JP5465059B2 - Track circuit fault location identification device - Google Patents

Track circuit fault location identification device Download PDF

Info

Publication number
JP5465059B2
JP5465059B2 JP2010079641A JP2010079641A JP5465059B2 JP 5465059 B2 JP5465059 B2 JP 5465059B2 JP 2010079641 A JP2010079641 A JP 2010079641A JP 2010079641 A JP2010079641 A JP 2010079641A JP 5465059 B2 JP5465059 B2 JP 5465059B2
Authority
JP
Japan
Prior art keywords
track circuit
time
line
value
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010079641A
Other languages
Japanese (ja)
Other versions
JP2011207449A (en
Inventor
広達 山崎
徹 村上
俊一 櫛谷
広行 上原
仁則 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2010079641A priority Critical patent/JP5465059B2/en
Publication of JP2011207449A publication Critical patent/JP2011207449A/en
Application granted granted Critical
Publication of JP5465059B2 publication Critical patent/JP5465059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

この発明は、鉄道の軌道回路について故障有無の判定に加えて故障部位の特定も行う軌道回路故障部位特定装置に関する。   The present invention relates to a track circuit fault site identification device that identifies a fault site in addition to determining whether or not a rail track circuit has a fault.

軌道回路は、列車検知等のため、列車の走行する軌道を幾つかの区間に区切って、各区間の一端から列車検知信号を送信するとともに、該当区間の他端から列車検知信号を受信するものであり、列車在線中の区間では列車の車輪や車軸によって軌道が短絡されることに基づき、受信信号の有/無に応じて列車の無/有を判別するようになっている(例えば非特許文献1や特許文献1を参照)。
また、このような軌道回路の送信装置では診断ルーチンやウォッチドッグタイマを具えていて自己診断するものが知られている(例えば特許文献2参照)。
さらに、CTC向けでは伝送レベルを検出して送受の伝送装置と中間の伝送回線との何れに不具合が有るかを一個所で判断するようになったものもある(特許文献3参照)。
The track circuit divides the track on which the train travels into several sections for train detection, etc., and transmits a train detection signal from one end of each section and receives a train detection signal from the other end of the corresponding section In the section in the train line, the presence / absence of the train is determined according to the presence / absence of the received signal based on the fact that the track is short-circuited by the train wheel and axle (for example, non-patent) Reference 1 and Patent Document 1).
In addition, such a track circuit transmission device is known to have a diagnostic routine and a watchdog timer for self-diagnosis (see, for example, Patent Document 2).
Further, for CTCs, there is one that detects a transmission level and determines which one of the transmission / reception transmission apparatus and the intermediate transmission line is defective at one place (see Patent Document 3).

特開2005−262895号公報JP 2005-262895 A 特開2000−168554号公報JP 2000-168554 A 特開2005−029009号公報JP 2005-029009 A 実開平3−50583号公報Japanese Utility Model Publication No. 3-50583

鉄道電気技術者のための信号概論「軌道回路」第3頁、社団法人日本鉄道電気技術協会出版、平成17年5月20日改訂版2刷発行Overview of Signals for Railway Electrical Engineers “Track Circuit”, page 3, published by Japan Railway Electrical Engineering Association, revised edition 20 May 2005

同様に、軌道回路についても、受信信号のレベルを検出して閾値で判別することで、軌道回路の故障を検知することができると期待されるが、軌道回路の場合は列車在線状況に応じて受信信号レベルが大幅に変化するので、列車不在線時に限って故障判定を行うといった改造は必要であり、そうすれば軌道回路でも受信装置や軌道側の故障を検知できる。
もっとも、軌道回路では、送受信装置や判定装置がセンタや駅の機器室に纏めて設置されているが、軌道の各区間は長距離に亘って広く展開しているうえ、それらの間にも長い列車検知信号伝送ケーブルが敷設されていることから、軌道側の故障の発生時には長い送信側ケーブルと軌道内区間と受信側ケーブルのうち何処に不具合があるのかを探し回らなければならないので、現場の復旧には多大な時間がかかっている。
Similarly, for track circuits, it is expected that the failure of the track circuit can be detected by detecting the level of the received signal and discriminating with the threshold value. Since the received signal level changes significantly, it is necessary to make a modification such that the failure determination is performed only when the train is absent, so that the failure on the receiving device and the track side can be detected even in the track circuit.
Of course, in the track circuit, transmission / reception devices and determination devices are installed together in the equipment room of the center or the station, but each section of the track is widely spread over a long distance and long between them. Since the train detection signal transmission cable is laid, when there is a failure on the track side, it is necessary to search around where the fault is among the long transmission side cable, in-track section and reception side cable. Recovery takes a lot of time.

この不都合は従来の閾値判定では軌道側を細分化してまで故障部位を特定することができなかった為なので、閾値を多段化する等のことでケーブルと軌道との切り分けができれば、復旧時間が短縮されて、上記の不都合が大幅に改善されるはずである。
しかしながら、ケーブル長が接続毎に大きく異なるうえ、軌道の区間の長さも場所によって異なるため、個々の敷設状況を反映させて多数の閾値を適切な値に設定するのは面倒かつ困難であり、従来技術の単なる転用では使い易い装置を作ることができない。
そこで、閾値判定の手法や物理量を工夫して、ケーブルと軌道まで高い確度で切り分けられて而も使い易い軌道回路故障部位特定装置を実現することが技術的な課題となる。
This inconvenience is because the failure point could not be specified until the track side was subdivided in the conventional threshold judgment, so if the cable and track can be separated by increasing the threshold, etc., the recovery time will be shortened. Thus, the above disadvantages should be greatly improved.
However, since the cable length varies greatly from connection to connection and the length of the track section also varies from place to place, it is cumbersome and difficult to set a large number of threshold values to reflect the individual laying conditions. An easy-to-use device cannot be made by simply diverting technology.
Therefore, it is a technical problem to devise a threshold determination method and a physical quantity to realize a track circuit fault site identification device that can be used with high accuracy and is easy to use.

本発明の軌道回路故障部位特定装置は(解決手段1)、このような課題を解決するために創案されたものであり、軌道回路に接続されて前記軌道回路の送電端電圧および送電端電流と前記軌道回路の受電端電圧とを継続的に測定する測定部と、その測定で得た測定値を測定データ記憶部に蓄積する測定データ収集手段と、その蓄積データから平常時かつ列車不在線時の測定値を抽出して送電端電圧値と送電端電流値との比に対応した不在線時基準インピーダンスを求める平常時特性値算出手段と、前記蓄積データから故障時かつ列車不在線時の測定値を抽出して送電端電圧値と送電端電流値との比に対応した不在線時送電インピーダンスを求めるとともにそれと前記不在線時基準インピーダンスとの比に対応した送電インピーダンス比を求める故障時特性値算出手段と、前記送電インピーダンス比と閾値との大小に基づいて前記軌道回路の送信ケーブル断線とレール破断と受信ケーブル断線と短絡故障を判別する場合分け判別手段とを備えている。   The track circuit fault site identification device of the present invention (Solution means 1) was devised to solve such a problem, and is connected to the track circuit to transmit power transmission end voltage and power transmission end current of the track circuit. A measurement unit that continuously measures the receiving end voltage of the track circuit, a measurement data collection unit that accumulates a measurement value obtained by the measurement in a measurement data storage unit, and a normal time and a train absent line from the accumulated data Normal characteristic value calculating means for obtaining a reference impedance at the time of absence line corresponding to the ratio between the transmission end voltage value and the transmission end current value by extracting the measured value, and measurement at the time of failure and at the time of absence of train from the accumulated data The value is extracted to determine the transmission impedance at the time of the absent line corresponding to the ratio between the voltage value at the transmission end and the current value at the transmission end, and the transmission impedance ratio corresponding to the ratio between it and the reference impedance at the time of the absence line. And failure-time characteristic value calculating means, and a determination means divides the case to determine the receive cable break and short-circuit fault and the transmission cable break and the rail break in the track circuit, based on the magnitude of the power impedance ratio and the threshold value.

また、本発明の軌道回路故障部位特定装置は(解決手段2)、上記解決手段1の軌道回路故障部位特定装置であって、前記平常時特性値算出手段が前記蓄積データから平常時かつ列車不在線時の測定値を抽出して受電端電圧値に対応した不在線時基準受信電圧を求めるものであり、前記故障時特性値算出手段が前記蓄積データから故障時かつ列車不在線時の受電端電圧値を抽出してそれと前記不在線時基準受信電圧との比に対応した軌道回路故障時受信レベルを求めるものであり、前記場合分け判別手段が短絡故障と判別したとき更に前記軌道回路故障時受信レベルと閾値との大小に基づいて前記軌道回路のレール短絡を判別するものであることを特徴とする。   Further, the track circuit fault site identification device of the present invention (solution means 2) is the track circuit fault site identification device of the solution means 1, wherein the normal characteristic value calculation means is normal and train failure is determined from the accumulated data. The measured value at the time of standing line is extracted to obtain the reference reception voltage at the time of absence line corresponding to the voltage value at the receiving end, and the characteristic value calculation means at the time of failure is the receiving end at the time of failure and at the time of absence of train from the accumulated data A voltage value is extracted and a reception level at the time of a track circuit failure corresponding to the ratio of the reference reception voltage at the time of absence is obtained, and when the case determination unit determines that a short-circuit failure has occurred, the track circuit failure time further A rail short circuit of the track circuit is determined based on the magnitude of the reception level and the threshold value.

さらに、本発明の軌道回路故障部位特定装置は(解決手段3)、上記解決手段2の軌道回路故障部位特定装置であって、前記平常時特性値算出手段が前記蓄積データから平常時かつ列車在線時の測定値を抽出して送電端電圧値と送電端電流値との比に対応した在線時基準インピーダンスを求めるとともにそれと前記不在線時基準インピーダンスとの比に対応した基準インピーダンス比を求めるものであり、前記場合分け判別手段が短絡故障と判別したとき更に前記送電インピーダンス比と前記基準インピーダンス比との大小に基づいて前記軌道回路のレール短絡と送信ケーブル短絡と受信ケーブル短絡を判別するものであることを特徴とする。   Furthermore, the track circuit fault site identification device of the present invention (solution means 3) is the track circuit fault site specification device of the above solution means 2, wherein the normal characteristic value calculation means is normal and train existing line from the accumulated data. The measured value at the time is extracted to obtain the reference impedance at the time of standing line corresponding to the ratio between the transmission end voltage value and the transmission end current value, and the reference impedance ratio corresponding to the ratio between it and the reference impedance at the absence line is obtained. Yes, when the case determining means determines a short-circuit failure, it further determines a rail short circuit, a transmission cable short circuit, and a reception cable short circuit of the track circuit based on the magnitude of the power transmission impedance ratio and the reference impedance ratio. It is characterized by that.

このような本発明の軌道回路故障部位特定装置にあっては(解決手段1)、軌道回路に故障の無い平常時から軌道回路に接続しておけば、軌道回路の送電端電圧および送電端電流と軌道回路の受電端電圧とが継続的に測定されて蓄積される。そして、軌道回路の故障時に平常時特性値算出手段と故障時特性値算出手段と場合分け判別手段を動作させると、蓄積データに基づいて軌道回路の送信ケーブル断線とレール破断と受信ケーブル断線と短絡故障が判別される。この判別手法は、多数かつ各種の軌道回路について断線状態と短絡状態を確認した結果、百発百中とまではいかないが、十中八九を超える高い率で正解を出すことができる。しかも、軌道回路の実現方式が同じであれば閾値もケーブルやレールの長さに依らず同じで良いので、使い易いものとなっている。   In such a track circuit fault site identification device of the present invention (Solution 1), if the track circuit is connected to the track circuit from a normal state where there is no failure in the track circuit, the power transmission end voltage and power transmission end current of the track circuit are determined. And the receiving end voltage of the track circuit are continuously measured and accumulated. When the normal characteristic value calculating means, the failure characteristic value calculating means, and the case-identifying means are operated at the time of the failure of the track circuit, the transmission cable disconnection, the rail breakage, the reception cable disconnection, and the short circuit of the track circuit are performed based on the accumulated data. A failure is determined. As a result of confirming the disconnection state and the short-circuit state for many and various track circuits, this discrimination method can obtain correct answers at a high rate exceeding 89 percent, although it does not reach 100. In addition, if the track circuit implementation method is the same, the threshold value may be the same regardless of the length of the cable or rail, which makes it easy to use.

また、本発明の軌道回路故障部位特定装置にあっては(解決手段2)、蓄積データに基づいて軌道回路のレール短絡までも判別される。さらに、本発明の軌道回路故障部位特定装置にあっては(解決手段3)、蓄積データに基づいて軌道回路の送信ケーブル短絡と受信ケーブル短絡までも判別される。
したがって、この発明によれば、ケーブルと軌道の切り分けまで高い確度で行えるうえ使い易い軌道回路故障部位特定装置を実現することができる。
Further, in the track circuit fault site identification device according to the present invention (solution means 2), even the rail short circuit of the track circuit is determined based on the accumulated data. Furthermore, in the track circuit fault site identification device according to the present invention (solution 3), the transmission circuit short circuit and the reception cable short circuit of the track circuit are also determined based on the accumulated data.
Therefore, according to the present invention, it is possible to realize an easy-to-use track circuit fault site identification device that can perform the separation between the cable and the track with high accuracy.

本発明の実施例1について、軌道回路故障部位特定装置の全体構造を示すブロック図である。It is a block diagram which shows the whole structure of a track circuit fault location identification apparatus about Example 1 of this invention. 場合分け判別手段のうち共振コンデンサが無い場合の判別手順を示すフローチャートである。It is a flowchart which shows the discrimination | determination procedure when there is no resonance capacitor among case division discrimination means. 場合分け判別手段のうち共振コンデンサが有る場合の判別手順を示すフローチャートである。It is a flowchart which shows the discrimination | determination procedure when there exists a resonance capacitor among the case division discrimination means. 本発明の実施例2について、軌道回路故障部位特定装置の全体構造を示すブロック図である。It is a block diagram which shows the whole structure of a track circuit fault location identification apparatus about Example 2 of this invention.

このような本発明の軌道回路故障部位特定装置について、これを実施するための具体的な形態を、以下の実施例1〜2により説明する。
図1〜3に示した実施例1は、上述した解決手段を総て具現化しているが一区間を対象にしたベーシックなものであり、図4に示した実施例2は、多数の区間を対象にした実用的なものである。
なお、ここで述べる実施例は、軌道回路のうちSMETと呼ばれるものに適合させたものであり、SMETとは、83/100Hz軌道回路のINVや分周軌道回路の大形分周器で必要な電源装置を安価にするため、軌道に時分割送信して6軌道回路を1送信器に集約したものである。
About the track circuit fault site | part identification apparatus of such this invention, the specific form for implementing this is demonstrated by the following Examples 1-2.
The embodiment 1 shown in FIGS. 1 to 3 embodies all of the above-described solving means, but is basic for one section, and the embodiment 2 shown in FIG. It is a practical one targeted.
The embodiment described here is adapted to a track circuit called SMET, and SMET is necessary for INV of 83/100 Hz track circuit or large frequency divider of frequency track circuit. In order to make the power supply apparatus inexpensive, time-division transmission is performed on the orbit and six orbit circuits are integrated into one transmitter.

本発明の軌道回路故障部位特定装置の実施例1について、その具体的な構成を、図面を引用して説明する。図1は、軌道回路故障部位特定装置20の全体構造を示すブロック図であり、図2は、場合分け判別手段29の判別手順のうち共振コンデンサCが無い場合の判別手順を示すフローチャートであり、図3は、場合分け判別手段29の判別手順のうち共振コンデンサCが有る場合の判別手順を示すフローチャートである。   A specific configuration of the track circuit fault site identification device according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the overall structure of the track circuit fault site identification device 20, and FIG. 2 is a flowchart showing a determination procedure when the resonance capacitor C is not included in the determination procedure of the case determination determination unit 29. FIG. 3 is a flowchart showing a determination procedure in the case where the resonance capacitor C is present, among the determination procedures of the case classification determination means 29.

軌道回路故障部位特定装置20の説明に先立って接続先の軌道回路10の基本構成を説明する。軌道回路10は、機器室の送信部11で発生させた例えば120Hzの交流信号を、送信ケーブル12で現場の軌道へ伝送してからインピーダンスボンド13を介してレール14における両端絶縁の対象区間に対してその一端側から送り込むとともに、その対象区間の他端側からインピーダンスボンド15を介して拾い上げ更に受信ケーブル16にて機器室の受信部17へ伝送してから検出し、その検出信号のレベルに応じてレール14の対象区間における列車の有無を例えば軌道回路リレーTRの出力で示すものである。   Prior to the description of the track circuit failure site identification device 20, the basic configuration of the track circuit 10 to be connected will be described. The track circuit 10 transmits, for example, a 120 Hz AC signal generated by the transmitter 11 in the equipment room to the track on the site via the transmission cable 12 and then to the target section of both ends insulation in the rail 14 via the impedance bond 13. And then picked up from the other end side of the target section via the impedance bond 15 and further transmitted to the receiving unit 17 of the equipment room by the receiving cable 16, and detected according to the level of the detection signal. The presence or absence of a train in the target section of the rail 14 is indicated by the output of the track circuit relay TR, for example.

この軌道回路故障部位特定装置20は(図1参照)、軌道回路10のレール14の一区間を対象とするベーシックなものであり、軌道回路10に接続されて例えば一定周期で測定を繰り返す測定部21〜23と、その測定結果に基づいて軌道回路10の故障部位特定のための推定演算を行う解析部24とを具えている。
測定部21〜23は、レール14の対象区間を介して送受信される上述の交流信号について、送信部11から送信ケーブル12への送出部位の送電端電圧を測定する送電端電圧測定部21と、その送出部位の送電端電流を測定する送電端電流測定部22と、受信ケーブル16から受信部17への入力部位の受電端電圧を測定する受電端電圧測定部23を具えている。
This track circuit failure site identification device 20 (see FIG. 1) is a basic device that targets one section of the rail 14 of the track circuit 10 and is connected to the track circuit 10 and repeats measurement at, for example, a constant period. 21 to 23, and an analysis unit 24 that performs an estimation calculation for specifying a faulty part of the track circuit 10 based on the measurement result.
The measurement units 21 to 23 measure the power transmission end voltage measurement unit 21 that measures the power transmission end voltage of the transmission part from the transmission unit 11 to the transmission cable 12 for the above-described AC signal transmitted and received through the target section of the rail 14, and A power transmission end current measurement unit 22 that measures the power transmission end current of the transmission part and a power reception end voltage measurement unit 23 that measures the power reception end voltage of the input part from the reception cable 16 to the reception unit 17 are provided.

解析部24は、適宜な演算装置と記憶装置とを具備していれば鉄道分野で多用されているフェールセーフコンピュータでも良く市販の汎用コンピュータでも良く、A/D変換回路やデータ入力プログラムで具現化された回路測定データ収集手段25と、ハードディスク等の不揮発性大容量メモリに割り付けられた測定データ記憶部26と、何れもプログラムで具現化された平常時特性値算出手段27と故障時特性値算出手段28と場合分け判別手段29とを具えている。動作指示等を与える入力装置としてのキーボードやマウスと、判別結果を提示する出力装置としてのディスプレイも、具えている。   The analysis unit 24 may be a fail-safe computer widely used in the railroad field or a commercially available general-purpose computer as long as it has an appropriate arithmetic device and storage device, and is realized by an A / D conversion circuit or a data input program. Circuit measurement data collecting means 25, a measurement data storage section 26 allocated to a non-volatile large-capacity memory such as a hard disk, a normal characteristic value calculating means 27 and a failure characteristic value calculation, both embodied by a program. Means 28 and case classification determination means 29 are provided. A keyboard and mouse as input devices for giving operation instructions and the like, and a display as an output device for presenting the discrimination results are also provided.

測定データ収集手段25は、送電端電圧測定部21,送電端電流測定部22,受電端電圧測定部23の測定にて得られた測定値をそれぞれ送電端電圧値Vs,送電端電流値Is,受電端電圧値Vrとして入力するが、その際、送電端電圧値Vsを送電端電流値Isで割って送電端インピーダンスZsを算出するとともに、受電端電圧値Vrが既定の閾値Thを上回っているか否かに応じて列車不在線か列車在線かを示す列車不在線情報Trを演算してから、それらのデータを時刻tと組にして測定データ記憶部26に追加書込するようになっている。測定データ記憶部26は、例えば先入れ先出し方式で数日間や数周間といった長期間に亘って組データが時系列で蓄積されるようになっている。   The measurement data collection means 25 uses the measured values obtained by the measurements of the transmission end voltage measurement unit 21, the transmission end current measurement unit 22, and the reception end voltage measurement unit 23, respectively, as the transmission end voltage value Vs, the transmission end current value Is, The power receiving end voltage value Vr is input. At that time, the power transmitting end voltage value Vs is divided by the power transmitting end current value Is to calculate the power transmitting end impedance Zs, and whether the power receiving end voltage value Vr exceeds a predetermined threshold Th. After calculating the train absent line information Tr indicating whether it is a train absent line or a train present line depending on whether or not, the data is additionally written to the measurement data storage unit 26 in combination with the time t. . In the measurement data storage unit 26, for example, the set data is accumulated in a time series over a long period of time such as several days or several laps in a first-in first-out method.

測定データ収集手段25や測定部21〜23は基本的に常時稼動してデータを蓄積し続けるが、平常時特性値算出手段27と故障時特性値算出手段28と場合分け判別手段29は、故障に気づいた者の操作によって入力装置にて動作指示が与えられたときに動作するようになっている。その指示では、軌道回路10に故障が無かったことが判明している平常時の初期と終期に加え、故障の発生が判明した故障時期も、手動入力にて与えられるようになっている。なお、測定データ収集手段25が各測定値Vs,Is,Vrを入力する度にその値が既知の正常範囲に収まっているか正常範囲を逸脱したかを調べる等のことで故障の発生や平常時の初期と終期と故障時期などを自動で検知するようにしても良い。   The measurement data collecting means 25 and the measurement units 21 to 23 are basically constantly operating and continuously storing data. However, the normal characteristic value calculating means 27, the failure characteristic value calculating means 28, and the case classification determining means 29 are not The operation is performed when an operation instruction is given by the input device by the operation of a person who has noticed the above. In the instruction, in addition to the normal initial stage and the final stage where it has been found that the track circuit 10 has no fault, the fault time at which the fault has been found is also given by manual input. Each time the measurement data collection means 25 inputs each measurement value Vs, Is, Vr, it is checked whether the value is within the known normal range or deviates from the normal range. It is also possible to automatically detect the initial stage, the final stage, and the failure time.

平常時特性値算出手段27は、先ず、測定データ記憶部26をアクセスして、そこに記憶保持されている蓄積データから平常時の測定値を抽出してそれを列車在線時のデータと列車不在線時のデータとに分け、列車在線時と列車不在線の各測定値Vr,Zs毎に多数の値を一つに纏めるものであり、その際、測定値集約処理では平均値算出等を行うことで集約しながら雑音成分を抑制し、抽出処理では、時刻tが平常時の初期から終期までの間に入る組データから測定値を抽出し、データ分類処理では、列車在線情報Trの値で分けるが、列車在線から列車不在線へ又は列車不在線から列車在線へ変化した前後のデータを処理対象から外すことで安定状態の測定値を用いるようになっている。   The normal characteristic value calculation means 27 first accesses the measurement data storage unit 26, extracts the normal measurement value from the stored data stored and held therein, and uses it as the data when the train is on the train. It is divided into data at the time of standing, and a large number of values are combined into one for each measured value Vr, Zs at the time of train presence and at the time of absence of train. In the extraction process, the measurement value is extracted from the set data that falls between the initial period and the end of the normal period. In the data classification process, the value of the train line information Tr is used. Although it divides, the measured value of a stable state is used by removing the data before and after changing from a train absent line to a train absent line, or a train absent line to a train present line from a processing target.

平常時特性値算出手段27は、次いで、列車在線時の代表値と列車不在線時の代表値とに集約された平常時の各測定値Vr,Zsから判別用の基準値を幾つか求めるようになっている。具体的には、平常時かつ列車在線時の送電端インピーダンスZsを在線時基準インピーダンスZaに採用し、平常時かつ列車不在線時の送電端インピーダンスZsを不在線時基準インピーダンスZbに採用し、在線時基準インピーダンスZaを不在線時基準インピーダンスZbで割ることで基準インピーダンス比Zcを算出し、平常時かつ列車不在線時の受電端電圧値Vrを不在線時基準受信電圧Vdに採用し、平常時かつ列車在線時の受電端電圧値Vrを在線時基準受信レベルVeに採用するようになっている。   The normal characteristic value calculation means 27 then obtains some reference values for determination from the measured values Vr, Zs in normal times collected into the representative value when the train is present and the representative value when the train is absent. It has become. Specifically, the power transmission end impedance Zs at the time of normal and train presence is adopted as the reference impedance Za at the time of presence, and the power transmission end impedance Zs at the time of normal and absence of the train is adopted as the reference impedance Zb at the time of absence. The reference impedance ratio Zc is calculated by dividing the hourly reference impedance Za by the absent line reference impedance Zb, and the power receiving end voltage value Vr in the normal state and in the absence line of the train is adopted as the reference reception voltage Vd in the absent line. In addition, the receiving end voltage value Vr when the train is on line is adopted as the on-line reference reception level Ve.

故障時特性値算出手段28は、先ず、測定データ記憶部26をアクセスして、そこに記憶保持されている蓄積データから故障時の測定値を抽出してそれを列車在線時のデータと列車不在線時のデータとに分け、列車在線時と列車不在線の各測定値Vr,Zs毎に多数の値を一つに纏めるものであり、その際、測定値集約処理では平均値算出等を行うことで集約しながら雑音成分を抑制し、抽出処理では、時刻tが故障時期から現在までの間に入っている組データから測定値を抽出し、データ分類処理では、列車在線情報Trの値で分けるが、列車在線から列車不在線へ又は列車不在線から列車在線へ変化した前後のデータを処理対象から外すことで安定状態の測定値を用いるようになっている。   First, the failure characteristic value calculation means 28 accesses the measurement data storage unit 26, extracts the measurement value at the time of failure from the accumulated data stored and held therein, and uses it as the data at the time of train presence and the train failure. It is divided into data at the time of standing, and a large number of values are combined into one for each measured value Vr, Zs at the time of train presence and at the time of absence of train. In the extraction process, the measurement value is extracted from the set data in which the time t is between the failure time and the present time. In the data classification process, the value of the train line information Tr is used. Although it divides, the measured value of a stable state is used by removing the data before and after changing from a train absent line to a train absent line, or a train absent line to a train present line from a processing target.

故障時特性値算出手段28は、次いで、列車在線時の代表値と列車不在線時の代表値とに集約された故障時の各測定値Vr,Zsから、判別用の基準値を幾つか求めるようになっている。具体的には、故障時かつ列車不在線時の送電端インピーダンスZsを不在線時送電インピーダンスZgに採用し、不在線時送電インピーダンスZgを不在線時基準インピーダンスZbで割ることで送電インピーダンス比Zhを算出し、故障時かつ列車不在線時の受電端電圧値Vrを不在線時基準受信電圧Vdで割ってから対数関数を適用して20log(Vr/Vd)の演算を行うことで不在線時受信レベルViを算出し、正常時の列車在線時の受電端電圧値Vrに対する在線時判定受信レベルVjに採用するようになっている。   The failure characteristic value calculation means 28 then obtains some reference values for determination from the measured values Vr and Zs at the time of failure that are aggregated into the representative value when the train is present and the representative value when the train is absent. It is like that. Specifically, the transmission end impedance Zs at the time of failure and at the time of the absence of the train is adopted as the transmission impedance Zg at the time of the absence line, and the transmission impedance ratio Zh is calculated by dividing the transmission impedance Zg at the absence line by the reference impedance Zb at the absence line. Receiving at the time of absence by calculating and calculating 20 log (Vr / Vd) by applying a logarithmic function after dividing the receiving end voltage value Vr at the time of failure and at the time of absence of the train by the reference reception voltage Vd at the time of absence The level Vi is calculated and adopted as the on-line determination reception level Vj with respect to the power receiving end voltage value Vr when the train is on line at normal time.

場合分け判別手段29は、上述した基準インピーダンス比Zcと在線時基準受信レベルVeと送電インピーダンス比Zhと不在線時受信レベルViと在線時判定受信レベルVjとに基づいて場合分けを行うものであるが、更にきめ細かく場合分けするために、軌道回路10の受信部17が受信ケーブル16との接続部に共振コンデンサCを接続されているか否かを示すパラメータ設定も、参照するようになっている。
そして(図2参照)、受信部17に共振コンデンサCが接続されていない場合は、送電インピーダンス比Zh、不在線時受信レベルVi、在線時判定受信レベルVj及び在線時基準受信レベルVe、送電インピーダンス比Zh及び基準インピーダンス比Zc、という順に調べて軌道回路10の何処が故障しているかを判別するようになっている。
The case classification determination unit 29 performs case classification based on the above-described reference impedance ratio Zc, on-line reference reception level Ve, transmission impedance ratio Zh, absent line reception level Vi, and on-line determination reception level Vj. However, in order to classify the case more finely, the parameter setting indicating whether or not the resonance capacitor C is connected to the connection portion of the receiving circuit 17 of the track circuit 10 with the reception cable 16 is also referred to.
When the resonance capacitor C is not connected to the receiving unit 17 (see FIG. 2), the transmission impedance ratio Zh, the absence line reception level Vi, the presence line determination reception level Vj, the presence line reference reception level Ve, and the transmission impedance The ratio Zh and the reference impedance ratio Zc are examined in this order to determine where the track circuit 10 has failed.

すなわち、場合分け判別手段29は、送電インピーダンス比Zhと三つの閾値“5.0”,“1.5”,“1.0”とを比較して(ステップS21)、送電インピーダンス比Zhが5.0以上であれば軌道回路10のうち送信ケーブル12が断線していると判定し、送電インピーダンス比Zhが5.0未満であって1.5以上であれれば軌道回路10のうちレール14が破断していると判定し、送電インピーダンス比Zhが1.5未満であって1.0以上であれば軌道回路10のうち受信ケーブル16が断線していると判定する。送電インピーダンス比Zhが1.0未満の場合は、更に不在線時受信レベルViと閾値“−40dB”とを比較して(ステップS22)、不在線時受信レベルViが−40dB以上であれば軌道回路10のうちレール14が短絡していると判定するようになっている。   That is, the case classification determination unit 29 compares the transmission impedance ratio Zh with the three threshold values “5.0”, “1.5”, and “1.0” (step S21), and the transmission impedance ratio Zh is 5 If it is 0 or more, it is determined that the transmission cable 12 is disconnected in the track circuit 10, and if the transmission impedance ratio Zh is less than 5.0 and 1.5 or more, the rail 14 in the track circuit 10 is If the power transmission impedance ratio Zh is less than 1.5 and 1.0 or more, it is determined that the receiving cable 16 of the track circuit 10 is disconnected. When the transmission impedance ratio Zh is less than 1.0, the absence line reception level Vi is further compared with the threshold “−40 dB” (step S22), and if the absence line reception level Vi is −40 dB or more, the orbit. It is determined that the rail 14 of the circuit 10 is short-circuited.

不在線時受信レベルViが−40dB未満の場合、場合分け判別手段29は、更に在線時判定受信レベルVjと在線時基準受信レベルVeとを比較して(ステップS23)、在線時基準受信レベルVeが在線時判定受信レベルVj以上であれば軌道回路10のうち送信ケーブル12か受信ケーブル16が短絡していると判定する。在線時基準受信レベルVeが在線時判定受信レベルVjより小さい場合は、更に送電インピーダンス比Zhと基準インピーダンス比Zcとを比較して(ステップS24)、送電インピーダンス比Zhが基準インピーダンス比Zc以上であれば軌道回路10のうち受信ケーブル16が短絡していると判定し、送電インピーダンス比Zhが基準インピーダンス比Zcより小さければ軌道回路10のうち送信ケーブル12が短絡していると判定するようになっている。   When the absence line reception level Vi is less than −40 dB, the case determination unit 29 further compares the presence line determination reception level Vj with the presence line reference reception level Ve (step S23), and the presence line reference reception level Ve. Is at or above the on-line determination reception level Vj, it is determined that the transmission cable 12 or the reception cable 16 of the track circuit 10 is short-circuited. If the in-line reference reception level Ve is smaller than the in-line determination reception level Vj, the power transmission impedance ratio Zh and the reference impedance ratio Zc are further compared (step S24), and the power transmission impedance ratio Zh is greater than or equal to the reference impedance ratio Zc. For example, it is determined that the receiving cable 16 of the track circuit 10 is short-circuited, and if the transmission impedance ratio Zh is smaller than the reference impedance ratio Zc, it is determined that the transmission cable 12 of the track circuit 10 is short-circuited. Yes.

また(図3参照)、受信部17に共振コンデンサCが接続されている場合、場合分け判別手段29は、送電インピーダンス比Zhと二つの閾値“5.0”,“1.0”とを比較して(ステップS31)、送電インピーダンス比Zhが5.0以上であれば軌道回路10のうち送信ケーブル12が断線していると判定し、送電インピーダンス比Zhが5.0未満であって1.0以上であれれば軌道回路10のうちレール14が破断していると判定する。それから、送電インピーダンス比Zhが1.0未満の場合は、更に不在線時受信レベルViと閾値“−20dB”とを比較して(ステップS32)、不在線時受信レベルViが−20dB以上であれば軌道回路10のうちレール14が短絡していると判定するようになっている。   In addition, when the resonance capacitor C is connected to the receiving unit 17 (see FIG. 3), the case determination unit 29 compares the transmission impedance ratio Zh with the two threshold values “5.0” and “1.0”. (Step S31), if the transmission impedance ratio Zh is 5.0 or more, it is determined that the transmission cable 12 of the track circuit 10 is disconnected, and the transmission impedance ratio Zh is less than 5.0. If it is 0 or more, it is determined that the rail 14 of the track circuit 10 is broken. Then, when the transmission impedance ratio Zh is less than 1.0, the absence line reception level Vi is further compared with the threshold “−20 dB” (step S32), and the absence line reception level Vi is −20 dB or more. For example, it is determined that the rail 14 of the track circuit 10 is short-circuited.

不在線時受信レベルViが−20dB未満の場合、場合分け判別手段29は、再び送電インピーダンス比Zhと閾値“0.665”とを比較して(ステップS33)、送電インピーダンス比Zhが0.665以上であれば軌道回路10のうち受信ケーブル16が断線していると判定し、送電インピーダンス比Zhが0.665未満の場合は更に不在線時受信レベルViと閾値“−40dB”とを比較して(ステップS34)、不在線時受信レベルViが−40dB以上であれば軌道回路10のうちレール14が短絡していると判定し、不在線時受信レベルViが−40dB未満の場合は更に在線時判定受信レベルVjと在線時基準受信レベルVeとを比較して(ステップS35)、在線時基準受信レベルVeが在線時判定受信レベルVj以上であれば軌道回路10のうち送信ケーブル12か受信ケーブル16が短絡していると判定するようになっている。   When the absence line reception level Vi is less than −20 dB, the case determination unit 29 compares the transmission impedance ratio Zh with the threshold “0.665” again (step S33), and the transmission impedance ratio Zh is 0.665. If it is more than it, it will determine with the receiving cable 16 being disconnected in the track circuit 10, and when the transmission impedance ratio Zh is less than 0.665, the absence level reception level Vi and the threshold value “−40 dB” are further compared. (Step S34), it is determined that the rail 14 of the track circuit 10 is short-circuited if the reception level Vi at the absence line is -40 dB or more, and if the reception level Vi at the absence line is less than -40 dB, the presence line is further The time-determined reception level Vj is compared with the in-line reference reception level Ve (step S35), and the in-line reference reception level Ve is equal to or greater than the in-line determination reception level Vj. Transmission cable 12 or the reception cable 16 of the track circuit 10 if there is adapted to determine that the short-circuited.

在線時基準受信レベルVeが在線時判定受信レベルVjより小さい場合、場合分け判別手段29は、更に送電インピーダンス比Zhと基準インピーダンス比Zcとを比較して(ステップS36)、送電インピーダンス比Zhが基準インピーダンス比Zc以上であれば軌道回路10のうち受信ケーブル16が短絡していると判定し、送電インピーダンス比Zhが基準インピーダンス比Zcより小さければ軌道回路10のうち送信ケーブル12が短絡していると判定するようになっている。このような共振コンデンサCが有る場合における後半の判別処理S34〜S36は、共振コンデンサCの影響が小さいため、上述した共振コンデンサCが無い場合における後半の判別処理S22〜S24と、同じになっている。   When the in-line reference reception level Ve is smaller than the in-line determination reception level Vj, the case determination unit 29 further compares the transmission impedance ratio Zh with the reference impedance ratio Zc (step S36), and the transmission impedance ratio Zh is the reference. If the impedance ratio is equal to or greater than Zc, it is determined that the receiving cable 16 is short-circuited in the track circuit 10, and if the transmission impedance ratio Zh is smaller than the reference impedance ratio Zc, the transmission cable 12 is short-circuited in the track circuit 10. It comes to judge. Since the influence of the resonance capacitor C is small, the latter half discrimination processes S34 to S36 in the case where the resonance capacitor C is present are the same as the latter half discrimination processes S22 to S24 in the case where the resonance capacitor C is not present. Yes.

この実施例1の軌道回路故障部位特定装置20について、その使用態様及び動作を、図面を引用して説明する。図1は、軌道回路故障部位特定装置20を軌道回路10に接続して使用するところのブロック図である。   The use mode and operation of the track circuit fault site identification device 20 of the first embodiment will be described with reference to the drawings. FIG. 1 is a block diagram in which the track circuit fault site identification device 20 is used by being connected to the track circuit 10.

軌道回路故障部位特定装置20を使用して軌道回路10の故障部位を特定させるには、予め軌道回路故障部位特定装置20を軌道回路10に付設して、軌道回路10が故障するよりも前の平常時から軌道回路故障部位特定装置20を稼動させておく。軌道回路故障部位特定装置20の設置時には、送信部11から送信ケーブル12への交流信号送出部位に送電端電圧測定部21の電圧測定用ケーブルと送電端電流測定部22の電流測定用ケーブルを接続し、受信ケーブル16から受信部17への交流信号入力部位に受電端電圧測定部23の電圧測定用ケーブルを接続し、解析部24には共振コンデンサCの有無を含む軌道回路構成,軌道回路長,及び送電ケーブル長を示すパラメータ値を初期設定しておく。   In order to identify the failure site of the track circuit 10 using the track circuit failure site specifying device 20, the track circuit failure site specifying device 20 is attached to the track circuit 10 in advance, and the track circuit 10 before failure occurs. The track circuit failure site identification device 20 is operated from the normal time. When installing the track circuit fault site identification device 20, the voltage measurement cable of the power transmission end voltage measurement unit 21 and the current measurement cable of the power transmission end current measurement unit 22 are connected to the AC signal transmission site from the transmission unit 11 to the transmission cable 12. The voltage measurement cable of the receiving end voltage measurement unit 23 is connected to the AC signal input portion from the reception cable 16 to the reception unit 17, and the analysis unit 24 has a track circuit configuration including the presence or absence of the resonance capacitor C, the track circuit length. , And a parameter value indicating the transmission cable length is initialized.

そうすると、軌道回路故障部位特定装置20では、随時、軌道回路10における交流信号の送電端電圧と送電端電流と受電端電圧とが測定部21〜23によって継続的に測定され、その測定の度にそれで得られた送電端電圧値Vsと送電端電流値Isと受電端電圧値Vrが、測定部21〜23から解析部24に引き渡され、解析部24において測定データ収集手段25によって測定データ記憶部26に蓄積される。その際、送電端インピーダンスZsや列車在線情報Trが演算されてから、計測値Vs,Is,Vrを取得した時刻tと各計測値Vs,Is,Zs,Vr,Trとが組データにされるとともに時刻tや列車在線情報Trをキーにして検索可能なデータ記憶形式で蓄積される。   Then, in the track circuit fault site identification device 20, the power transmission end voltage, the power transmission end current, and the power reception end voltage of the AC signal in the track circuit 10 are continuously measured by the measuring units 21 to 23 whenever necessary. The power transmission end voltage value Vs, power transmission end current value Is, and power reception end voltage value Vr thus obtained are transferred from the measurement units 21 to 23 to the analysis unit 24, and in the analysis unit 24, the measurement data collection unit 25 measures the measurement data storage unit. 26. At that time, after the power transmission end impedance Zs and the train presence line information Tr are calculated, the time t at which the measured values Vs, Is, and Vr are acquired and the measured values Vs, Is, Zs, Vr, and Tr are set as set data. At the same time, the data is stored in a searchable data storage format using the time t and the train line information Tr as keys.

そして、軌道回路10も軌道回路故障部位特定装置20も稼動を続けている状況で、軌道回路10が故障したときには、軌道回路故障部位特定装置20に対し、その入力装置を操作して、判明している平常時の初期と平常時の終期と故障時期とを入力したうえで、故障部位特定処理の実行を指示する。この指示を受けた後は、軌道回路故障部位特定装置20の解析部24が自動で処理を行い、測定データ記憶部26に保持されている蓄積データすなわち時刻tと送電端電圧値Vsと送電端電流値Isと送電端インピーダンスZsと列車在線情報Trの組データの多数組集合から軌道回路10の故障部位が推定される。   When the track circuit 10 fails while the track circuit 10 and the track circuit fault location specifying device 20 continue to operate, the track circuit fault location specifying device 20 is operated by operating the input device. The normal part initial stage, the normal end stage and the failure time are input, and the execution of the failure part specifying process is instructed. After receiving this instruction, the analysis unit 24 of the track circuit fault site identification device 20 automatically performs processing, and the accumulated data held in the measurement data storage unit 26, that is, the time t, the power transmission end voltage value Vs, and the power transmission end. A fault location of the track circuit 10 is estimated from a large set of the set data of the current value Is, the power transmission end impedance Zs, and the train line information Tr.

すなわち、平常時特性値算出手段27によって、測定データ記憶部26の蓄積データから平常時の各測定値Vr,Zsが抽出されて代表値に纏められ、それから在線時基準インピーダンスZaと在線時基準インピーダンスZabと基準インピーダンス比Zcと不在線時基準受信電圧Vdと在線時基準受信レベルVeが算出される。また、故障時特性値算出手段28によって、測定データ記憶部26の蓄積データから故障時の各測定値Vr,Zsが抽出されて代表値に纏められ、それと平常時特性値算出手段27の算出値とから不在線時送電インピーダンスZgと送電インピーダンス比Zhと不在線時受信レベルViと在線時判定受信レベルVjが算出される。   That is, the normal characteristic value calculation means 27 extracts the normal measurement values Vr and Zs from the accumulated data in the measurement data storage unit 26 and summarizes them into representative values. Then, the in-line reference impedance Za and the in-line reference impedance Zab, reference impedance ratio Zc, absent line reference reception voltage Vd, and standing line reference reception level Ve are calculated. Further, the measured value Vr and Zs at the time of failure are extracted from the accumulated data of the measured data storage unit 26 by the failure characteristic value calculation unit 28 and are collected into representative values, and the calculated value of the normal characteristic value calculation unit 27 The absence line transmission impedance Zg, the transmission impedance ratio Zh, the absence line reception level Vi, and the presence line determination reception level Vj are calculated.

さらに、場合分け判別手段29によって、共振コンデンサCの有無に基づく場合分けが行われてから、送電インピーダンス比Zhと不在線時受信レベルViと在線時判定受信レベルVj及び在線時基準受信レベルVeと送電インピーダンス比Zh及び基準インピーダンス比Zcに基づく場合分けも行われて、軌道回路10において送信ケーブル12とレール14と受信ケーブル16のうちどれが故障しているかに加え、断線等なのか短絡なのかといった故障状態も判別される。
こうして、軌道回路10の故障部位が、推定ではあるが送信ケーブル12,16なのかレール14なのかまで切り分けて特定され、出力装置に提示される。
Further, after the case classification based on the presence or absence of the resonance capacitor C is performed by the case classification determination unit 29, the transmission impedance ratio Zh, the absence line reception level Vi, the presence line determination reception level Vj, and the presence line reference reception level Ve Case classification is also performed based on the transmission impedance ratio Zh and the reference impedance ratio Zc, and in addition to which one of the transmission cable 12, the rail 14, and the reception cable 16 has failed in the track circuit 10, is it a disconnection or a short circuit? Such a failure state is also determined.
In this way, the failure portion of the track circuit 10 is specified by being divided into the transmission cables 12 and 16 or the rail 14 although it is estimated, and presented to the output device.

また、その故障部位の推定確度は、首都圏に敷設されている標準施工の軌道を対象にして、多数の区間について確認したところ、75%に近い良好なものであった。レール14の軌道構成が、分岐の無い棒線でも、インピーダンスボンドの無い片分岐でも、インピーダンスボンドの有る片分岐でも、直列軌道の片分岐でも、両側で分岐しているシーサスでも、良好であった。また、レール14の長さが50m〜600mの範囲で、ケーブル12の長さが50m〜2kmの範囲で、ケーブルの電線の断面積が1.25mm〜10mmの範囲で、故障部位の推定確度は良好であることが確認できた。 In addition, the estimated accuracy of the faulty part was as good as close to 75% when confirmed for a number of sections on the track of standard construction laid in the Tokyo metropolitan area. The track structure of the rail 14 was good whether it was a bar without a branch, a single branch without an impedance bond, a single branch with an impedance bond, a single branch of a series track, or a sheath that branched on both sides. . In addition, when the length of the rail 14 is in the range of 50 m to 600 m, the length of the cable 12 is in the range of 50 m to 2 km, and the cross-sectional area of the cable electric wire is in the range of 1.25 mm 2 to 10 mm 2 , the failure site is estimated. It was confirmed that the accuracy was good.

本発明の軌道回路故障部位特定装置の実施例2について、その具体的な構成を、図面を引用して説明する。図4は、軌道回路故障部位特定装置40の全体構造を示すブロック図である。   A specific configuration of the track circuit fault site identification device according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a block diagram showing the overall structure of the track circuit fault site identification device 40.

この軌道回路故障部位特定装置40が上述した実施例1の軌道回路故障部位特定装置20と相違するのは、軌道回路故障部位特定対象をレール14の一区間だけでなく多数の区間に広げるために、対象区間それぞれに一つずつ測定部21〜23が設けられている点と、幾つかの測定部21〜23から測定結果をデータ収集する集約装置41が適宜分散して設置されている点と、多数の区間を対象としてデータ蓄積と故障部位特定処理を行えるよう機能拡張されて解析部24が装置解析部44になっている点と、複数の集約装置41から通信回線42を介して伝送されて来た収集データが総て解析部44に引き渡されるようになっている点である。このような機能拡張により実用に適うものとなっている。   The track circuit fault site specifying device 40 is different from the track circuit fault site specifying device 20 of the first embodiment described above in order to extend the track circuit fault site specifying target not only to one section of the rail 14 but also to many sections. , A point where one measurement unit 21-23 is provided for each target section, and a point where aggregation devices 41 that collect data of measurement results from several measurement units 21-23 are dispersed and installed as appropriate. The function is expanded so that data accumulation and failure part identification processing can be performed for a number of sections, and the analysis unit 24 becomes the device analysis unit 44, and is transmitted from a plurality of aggregation devices 41 via the communication line 42. All the collected data that arrives is delivered to the analysis unit 44. Such functional expansion makes it suitable for practical use.

[その他]
上記実施例では、電圧や電流を測定する対象として軌道回路の列車検知信号である交流信号を流用したが、列車検知信号から弁別される列車検知信号とは別の故障部位特定用信号を使用するようにしても良く、その場合は、故障部位特定用信号の生成送信回路や弁別受信回路が追加されて測定部21〜23に並設される。
また、上記実施例では測定データ収集手段25がデータ収集のついでに送電端インピーダンスZsや列車在線情報Trの算出を済ませるようになっていたが、その算出処理は平常時特性値算出手段27や故障時特性値算出手段28が基準インピーダンス比Zcや送電インピーダンス比Zhの算出前に行うようにしても良い。
[Others]
In the above-described embodiment, an AC signal that is a train detection signal of a track circuit is used as a target for measuring voltage and current, but a failure site identification signal different from the train detection signal discriminated from the train detection signal is used. In that case, a generation / transmission circuit and a discrimination reception circuit for a failure part specifying signal are added and arranged in parallel in the measurement units 21 to 23.
In the above embodiment, the measurement data collection means 25 has completed the calculation of the power transmission end impedance Zs and the train presence line information Tr after the data collection. The characteristic value calculating unit 28 may perform the calculation before calculating the reference impedance ratio Zc and the transmission impedance ratio Zh.

本発明の軌道回路故障部位特定装置は、上述した軌道回路(SMET)に適用が限定される訳でなく、閾値変更など軽微な修正を施すことで容易に、商用軌道回路・分倍周軌道回路・分周軌道回路などの交流軌道回路や、直流軌道回路にも適用することができる。   The track circuit fault site identification device according to the present invention is not limited to the track circuit (SMET) described above, but can be easily applied to a commercial track circuit / frequency division track circuit by performing minor corrections such as a threshold change. -It can also be applied to AC track circuits such as frequency-dividing track circuits and DC track circuits.

10…軌道回路、11…送信部、
12…送信ケーブル、13…インピーダンスボンド、14…レール、
15…インピーダンスボンド、16…受信ケーブル、17…受信部、
20…軌道回路故障部位特定装置、
21…送電端電圧測定部、22…送電端電流測定部、
23…受電端電圧測定部、24…解析部、25…測定データ収集手段、
26…測定データ記憶部、27…平常時特性値算出手段、
28…故障時特性値算出手段、29…場合分け判別手段、
40…軌道回路故障部位特定装置、
41…集約装置、42…通信回線、44…解析部、
C…共振コンデンサ、Vs…送電端電圧値、Is…送電端電流値、
Zs…送電端インピーダンス、Vr…受電端電圧値、
Tr…列車在線情報、Za…在線時基準インピーダンス、
Zb…不在線時基準インピーダンス、Zc…基準インピーダンス比、
Vd…不在線時基準受信電圧、Ve…在線時基準受信レベル、
Zg…不在線時送電インピーダンス、Zh…送電インピーダンス比、
Vi…不在線時受信レベル、Vj…在線時判定受信レベル
10 ... Track circuit, 11 ... Transmitter,
12 ... Transmitting cable, 13 ... Impedance bond, 14 ... Rail,
15 ... impedance bond, 16 ... receiving cable, 17 ... receiving section,
20 ... Track circuit fault site identification device,
21 ... Transmitting end voltage measuring unit, 22 ... Transmitting end current measuring unit,
23 ... Receiving end voltage measurement unit, 24 ... Analysis unit, 25 ... Measurement data collection means,
26: Measurement data storage unit, 27: Normal characteristic value calculation means,
28 ... failure characteristic value calculation means, 29 ... case classification determination means,
40 ... Track circuit failure site identification device,
41 ... Aggregation device, 42 ... Communication line, 44 ... Analysis unit,
C: Resonance capacitor, Vs: Transmission end voltage value, Is: Transmission end current value,
Zs: power transmission end impedance, Vr: power reception end voltage value,
Tr: Train presence line information, Za: Reference impedance at the time of presence line,
Zb: reference impedance at the absence line, Zc: reference impedance ratio,
Vd: Reference reception voltage when there is no line, Ve: Reference reception level when there is a line,
Zg: power transmission impedance during absence line, Zh: power transmission impedance ratio,
Vi: reception level when there is no line, Vj: reception level when there is a line

Claims (3)

軌道回路に接続されて前記軌道回路の送電端電圧および送電端電流と前記軌道回路の受電端電圧とを継続的に測定する測定部と、その測定で得た測定値を測定データ記憶部に蓄積する測定データ収集手段と、その蓄積データから平常時かつ列車不在線時の測定値を抽出して送電端電圧値と送電端電流値との比に対応した不在線時基準インピーダンスを求める平常時特性値算出手段と、前記蓄積データから故障時かつ列車不在線時の測定値を抽出して送電端電圧値と送電端電流値との比に対応した不在線時送電インピーダンスを求めるとともにそれと前記不在線時基準インピーダンスとの比に対応した送電インピーダンス比を求める故障時特性値算出手段と、前記送電インピーダンス比と閾値との大小に基づいて前記軌道回路の送信ケーブル断線とレール破断と受信ケーブル断線と短絡故障を判別する場合分け判別手段とを備えている軌道回路故障部位特定装置。   A measurement unit connected to the track circuit to continuously measure the power transmission end voltage and power transmission end current of the track circuit and the power reception end voltage of the track circuit, and the measurement value obtained by the measurement is stored in the measurement data storage unit Normal measurement characteristics to extract the measured value at the time of normal and non-train line from the accumulated data and obtain the reference impedance at the time of unattended line corresponding to the ratio of the voltage value at the transmission end and the current value at the transmission end A value calculation means, and a measured value at the time of a fault and a train absent line is extracted from the accumulated data to obtain a transmission impedance at an unattended line corresponding to a ratio between a transmission end voltage value and a transmission end current value and the absent line A failure characteristic value calculating means for obtaining a transmission impedance ratio corresponding to a ratio with a time reference impedance; and a transmission cable disconnection of the track circuit based on a magnitude of the transmission impedance ratio and a threshold value. And in that track circuit failure area specifying device and a divided discriminating means In determining the rail break and reception cable break and short-circuit fault. 前記平常時特性値算出手段が前記蓄積データから平常時かつ列車不在線時の測定値を抽出して受電端電圧値に対応した不在線時基準受信電圧を求めるものであり、前記故障時特性値算出手段が前記蓄積データから故障時かつ列車不在線時の受電端電圧値を抽出してそれと前記不在線時基準受信電圧との比に対応した軌道回路故障時受信レベルを求めるものであり、前記場合分け判別手段が短絡故障と判別したとき更に前記軌道回路故障時受信レベルと閾値との大小に基づいて前記軌道回路のレール短絡を判別するものであることを特徴とする請求項1記載の軌道回路故障部位特定装置。   The normal characteristic value calculating means extracts a measured value at a normal time and a train absent line from the accumulated data to obtain a reference reception voltage at the time of the absent line corresponding to a power receiving end voltage value, and the characteristic value at the time of the failure The calculating means extracts the receiving end voltage value at the time of failure and when the train is absent from the accumulated data, and obtains the reception level at the time of the track circuit failure corresponding to the ratio of the reference reception voltage at the time of the absence line, 2. The track according to claim 1, wherein when the case determining unit determines that a short circuit failure has occurred, a rail short circuit of the track circuit is further determined based on a magnitude of the reception level at the time of the track circuit failure and a threshold value. Circuit fault location device. 前記平常時特性値算出手段が前記蓄積データから平常時かつ列車在線時の測定値を抽出して送電端電圧値と送電端電流値との比に対応した在線時基準インピーダンスを求めるとともにそれと前記不在線時基準インピーダンスとの比に対応した基準インピーダンス比を求めるものであり、前記場合分け判別手段が短絡故障と判別したとき更に前記送電インピーダンス比と前記基準インピーダンス比との大小に基づいて前記軌道回路のレール短絡と送信ケーブル短絡と受信ケーブル短絡を判別するものであることを特徴とする請求項2記載の軌道回路故障部位特定装置。   The normal characteristic value calculating means extracts a measured value at normal time and when the train is on the line from the accumulated data to obtain an on-line reference impedance corresponding to the ratio between the transmission end voltage value and the transmission end current value and A reference impedance ratio corresponding to a ratio with a reference impedance at the time of standing, and the track circuit based on the magnitude of the power transmission impedance ratio and the reference impedance ratio when the case classification determination unit determines that a short-circuit fault has occurred The track circuit fault site identification device according to claim 2, wherein the rail short circuit, the transmission cable short circuit, and the reception cable short circuit are discriminated.
JP2010079641A 2010-03-30 2010-03-30 Track circuit fault location identification device Active JP5465059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010079641A JP5465059B2 (en) 2010-03-30 2010-03-30 Track circuit fault location identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079641A JP5465059B2 (en) 2010-03-30 2010-03-30 Track circuit fault location identification device

Publications (2)

Publication Number Publication Date
JP2011207449A JP2011207449A (en) 2011-10-20
JP5465059B2 true JP5465059B2 (en) 2014-04-09

Family

ID=44938984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079641A Active JP5465059B2 (en) 2010-03-30 2010-03-30 Track circuit fault location identification device

Country Status (1)

Country Link
JP (1) JP5465059B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106627676A (en) * 2016-12-09 2017-05-10 交控科技股份有限公司 Dynamic allocation method of resource control rights of regional controller

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728332B2 (en) * 2011-08-26 2015-06-03 東日本旅客鉄道株式会社 Rail breakage detection system and rail breakage detection device
JP6628537B2 (en) * 2015-10-02 2020-01-08 日本信号株式会社 Communication abnormality detection system and communication abnormality detection method
US11325623B2 (en) 2017-01-13 2022-05-10 Mitsubishi Electric Corporation Rail breakage detection device and rail breakage detection system
JP6629795B2 (en) * 2017-07-03 2020-01-15 株式会社京三製作所 Track circuit monitoring device
CN107807325B (en) * 2017-10-23 2023-11-03 柳州铁道职业技术学院 Railway track circuit reliability analysis system and method based on multi-state theory
JP6680818B2 (en) * 2018-02-26 2020-04-15 株式会社京三製作所 Track circuit condition determination device
WO2020021672A1 (en) * 2018-07-26 2020-01-30 三菱電機株式会社 Rail breakage detection device and rail breakage result management system
JP7349374B2 (en) * 2020-01-21 2023-09-22 株式会社日立製作所 Track circuit transmitter
CN113022644B (en) * 2021-05-27 2021-08-10 北京全路通信信号研究设计院集团有限公司 Method for judging frequency shift pulse track circuit outdoor transmitting and receiving end

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2765730B2 (en) * 1989-07-28 1998-06-18 日本信号株式会社 Failure detection device for transmitter for track circuit
JPH04358960A (en) * 1991-06-03 1992-12-11 Nippon Signal Co Ltd:The Track circuit
JP3643234B2 (en) * 1998-03-30 2005-04-27 三菱電機株式会社 Track circuit monitoring device
JP4045428B2 (en) * 2002-11-06 2008-02-13 株式会社日立製作所 Track circuit device and failure detection method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106627676A (en) * 2016-12-09 2017-05-10 交控科技股份有限公司 Dynamic allocation method of resource control rights of regional controller
CN106627676B (en) * 2016-12-09 2018-05-08 交控科技股份有限公司 A kind of dynamic allocation method of the resources control of zone controller

Also Published As

Publication number Publication date
JP2011207449A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5465059B2 (en) Track circuit fault location identification device
CN102997838B (en) Transformer winding deformation fault diagnosis method based on frequency sweep short circuit characteristics
CN103116107B (en) A kind of high-voltage DC power supply insulating monitor
CN102645613B (en) Transmission line malfunction positioning method based on non-contact magnetic measurement
WO2019091069A1 (en) Track circuit fault diagnosis system and diagnosis method
CN103941161A (en) On-line monitoring system for current and carrying capacity of cable sheath
CN204177907U (en) Distribution Network Frame ceases to be busy running status record ripple and fault diagnosis system
CN107632240B (en) Overhead cable current data primary analysis method, health state monitoring method and system
CN103234450A (en) Online monitoring method and device for transformer winding deformation
CN105486978A (en) Single-phase short circuit fault line selection method
CN102985836A (en) Fast distance protection for energy supply networks
CN106291230A (en) A kind of Multifunctional power cable fault location on-line monitoring system
CN203274673U (en) Equipment for on-line supervision over deformation of transformer winding
CN102798803B (en) Method for detecting line fault of power distribution network
CN105759147A (en) Integrated test device for battery management system of electric vehicle
CN206460129U (en) Exchange insulation detection device
CN109765459A (en) It is a kind of based on the method for locating single-phase ground fault studied and judged on the spot and system
CN101699306A (en) Method for monitoring current acquisition circuit of electric power secondary system
JP6310334B2 (en) Insulation degradation diagnosis device and method for power cable or electrical equipment
CN105699866B (en) The method for detecting rail traffic insulating element using UV corona technology
CN205404690U (en) Fault indicator testing arrangement
CN111175610B (en) Fault positioning system and method for distribution line
CN105699858B (en) A kind of aerial-cable hybrid line fault distance-finding method considering connection resistance
CN113241853B (en) Intelligent diagnosis and early warning method and system for capacitance current of transformer substation
CN201628754U (en) Wideband partial discharge detection device for power equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140121

R150 Certificate of patent or registration of utility model

Ref document number: 5465059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250