JP5470623B2 - Oxidation catalyst, method for producing phenols, and method for producing hydrogen peroxide - Google Patents

Oxidation catalyst, method for producing phenols, and method for producing hydrogen peroxide Download PDF

Info

Publication number
JP5470623B2
JP5470623B2 JP2010055157A JP2010055157A JP5470623B2 JP 5470623 B2 JP5470623 B2 JP 5470623B2 JP 2010055157 A JP2010055157 A JP 2010055157A JP 2010055157 A JP2010055157 A JP 2010055157A JP 5470623 B2 JP5470623 B2 JP 5470623B2
Authority
JP
Japan
Prior art keywords
group
phenols
oxidation catalyst
aromatic compound
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010055157A
Other languages
Japanese (ja)
Other versions
JP2011189224A (en
Inventor
敬 大久保
俊一 福住
崇希 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2010055157A priority Critical patent/JP5470623B2/en
Publication of JP2011189224A publication Critical patent/JP2011189224A/en
Application granted granted Critical
Publication of JP5470623B2 publication Critical patent/JP5470623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、酸化触媒、フェノール類の製造方法、および過酸化水素の製造方法に関する。   The present invention relates to an oxidation catalyst, a method for producing phenols, and a method for producing hydrogen peroxide.

フェノール類は、フェノール樹脂、各種医薬品、染料、消毒剤等の各種化成品に広く用いられる重要な物質である。フェノール類の代表的な化合物であるフェノール(ヒドロキシベンゼン)は、クメン法により製造される。   Phenols are important substances widely used in various chemical products such as phenol resins, various pharmaceuticals, dyes, and disinfectants. Phenol (hydroxybenzene), which is a representative compound of phenols, is produced by the cumene method.

クメン法には、原料としてプロピレンを必要とする、反応が多段階である、収率が低い、副生成物のアセトンが、需要に対して過剰に供給されてしまう等の問題がある。このため、ベンゼンの直接酸化によるフェノール合成が研究されている。   The cumene method has problems such as requiring propylene as a raw material, multi-stage reaction, low yield, and excessive supply of acetone as a by-product. For this reason, phenol synthesis by direct oxidation of benzene has been studied.

しかし、ベンゼンの直接酸化により高選択的にフェノールを合成できる酸化剤は、現在のところ、亜酸化窒素、酸素/水素混合ガス等に限られている。これらの酸化剤は、高価であり、かつ、安全性に問題がある。   However, the oxidizing agents that can synthesize phenol with high selectivity by direct oxidation of benzene are currently limited to nitrous oxide, oxygen / hydrogen mixed gas, and the like. These oxidizing agents are expensive and have safety problems.

一方、安価で、かつ安全性に優れる分子状酸素によりベンゼンを直接酸化する方法がある。しかし、この方法は、逐次酸化または完全酸化が進行するため、フェノールの収率および選択性が低い。   On the other hand, there is a method of directly oxidizing benzene with molecular oxygen which is inexpensive and excellent in safety. However, this method has low phenol yield and selectivity because sequential oxidation or complete oxidation proceeds.

そこで、本発明は、フェノール類を高収率、高選択的かつ低コストで製造可能な酸化触媒、およびフェノール類の製造方法の提供を目的とする。さらに、本発明は、高収率、高選択的かつ低コストな過酸化水素の製造方法をも提供する。   Accordingly, an object of the present invention is to provide an oxidation catalyst capable of producing phenols with high yield, high selectivity and low cost, and a method for producing phenols. Furthermore, the present invention also provides a method for producing hydrogen peroxide with high yield, high selectivity and low cost.

前記目的を達成するために、本発明の酸化触媒は、下記化学式(I)で表されるキノリニウム誘導体、その互変異性体もしくは立体異性体、またはそれらの塩を含み、芳香族化合物を酸化してフェノール類に変換することを特徴とする。   In order to achieve the above object, the oxidation catalyst of the present invention comprises a quinolinium derivative represented by the following chemical formula (I), a tautomer or stereoisomer thereof, or a salt thereof, which oxidizes an aromatic compound. It is characterized by being converted to phenols.

Figure 0005470623
Figure 0005470623

前記化学式(I)中、
は、水素原子または任意の置換基であり、
〜Rは、水素原子または任意の置換基であり、
とR、RとR、RとR、RとR、またはRとRは、それらが結合している炭素原子とともに芳香環を形成しても良い。
In the chemical formula (I),
R 1 is a hydrogen atom or an arbitrary substituent,
R 2 to R 8 are a hydrogen atom or an arbitrary substituent,
R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , or R 7 and R 8 may form an aromatic ring together with the carbon atom to which they are bonded.

また、本発明によるフェノール類の製造方法は、芳香族化合物を酸化してフェノール類に変換する酸化工程を含む、フェノール類の製造方法であって、前記酸化工程において、前記本発明の酸化触媒により前記芳香族化合物を酸化することを特徴とする。   The method for producing phenols according to the present invention is a method for producing phenols comprising an oxidation step in which an aromatic compound is oxidized to convert to phenols, and in the oxidation step, the oxidation catalyst of the present invention is used. The aromatic compound is oxidized.

本発明による過酸化水素の製造方法は、前記酸化工程において、水と酸素との存在下、前記芳香族化合物を酸化して前記フェノール類に変換し、副生成物として過酸化水素を生成させることを特徴とする。   According to the method for producing hydrogen peroxide according to the present invention, in the oxidation step, the aromatic compound is oxidized and converted into the phenols in the presence of water and oxygen to generate hydrogen peroxide as a by-product. It is characterized by.

本発明の酸化触媒、およびフェノール類の製造方法によれば、フェノール類を高収率、高選択的かつ低コストで製造可能である。さらに、本発明の過酸化水素の製造方法によれば、過酸化水素を高収率、高選択的かつ低コストで製造可能である。   According to the oxidation catalyst and the method for producing phenols of the present invention, phenols can be produced with high yield, high selectivity and low cost. Furthermore, according to the method for producing hydrogen peroxide of the present invention, hydrogen peroxide can be produced with high yield, high selectivity and low cost.

図1は、実施例のフェノール生成反応におけるベンゼン濃度およびフェノール濃度の経時変化を例示するグラフである。FIG. 1 is a graph illustrating changes in benzene concentration and phenol concentration over time in the phenol production reaction of the example. 図2は、実施例において、副生成物である過酸化水素のヨードメトリーによる検出を例示するグラフである。FIG. 2 is a graph illustrating iodometric detection of hydrogen peroxide as a by-product in the examples. 図3は、実施例におけるフェノール生成反応の量子収率を例示するグラフである。FIG. 3 is a graph illustrating the quantum yield of the phenol production reaction in the examples. 図4は、シアノキノリニウム溶液にベンゼンを添加したときの蛍光消光を例示するグラフである。FIG. 4 is a graph illustrating fluorescence quenching when benzene is added to a cyanoquinolinium solution. 図5は、図1の溶液にレーザ光照射したときのキノリニルラジカルカチオンとベンゼンラジカルカチオンの吸光度スペクトルを例示するグラフである。FIG. 5 is a graph illustrating the absorbance spectra of the quinolinyl radical cation and the benzene radical cation when the solution of FIG. 1 is irradiated with laser light. 図6は、実施例において、水または重水を溶媒に用いたときの、生成物であるフェノールのマススペクトルを例示するグラフである。FIG. 6 is a graph illustrating a mass spectrum of phenol as a product when water or heavy water is used as a solvent in Examples.

以下、本発明について、さらに具体的に説明する。ただし、本発明は、以下の説明により限定されない。   Hereinafter, the present invention will be described more specifically. However, the present invention is not limited by the following description.

[1.酸化触媒]
本発明の酸化触媒は、前記のとおり、前記化学式(I)で表されるキノリニウム誘導体、その互変異性体もしくは立体異性体、またはそれらの塩を含む。前記のように、RとR、RとR、RとR、RとR、またはRとRは、それらが結合している炭素原子とともに芳香環を形成しても良い。すなわち、前記化学式(I)で表されるキノリニウム誘導体は、例えば、アクリジニウム誘導体、ベンゾアクリジニウム誘導体等であっても良い。
[1. Oxidation catalyst]
As described above, the oxidation catalyst of the present invention includes the quinolinium derivative represented by the chemical formula (I), a tautomer or stereoisomer thereof, or a salt thereof. As described above, R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , or R 7 and R 8 form an aromatic ring together with the carbon atom to which they are bonded. You may do it. That is, the quinolinium derivative represented by the chemical formula (I) may be, for example, an acridinium derivative or a benzoacridinium derivative.

前記化学式(I)において、Rは、水素原子、アルキル基、ベンジル基、カルボキシアルキル基(末端にカルボキシ基が付加したアルキル基)、アミノアルキル基(末端にアミノ基が付加したアルキル基)、カルバモイルアルキル基(末端にカルバモイル基が付加したアルキル基)、アミドアルキル基(末端にアミド基が付加したアルキル基)、またはポリエーテル鎖であることが好ましい。Rは、水素原子、炭素数1〜6の直鎖もしくは分枝アルキル基、ベンジル基、末端にカルボキシ基が付加した炭素数1〜6の直鎖もしくは分枝アルキル基、末端にアミノ基が付加した炭素数1〜6の直鎖もしくは分枝アルキル基、末端にカルバモイル基が付加した炭素数1〜6の直鎖もしくは分枝アルキル基、末端にアミド基が付加した炭素数1〜6の直鎖もしくは分枝アルキル基、またはポリエチレングリコール(PEG)鎖であることがより好ましい。PEG鎖は、前記ポリエーテル鎖の一例であるが、前記ポリエーテル鎖の種類は、これに限定されず、どのようなポリエーテル鎖でも良い。Rにおいて、前記ポリエーテル鎖の重合度は特に限定されないが、例えば1〜100、好ましくは1〜50、より好ましくは1〜10である。前記ポリエーテル鎖がPEG鎖の場合、重合度は特に限定されないが、例えば1〜100、好ましくは1〜50、より好ましくは1〜10である。 In the chemical formula (I), R 1 is a hydrogen atom, an alkyl group, a benzyl group, a carboxyalkyl group (an alkyl group having a carboxy group added to the terminal), an aminoalkyl group (an alkyl group having an amino group added to the terminal), It is preferably a carbamoylalkyl group (an alkyl group having a carbamoyl group added to the terminal), an amide alkyl group (an alkyl group having an amide group added to the terminal), or a polyether chain. R 1 is a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, a benzyl group, a linear or branched alkyl group having 1 to 6 carbon atoms to which a carboxy group is added at the end, and an amino group at the terminal. 1 to 6 carbon straight chain or branched alkyl group added, 1 to 6 carbon straight chain or branched alkyl group with a carbamoyl group added at the end, 1 to 6 carbon atoms with an amide group added at the end More preferably, it is a linear or branched alkyl group or a polyethylene glycol (PEG) chain. The PEG chain is an example of the polyether chain, but the type of the polyether chain is not limited to this, and any polyether chain may be used. In R, although the polymerization degree of the said polyether chain is not specifically limited, For example, it is 1-100, Preferably it is 1-50, More preferably, it is 1-10. When the polyether chain is a PEG chain, the degree of polymerization is not particularly limited, but is, for example, 1 to 100, preferably 1 to 50, and more preferably 1 to 10.

前記化学式(I)において、R〜Rの少なくとも一つは、電子吸引基であることが好ましく、R〜Rの少なくとも一つが電子吸引基であることがより好ましい。前記電子吸引基は、例えば、シアノ基、カルボキシ基、スルホ基、カルバモイル基、アミド基、ハロゲン基、またはニトロ基からなる群から選択される少なくとも一つであっても良い。なお、本発明において、「アミド基」は、カルバモイル基 −CONH の水素原子1個が置換基で置換された−CONHR をいう。アミド基を構造中に含む基(アミドアルキル基等)においても同様である。前記アミド基において、Rは、任意の置換基であり、例えば、アルキル基、ベンジル基等が挙げられる。前記アミド基において、Rは、炭素数1〜6の直鎖もしくは分枝アルキル基、またはベンジル基であることが好ましい。 In the chemical formula (I), at least one of R 2 to R 8 is preferably an electron withdrawing group, and more preferably at least one of R 2 to R 4 is an electron withdrawing group. The electron withdrawing group may be, for example, at least one selected from the group consisting of a cyano group, a carboxy group, a sulfo group, a carbamoyl group, an amide group, a halogen group, or a nitro group. In the present invention, the “amide group” refers to —CONHR 1 in which one hydrogen atom of the carbamoyl group —CONH 2 is substituted with a substituent. The same applies to a group containing an amide group in the structure (such as an amide alkyl group). In the amide group, R is an arbitrary substituent, and examples thereof include an alkyl group and a benzyl group. In the amide group, R is preferably a linear or branched alkyl group having 1 to 6 carbon atoms or a benzyl group.

前記化学式(I)において、Rが、アルキル基またはベンジル基であり、Rが、電子吸引基であり、RおよびR〜Rが、水素原子であることが好ましい。また、前記化学式(I)において、Rが、アルキル基であり、Rが、電子吸引基であり、RおよびR〜Rが、水素原子であることがより好ましい。 In the chemical formula (I), it is preferable that R 1 is an alkyl group or a benzyl group, R 3 is an electron-withdrawing group, and R 2 and R 4 to R 8 are hydrogen atoms. In the chemical formula (I), R 1 is an alkyl group, R 3 is an electron-withdrawing group, and R 2 and R 4 to R 8 are more preferably a hydrogen atom.

前記化学式(I)で表されるキノリニウム誘導体は、1-メチルキノリニウム、1,2-ジメチルキノリニウム、または3-シアノ-1-メチルキノリニウムであることがさらに好ましい。前記化学式(I)で表されるキノリニウム誘導体は、下記化学式(1)で表されるキノリニウム誘導体(3-シアノ-1-メチルキノリニウム)であることが特に好ましい。     The quinolinium derivative represented by the chemical formula (I) is more preferably 1-methylquinolinium, 1,2-dimethylquinolinium, or 3-cyano-1-methylquinolinium. The quinolinium derivative represented by the chemical formula (I) is particularly preferably a quinolinium derivative represented by the following chemical formula (1) (3-cyano-1-methylquinolinium).

Figure 0005470623
Figure 0005470623

本発明の酸化触媒において、前記キノリニウム誘導体としては、前記化学式(1)のキノリニウム誘導体以外には、例えば、下記表1に記す(2)〜(20)が挙げられる。下記表1中のR〜Rは、前記化学式(I)中のR〜Rと同じである。 In the oxidation catalyst of the present invention, examples of the quinolinium derivative include (2) to (20) shown in the following Table 1 other than the quinolinium derivative of the chemical formula (1). R 1 to R 8 in the Table in 1 is the same as R 1 to R 8 in Formula (I).

Figure 0005470623
Figure 0005470623

Figure 0005470623
Figure 0005470623

なお、前記化学式(I)で表されるキノリニウム誘導体、その互変異性体もしくは立体異性体、またはそれらの塩の製造方法は、特に制限されない。前記化学式(I)で表されるキノリニウム誘導体、その互変異性体もしくは立体異性体、またはそれらの塩は、例えば、公知の有機合成反応を参考にして適宜製造しても良い。具体的には、例えば、J. Phys. Chem. B 2003, 107, 12511-12518およびFukuzumi, S.; Ohkubo, K.; Tokuda, Y.; Suenobu, T. J. Am. Chem. Soc. 2000, 122, 4286.に記載されているように、キノリン誘導体をヨウ化メチルおよびアセトン溶媒存在下でキノリニウムに変換し、さらに塩交換(イオン交換)して製造しても良い。また、前記化学式(I)で表されるキノリニウム誘導体、その互変異性体もしくは立体異性体、またはそれらの塩の市販品を入手可能な場合は、それを用いても良い。   The production method of the quinolinium derivative represented by the chemical formula (I), its tautomer or stereoisomer, or a salt thereof is not particularly limited. The quinolinium derivative represented by the chemical formula (I), a tautomer or stereoisomer thereof, or a salt thereof may be appropriately produced with reference to a known organic synthesis reaction, for example. Specifically, for example, J. Phys. Chem. B 2003, 107, 12511-12518 and Fukuzumi, S .; Ohkubo, K .; Tokuda, Y .; Suenobu, TJ Am. Chem. Soc. 2000, 122, As described in 4286., a quinoline derivative may be converted to quinolinium in the presence of methyl iodide and acetone solvent, and further subjected to salt exchange (ion exchange). In addition, when a quinolinium derivative represented by the chemical formula (I), a tautomer or stereoisomer thereof, or a commercially available salt thereof is available, it may be used.

本発明の酸化触媒は、前記のとおり、芳香族化合物を酸化してフェノール類に変換する。例えば、前記芳香族化合物の芳香環上の水素原子を水酸基で置換して前記フェノール類に変換しても良い。より具体的には、例えば、ベンゼンからフェノール(ヒドロキシベンゼン)への変換等が挙げられる。   As described above, the oxidation catalyst of the present invention oxidizes aromatic compounds and converts them into phenols. For example, a hydrogen atom on the aromatic ring of the aromatic compound may be substituted with a hydroxyl group and converted to the phenols. More specifically, for example, conversion from benzene to phenol (hydroxybenzene) and the like can be mentioned.

本発明の酸化触媒は、光反応により前記芳香族化合物を酸化して前記フェノール類に変換することが好ましい。   The oxidation catalyst of the present invention preferably oxidizes the aromatic compound by photoreaction and converts it to the phenols.

なお、前記化学式(I)で表されるキノリニウム誘導体に互変異性体または立体異性体(例:幾何異性体、配座異性体および光学異性体)等の異性体が存在する場合は、いずれの異性体も本発明に用いることができる。また、前記キノリニウム誘導体の塩は、酸付加塩でも良いが、前記キノリニウム誘導体が塩基付加塩を形成し得る場合は、塩基付加塩でも良い。さらに、前記酸付加塩を形成する酸は無機酸でも有機酸でも良く、前記塩基付加塩を形成する塩基は無機塩基でも有機塩基でも良い。前記無機酸としては、特に限定されないが、例えば、硫酸、リン酸、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜フッ素酸、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、亜フッ素酸、亜塩素酸、亜臭素酸、亜ヨウ素酸、フッ素酸、塩素酸、臭素酸、ヨウ素酸、過フッ素酸、過塩素酸、過臭素酸、および過ヨウ素酸等があげられる。前記有機酸も特に限定されないが、例えば、p−トルエンスルホン酸、メタンスルホン酸、シュウ酸、p−ブロモベンゼンスルホン酸、炭酸、コハク酸、クエン酸、安息香酸および酢酸等があげられる。前記無機塩基としては、特に限定されないが、例えば、水酸化アンモニウム、アルカリ金属水酸化物、アルカリ土類金属水酸化物、炭酸塩および炭酸水素塩等があげられ、より具体的には、例えば、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化カルシウムおよび炭酸カルシウム等があげられる。前記有機塩基も特に限定されないが、例えば、エタノールアミン、トリエチルアミンおよびトリス(ヒドロキシメチル)アミノメタン等があげられる。これらの塩の製造方法も特に限定されず、例えば、前記キノリニウム誘導体に、前記のような酸や塩基を公知の方法により適宜付加させる等の方法で製造することができる。また、置換基等に異性体が存在する場合はどの異性体でも良く、例えば、「ナフチル基」という場合は、1-ナフチル基でも2-ナフチル基でも良い。   In addition, when the quinolinium derivative represented by the chemical formula (I) has an isomer such as a tautomer or a stereoisomer (eg, a geometric isomer, a conformer and an optical isomer) Isomers can also be used in the present invention. The salt of the quinolinium derivative may be an acid addition salt, but may be a base addition salt when the quinolinium derivative can form a base addition salt. Furthermore, the acid forming the acid addition salt may be an inorganic acid or an organic acid, and the base forming the base addition salt may be an inorganic base or an organic base. The inorganic acid is not particularly limited. For example, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypofluorite, hypochlorous acid, hypobromite, Hypoarousous acid, fluorinated acid, chlorous acid, bromic acid, iodic acid, fluoric acid, chloric acid, bromic acid, iodic acid, perfluoric acid, perchloric acid, perbromic acid, periodic acid, etc. Can be given. The organic acid is not particularly limited, and examples thereof include p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromobenzenesulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, and acetic acid. The inorganic base is not particularly limited, and examples thereof include ammonium hydroxide, alkali metal hydroxides, alkaline earth metal hydroxides, carbonates and hydrogen carbonates, and more specifically, for example, Examples thereof include sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, calcium hydroxide and calcium carbonate. The organic base is not particularly limited, and examples thereof include ethanolamine, triethylamine, and tris (hydroxymethyl) aminomethane. The method for producing these salts is not particularly limited, and for example, the salts can be produced by a method such as appropriately adding the above acid or base to the quinolinium derivative by a known method. Further, when an isomer exists in a substituent or the like, any isomer may be used. For example, in the case of “naphthyl group”, it may be a 1-naphthyl group or a 2-naphthyl group.

また、前記化学式(I)で表されるキノリニウム誘導体の吸収帯は特に限定されないが、可視光領域に吸収帯を有することが好ましい。可視光領域に吸収帯を有することで、例えば、可視光励起することが可能となり、太陽光を利用した光反応に用いることができる。   The absorption band of the quinolinium derivative represented by the chemical formula (I) is not particularly limited, but preferably has an absorption band in the visible light region. By having an absorption band in the visible light region, for example, it becomes possible to excite visible light, and it can be used for a photoreaction utilizing sunlight.

本発明において、アルキル基としては、特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、n-プロピル基等が挙げられ、アルキル基を構造中に含む基(アルキルアミノ基、アルコキシ基等)においても同様である。また、ペルフルオロアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、n-プロピル基等から誘導されるペルフルオロアルキル基が挙げられ、ペルフルオロアルキル基を構造中に含む基(ペルフルオロアルキルスルホニル基、ペルフルオロアシル基等)においても同様である。本発明において、アシル基としては、特に限定されないが、例えば、ホルミル基、アセチル基、プロピオニル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基、シクロヘキサノイル基、ベンゾイル基、エトキシカルボニル基、等が挙げられ、アシル基を構造中に含む基(アシルオキシ基、アルカノイルオキシ基等)においても同様である。また、本発明において、アシル基の炭素数にはカルボニル炭素を含み、例えば、炭素数1のアルカノイル基(アシル基)とはホルミル基を指すものとする。さらに、本発明において、「ハロゲン」とは、任意のハロゲン元素を指すが、例えば、フッ素、塩素、臭素およびヨウ素が挙げられる。   In the present invention, the alkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n- Examples thereof include a pentyl group, a neopentyl group, and an n-propyl group, and the same applies to groups containing an alkyl group in the structure (alkylamino group, alkoxy group, etc.). Further, the perfluoroalkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group. A perfluoroalkyl group derived from a group, a neopentyl group, an n-propyl group or the like, and the same applies to groups containing a perfluoroalkyl group in the structure (perfluoroalkylsulfonyl group, perfluoroacyl group, etc.). In the present invention, the acyl group is not particularly limited. For example, formyl group, acetyl group, propionyl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, hexanoyl group, cyclohexanoyl group, benzoyl group, ethoxycarbonyl The same applies to groups containing an acyl group in the structure (acyloxy group, alkanoyloxy group, etc.). In the present invention, the carbon number of the acyl group includes carbonyl carbon. For example, an alkanoyl group having 1 carbon atom (acyl group) refers to a formyl group. Furthermore, in the present invention, “halogen” refers to any halogen element, and examples thereof include fluorine, chlorine, bromine and iodine.

[2.フェノール類の製造方法]
本発明によるフェノール類の製造方法は、前記のとおり、芳香族化合物を酸化してフェノール類に変換する酸化工程を含む、フェノール類の製造方法であって、前記酸化工程において、前記本発明の酸化触媒により前記芳香族化合物を酸化することを特徴とする。
[2. Method for producing phenols]
As described above, the method for producing phenols according to the present invention is a method for producing phenols, which includes an oxidation step of oxidizing an aromatic compound to convert it into phenols. In the oxidation step, the oxidation according to the present invention is performed. The aromatic compound is oxidized by a catalyst.

本発明の製造方法において、フェノール類の原料となる前記芳香族化合物は、置換基を有していても良いし、有していなくても良い。前記芳香族化合物が置換基を有する場合、前記置換基は、1でも複数でもよいし、複数の場合は、1種類でも複数種類でもよい。前記置換基としては、例えば、ハロゲン基、アルキル基、アルコキシ基、カルボキシ基等が挙げられる。前記芳香族化合物の骨格となる芳香環は、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、フラーレン等が挙げられる。前記芳香族化合物としては、具体的には、例えば、ベンゼン、フルオロベンゼン、クロロベンゼン、ブロモベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、メシチレン、エチルベンゼン、ナフタレン、1−クロロナフタレン、2−クロロナフタレン、1−ブロモナフタレン、2−ブロモナフタレン、1−メチルナフタレン、2−メチルナフタレン、アントラセン、フェナントレン、ピレン等が挙げられる。ただし、前記芳香族化合物は、これらに限定されない。   In the production method of the present invention, the aromatic compound as a raw material for phenols may or may not have a substituent. When the aromatic compound has a substituent, the number of the substituent may be one or plural, and in the case of plural, one kind or plural kinds may be used. Examples of the substituent include a halogen group, an alkyl group, an alkoxy group, and a carboxy group. Examples of the aromatic ring serving as the skeleton of the aromatic compound include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, and fullerene. Specific examples of the aromatic compound include benzene, fluorobenzene, chlorobenzene, bromobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, ethylbenzene, naphthalene, 1-chloronaphthalene, 2 -Chloronaphthalene, 1-bromonaphthalene, 2-bromonaphthalene, 1-methylnaphthalene, 2-methylnaphthalene, anthracene, phenanthrene, pyrene and the like. However, the aromatic compound is not limited to these.

本発明の製造方法において、例えば、前記芳香族化合物が、下記化学式(101)で表される化合物であり、前記フェノール類が、下記化学式(102)〜(105)で表されるフェノール類の少なくとも一つであっても良い。この場合において、前記フェノール類が、下記化学式(102)、(103)および(105)の少なくとも一つであっても良い。   In the production method of the present invention, for example, the aromatic compound is a compound represented by the following chemical formula (101), and the phenols are at least phenols represented by the following chemical formulas (102) to (105). There may be one. In this case, the phenol may be at least one of the following chemical formulas (102), (103) and (105).

Figure 0005470623
Figure 0005470623

前記化学式(101)および(103)〜(105)中、Xは、水素原子、塩素または臭素であり、前記化学式(101)におけるXと、前記化学式(103)〜(105)におけるXとは、同一である。   In the chemical formulas (101) and (103) to (105), X is a hydrogen atom, chlorine or bromine, and X in the chemical formula (101) and X in the chemical formulas (103) to (105) are Are the same.

前記酸化工程における反応は、特に制限されず、例えば、光反応でも熱反応でも良いが、光反応により、前記芳香族化合物を酸化して前記フェノール類に変換することが好ましい。   The reaction in the oxidation step is not particularly limited, and may be, for example, a photoreaction or a thermal reaction, but it is preferable to oxidize the aromatic compound and convert it to the phenols by a photoreaction.

また、前記酸化工程において、水と酸素との存在下、前記芳香族化合物を酸化して前記フェノール類に変換することが好ましい。例えば、前記酸化工程は、前記芳香族化合物、本発明の酸化触媒、有機溶媒、水、および酸素のみを用いれば、有害物質の副生を極力抑制し、かつ低コストで行うことができる。   In the oxidation step, it is preferable that the aromatic compound is oxidized and converted to the phenols in the presence of water and oxygen. For example, if only the aromatic compound, the oxidation catalyst of the present invention, an organic solvent, water, and oxygen are used in the oxidation step, harmful substances can be suppressed as much as possible and can be performed at low cost.

また、本発明によるフェノール類の製造方法は、例えば、過酸化水素の製造方法として用いることもできる。すなわち、本発明による過酸化水素の製造方法は、前述のとおり、前記酸化工程において、水と酸素との存在下、前記芳香族化合物を酸化して前記フェノール類に変換し、副生成物として過酸化水素を生成させることを特徴とする。   Moreover, the manufacturing method of the phenols by this invention can also be used as a manufacturing method of hydrogen peroxide, for example. That is, as described above, in the method for producing hydrogen peroxide according to the present invention, in the oxidation step, the aromatic compound is oxidized and converted to the phenols in the presence of water and oxygen, and as a byproduct. It is characterized by generating hydrogen oxide.

過酸化水素は、工業用、試験研究用、薬用、医用等の多様な用途において重要な物質である。しかし、過酸化水素は、一般に、水素(H)と酸素(O)を原料とし、アントラセン誘導体の自動酸化反応を利用して製造されており(アントラキノン法)、製造コストが高い。しかし、本発明の過酸化水素の製造方法は、前記本発明のフェノール類の製造方法における過酸化水素の副生を利用するため、過酸化水素を低コストに得ることができる。 Hydrogen peroxide is an important substance in various applications such as industrial use, test research use, medicinal use, and medical use. However, hydrogen peroxide is generally produced using hydrogen (H 2 ) and oxygen (O 2 ) as raw materials and utilizing an anthracene derivative autoxidation reaction (anthraquinone method), and the production cost is high. However, since the method for producing hydrogen peroxide according to the present invention utilizes the by-product of hydrogen peroxide in the method for producing phenols according to the present invention, hydrogen peroxide can be obtained at low cost.

本発明のフェノール類の製造方法は、前記酸化工程を含む以外は特に制限されず、どのような工程を含んでいても良いし、どのような物質を用いても良い。本発明のフェノール類の製造方法は、具体的には、例えば、以下のようにして行うことができる。   The method for producing phenols of the present invention is not particularly limited except that it includes the oxidation step, and any step may be included or any substance may be used. Specifically, the method for producing phenols of the present invention can be performed, for example, as follows.

[2−1.反応系準備工程]
まず、本発明の酸化触媒と、フェノール類の原料である芳香族化合物とを含む反応系を準備する。この反応系は、酸化剤をさらに含んでいても良い。または、前記酸化工程において、前記反応系の外から酸化剤を取り込みながら酸化反応を進行させても良い。前記酸化剤は、特に制限されないが、例えば、水と酸素が挙げられる。なお、水と酸素とを用いたベンゼンの酸化反応では、後述の実施例で述べるように、H 18Oを用いたところ、フェノール性水酸基中に18Oを含むフェノール(ヒドロキシベンゼン)が得られた。このことから、水と酸素とを含む反応系では、例えば下記スキーム1のように、水と酸素とがともに酸化剤として働き、芳香族化合物を酸化すると考えられる。ただし、下記スキーム1は、推定可能な機構の一例であり、本発明を何ら限定しない。

Figure 0005470623
[2-1. Reaction system preparation process]
First, a reaction system including the oxidation catalyst of the present invention and an aromatic compound that is a raw material for phenols is prepared. This reaction system may further contain an oxidizing agent. Or in the said oxidation process, you may advance an oxidation reaction, taking in an oxidizing agent from the outside of the said reaction system. The oxidizing agent is not particularly limited, and examples thereof include water and oxygen. In addition, in the oxidation reaction of benzene using water and oxygen, as described in Examples below, when H 2 18 O is used, phenol containing 18 O in a phenolic hydroxyl group (hydroxybenzene) is obtained. It was. From this, in the reaction system containing water and oxygen, for example, as shown in the following scheme 1, it is considered that both water and oxygen work as oxidizing agents to oxidize aromatic compounds. However, the following scheme 1 is an example of a mechanism that can be estimated, and does not limit the present invention.
Figure 0005470623

前記反応系は、溶媒または分散媒をさらに含むことが、反応効率の観点から好ましい。前記溶媒または分散媒と、前記芳香族化合物と、前記本発明の酸化触媒との使用量および使用量比は、特に制限されず、適宜設定すれば良い。前記芳香族化合物の使用量は、前記溶媒または分散媒1Lに対し、例えば、1.0×10-3〜1.0mol、好ましくは1.0×10-2〜0.1mol、より好ましくは1.0×10-2〜5.0×10-2molである。前記本発明の酸化触媒の使用量は、前記溶媒または分散媒1Lに対し、例えば、1.0×10-6〜0.1mol、好ましくは1.0×10-5〜5.0×10-2mol、より好ましくは1.0×10-4〜1.0×10-2molである。また、前記本発明の酸化触媒の使用量は、前記芳香族化合物1molに対し、例えば、1.0×10-4〜1.0mol、好ましくは1.0×10-3〜1.0mol、より好ましくは0.02〜0.1molである。 The reaction system preferably further contains a solvent or a dispersion medium from the viewpoint of reaction efficiency. The usage amount and the usage amount ratio of the solvent or dispersion medium, the aromatic compound, and the oxidation catalyst of the present invention are not particularly limited, and may be set as appropriate. The amount of the aromatic compound used is, for example, 1.0 × 10 −3 to 1.0 mol, preferably 1.0 × 10 −2 to 0.1 mol, more preferably 1.0 × 10 −2 to 5.0 mol, with respect to 1 L of the solvent or dispersion medium. × 10 -2 mol. The amount of the oxidation catalyst of the present invention used is, for example, 1.0 × 10 −6 to 0.1 mol, preferably 1.0 × 10 −5 to 5.0 × 10 −2 mol, more preferably 1.0 to 1 L of the solvent or dispersion medium. × 10 −4 to 1.0 × 10 −2 mol. The amount of the oxidation catalyst of the present invention used is, for example, 1.0 × 10 −4 to 1.0 mol, preferably 1.0 × 10 −3 to 1.0 mol, more preferably 0.02 to 0.1 mol, relative to 1 mol of the aromatic compound. It is.

前記溶媒または分散媒は、例えば、水でも良いし、有機溶媒でも良いし、水と有機溶媒との混合溶媒でも良い。前記有機溶媒としては、例えば、ベンゾニトリル、アセトニトリル、ブチロニトリル、プロピオニトリル等のニトリル、クロロホルム、ジクロロメタン等のハロゲン化溶媒、ジエチルエーテル、THF(テトラヒドロフラン)等のエーテル、DMF(ジメチルホルムアミド)、DMA(ジメチルアセトアミド)等のアミド、DMSO(ジメチルスルホキシド)等のスルホキシド、アセトン等のケトン、メタノール、エタノール等のアルコール、等が挙げられる。これら溶媒は、単独で用いても二種類以上併用しても良い。前記溶媒としては、前記本発明の酸化触媒の溶解度、励起状態の安定性等の観点から、極性の高い溶媒が好ましく、アセトニトリルが特に好ましい。また、例えば、反応基質(フェノール類の原料である前記芳香族化合物)が前記溶媒または分散媒を兼ねていても良い。   The solvent or dispersion medium may be water, an organic solvent, or a mixed solvent of water and an organic solvent, for example. Examples of the organic solvent include nitriles such as benzonitrile, acetonitrile, butyronitrile, propionitrile, halogenated solvents such as chloroform and dichloromethane, ethers such as diethyl ether and THF (tetrahydrofuran), DMF (dimethylformamide), DMA ( Amides such as dimethylacetamide), sulfoxides such as DMSO (dimethyl sulfoxide), ketones such as acetone, alcohols such as methanol and ethanol, and the like. These solvents may be used alone or in combination of two or more. The solvent is preferably a highly polar solvent, particularly acetonitrile, from the viewpoint of the solubility of the oxidation catalyst of the present invention, the stability of the excited state, and the like. Further, for example, a reaction substrate (the aromatic compound that is a raw material of phenols) may also serve as the solvent or the dispersion medium.

前記酸化剤の使用量は、特に制限されないが、前記芳香族化合物1molに対し、例えば、0.1〜100mol、好ましくは1.0〜100mol、より好ましくは10〜100molである。酸素を用いる場合、例えば、反応系準備工程において、前記溶媒または分散媒をあらかじめ酸素で飽和させても良いし、前記酸化工程を、前記溶媒または分散媒中に酸素を吹き込みながら行っても良い。前記酸化工程については、以下に詳しく述べる。   Although the usage-amount of the said oxidizing agent is not restrict | limited in particular, For example, it is 0.1-100 mol with respect to 1 mol of said aromatic compounds, Preferably it is 1.0-100 mol, More preferably, it is 10-100 mol. When oxygen is used, for example, in the reaction system preparation step, the solvent or dispersion medium may be saturated with oxygen in advance, or the oxidation step may be performed while blowing oxygen into the solvent or dispersion medium. The oxidation process will be described in detail below.

[2−2.酸化工程]
前記酸化工程においては、前記のとおり、前記本発明の酸化触媒により、前記芳香族化合物を酸化して前記フェノール類に変換する。この酸化反応は、熱反応でも光反応でも良いが、コスト、簡便性等の観点から、光反応が好ましい。例えば、前記スキーム1のように、キノリニウム誘導体(本発明の光触媒)を光励起することにより、酸化反応が進行する。前記光反応における照射光も特に限定されないが、反応のさらなる簡便性等の観点から、可視光が好ましい。より具体的には、前記化学式(I)で表されるキノリニウム誘導体が、可視光領域に吸収帯を有し、可視光で励起可能であることが、より好ましい。照射する前記可視光の波長のうち、より好ましい波長は、前記キノリニウム誘導体が有する吸収帯によるが、例えば260〜400nmがより好ましく、290〜400nmがさらに好ましく、310〜400nmが特に好ましい。
[2-2. Oxidation process]
In the oxidation step, as described above, the aromatic compound is oxidized and converted to the phenols by the oxidation catalyst of the present invention. This oxidation reaction may be a thermal reaction or a photoreaction, but a photoreaction is preferred from the viewpoints of cost, simplicity, and the like. For example, as shown in Scheme 1 above, the oxidation reaction proceeds by photoexcitation of a quinolinium derivative (the photocatalyst of the present invention). Irradiation light in the photoreaction is not particularly limited, but visible light is preferable from the viewpoint of further simplicity of the reaction and the like. More specifically, it is more preferable that the quinolinium derivative represented by the chemical formula (I) has an absorption band in the visible light region and can be excited by visible light. Among the wavelengths of the visible light to be irradiated, a more preferable wavelength depends on an absorption band of the quinolinium derivative, but is preferably 260 to 400 nm, more preferably 290 to 400 nm, and particularly preferably 310 to 400 nm.

前記酸化工程における反応温度も特に制限されないが、例えば-100〜250℃、好ましくは0〜40℃、より好ましくは0〜30℃である。例えば、室温で可視光を照射することにより、酸化反応を進行させることも可能である。   The reaction temperature in the oxidation step is not particularly limited, but is, for example, -100 to 250 ° C, preferably 0 to 40 ° C, and more preferably 0 to 30 ° C. For example, the oxidation reaction can be advanced by irradiating visible light at room temperature.

前記光反応には、例えば、太陽光等の自然光に含まれる可視光を利用すれば、簡便に行うことができる。また、例えば、前記自然光に代えて、またはこれに加え、キセノンランプ、ハロゲンランプ、蛍光灯、水銀灯等の光源を適宜用いても良いし、用いなくても良い。さらに、必要波長以外の波長をカットするフィルターを適宜用いても良いし、用いなくても良い。   For example, visible light contained in natural light such as sunlight can be used for the photoreaction. Further, for example, instead of or in addition to the natural light, a light source such as a xenon lamp, a halogen lamp, a fluorescent lamp, or a mercury lamp may or may not be used as appropriate. Furthermore, a filter that cuts wavelengths other than the necessary wavelength may or may not be used as appropriate.

また、前記酸化工程において、前記反応系のpHは、特に制限されないが、例えば1.0〜8.0、好ましくは3.0〜7.0、より好ましくは4.0〜6.0である。   In the oxidation step, the pH of the reaction system is not particularly limited, but is, for example, 1.0 to 8.0, preferably 3.0 to 7.0, and more preferably 4.0 to 6.0.

以上のようにして本発明のフェノール類の製造方法を行うことができる。なお、製造したフェノール類の単離精製方法は、特に制限されず、溶媒抽出、カラムクロマトグラフィー等の定法を適宜用いれば良い。また、副生成物の過酸化水素は、精製することで、さらに実用に適した純度の高い過酸化水素または過酸化水素水を得ることができる。具体的な方法としては、特に制限されないが、例えば、イオン交換水などで過酸化水素を抽出し、減圧蒸留する事で高濃度の過酸化水素水が得られる。   The method for producing phenols of the present invention can be performed as described above. The method for isolating and purifying the produced phenols is not particularly limited, and conventional methods such as solvent extraction and column chromatography may be appropriately used. Further, by purifying the by-product hydrogen peroxide, it is possible to obtain hydrogen peroxide or hydrogen peroxide water having high purity suitable for practical use. Although it does not restrict | limit especially as a specific method, For example, hydrogen peroxide is extracted with ion-exchange water etc., A high concentration hydrogen peroxide solution is obtained by carrying out vacuum distillation.

以下、本発明の実施例について説明する。しかし、以下は例示であって、本発明は、以下の実施例のみには限定されない。また、反応機構等の理論的考察は、推定可能な機構等の一例であり、本発明を限定しない。   Examples of the present invention will be described below. However, the following is an example, and the present invention is not limited only to the following examples. The theoretical consideration of the reaction mechanism and the like is an example of a mechanism that can be estimated, and does not limit the present invention.

なお、3-シアノ-1-メチルキノリニウム過塩素酸塩(CNQuH+、前記化学式(1)で表されるキノリニウム誘導体の過塩素酸塩)は、J. Phys. Chem. B 2003, 107, 12511-12518およびFukuzumi, S.; Ohkubo, K.; Tokuda, Y.; Suenobu, T. J. Am. Chem. Soc. 2000, 122, 4286.に記載の方法で合成した。すなわち、3-シアノ-1-メチルキノリン(1230mg, 8.0mmol)をアセトン10ml中に溶解させ、さらに、ヨウ化メチル(8ml, 56.4mmol)を加え24時間攪拌した。溶媒を除去し、メタノール900mLを加え、過塩素酸マグネシウム(5.0g, 39.7mmol)を加えて塩交換(イオン交換)し、3-シアノ-1-メチルキノリニウム過塩素酸塩(CNQuH+)を得た。得られた3-シアノ-1-メチルキノリニウム過塩素酸塩(CNQuH+)の収量は1080mgであり、3-シアノ-1-メチルキノリンからの収率は50.2%であった。以下に、この3-シアノ-1-メチルキノリニウム過塩素酸塩(CNQuH+)の機器分析データを示す。   Note that 3-cyano-1-methylquinolinium perchlorate (CNQuH +, a perchlorate of a quinolinium derivative represented by the above chemical formula (1)) is J. Phys. Chem. B 2003, 107, 12511. -12518 and Fukuzumi, S .; Ohkubo, K .; Tokuda, Y .; Suenobu, TJ Am. Chem. Soc. 2000, 122, 4286. That is, 3-cyano-1-methylquinoline (1230 mg, 8.0 mmol) was dissolved in 10 ml of acetone, methyl iodide (8 ml, 56.4 mmol) was further added, and the mixture was stirred for 24 hours. Remove the solvent, add 900 mL of methanol, add magnesium perchlorate (5.0 g, 39.7 mmol), salt exchange (ion exchange), 3-cyano-1-methylquinolinium perchlorate (CNQuH +) Obtained. The yield of the obtained 3-cyano-1-methylquinolinium perchlorate (CNQuH +) was 1080 mg, and the yield based on 3-cyano-1-methylquinoline was 50.2%. The instrumental analysis data of this 3-cyano-1-methylquinolinium perchlorate (CNQuH +) is shown below.

3-シアノ-1-メチルキノリニウム過塩素酸塩(CNQuH+);
1H NMR (CD3CN): δ 4.61(s, 3H), 8.12-8.24(m, 1H), 8.4-8.5(m, 3H), 9.46(s, 1H), 9.52(s, 1H).
元素分析値:C11H9N2O4Clに基づく計算値: C, 49.18; H, 3.38; N, 10.43. 実測値: C, 49.01;H, 3.30; N, 10.58.
3-cyano-1-methylquinolinium perchlorate (CNQuH + );
1 H NMR (CD 3 CN): δ 4.61 (s, 3H), 8.12-8.24 (m, 1H), 8.4-8.5 (m, 3H), 9.46 (s, 1H), 9.52 (s, 1H).
Elemental analysis: Calculated based on C 11 H 9 N 2 O 4 Cl: C, 49.18; H, 3.38; N, 10.43. Found: C, 49.01; H, 3.30; N, 10.58.

[実施例1]
本実施例では、一重項励起状態が非常に高い酸化力を有する、3-シアノ-1-メチルキノリニウム過塩素酸塩(CNQuH+)を光触媒として用いるとともに、分子状酸素を酸化剤として用い、ベンゼンからフェノールへの高選択的光酸素化反応を行った。なお、3-シアノ-1-メチルキノリニウムは、前記化学式(1)で表されるキノリニウム誘導体である。
[Example 1]
In this example, 3-cyano-1-methylquinolinium perchlorate (CNQuH + ) having a very high oxidizing power in a singlet excited state is used as a photocatalyst, and molecular oxygen is used as an oxidizing agent. A highly selective photooxygenation reaction from benzene to phenol was carried out. Note that 3-cyano-1-methylquinolinium is a quinolinium derivative represented by the chemical formula (1).

CNQuH+過塩素酸塩(1.0mM)、ベンゼン(50mM)、水(1.0M)、およびシクロヘキサノン(5mM)を含む酸素飽和アセトニトリル溶液(アセトニトリル0.4mL)に波長λ>290nm(カットフィルター付)のキセノンランプ光を40分間照射すると、選択率100%、収率36.0%でフェノールが得られた。また、副生成物として、過酸化水素が得られた。この反応の化学量論式を、下記スキーム2に示す。なお、シクロヘキサノンは、反応物質ではなく、反応追跡(分析)のための標準物質である。 CNQuH + perchlorate (1.0mM), benzene (50mM), water (1.0M), and oxygen saturated acetonitrile solution (acetonitrile 0.4mL) containing cyclohexanone (5mM) xenon with wavelength λ> 290nm (with cut filter) When irradiated with lamp light for 40 minutes, phenol was obtained with a selectivity of 100% and a yield of 36.0%. Further, hydrogen peroxide was obtained as a by-product. The stoichiometric formula of this reaction is shown in Scheme 2 below. Cyclohexanone is not a reactant but a standard substance for reaction tracking (analysis).

Figure 0005470623
Figure 0005470623

前記反応は、ガスクロマトグラフ質量分析法(GC-MS)、 1H NMRにより追跡した。なお、前記のとおり、反応開始前に、あらかじめ、内部標準としてシクロヘキサノン5mMを加えておいた。図1のグラフに、その結果を示す。同図において、横軸は、反応時間(光照射時間、分)であり、縦軸は、ベンゼンおよびフェノール(ヒドロキシベンゼン)の物質量を示す。図示のとおり、反応後40分で、フェノール(ヒドロキシベンゼン)の濃度は最高値を示し、前記のとおり、収率36.0%を示した。また、フェノール(ヒドロキシベンゼン)に対するTON(触媒1モルあたり発生した、目的生成物のモル数)は、18であった。   The reaction was followed by gas chromatography mass spectrometry (GC-MS), 1H NMR. As described above, 5 mM of cyclohexanone was previously added as an internal standard before starting the reaction. The results are shown in the graph of FIG. In the figure, the horizontal axis represents the reaction time (light irradiation time, minutes), and the vertical axis represents the amounts of benzene and phenol (hydroxybenzene). As shown in the figure, at 40 minutes after the reaction, the concentration of phenol (hydroxybenzene) showed the highest value, and as described above, the yield was 36.0%. Moreover, TON (the number of moles of the target product generated per mole of the catalyst) with respect to phenol (hydroxybenzene) was 18.

さらに、60分間光照射後、前記反応系をヨードメトリーにより滴定し、過酸化水素の発生を確認した。図2のグラフに、その結果を示す。同図において、横軸は、波長(nm)であり、縦軸は、吸光度を示す。なお、希釈比は、400とした。図示のとおり、I3 -が観測されたことから、過酸化水素(H2O2)の生成が確認された。過酸化水素の収量および収率は、それぞれ20.8mMおよび収率は41.6%であり、過酸化水素に対するTONは20.8であった。 Further, after light irradiation for 60 minutes, the reaction system was titrated by iodometry to confirm the generation of hydrogen peroxide. The results are shown in the graph of FIG. In the figure, the horizontal axis represents wavelength (nm) and the vertical axis represents absorbance. The dilution ratio was 400. As shown in the figure, since I 3 was observed, production of hydrogen peroxide (H 2 O 2 ) was confirmed. The yield and yield of hydrogen peroxide were 20.8 mM and 41.6%, respectively, and the TON relative to hydrogen peroxide was 20.8.

次に、CNQuH+過塩素酸塩(0.01M)、ベンゼン(0.5M)、および水(3M)を含む酸素飽和アセトニトリル溶液(アセトニトリル0.4mL)に、キセノンランプ(商品名Rc5300、ウシオ電機株式会社製、波長λ=334nmの光(光子量I334nm=9.98×109einstein・s-1)を照射して反応追跡し、フェノール(ヒドロキシベンゼン)生成の量子収率を算出した。図3に、その結果を示す。同図において、横軸は、反応時間(光照射時間、秒)であり、縦軸は、フェノールの生成量(μmol)を示す。図示のとおり、光照射時間とフェノール生成量とは、比例関係を示した。また、量子収率φは、φ=5.6%と算出された。 Next, an oxygen saturated acetonitrile solution (0.4 mL of acetonitrile) containing CNQuH + perchlorate (0.01M), benzene (0.5M), and water (3M) was added to a xenon lamp (trade name Rc5300, manufactured by USHIO INC.) The reaction was followed by irradiation with light of wavelength λ = 334 nm (photon amount I 334 nm = 9.98 × 10 9 einstein · s −1 ), and the quantum yield of phenol (hydroxybenzene) formation was calculated. In the figure, the horizontal axis represents the reaction time (light irradiation time, seconds), and the vertical axis represents the amount of phenol produced (μmol). The quantum yield φ was calculated as φ = 5.6%.

以下、この反応の機構等についての検証結果を示す。なお、参考として、CNQuH+の酸化還元電位および蛍光寿命と、ベンゼンの酸化電位を、下記のとおり示す。 Hereinafter, the verification result about the mechanism etc. of this reaction is shown. For reference, the redox potential and fluorescence lifetime of CNQuH + and the oxidation potential of benzene are shown as follows.

Figure 0005470623
Figure 0005470623

まず、ベンゼンに対し過剰量のCNQuH+過塩素酸塩(1.0×10-5mM)を含む無水アセトニトリル溶液(アセトニトリル4.0mL)に対し、ベンゼンの添加量を0〜20mMまで変化させ、CNQuH+の蛍光消失を観測した。このとき、アセトニトリルは、窒素置換により脱気し、水と酸素は添加しなかった。図4に、その結果を示す。図4(a)は、ベンゼン添加量の増加とともにシアノキノリニウムの蛍光が消光する様子を示す蛍光スペクトル図であり、横軸は、波長(nm)を示し、縦軸は、蛍光強度を示す。図4(a)の挿入図は、図1における波長400nmの蛍光強度変化を示すグラフであり、横軸は、ベンゼンの添加量(mM)を示し、縦軸は、波長400nmの蛍光強度を示す。図示のとおり、アセトニトリル中CNQuH+の波長430nmの蛍光は、ベンゼンの添加に伴い消光した。また、図4(b)に、図4(a)の蛍光スペクトルのStern-Volmerプロット結果を示す。同図において、横軸は、ベンゼンの添加量(mM)を示し、縦軸は、I0/Iを示す。なお、Iは、波長400nmにおける蛍光強度であり、I0は、ベンゼンの添加量がゼロのときのIを示す。図示のように、Stern-Volmerプロットにより、消光定数を2.0×1010M-1・s-1と決定した。 First, with respect to anhydrous acetonitrile solution (4.0 mL of acetonitrile) containing an excessive amount of CNQuH + perchlorate (1.0 × 10 −5 mM) relative to benzene, the amount of benzene added was changed from 0 to 20 mM, and CNQuH + Fluorescence disappearance was observed. At this time, acetonitrile was deaerated by nitrogen substitution, and water and oxygen were not added. FIG. 4 shows the result. FIG. 4A is a fluorescence spectrum showing how the fluorescence of cyanoquinolinium quenches with an increase in the amount of benzene added. The horizontal axis indicates the wavelength (nm) and the vertical axis indicates the fluorescence intensity. . The inset of FIG. 4A is a graph showing the change in fluorescence intensity at a wavelength of 400 nm in FIG. 1, the horizontal axis indicates the amount of benzene added (mM), and the vertical axis indicates the fluorescence intensity at a wavelength of 400 nm. . As shown in the figure, the fluorescence of 430 nm wavelength of CNQuH + in acetonitrile was quenched with the addition of benzene. FIG. 4B shows a Stern-Volmer plot result of the fluorescence spectrum of FIG. In the figure, the horizontal axis indicates the amount of benzene added (mM), and the vertical axis indicates I 0 / I. Here, I is the fluorescence intensity at a wavelength of 400 nm, and I 0 indicates I when the amount of benzene added is zero. As shown in the figure, the extinction constant was determined to be 2.0 × 10 10 M −1 · s −1 by the Stern-Volmer plot.

次に、CNQuH+過塩素酸塩(0.25mM)を含む無水アセトニトリル溶液(アセトニトリル4.0mL)に対し、ベンゼンの添加量を0.01M〜1.00Mまで変化させ、355nmのレーザ光を10ナノ秒間照射して励起した。このとき、アセトニトリルは、窒素置換により脱気し、水と酸素は添加しなかった。レーザ光照射後700ns後に、吸光度を測定し、シアノキノリニルラジカルとベンゼンラジカルカチオンとの生成を観測した。図5のスペクトル図に、その結果を示す。同図において、横軸は、波長(nm)であり、縦軸は、吸光度である。図示のとおり、ベンゼンの添加によって、シアノキノリニルラジカル(波長500nm付近)とベンゼンダイマーラジカルカチオン(波長800nm付近)との吸光度がともに増大した。このことから、前記光反応においては、まず、ベンゼンから1重項励起状態のCNQuH+へ光電子移動が起こり、生成したベンゼンラジカルカチオンに水が付加する過程を経てフェノールが生成すると考えられる。 Next, with respect to anhydrous acetonitrile solution (acetonitrile 4.0 mL) containing CNQuH + perchlorate (0.25 mM), the amount of benzene added was changed from 0.01 M to 1.00 M, and 355 nm laser light was irradiated for 10 nanoseconds. Excited. At this time, acetonitrile was deaerated by nitrogen substitution, and water and oxygen were not added. Absorbance was measured 700 ns after laser irradiation, and the formation of cyanoquinolinyl radical and benzene radical cation was observed. The result is shown in the spectrum diagram of FIG. In the figure, the horizontal axis represents wavelength (nm) and the vertical axis represents absorbance. As shown in the figure, the addition of benzene increased both the absorbance of the cyanoquinolinyl radical (wavelength near 500 nm) and the benzene dimer radical cation (wavelength near 800 nm). From this, in the photoreaction, first, photoelectron transfer occurs from benzene to CNQuH + in a singlet excited state, and it is considered that phenol is generated through a process of adding water to the generated benzene radical cation.

図5で推定した反応機構をさらに検証するために、CNQuH+過塩素酸塩(1.0mM)、ベンゼン(25mM)、水(1.0M)、およびシクロヘキサノン(10mM)を含む酸素飽和アセトニトリル溶液(アセトニトリル0.4mL)にλ>290nm(カットフィルター付)のキセノンランプ光を30分間照射した。なお、シクロヘキサノンは、反応物質ではなく、反応追跡(分析)のための標準物質である。水として、H2 16Oを用いた反応、およびH2 18Oを用いた反応を、前記の条件でそれぞれ個別に行い、それぞれについて、生成したフェノール(ヒドロキシベンゼン)を、質量分析した。図6に、この分析結果を示す。同図中段のグラフは、ベンゼン、フェノール(ヒドロキシベンゼン)、およびシクロヘキサノンの、ガスクロマトグラフィによる分析値(保持時間)を示すグラフである。同グラフにおいて、横軸は、保持時間(分)であり、縦軸は、ピーク強度である。また、同図上段のグラフは、H2 16Oを用いた反応において、生成したフェノール(ヒドロキシベンゼン)のマススペクトルを示す。同図において、横軸は、質量電荷比m/zであり、縦軸は、強度を示す。同図下段のグラフは、H2 18Oを用いた反応において、生成したフェノール(ヒドロキシベンゼン)のマススペクトルを示す。同図において、横軸は、質量電荷比m/zであり、縦軸は、強度を示す。図示のとおり、同図上段のグラフでは、フェノールの分子イオンピークがm/z=94であったのに対し、同図下段のグラフでは、フェノールの分子イオンピークがm/z=96であった。これらのことから、同図上段のグラフでは、フェノール性水酸基の酸素原子が16Oであり、同図下段のグラフでは、フェノール性水酸基の酸素原子が18Oであること、すなわち、フェノール性水酸基の酸素原子が水由来であることが確認された。 In order to further verify the reaction mechanism estimated in FIG. 5, an oxygen-saturated acetonitrile solution (acetonitrile 0.4%) containing CNQuH + perchlorate (1.0 mM), benzene (25 mM), water (1.0 M), and cyclohexanone (10 mM). mL) was irradiated with xenon lamp light of λ> 290 nm (with cut filter) for 30 minutes. Cyclohexanone is not a reactant but a standard substance for reaction tracking (analysis). A reaction using H 2 16 O and a reaction using H 2 18 O as water were individually performed under the above-described conditions, and the generated phenol (hydroxybenzene) was subjected to mass spectrometry analysis for each. FIG. 6 shows the result of this analysis. The middle graph in the figure is a graph showing analysis values (retention times) of benzene, phenol (hydroxybenzene), and cyclohexanone by gas chromatography. In the graph, the horizontal axis is the retention time (minutes), and the vertical axis is the peak intensity. The graph in the upper part of the figure shows a mass spectrum of phenol (hydroxybenzene) produced in the reaction using H 2 16 O. In the figure, the horizontal axis represents the mass-to-charge ratio m / z, and the vertical axis represents the intensity. The lower graph shows the mass spectrum of phenol (hydroxybenzene) produced in the reaction using H 2 18 O. In the figure, the horizontal axis represents the mass-to-charge ratio m / z, and the vertical axis represents the intensity. As shown in the figure, in the upper graph, the molecular ion peak of phenol was m / z = 94, whereas in the lower graph, the molecular ion peak of phenol was m / z = 96. . Therefore, in the upper graph of the figure, the oxygen atom of the phenolic hydroxyl group is 16 O, and in the lower graph of the figure, the oxygen atom of the phenolic hydroxyl group is 18 O. It was confirmed that the oxygen atom was derived from water.

なお、本実施例の反応は、より具体的には、前記スキーム1にしたがって起こっていると考えられる。ただし、前述のように、スキーム1の反応機構は、推定可能な機構の一例であり、本発明を限定しない。   In addition, it is thought that reaction of a present Example has occurred according to the said scheme 1 more specifically. However, as described above, the reaction mechanism of Scheme 1 is an example of a mechanism that can be estimated and does not limit the present invention.

[実施例2]
ベンゼン以外に、フルオロベンゼン、クロロベンゼンおよびブロモベンゼンについても、実施例1と同様の反応を行い、フェノール類の生成を確認した。すなわち、CNQuH+過塩素酸塩(4.0mM)、芳香族化合物(50mM)、水(1.0M)、およびシクロヘキサノン(5.0 mM)を含む酸素飽和アセトニトリル溶液(アセトニトリル0.4mL)にλ>310nm(カットフィルター付)のキセノンランプ光を照射した。なお、シクロヘキサノンは、反応物質ではなく、反応追跡(分析)のための標準物質である。芳香族化合物としては、フルオロベンゼン、クロロベンゼン、またはブロモベンゼンを用いた反応を、それぞれ個別に行った。各反応について、フェノール化合物への変換率、各フェノール化合物の収率、消光係数k、および量子収率φを、それぞれ、実施例1と同様にして算出した。下記表2に、その結果を示す。下記表2中、「fluorobenzene」は、原料(前記芳香族化合物)としてフルオロベンゼンを用いたことを示す。「chlorobenzene」は、原料(前記芳香族化合物)としてクロロベンゼンを用いたことを示す。「bromobenzene」は、原料(前記芳香族化合物)としてブロモベンゼンを用いたことを示す。「conversion」は、前記芳香族化合物からフェノール類への変換率を示す。「selectivity」は、各フェノール化合物の収率を示す。化学式中のXは、原料(前記芳香族化合物)と同一のハロゲン原子である。「reaction time」は、反応時間を示す。図示のとおり、いずれの原料を用いても、フェノール類が得られ、特に、クロロベンゼンを原料とした場合に、88%という高い選択性で、p-クロロヒドロキシベンゼンが得られた。
[Example 2]
In addition to benzene, fluorobenzene, chlorobenzene and bromobenzene were reacted in the same manner as in Example 1 to confirm the formation of phenols. That is, λ> 310 nm (cut filter) in an oxygen saturated acetonitrile solution (acetonitrile 0.4 mL) containing CNQuH + perchlorate (4.0 mM), aromatic compound (50 mM), water (1.0 M), and cyclohexanone (5.0 mM) (Appendix) was irradiated with xenon lamp light. Cyclohexanone is not a reactant but a standard substance for reaction tracking (analysis). As aromatic compounds, reactions using fluorobenzene, chlorobenzene, or bromobenzene were performed individually. For each reaction, the conversion rate to the phenol compound, the yield of each phenol compound, the extinction coefficient k q , and the quantum yield φ were calculated in the same manner as in Example 1. The results are shown in Table 2 below. In Table 2 below, “fluorobenzene” indicates that fluorobenzene was used as a raw material (the aromatic compound). “Chlorobenzene” indicates that chlorobenzene was used as a raw material (the aromatic compound). “Bromobenzene” indicates that bromobenzene was used as a raw material (the aromatic compound). “Conversion” indicates the conversion rate from the aromatic compound to phenols. “Selectivity” indicates the yield of each phenol compound. X in the chemical formula is the same halogen atom as that of the raw material (the aromatic compound). “Reaction time” indicates the reaction time. As shown in the figure, phenols were obtained using any raw material, and in particular, when chlorobenzene was used as a raw material, p-chlorohydroxybenzene was obtained with a high selectivity of 88%.

Figure 0005470623
Figure 0005470623

以上のとおり、実施例1および2によれば、CNQuH+の光励起状態が有する強力な酸化力を利用した光触媒で、芳香族化合物と分子状酸素と水から、一段階でフェノール類を高選択的に製造することができた。 As described above, according to Examples 1 and 2, the photocatalyst utilizing the strong oxidizing power of the photoexcited state of CNQuH + is a highly selective phenol in one step from an aromatic compound, molecular oxygen and water. Could be manufactured.

[実施例3]
3-シアノ-1-メチルキノリニウム過塩素酸塩(CNQuH+)に代えて、1,2-ジメチル-キノリニウム(前記化学式(I)においてR=Me、R2=Me)過塩素酸塩(MeQuH+)、または1-メチルキノリニウム(前記化学式(I)においてR=Me、R=H)過塩素酸塩(QuH+)を用いることと、反応基質(フェノール類の原料である前記芳香族化合物)としてベンゼンを用いること以外は、前記実施例2(前記表2)と同様の条件で反応を行い、フェノール(ヒドロキシベンゼン)を製造した。下記表3に、その結果を示す。なお、キノリニウム誘導体(酸化触媒)であるMeQuH+およびQuH+は、CNQuH+と同様の方法で製造し、同定したものを用いた。
[Example 3]
Instead of 3-cyano-1-methylquinolinium perchlorate (CNQuH + ), 1,2-dimethyl-quinolinium (R 1 = Me, R 2 = Me in the chemical formula (I)) perchlorate (MeQuH + ), or 1-methylquinolinium (R 1 = Me, R 3 = H in the above chemical formula (I)) perchlorate (QuH + ) and reaction substrate (the raw material of phenols) Phenol (hydroxybenzene) was produced by carrying out the reaction under the same conditions as in Example 2 (Table 2) except that benzene was used as the aromatic compound. The results are shown in Table 3 below. In addition, MeQuH + and QuH + which are quinolinium derivatives (oxidation catalysts) were prepared and identified by the same method as CNQuH + .

[表3]
酸化触媒 フェノール収率 反応時間 量子収率
MeQuH+ 20% 6.5h 3.0%
QuH+ 20% 0.5h 7.0%
[Table 3]
Oxidation catalyst Phenol yield Reaction time Quantum yield
MeQuH + 20% 6.5h 3.0%
QuH + 20% 0.5h 7.0%

以上のとおり、実施例3においては、キノリニウム誘導体として、CNQuH+に代えてMeQuH+またはQuH+を用いても、芳香族化合物と分子状酸素と水から、一段階でフェノール類を高選択的に製造できることを確認した。 As described above, in Embodiment 3, as quinolinium derivatives, be used MeQuH + or Quh + instead CNQuH +, from an aromatic compound with molecular oxygen and water, phenols high selectivity in one step It was confirmed that it could be manufactured.

以上説明した通り、本発明の酸化触媒、およびフェノール類の製造方法によれば、フェノール類を高収率、高選択的かつ低コストで製造可能である。さらに、本発明の過酸化水素の製造方法によれば、過酸化水素を高収率、高選択的かつ低コストで製造可能である。本発明は、フェノールまたは過酸化水素の製造を必要とするあらゆる分野に適用可能であるため、その適用範囲はきわめて広い。さらに、本発明の製造方法は、反応条件等の適宜な設定により、小規模反応から大規模反応まで広く適用可能であるため、工業プラント、実験室レベルでの有機合成、精密合成等、広範な分野に利用することができる。   As described above, according to the oxidation catalyst and the method for producing phenols of the present invention, phenols can be produced with high yield, high selectivity and low cost. Furthermore, according to the method for producing hydrogen peroxide of the present invention, hydrogen peroxide can be produced with high yield, high selectivity and low cost. Since the present invention can be applied to any field that requires the production of phenol or hydrogen peroxide, its application range is very wide. Furthermore, since the production method of the present invention can be widely applied from small-scale reactions to large-scale reactions by appropriately setting reaction conditions and the like, it can be widely used for industrial plants, laboratory-level organic synthesis, precision synthesis, etc. Can be used in the field.

Claims (14)

酸化触媒であって、
下記化学式(I)で表されるキノリニウム誘導体、その互変異性体もしくは立体異性体、またはそれらの塩を含み、芳香族化合物を酸化してフェノール類に変換することを特徴とする酸化触媒。
Figure 0005470623
前記化学式(I)中、
は、水素原子または任意の置換基であり、
〜Rは、水素原子または任意の置換基であり、
とR、RとR、RとR、RとR、またはRとRは、それらが結合している炭素原子とともに芳香環を形成しても良い。
An oxidation catalyst,
An oxidation catalyst comprising a quinolinium derivative represented by the following chemical formula (I), a tautomer or stereoisomer thereof, or a salt thereof, and oxidizing an aromatic compound to convert it into a phenol.
Figure 0005470623
In the chemical formula (I),
R 1 is a hydrogen atom or an arbitrary substituent,
R 2 to R 8 are a hydrogen atom or an arbitrary substituent,
R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , or R 7 and R 8 may form an aromatic ring together with the carbon atom to which they are bonded.
〜Rの少なくとも一つが電子吸引基である請求項1記載の酸化触媒。 The oxidation catalyst according to claim 1, wherein at least one of R 2 to R 8 is an electron withdrawing group. 〜Rの少なくとも一つが電子吸引基である請求項2記載の酸化触媒。 The oxidation catalyst according to claim 2, wherein at least one of R 2 to R 4 is an electron withdrawing group. が、アルキル基またはベンジル基であり、
が、電子吸引基であり、
およびR〜Rが、水素原子である、請求項1から3のいずれか一項に記載の酸化触媒。
R 1 is an alkyl group or a benzyl group,
R 3 is an electron withdrawing group;
The oxidation catalyst according to any one of claims 1 to 3, wherein R 2 and R 4 to R 8 are hydrogen atoms.
前記電子吸引基が、シアノ基、カルボキシ基、スルホ基、カルバモイル基、アミド基、ハロゲン基、またはニトロ基からなる群から選択される少なくとも一つである請求項2から4のいずれか一項に記載の酸化触媒。   The electron withdrawing group is at least one selected from the group consisting of a cyano group, a carboxy group, a sulfo group, a carbamoyl group, an amide group, a halogen group, or a nitro group. The oxidation catalyst as described. 前記化学式(I)で表されるキノリニウム誘導体が、1-メチルキノリニウム、1,2-ジメチルキノリニウム、または3-シアノ-1-メチルキノリニウムである請求項1記載の酸化触媒。   The oxidation catalyst according to claim 1, wherein the quinolinium derivative represented by the chemical formula (I) is 1-methylquinolinium, 1,2-dimethylquinolinium, or 3-cyano-1-methylquinolinium. 前記化学式(I)で表されるキノリニウム誘導体が、下記化学式(1)で表されるキノリニウム誘導体である請求項1記載の酸化触媒。
Figure 0005470623
The oxidation catalyst according to claim 1, wherein the quinolinium derivative represented by the chemical formula (I) is a quinolinium derivative represented by the following chemical formula (1).
Figure 0005470623
前記芳香族化合物の芳香環上の水素原子を水酸基で置換して前記フェノール類に変換する請求項1から7のいずれか一項に記載の酸化触媒。   The oxidation catalyst according to any one of claims 1 to 7, wherein a hydrogen atom on an aromatic ring of the aromatic compound is substituted with a hydroxyl group to be converted into the phenols. 光反応により前記芳香族化合物を酸化して前記フェノール類に変換する、請求項1から8のいずれか一項に記載の酸化触媒。   The oxidation catalyst according to any one of claims 1 to 8, wherein the aromatic compound is oxidized and converted into the phenols by a photoreaction. 芳香族化合物を酸化してフェノール類に変換する酸化工程を含む、フェノール類の製造方法であって、
前記酸化工程において、請求項1から9のいずれか一項に記載の酸化触媒により前記芳香族化合物を酸化することを特徴とする製造方法。
A method for producing phenols comprising an oxidation step of oxidizing aromatic compounds to convert them to phenols,
In the said oxidation process, the said aromatic compound is oxidized with the oxidation catalyst as described in any one of Claim 1 to 9, The manufacturing method characterized by the above-mentioned.
前記芳香族化合物が、下記化学式(101)で表される化合物であり、前記フェノール類が、下記化学式(102)〜(105)で表されるフェノール類の少なくとも一つである請求項10記載の製造方法。
Figure 0005470623
前記化学式(101)および(103)〜(105)中、Xは、水素原子、塩素または臭素であり、前記化学式(101)におけるXと、前記化学式(103)〜(105)におけるXとは、同一である。
11. The aromatic compound is a compound represented by the following chemical formula (101), and the phenol is at least one of phenols represented by the following chemical formulas (102) to (105). Production method.
Figure 0005470623
In the chemical formulas (101) and (103) to (105), X is a hydrogen atom, chlorine or bromine, and X in the chemical formula (101) and X in the chemical formulas (103) to (105) are Are the same.
前記酸化工程において、光反応により、前記芳香族化合物を酸化して前記フェノール類に変換する、請求項10または11記載の製造方法。   The manufacturing method according to claim 10 or 11, wherein, in the oxidation step, the aromatic compound is oxidized and converted into the phenols by a photoreaction. 前記酸化工程において、水と酸素との存在下、前記芳香族化合物を酸化して前記フェノール類に変換する、請求項10から12のいずれか一項に記載の製造方法。   The manufacturing method according to any one of claims 10 to 12, wherein in the oxidation step, the aromatic compound is oxidized and converted into the phenols in the presence of water and oxygen. 過酸化水素の製造方法であって、請求項13記載の前記酸化工程において、副生成物として過酸化水素を生成させることを特徴とする製造方法。   14. A method for producing hydrogen peroxide, wherein hydrogen peroxide is produced as a by-product in the oxidation step according to claim 13.
JP2010055157A 2010-03-11 2010-03-11 Oxidation catalyst, method for producing phenols, and method for producing hydrogen peroxide Active JP5470623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055157A JP5470623B2 (en) 2010-03-11 2010-03-11 Oxidation catalyst, method for producing phenols, and method for producing hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055157A JP5470623B2 (en) 2010-03-11 2010-03-11 Oxidation catalyst, method for producing phenols, and method for producing hydrogen peroxide

Publications (2)

Publication Number Publication Date
JP2011189224A JP2011189224A (en) 2011-09-29
JP5470623B2 true JP5470623B2 (en) 2014-04-16

Family

ID=44794726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055157A Active JP5470623B2 (en) 2010-03-11 2010-03-11 Oxidation catalyst, method for producing phenols, and method for producing hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP5470623B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051165A (en) 2011-08-31 2013-03-14 Canon Inc Transmission x-ray generator
CN111978139B (en) * 2020-09-04 2023-04-07 许昌学院 Method for synthesizing phenol or derivatives thereof by photocatalysis in aqueous phase in one pot
WO2023033165A1 (en) * 2021-09-06 2023-03-09 国立大学法人大阪大学 Acridine compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7977486B2 (en) * 2006-09-08 2011-07-12 Osaka University Quinolinium ion derivatives, process for the production of the derivatives, products made by using the same, and reduction and oxidation methods with the derivatives
JP2010280512A (en) * 2007-09-25 2010-12-16 Osaka Univ Inorganic-organic composite material, method for producing the same and article using the inorganic-organic composite material

Also Published As

Publication number Publication date
JP2011189224A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
Ma et al. Organic oxoammonium salts. 3. A new convenient method for the oxidation of alcohols to aldehydes and ketones
EP2479160B1 (en) Process for production of oxidation reaction product of aromatic compound
JP5470623B2 (en) Oxidation catalyst, method for producing phenols, and method for producing hydrogen peroxide
US7977486B2 (en) Quinolinium ion derivatives, process for the production of the derivatives, products made by using the same, and reduction and oxidation methods with the derivatives
JP2013502485A (en) Synthesis method of core extended perylene diimide dye and novel core extended perylene diimide dye
JP6745452B2 (en) Method for producing olefin oxidation reaction product
JP2010280512A (en) Inorganic-organic composite material, method for producing the same and article using the inorganic-organic composite material
JP6268152B2 (en) Method for producing radical and method for producing oxidation reaction product
Soni et al. Sustainable photoredox chemistry of a transient ternary complex: an unconventional approach toward trifluoromethylated hydroquinones
JP5250433B2 (en) Phase transfer catalyst and method for producing polyhydroxyl fullerene
Kitamura et al. Isoacenofuran: a novel quinoidal building block for efficient access to high-ordered polyacene derivatives
JP2008222471A (en) Inorganic-organic composite material, method for producing inorganic-organic composite material, and product using inorganic-organic composite material
Julliard et al. Oxidation of methyl aromatic compounds by redox photosensitization
JP2008214328A (en) Novel coumarin derivative
US7166554B2 (en) Photocatalyst
JP7094185B2 (en) Method for producing cyclohexene oxide
JP6226363B2 (en) Bis-boron dipyrromethene dye
Jacobi et al. Oxidation of aryl-substituted cycloheptatrienes by photoinduced electron transfer
US20200031731A1 (en) Gold-Catalyzed C-C Cross-Coupling of Boron- and Silicon-Containing Aryl Compounds and Aryldiazonium Compounds by Visible-Light
JP6268151B2 (en) Radical generation catalyst, method for producing radical, and method for producing oxidation reaction product
Tang et al. Reagents for Direct Trifluoromethoxylation
WO2023033165A1 (en) Acridine compound
Houck Synthesis, Isolation, and Reactivity of Kinetically Stabilized Aromatic Nitrosamides and New Low Dimensional Organic Inorganic Hybrid Materials
JP7178119B2 (en) Method for producing oxidation reaction product of hydrocarbon or derivative thereof
Saha et al. Three photon absorbing photocatalyst enabled defluorinative amination of fluoroarenes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5470623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250