode substrates.

本発明の接合方法が好適に適用される色素増感型太陽電池の概略構造を示す側断面図である。It is a sectional side view which shows the schematic structure of the dye-sensitized solar cell to which the joining method of this invention is applied suitably. 本発明の接合方法のプロセスを示す図である。It is a figure which shows the process of the joining method of this invention. 実施例1において、金属基板とガラス基板とを接合したときの各基板の温度変化を示す図である。In Example 1, it is a figure which shows the temperature change of each board | substrate when a metal substrate and a glass substrate are joined.

本発明を、以下、添付図面に示す具体例に基づいて説明する。
本発明の接合方法のプロセスを示す図2を参照して、ガラス基板20は所定の治具21により保持されており、この治具21には、加熱ヒータ23がセットされ、ガラス基板20を加熱し得るようになっている。
一方、上記のように治具21に保持されているガラス基板20の下方には、金属基板25が配置されており、この金属基板25の下側には、高周波加熱部材27が配置されている。
また、金属基板25の上面には、封止材29が載置されている。
The present invention will be described below based on specific examples shown in the accompanying drawings.
Referring to FIG. 2 showing the process of the bonding method of the present invention, the glass substrate 20 is held by a predetermined jig 21, and a heater 23 is set on the jig 21 to heat the glass substrate 20. It has come to be able to do.
On the other hand, a metal substrate 25 is disposed below the glass substrate 20 held by the jig 21 as described above, and a high-frequency heating member 27 is disposed below the metal substrate 25. .
A sealing material 29 is placed on the upper surface of the metal substrate 25.

封止材29は、熱溶着によってガラス基板20と金属基板25とを接合するものであり、通常、熱可塑性樹脂のフィルム乃至シートが使用される。この熱可塑性樹脂は、熱溶着が可能であれば、任意の熱可塑性樹脂であってよく、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1−ブテン、ポリ4−メチル−1−ペンテン、或いはエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等のα−オレフィン同士のランダム乃至ブロック共重合体等のポリオレフィン系樹脂;エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、エチレン−塩化ビニル共重合体等のエチレン−ビニル化合物共重合体樹脂;ポリスチレン、アクリロニトリル−スチレン共重合体、ABS、α−メチルスチレン−スチレン共重合体等のスチレン系樹脂;ポリビニルアルコール、ポリビニルピロリドン、ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル−塩化ビニリデン共重合体、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル等のビニル系樹脂;ナイロン6、ナイロン6−6、ナイロン6−10、ナイロン11、ナイロン12等のポリアミド樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂;ポリカーボネート;ポリフェニレンオキサイド;カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロース誘導体;酸化澱粉、エーテル化澱粉、デキストリンなどの澱粉;及びこれらの混合物からなる樹脂;などであってよいが、コスト、強度、耐熱性等の見地から、ポリエチレンテレフタレートやポリオレフィンが好適である。   The sealing material 29 joins the glass substrate 20 and the metal substrate 25 by thermal welding, and a film or sheet of a thermoplastic resin is usually used. The thermoplastic resin may be any thermoplastic resin as long as heat welding is possible. For example, low-density polyethylene, high-density polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, Or a polyolefin resin such as a random or block copolymer of α-olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene; ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer , Ethylene-vinyl compound copolymer resins such as ethylene-vinyl chloride copolymer; styrene resins such as polystyrene, acrylonitrile-styrene copolymer, ABS, α-methylstyrene-styrene copolymer; polyvinyl alcohol, polyvinylpyrrolidone , Polyvinyl chloride, polyvinylidene chloride, vinyl chloride-salt Vinylidene chloride copolymers, vinyl resins such as polyacrylic acid, polymethacrylic acid, polymethyl acrylate, polymethyl methacrylate; polyamides such as nylon 6, nylon 6-6, nylon 6-10, nylon 11 and nylon 12 Resin; Polyester resin such as polyethylene terephthalate and polybutylene terephthalate; Polycarbonate; Polyphenylene oxide; Cellulose derivatives such as carboxymethyl cellulose and hydroxyethyl cellulose; Starch such as oxidized starch, etherified starch and dextrin; However, polyethylene terephthalate and polyolefin are preferable from the viewpoint of cost, strength, heat resistance, and the like.

また、上記の封止材29の形状や厚みは、ガラス基板20と金属基板25との接合体の用途に応じて適宜なものとすることができ、例えば図1に示すような構造の太陽電池の電極として用いる場合には、封止材29は、フレーム形状とし、ガラス基板20と金属基板25とが周縁部で接合されるような構造となり、また、この場合、封止材29によって囲まれた内部の領域には電解液が充填されることとなるため、接合後の封止材29の厚みは、通常、10〜20μm程度に設定される。   Moreover, the shape and thickness of the sealing material 29 can be set appropriately according to the use of the joined body of the glass substrate 20 and the metal substrate 25. For example, a solar cell having a structure as shown in FIG. When used as an electrode, the sealing material 29 has a frame shape and has a structure in which the glass substrate 20 and the metal substrate 25 are joined at the peripheral edge. In this case, the sealing material 29 is surrounded by the sealing material 29. Since the inner region is filled with the electrolytic solution, the thickness of the sealing material 29 after joining is normally set to about 10 to 20 μm.

後述する実施例1で行われた接合での各基板の温度変化を示す図3を併せて参照して、本発明の接合方法では、先ず、加熱ヒータ23により、ガラス基板20を加熱し、このガラス基板20を封止材29の融点に近い温度に昇温して維持しておく。この温度は、封止材29の融点よりも高温に設定することも可能であるが、封止材29の溶融は、金属基板25の加熱により行われるため、ガラス基板20を必要以上の高温に加熱する必要はなく、封止材29の融点未満の温度、例えば、封止材29の融点よりも10乃至60℃程度低い温度範囲にガラス基板20を加熱して維持しておくことが好ましい。
また、ガラス基板の加熱温度は、封止材が固化する温度以下なら接着後加熱された治具を付けていることも可能になる。特に、図1に示されているような色素増感型太陽電池における電極基板同士の接合に本発明を適用する場合には、ガラス板3aの表面に、熱による性能低下を生じ易い電解質5層(例えば、固体電解質)が設けられている場合、このような電解質層5が形成されている状態で接合が行われるため、電解質層5の性能低下を防止するという観点から、ガラス基板20(ガラス板3a)の温度は、封止材29の融点未満の温度に保持しておくことが好ましい。
Referring also to FIG. 3 showing the temperature change of each substrate in the bonding performed in Example 1 described later, in the bonding method of the present invention, first, the glass substrate 20 is heated by the heater 23. The glass substrate 20 is heated to a temperature close to the melting point of the sealing material 29 and maintained. Although this temperature can be set to a temperature higher than the melting point of the sealing material 29, since the melting of the sealing material 29 is performed by heating the metal substrate 25, the glass substrate 20 is heated to an unnecessarily high temperature. It is not necessary to heat, and it is preferable to heat and maintain the glass substrate 20 at a temperature lower than the melting point of the sealing material 29, for example, a temperature range lower by about 10 to 60 ° C. than the melting point of the sealing material 29.
Moreover, if the heating temperature of a glass substrate is below the temperature which a sealing material solidifies, it also becomes possible to attach the jig | tool heated after adhesion | attachment. In particular, when the present invention is applied to the joining of electrode substrates in a dye-sensitized solar cell as shown in FIG. 1, five layers of electrolytes are likely to cause performance degradation due to heat on the surface of the glass plate 3a. When (for example, a solid electrolyte) is provided, bonding is performed in a state in which such an electrolyte layer 5 is formed. Therefore, from the viewpoint of preventing performance degradation of the electrolyte layer 5, the glass substrate 20 (glass The temperature of the plate 3a) is preferably kept at a temperature below the melting point of the sealing material 29.

また、上記のようにガラス基板20を予め加熱しておくことにより、金属基板25の加熱条件を緩やかなものとして、封止材29を溶融させることができる。
また、ガラス基板全体を加熱することにより、ガラス基板の熱膨張を大きくすることができ、選択的に加熱されるアルミ基板の熱膨張量に近づけることができる。
In addition, by heating the glass substrate 20 in advance as described above, the sealing material 29 can be melted by making the heating conditions of the metal substrate 25 gentle.
Moreover, by heating the whole glass substrate, the thermal expansion of the glass substrate can be increased, and the amount of thermal expansion of the aluminum substrate that is selectively heated can be brought close to.

ガラス基板20が所定の温度に加熱された状態で、加熱ヒータ23の電源をOFFとし(加熱温度が封止材の固化温度未満であれば、ONのままで良い)、治具21を降下させ、このガラス基板20を、下方に配置されている金属基板25の表面に押圧する。この圧力は、封止材29が溶融したときに、その溶融物に適度な厚みが保持されるような範囲に設定される。即ち、この圧力が低すぎる場合には、圧着が不十分であるため、接合強度の低下を生じ易く、また、圧力が高すぎる場合にも、封止材29の溶融物が拡散してしまい、単位面積当りの封止材29の量が低下し、この結果、やはり接合強度の低下を生じてしまうからである。従って、具体的な押圧力の範囲は、次工程での金属基板25の加熱の程度や封止材29の溶融物の流動特性によっても異なり、一概に規定することはできないが、太陽電池の大きさが60mm角でシール幅5mmの場合、押圧荷重は20kg以上必要である。   In a state where the glass substrate 20 is heated to a predetermined temperature, the power supply of the heater 23 is turned off (if the heating temperature is lower than the solidification temperature of the sealing material, it may remain ON), and the jig 21 is lowered. The glass substrate 20 is pressed against the surface of the metal substrate 25 disposed below. This pressure is set in such a range that when the sealing material 29 is melted, an appropriate thickness is maintained in the melt. That is, when the pressure is too low, the pressure bonding is insufficient, so that the bonding strength is likely to be lowered. Also, when the pressure is too high, the melt of the sealing material 29 diffuses, This is because the amount of the sealing material 29 per unit area is lowered, and as a result, the bonding strength is also lowered. Therefore, the specific range of the pressing force varies depending on the degree of heating of the metal substrate 25 in the next process and the flow characteristics of the melt of the sealing material 29, and cannot be specified in general. When the length is 60 mm square and the seal width is 5 mm, the pressing load needs to be 20 kg or more.

尚、上記のようにしてガラス基板20を金属基板25の表面に封止材29を間に挟んで押圧すると、加熱ヒータ23の電源がOFFにされているため、一次的にガラス基板20の温度は低下するが、直ぐに金属基板25の加熱を開始するため、このような温度低下は特に問題にはならない。   When the glass substrate 20 is pressed against the surface of the metal substrate 25 with the sealing material 29 interposed therebetween as described above, the power of the heater 23 is turned off. However, since the heating of the metal substrate 25 is started immediately, such a temperature drop is not a problem.

金属基板25の加熱は、その下側に設けられている高周波加熱部材27により、上記のような押圧下で行われ、これにより、金属基板25は、封止材29の融点以上の温度に昇温され、また、ガラス基板20の温度は、金属基板25からの伝熱によって金属基板25と共に上昇する。   The metal substrate 25 is heated by the high-frequency heating member 27 provided below the metal substrate 25 under the pressure as described above, whereby the metal substrate 25 is heated to a temperature equal to or higher than the melting point of the sealing material 29. The temperature of the glass substrate 20 rises together with the metal substrate 25 due to heat transfer from the metal substrate 25.

このような加熱によって、ガラス基板20と金属基板25との間の封止材29は、その融点以上の温度に加熱されて溶融し、溶融状態でガラス基板20と金属基板25とに密着することとなる。
この場合、ガラス基板20を予め加熱していることは、高周波加熱部材27の出力条件等を低くして封止材29を融点以上の温度に加熱して溶融状態とする上で好適となる。
By such heating, the sealing material 29 between the glass substrate 20 and the metal substrate 25 is heated and melted at a temperature equal to or higher than its melting point, and is in close contact with the glass substrate 20 and the metal substrate 25 in a molten state. It becomes.
In this case, preheating the glass substrate 20 is suitable for lowering the output conditions of the high-frequency heating member 27 and heating the sealing material 29 to a temperature equal to or higher than the melting point to bring it into a molten state.

また、金属基板25の加熱は、封止材29を加熱して溶融状態とするために行われるものであるから、封止材29の形状によっては、封止材29が設けられている部分にのみ、高周波加熱部材27を配置し、その部分を選択的に加熱することが省エネルギー等の観点から好適である。   Moreover, since the heating of the metal substrate 25 is performed in order to heat the sealing material 29 to be in a molten state, depending on the shape of the sealing material 29, the portion where the sealing material 29 is provided is provided. However, it is preferable from the viewpoint of energy saving or the like to dispose the high-frequency heating member 27 and selectively heat the portion.

封止材29が融点以上の温度に到達し、十分に溶融状態となった段階で高周波加熱部材27の電源をOFFとし、金属基板25の加熱を停止する。このとき、ガラス基板20の金属基板25への押圧は、金属基板25の加熱停止と同時に解除してもよいが、一般的には、若干のタイムラグをおいて(通常、2〜3秒程度)、押圧の解除を行うことが好適である。即ち、金属基板25の加熱停止と同時に、金属基板25及びガラス基板20の温度は降下するが、溶融した封止材29は直ちに固化するわけではなく、一定時間は、溶融状態に保持されている。従って、加熱停止後においても、押圧力を加えておくことにより、封止材29による接合力を高めることができるからである。   When the sealing material 29 reaches a temperature equal to or higher than the melting point and is sufficiently melted, the power of the high-frequency heating member 27 is turned off, and the heating of the metal substrate 25 is stopped. At this time, the pressing of the glass substrate 20 to the metal substrate 25 may be released at the same time as the heating of the metal substrate 25 is stopped, but generally, with a slight time lag (usually about 2 to 3 seconds). It is preferable to release the pressure. That is, the temperature of the metal substrate 25 and the glass substrate 20 decreases at the same time as the heating of the metal substrate 25 is stopped, but the molten sealing material 29 is not immediately solidified, and is maintained in a molten state for a certain time. . Therefore, the bonding force by the sealing material 29 can be increased by applying a pressing force even after the heating is stopped.

本発明では、上記のようにして金属基板25を加熱し、次いで金属基板25の加熱を停止した後、金属基板25を選択的に冷却することが重要である。
即ち、金属基板25の加熱停止後、例えば金属基板25及びガラス基板20の何れも放冷により冷却した場合、金属基板25の温度とガラス基板20との温度差が小さいまま、両基板20、25の温度は降下していき、この過程で溶融状態の封止材29が固化することとなる。従って、この場合には、金属基板25の熱膨張係数はガラス基板20に比してかなり大きいため、封止材が固化した状態での金属基板25の収縮量とガラス基板20の収縮量とが大きく異なり、この結果、固化した状態の封止材29には、熱膨張係数差による大きな応力が発生し、この封止材29の変形や破損、或いは金属基板25の撓みなどの変形を生じてしまう。
In the present invention, it is important to selectively cool the metal substrate 25 after heating the metal substrate 25 as described above and then stopping the heating of the metal substrate 25.
That is, after the heating of the metal substrate 25 is stopped, for example, when both the metal substrate 25 and the glass substrate 20 are cooled by being allowed to cool, the temperature difference between the metal substrate 25 and the glass substrate 20 remains small, and both the substrates 20, 25 are kept. In this process, the molten sealing material 29 is solidified. Therefore, in this case, since the thermal expansion coefficient of the metal substrate 25 is considerably larger than that of the glass substrate 20, the shrinkage amount of the metal substrate 25 and the shrinkage amount of the glass substrate 20 when the sealing material is solidified are obtained. As a result, a large stress due to the difference in thermal expansion coefficient is generated in the solidified sealing material 29, resulting in deformation or breakage of the sealing material 29 or deformation of the metal substrate 25. End up.

しかるに、本発明では、金属基板25の加熱停止後、金属基板25を選択的に冷却するため、図3に示されているように、ガラス基板20に比して、金属基板25が大きく温度降下する。即ち、封止材が固化してから常温になる間の金属基板20の収縮量はガラス基板の収縮量とほぼ同程度となり、金属基板25とガラス基板25との間での熱膨張差が有効に緩和されるのである。この結果、封止材29の変形や破損、或いは金属基板25の反りなどを有効に防止することが可能となる。   However, in the present invention, since the metal substrate 25 is selectively cooled after the heating of the metal substrate 25 is stopped, the temperature of the metal substrate 25 is greatly reduced as compared with the glass substrate 20 as shown in FIG. To do. That is, the amount of shrinkage of the metal substrate 20 between the time when the sealing material is solidified and at room temperature is almost the same as the amount of shrinkage of the glass substrate, and the difference in thermal expansion between the metal substrate 25 and the glass substrate 25 is effective. It will be relaxed. As a result, deformation or breakage of the sealing material 29 or warpage of the metal substrate 25 can be effectively prevented.

本発明において、上述した例では、金属基板25を加熱するための手段としては、高周波加熱部材27が使用されているが、勿論、このような加熱手段としては、ガラス基板20と同様、通常の加熱ヒータを用いることもできる。しかしながら、高周波加熱部材27の使用は、金属基板25の選択的冷却を、極めて速やかに行うことができるという利点がある。即ち、この高周波加熱部材27には、高周波コイル自体の加熱を防止するために、水等の冷媒が循環されている。このため、高周波加熱部材27の電源をOFFとし、加熱を停止した時点で、この冷媒は、金属基板25の冷却に寄与することとなり(高周波コイルの温度は通電停止とほぼ同時に常温に戻る)、格別の冷却手段を用いることなく、しかも迅速に金属基板25を選択的に冷却することができるのである。   In the present invention, in the above-described example, the high-frequency heating member 27 is used as a means for heating the metal substrate 25. Of course, like the glass substrate 20, such a heating means is a normal one. A heater can also be used. However, the use of the high-frequency heating member 27 has an advantage that the selective cooling of the metal substrate 25 can be performed very quickly. That is, a coolant such as water is circulated in the high-frequency heating member 27 in order to prevent the high-frequency coil itself from being heated. For this reason, when the power of the high-frequency heating member 27 is turned off and the heating is stopped, the refrigerant contributes to cooling of the metal substrate 25 (the temperature of the high-frequency coil returns to room temperature almost simultaneously with the stop of energization) The metal substrate 25 can be selectively cooled quickly without using any special cooling means.

尚、金属基板25の選択的冷却が行われている間、ガラス基板20は放冷されていてよい。ガラス基板20の熱伝導性は金属基板25に比して小さいため、放冷により急激に温度降下をすることはないからである。   The glass substrate 20 may be allowed to cool while the metal substrate 25 is selectively cooled. This is because the thermal conductivity of the glass substrate 20 is smaller than that of the metal substrate 25, so that the temperature does not drop suddenly due to cooling.

また、金属基板25の選択的冷却は、封止材29が完全に固化するまで行えばよく、封止材29が完全に固化した後は、そのまま選択的冷却を行ってもよいし、高周波加熱部材27を取り外して単なる放冷に切り替えてもよい。また、封止材29が完全に固化していれば、ガラス基板20を水冷等によって急冷することもできる。   Further, the selective cooling of the metal substrate 25 may be performed until the sealing material 29 is completely solidified. After the sealing material 29 is completely solidified, the selective cooling may be performed as it is, or high-frequency heating is performed. The member 27 may be removed and switched to simple cooling. Further, if the sealing material 29 is completely solidified, the glass substrate 20 can be rapidly cooled by water cooling or the like.

上述した本発明の接合方法は、図1に示す構造の色素増感型太陽電池におけるガラス製電極基板3と光電極基板1(金属製電極基板)の接合に好適に適用される。即ち、このガラス製電極基板1を前述したガラス基板として使用し、光電極基板1を金属基板として、封止材を用いて両基板を接合すればよいわけである。
特に、図1の色素増感型太陽電池では、金属基板1aとしてアルミ製のものが使用されるが、アルミ製基板とガラス基板とでは熱膨張係数差が極めて大きく、封止材7の変形や破壊(電解液の漏洩をもたらす)或いはアルミ製金属基板1aの反りなど生じ易いが、本発明を適用することにより、このような不都合を有効に回避することができる。
The above-described joining method of the present invention is suitably applied to joining of the glass electrode substrate 3 and the photoelectrode substrate 1 (metal electrode substrate) in the dye-sensitized solar cell having the structure shown in FIG. That is, the glass electrode substrate 1 may be used as the glass substrate described above, the photoelectrode substrate 1 may be a metal substrate, and both substrates may be bonded using a sealing material.
In particular, in the dye-sensitized solar cell of FIG. 1, an aluminum substrate is used as the metal substrate 1a. However, the difference in thermal expansion coefficient between the aluminum substrate and the glass substrate is extremely large, and the deformation of the sealing material 7 Although breakage (causing leakage of the electrolyte) or warping of the aluminum metal substrate 1a is likely to occur, such inconvenience can be effectively avoided by applying the present invention.

本発明を次の例で説明する。
(実施例1)
高周波加熱部材27には水冷の5ターン加熱コイルを用いた。また、加熱コイルは図示していない50kHz高周波電源に接続されている。高周波加熱部材27には厚み0.28mmのアルミ基板と厚み0.05mmのポリプロピレンの封止材が置かれ、ヒータ23によって加熱される治具21には厚さ1.1mmのガラス基板が付けられ100℃に予熱した。
その後、ヒータ、治具、ガラス基板を下げてアルミ基板、封止材に荷重20kgで押圧した。そして、高周波により約1.2kWの出力で5秒間加熱し、その直後にアルミ基板側から急冷して接着された太陽電池を作成した。
このときのガラス基板、アルミ基板の加熱温度曲線を図3に示す。室温まで冷却した太陽電池の撓みは90μm位で、問題はなかった。また、シール強度、電解液充填後の漏れについても問題なかった。
The invention is illustrated by the following examples.
Example 1
A water-cooled 5-turn heating coil was used for the high-frequency heating member 27. The heating coil is connected to a 50 kHz high frequency power source (not shown). An aluminum substrate having a thickness of 0.28 mm and a polypropylene sealing material having a thickness of 0.05 mm are placed on the high-frequency heating member 27, and a glass substrate having a thickness of 1.1 mm is attached to the jig 21 heated by the heater 23. Preheated to 100 ° C.
Thereafter, the heater, jig, and glass substrate were lowered and pressed against the aluminum substrate and the sealing material with a load of 20 kg. And it heated for 5 second with the output of about 1.2 kW by the high frequency, and immediately after that, it rapidly cooled from the aluminum substrate side, and the solar cell bonded was created.
The heating temperature curves of the glass substrate and the aluminum substrate at this time are shown in FIG. The deflection of the solar cell cooled to room temperature was about 90 μm, and there was no problem. Further, there was no problem with sealing strength and leakage after filling with electrolyte.

(比較例1)
実施例1と同様の装置においてヒータは加熱しない状態、すなわちガラス基板が室温状態において高周波加熱した場合、高周波加熱条件が実施例1と同じ条件では接着しなかった。また、高周波加熱条件を変更して、加熱温度を高くして接着したが、十分なシール強度が得られなかった。
(Comparative Example 1)
In the same apparatus as in Example 1, when the heater was not heated, that is, when the glass substrate was heated at high frequency in a room temperature state, the high frequency heating conditions were not bonded under the same conditions as in Example 1. Moreover, although the high-frequency heating conditions were changed and the heating temperature was increased and bonding was performed, sufficient seal strength could not be obtained.

1:光電極基板
1a:金属板
1b:多孔質半導体層
1c:増感色素
3:ガラス製電極基板
3a:ガラス板
3b:透明導電膜
3c:電子還元性導電層
5:電解質液
7:封止材
20:ガラス基板
21:治具
23:加熱ヒータ
25:金属基板
27:高周波加熱部材
29:封止材
1: Photoelectrode substrate 1a: Metal plate 1b: Porous semiconductor layer 1c: Sensitizing dye 3: Glass electrode substrate 3a: Glass plate 3b: Transparent conductive film 3c: Electron reducing conductive layer 5: Electrolyte solution 7: Sealing Material 20: Glass substrate 21: Jig 23: Heater 25: Metal substrate 27: High-frequency heating member 29: Sealing material

Claims (5)

金属基板とガラス基板とを熱可塑性樹脂製の封止材を介して接合する方法において、
前記ガラス基板を加熱して該ガラス基板の温度を昇温しておき、この状態で該ガラス基板を封止材が配置されている前記金属基板の表面に押圧し、同時に該金属基板を前記封止材の融点以上の温度に加熱し、次いで該金属基板の加熱を停止し、該金属基板を選択的に冷却することを特徴とする金属基板とガラス基板との接合方法。
In a method of joining a metal substrate and a glass substrate via a sealing material made of thermoplastic resin ,
The glass substrate is heated to raise the temperature of the glass substrate, and in this state, the glass substrate is pressed against the surface of the metal substrate on which the sealing material is disposed, and at the same time, the metal substrate is sealed with the seal. A method of joining a metal substrate and a glass substrate, wherein the metal substrate is heated to a temperature equal to or higher than the melting point of the stopper, and then the heating of the metal substrate is stopped and the metal substrate is selectively cooled.
前記金属基板の加熱を高周波加熱手段により行う請求項1に記載の接合方法。   The joining method according to claim 1, wherein the metal substrate is heated by a high-frequency heating means. 前記金属基板の冷却を、前記高周波加熱手段の冷却に用いられている冷媒により行う請求項2に記載の接合方法。   The bonding method according to claim 2, wherein the cooling of the metal substrate is performed by a refrigerant used for cooling the high-frequency heating means. 前記金属基板の加熱を、前記封止材が配置されている部分について選択的に行う請求項1乃至3の何れかに記載の接合方法。   The bonding method according to claim 1, wherein heating of the metal substrate is selectively performed on a portion where the sealing material is disposed. 前記ガラス基板として、ガラス板の一方の表面に透明導電膜及び電子還元性導電層からなる電極層が形成されているガラス製電極基板を使用し、前記金属基板として、金属板の表面に色素で増感された半導体多孔質層が形成された金属製光電極基板を使用し、前記電極層と半導体多孔質層とが対面するように該ガラス製電極基板と金属製光電極基板とを配置し、前記封止材を介して、該ガラス製電極基板と金属製光電極基板との周縁部を接合する請求項1乃至4の何れかに記載の接合方法。   As the glass substrate, a glass electrode substrate in which an electrode layer composed of a transparent conductive film and an electron reducing conductive layer is formed on one surface of the glass plate is used, and as the metal substrate, a pigment is applied to the surface of the metal plate. Using a metal photoelectrode substrate on which a sensitized semiconductor porous layer is formed, the glass electrode substrate and the metal photoelectrode substrate are arranged so that the electrode layer and the semiconductor porous layer face each other. The bonding method according to any one of claims 1 to 4, wherein a peripheral portion of the glass electrode substrate and the metal photoelectrode substrate is bonded through the sealing material.
JP2009163658A 2009-07-10 2009-07-10 Bonding method of metal substrate and glass substrate Expired - Fee Related JP5471097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163658A JP5471097B2 (en) 2009-07-10 2009-07-10 Bonding method of metal substrate and glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163658A JP5471097B2 (en) 2009-07-10 2009-07-10 Bonding method of metal substrate and glass substrate

Publications (2)

Publication Number Publication Date
JP2011018608A JP2011018608A (en) 2011-01-27
JP5471097B2 true JP5471097B2 (en) 2014-04-16

Family

ID=43596228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163658A Expired - Fee Related JP5471097B2 (en) 2009-07-10 2009-07-10 Bonding method of metal substrate and glass substrate

Country Status (1)

Country Link
JP (1) JP5471097B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5081405B2 (en) * 2006-06-27 2012-11-28 パナソニック株式会社 Method for manufacturing photoelectric conversion element
JP2008115057A (en) * 2006-11-07 2008-05-22 Electric Power Dev Co Ltd Sealant, manufacturing process of glass panel and dye-sensitized solar cell
JP2009110663A (en) * 2007-10-26 2009-05-21 Toyo Seikan Kaisha Ltd Joining method of plate material to glass substrate
WO2010119950A1 (en) * 2009-04-16 2010-10-21 有限会社エコ&エンジニアリング Solar battery element connection method, correction method, and devices using these methods

Also Published As

Publication number Publication date
JP2011018608A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP6410801B2 (en) Laser welding connection method of crystalline silicon solar cell
CN101958506B (en) Method for modularizing crystal and heat sink in laser diode pumped solid laser
CN106449439A (en) Glass chip packaging method
JP5602050B2 (en) Joining method and battery
JP2008004316A (en) Manufacturing method of lead wire member with sealing film
JP5471097B2 (en) Bonding method of metal substrate and glass substrate
CN102336578A (en) Connection method for tin bronze and alumina ceramic and prepared connecting piece
CN102814568A (en) Casting welding method
KR101287632B1 (en) Device of heating and bonding for lead film and method thereof
JP6413254B2 (en) Method for manufacturing electrode for secondary battery
JP2008146942A (en) Thin type battery, and manufacturing method and manufacturing device of thin type battery
WO2021196267A1 (en) Fabrication process for liquid cooling heat dissipation plate
CN103273199B (en) A kind of processing method for improving laser weld strength
CN111590187A (en) Current heating diffusion connection device and method
JP2008098501A (en) Manufacturing method of substrate for power module, and manufacturing device of substrate for power module
CN104128541A (en) Method for embossing surface of photovoltaic welding strip
JP2009110663A (en) Joining method of plate material to glass substrate
CN105914389A (en) Laser precision welding method for edge sealing of soft-package aluminum shell battery cell
JP2011124430A (en) Method of bonding solar cell module and bonding device
JP2003318432A (en) Solar power generation/heat collection compound panel and method of manufacturing same
CN107160019A (en) The welder and method of a kind of micro-channel heat sink for semi-conductor laser lamination
CN219476747U (en) Soft package battery end socket
CN108860814B (en) Sealing device
WO2021196266A1 (en) Liquid cooling heat dissipation plate prepared on basis of metal-plastic composite material and preparation process therefor
CN218769954U (en) Ultrasonic welding battery production line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120618

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees