JP5463562B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5463562B2
JP5463562B2 JP2009000682A JP2009000682A JP5463562B2 JP 5463562 B2 JP5463562 B2 JP 5463562B2 JP 2009000682 A JP2009000682 A JP 2009000682A JP 2009000682 A JP2009000682 A JP 2009000682A JP 5463562 B2 JP5463562 B2 JP 5463562B2
Authority
JP
Japan
Prior art keywords
thin film
soft magnetic
magnetic thin
semiconductor device
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009000682A
Other languages
Japanese (ja)
Other versions
JP2010159982A (en
Inventor
宏典 石井
拓也 石田
正人 寺田
哲彌 逢坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2009000682A priority Critical patent/JP5463562B2/en
Publication of JP2010159982A publication Critical patent/JP2010159982A/en
Application granted granted Critical
Publication of JP5463562B2 publication Critical patent/JP5463562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、半導体装置及びその製造方法に関し、より詳細には、低保磁力と低い残留磁束密度をもつ軟磁性薄膜を備え、この軟磁性薄膜で磁気収束する半導体装置及びその製造方法に関し、特に、ホール素子を含んだ磁気センサに関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly, to a semiconductor device including a soft magnetic thin film having a low coercive force and a low residual magnetic flux density, and magnetically converging with the soft magnetic thin film, and a manufacturing method thereof. The present invention relates to a magnetic sensor including a Hall element.

従来のホール素子を含んだ磁気センサは、磁気収束のために軟磁性薄膜をホール素子の直上に備えられていることが知られている(例えば、特許文献1参照)。このような磁気センサは、ホール素子上に軟磁性薄膜を配置することで、磁気収束効果による高感度化及び磁気収束板の端部から漏れる磁束をホール素子で検知することができ、この軟磁性薄膜は、NiFe合金薄膜を電解めっき法により形成している特徴を有している。   It is known that a conventional magnetic sensor including a Hall element is provided with a soft magnetic thin film immediately above the Hall element for magnetic convergence (see, for example, Patent Document 1). In such a magnetic sensor, a soft magnetic thin film is arranged on the Hall element, so that the Hall element can detect the magnetic flux leaking from the end of the magnetic focusing plate with high sensitivity due to the magnetic convergence effect. The thin film has a feature that a NiFe alloy thin film is formed by electrolytic plating.

図1は、軟磁性薄膜のヒステリシス曲線を示す図で、磁気収束を行う軟磁性薄膜は、磁性材料であるため、外部磁場に対し、磁性材料の出力する飽磁束密度は、図1に示すようなヒステリシス曲線を示している。また、ヒステリシス量は、図1に示すヒステリシス曲線において、X軸の交点となる保磁力とY軸との交点となる残留磁束密度の大きさで定義できる。しかし、ヒステリシス量は、同じ外部磁場量でも磁場の印加方向や外部磁場の大きさにより変化するため、より高度な磁気センシングを実現するためには、ヒステリシス量を小さくすることが必要である。   FIG. 1 is a diagram showing a hysteresis curve of a soft magnetic thin film. Since a soft magnetic thin film that performs magnetic convergence is a magnetic material, the saturation flux density output from the magnetic material with respect to an external magnetic field is as shown in FIG. A simple hysteresis curve is shown. Further, the amount of hysteresis can be defined by the magnitude of the residual magnetic flux density at the intersection of the coercive force that is the intersection of the X axis and the Y axis in the hysteresis curve shown in FIG. However, since the amount of hysteresis varies depending on the direction of application of the magnetic field and the magnitude of the external magnetic field even with the same amount of external magnetic field, it is necessary to reduce the amount of hysteresis in order to realize more advanced magnetic sensing.

特開2003−142752号公報JP 2003-142752 A

しかしながら、ヒステリシス量を小さくするためには、保磁力と残留磁束密度の低減が必要である。従来の技術では、保磁力は30〜100A/m、残留磁束密度は0.6〜1.1Tであり、磁気センサとしては、0.1〜1.0mT程度のヒステリシスを持っていた。磁気センサの使用磁場範囲は、数mTから数百mTの幅広い範囲で使用され、特に、数mTの使用磁場範囲では、0.1mTのヒステリシスを持っていても約10%の誤差となるため、より精度な測定を必要とする用途には適用できないという課題があった。そのため、より高精度な磁気センシングを実現するため更なる保磁力と残留磁束密度の低減行う必要があった。   However, in order to reduce the amount of hysteresis, it is necessary to reduce the coercive force and the residual magnetic flux density. In the conventional technique, the coercive force is 30 to 100 A / m, the residual magnetic flux density is 0.6 to 1.1 T, and the magnetic sensor has a hysteresis of about 0.1 to 1.0 mT. The magnetic field of use of the magnetic sensor is used in a wide range of several mT to several hundreds of mT. In particular, in the magnetic field of use of several mT, an error of about 10% occurs even with a hysteresis of 0.1 mT. There has been a problem that it cannot be applied to applications that require more accurate measurement. Therefore, it is necessary to further reduce the coercive force and the residual magnetic flux density in order to realize more accurate magnetic sensing.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、低保磁力と低い残留磁束密度をもつ軟磁性膜を備え、この軟磁性薄膜で磁気収束する半導体装置及びその製造方法を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a semiconductor device including a soft magnetic film having a low coercive force and a low residual magnetic flux density, and magnetically converging with the soft magnetic thin film, and It is in providing the manufacturing method.

本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、半導体装置であって、半導体基板と、前記半導体基板に設けられたホール素子と、前記ホール素子の上のCu系材料からなる下地導電層上に設けられ、電解めっきにより形成された軟磁性薄膜と、を備え、前記軟磁性薄膜で磁気収束する半導体装置であって、前記軟磁性薄膜の保磁力が0.1〜30A/m、かつ残留磁束密度が0.05〜0.6Tであり、かつ前記軟磁性薄膜中に含まれる鉄、ニッケル、ホウ素の合計を100重量%としたときに、鉄含有量が15〜30重量%、ホウ素含有量が0.2〜0.6重量%、残部がニッケルであり、その厚みが4〜30μmであり、かつ前記軟磁性薄膜の結晶子のサイズが10nm以下であり、かつ結晶方位が(111)の方向に70%以上配向していることを特徴とする。 The present invention has been made to achieve such an object, and the invention according to claim 1 is a semiconductor device comprising a semiconductor substrate, a Hall element provided on the semiconductor substrate, and the hole. It provided on an underlying conductive layer made of Cu-based material on the element, and a soft magnetic thin film formed by electroless plating, with a, a semiconductor device for the magnetic flux concentrator in the soft magnetic thin film, the soft magnetic thin film When the coercive force is 0.1 to 30 A / m, the residual magnetic flux density is 0.05 to 0.6 T, and the total of iron, nickel, and boron contained in the soft magnetic thin film is 100% by weight Further, the iron content is 15 to 30% by weight, the boron content is 0.2 to 0.6% by weight, the balance is nickel, the thickness is 4 to 30 μm, and the crystallites of the soft magnetic thin film The size is 10 nm or less and the crystal Position, characterized in that the oriented direction more than 70% (111).

本発明によれば、半導体基板に設けられたホール素子と、このホール素子上に設けられた軟磁性薄膜とを備え、この軟磁性薄膜が、少なくともホウ素を含有しているので、低保磁力と低い残留磁束密度をもつ軟磁性膜を備え、この軟磁性薄膜で磁気収束する半導体装置及びその製造方法を提供することができる。   According to the present invention, a Hall element provided on a semiconductor substrate and a soft magnetic thin film provided on the Hall element are provided. Since the soft magnetic thin film contains at least boron, low coercive force and A semiconductor device including a soft magnetic film having a low residual magnetic flux density and magnetically converging with the soft magnetic thin film and a method for manufacturing the same can be provided.

また、軟磁性薄膜中に含まれる鉄、ニッケル、ホウ素の合計を100重量%としたときに、鉄含有量が15〜30重量%、ホウ素含有量が0.2乃至0.6重量%、残部がニッケルであり、軟磁性薄膜の厚みが4乃至30μmであり、この軟磁性薄膜で磁気収するので、数mTの磁場環境化でも精度よく磁気センシングを行うが可能になり、また、ヒステリシス量が小さくなることで、不平衡電圧の絶対値とそのばらつきを低減できるという効果を奏する。   Further, when the total amount of iron, nickel, and boron contained in the soft magnetic thin film is 100% by weight, the iron content is 15 to 30% by weight, the boron content is 0.2 to 0.6% by weight, and the balance Is a nickel, and the soft magnetic thin film has a thickness of 4 to 30 μm. Since the soft magnetic thin film is magnetically collected, magnetic sensing can be performed accurately even in a magnetic field environment of several mT, and the amount of hysteresis is reduced. By reducing it, the absolute value of the unbalanced voltage and its variation can be reduced.

軟磁性薄膜のヒステリシス曲線を示す図である。It is a figure which shows the hysteresis curve of a soft-magnetic thin film. 本発明に係る半導体装置の一実施形態を説明するための構成図である。It is a block diagram for describing one embodiment of a semiconductor device according to the present invention. 図2に示した半導体装置の製造方法を説明するための工程図で、半導体回路を形成する工程図である。FIG. 4 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2 and a process diagram for forming a semiconductor circuit. 図2に示した半導体装置の製造方法を説明するための工程図で、下地導電層を形成する工程図である。FIG. 5 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2 and a process diagram for forming a base conductive layer. 図2に示した半導体装置の製造方法を説明するための工程図で、下地導電層にレジストパターンを形成する工程図である。FIG. 4 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2 and a process diagram for forming a resist pattern on a base conductive layer. 図2に示した半導体装置の製造方法を説明するための工程図で、軟磁性薄膜を形成する工程図である。FIG. 4 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2 and a process diagram for forming a soft magnetic thin film. 図2に示した半導体装置の製造方法を説明するための工程図で、レジストを除去する工程図である。FIG. 4 is a process diagram for explaining the method of manufacturing the semiconductor device shown in FIG. 2 and a process diagram for removing a resist. 図2に示した半導体装置の製造方法を説明するための工程図で、下地導電層を除去する工程図である。FIG. 4 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2 and a process diagram for removing a base conductive layer. 実施例1及び比較例1における軟磁性薄膜中のホウ素含有量と保磁力の関係を示す図である。It is a figure which shows the relationship between the boron content and the coercive force in the soft magnetic thin film in Example 1 and Comparative Example 1. 実施例1及び比較例1におけるホウ素含有量と残留磁束密度の関係を示す図である。It is a figure which shows the relationship between the boron content and residual magnetic flux density in Example 1 and Comparative Example 1. 実施例1及び比較例1における軟磁性薄膜中のホウ素含有量と(111)配向度(結晶方位)の関係を示す図である。It is a figure which shows the relationship between the boron content in the soft-magnetic thin film in Example 1 and Comparative Example 1, and a (111) orientation degree (crystal orientation). 実施例1及び比較例1における軟磁性薄膜中のホウ素含有量と結晶子サイズの関係を示す図である。It is a figure which shows the relationship between the boron content in the soft-magnetic thin film in Example 1 and the comparative example 1, and a crystallite size. 実施例1及び比較例1におけるめっき液へのTMAB添加量と軟磁性薄膜中のホウ素含有量の関係を示す図である。It is a figure which shows the relationship between the amount of TMAB addition to the plating solution in Example 1 and Comparative Example 1 and the boron content in the soft magnetic thin film. 実施例2及び比較例2における軟磁性薄膜の膜厚と保磁力の関係を示す図である。It is a figure which shows the relationship between the film thickness of a soft-magnetic thin film and coercive force in Example 2 and Comparative Example 2. 実施例2及び比較例2における軟磁性薄膜の膜厚と残留磁束密度の関係を示す図である。It is a figure which shows the relationship between the film thickness of the soft-magnetic thin film in Example 2 and Comparative Example 2, and a residual magnetic flux density.

以下、図面を参照して本発明の実施形態について説明する。
図2は、本発明に係る半導体装置の一実施形態を説明するための構成図で、図中符号1は半導体基板、2はホール素子、3は外部接続端子パッド、4は有機絶縁膜、5は下地導電層(金属導電膜)、6は軟磁性薄膜を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 is a block diagram for explaining an embodiment of a semiconductor device according to the present invention, in which reference numeral 1 denotes a semiconductor substrate, 2 denotes a Hall element, 3 denotes an external connection terminal pad, 4 denotes an organic insulating film, 5 Indicates a base conductive layer (metal conductive film), and 6 indicates a soft magnetic thin film.

本発明の半導体装置は、従来の磁性材料により磁気収束をしていた半導体装置に対して、ホウ素を所定量含有させた軟磁性薄膜をホール素子上に設けることで、ヒステリシス量の小さい半導体装置が得られたものである。なお、本発明の半導体装置は、ホール素子を備えた磁気センサであることも含まれている。   The semiconductor device of the present invention is a semiconductor device having a small amount of hysteresis by providing a soft magnetic thin film containing a predetermined amount of boron on a Hall element compared to a semiconductor device that has been magnetically converged by a conventional magnetic material. It is obtained. The semiconductor device of the present invention includes a magnetic sensor provided with a Hall element.

本発明の半導体装置は、半導体基板1に設けられたホール素子2と、このホール素子1上に設けられた軟磁性薄膜6とを備え、この軟磁性薄膜6が、少なくともホウ素を含有している。また、半導体基板1上で、かつホール素子2上に設けられた有機絶縁膜4と、この有機絶縁膜4と軟磁性薄膜6との間に設けられた金属導電層5とを備え、軟磁性薄膜6が、金属導電層5上で少なくとも1個以上のホール素子2の感磁部を覆うように配置されている。   The semiconductor device of the present invention includes a Hall element 2 provided on a semiconductor substrate 1 and a soft magnetic thin film 6 provided on the Hall element 1, and the soft magnetic thin film 6 contains at least boron. . In addition, an organic insulating film 4 provided on the semiconductor substrate 1 and on the Hall element 2 and a metal conductive layer 5 provided between the organic insulating film 4 and the soft magnetic thin film 6 are provided. A thin film 6 is disposed on the metal conductive layer 5 so as to cover at least one magnetic sensing portion of the Hall element 2.

つまり、本発明の半導体装置の特徴は、半導体基板1にホール素子2を備えており、半導体基板1上に有機絶縁膜4を備え、ホール素子1の直上に下地通電層5と軟磁性薄膜6を設けたものである。   That is, the semiconductor device of the present invention is characterized in that the semiconductor substrate 1 is provided with the Hall element 2, the organic insulating film 4 is provided on the semiconductor substrate 1, and the underlying conductive layer 5 and the soft magnetic thin film 6 are provided immediately above the Hall element 1. Is provided.

軟磁性薄膜6は、膜中に含まれる鉄、ニッケル、ホウ素の合計を100重量%としたときに、鉄含有量が15〜30重量%、ホウ素含有量が0.2〜0.6重量%、残部がニッケルであり、その厚みが4〜30μmにコントロールすることで保磁力及び残留磁束密度の低減が可能になる。因みに、その時の軟磁性薄膜における結晶子サイズは5〜10nmで、NiFe(111)の結晶配向度は70〜100%である。また、軟磁性薄膜の保磁力は、0.1乃至30A/mで、かつ残留磁束密度は、0.05乃至0.6Tである。   The soft magnetic thin film 6 has an iron content of 15 to 30% by weight and a boron content of 0.2 to 0.6% by weight when the total of iron, nickel and boron contained in the film is 100% by weight. The balance is nickel, and the coercive force and residual magnetic flux density can be reduced by controlling the thickness to 4 to 30 μm. Incidentally, the crystallite size in the soft magnetic thin film at that time is 5 to 10 nm, and the crystal orientation degree of NiFe (111) is 70 to 100%. The coercive force of the soft magnetic thin film is 0.1 to 30 A / m, and the residual magnetic flux density is 0.05 to 0.6 T.

図3乃至図8は、図2に示した半導体装置の製造方法を説明するための工程図である。本発明に係る半導体装置の製造方法は、1個以上のホール素子と半導体回路が設けられた半導体基板上に有機絶縁膜4を形成し、この有機絶縁膜4上に金属導電層5を形成し、この金属導電層5上で、かつ1個以上のホール素子の感磁部を覆うような位置に少なくともホウ素を含有した軟磁性薄膜6を形成するものである。また、軟磁性性薄膜6は、ホウ素還元剤を配合しためっき液を用いて電解めっきで形成するものである。   3 to 8 are process diagrams for explaining a method of manufacturing the semiconductor device shown in FIG. In the method of manufacturing a semiconductor device according to the present invention, an organic insulating film 4 is formed on a semiconductor substrate provided with one or more Hall elements and a semiconductor circuit, and a metal conductive layer 5 is formed on the organic insulating film 4. The soft magnetic thin film 6 containing at least boron is formed on the metal conductive layer 5 and at a position covering the magnetically sensitive portion of one or more Hall elements. The soft magnetic thin film 6 is formed by electrolytic plating using a plating solution containing a boron reducing agent.

以下に、本発明に係る半導体装置の製造方法を工程順に沿って説明する。
図3は、図2に示した半導体装置の製造方法を説明するための工程図で、半導体回路を形成する工程図である。まず、図3に示すように、半導体基板1上に磁気センシングを行うホール素子2が少なくとも1個以上配置され、外部電極と電気的な接続を行うため外部接続端子パッド3を開口した状態で、有機絶縁膜4を形成する。半導体基板1としてはシリコンウエハでも、GaAs基板のいずれでもよく、ホール素子2はSiなどの半導体やInSb、InAs,GaAsなどの化合物半導体などが好ましく、それらの積層構造や不純物をSnやZnやSiなどをドープしたものを用いてもよい。また、外部接続端子パッド3の材料としては、AL系やAu系の材料が一般的である。また、有機絶縁膜4は、有機材料であるポリイミド、もしくはポリベンゾオキサゾール、ベンゾシクロブテンなどを用いることが望ましい。
Below, the manufacturing method of the semiconductor device which concerns on this invention is demonstrated along process order.
FIG. 3 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2, and is a process diagram for forming a semiconductor circuit. First, as shown in FIG. 3, at least one Hall element 2 for magnetic sensing is disposed on the semiconductor substrate 1, and the external connection terminal pad 3 is opened for electrical connection with the external electrode. An organic insulating film 4 is formed. The semiconductor substrate 1 may be either a silicon wafer or a GaAs substrate, and the Hall element 2 is preferably a semiconductor such as Si or a compound semiconductor such as InSb, InAs, or GaAs, and the stacked structure or impurities thereof may be Sn, Zn, Si, or the like. You may use what doped. Further, as the material of the external connection terminal pad 3, an AL-based material or an Au-based material is generally used. The organic insulating film 4 is preferably made of an organic material such as polyimide, polybenzoxazole, or benzocyclobutene.

図4は、図2に示した半導体装置の製造方法を説明するための工程図で、下地導電層を形成する工程図である。次に、図4に示すように、有機絶縁膜4上及び外部接続端子パッド3上に下地通電層5を配置する。下地通電層5としては積層膜を用いており、第1層としてTi、TiWなどのTi系材料を、第2層として、Cu系材料やAL材料、NiFe系材料を真空蒸着法、スパッタリング法、電解・無電解めっき法により形成する。Ti系材料は外部接続端子パッド3のAl系材料と下地通電層5のCu系材料の拡散バリヤ層として少なくとも0.1μm以上の厚みが望ましい。   FIG. 4 is a process diagram for explaining the method of manufacturing the semiconductor device shown in FIG. 2, and is a process diagram for forming a base conductive layer. Next, as shown in FIG. 4, the base conductive layer 5 is disposed on the organic insulating film 4 and the external connection terminal pads 3. A laminated film is used as the base energizing layer 5, a Ti-based material such as Ti or TiW as the first layer, a Cu-based material, an AL material, or a NiFe-based material as the second layer by vacuum evaporation, sputtering, It is formed by electrolytic / electroless plating. The Ti-based material desirably has a thickness of at least 0.1 μm or more as a diffusion barrier layer of the Al-based material of the external connection terminal pad 3 and the Cu-based material of the ground conductive layer 5.

また、第2層目の、Cu系材料やAL材料、NiFe系材料は電気抵抗を下げるため厚い方が好ましく、0.1〜10μmが望ましい。また、Cuは(111)の結晶方位に配向している。軟磁性薄膜6の結晶方位のミスマッチを減らすためにも(111)の結晶方位を持つCuを、軟磁性薄膜6を堆積する層として用いた方が良い。   Further, the second layer, Cu-based material, AL material, and NiFe-based material are preferably thicker in order to lower the electrical resistance, and preferably 0.1 to 10 μm. Cu is oriented in the crystal orientation of (111). In order to reduce the mismatch of the crystal orientation of the soft magnetic thin film 6, it is better to use Cu having the crystal orientation of (111) as a layer for depositing the soft magnetic thin film 6.

図5は、図2に示した半導体装置の製造方法を説明するための工程図で、下地導電層にレジストパターンを形成する工程図である。次に、図5に示すように、下地導電層5上に軟磁性薄膜6のパターンを形成するためにレジスト7を形成し、露光、現像を行い、レジスト空隙部7aを形成する。レジスト材料としては、ポジレジスト、ネガレジストのどちらでも良いが、一般的には、めっき時の耐酸性と剥離性を両立できるナフトキノン・ジアゾ型のポジレジストが望ましい。レジスト7の膜厚は、フトキノン・ジアゾ型のポジレジスト型のレジストを用いることで最大40μmの膜厚が成膜可能である。また、レジスト7の膜厚は、軟磁性薄膜6よりも厚いことが必要であるため5〜40μmが望ましい。   FIG. 5 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2, and is a process diagram for forming a resist pattern on the underlying conductive layer. Next, as shown in FIG. 5, a resist 7 is formed on the underlying conductive layer 5 in order to form a pattern of the soft magnetic thin film 6, and exposure and development are performed to form a resist gap 7a. As the resist material, either a positive resist or a negative resist may be used, but in general, a naphthoquinone diazo type positive resist capable of satisfying both acid resistance and releasability during plating is desirable. The resist 7 can be formed to a maximum film thickness of 40 μm by using a positive resist of ftquinone diazo type. Further, since the resist 7 needs to be thicker than the soft magnetic thin film 6, it is preferably 5 to 40 μm.

図6は、図2に示した半導体装置の製造方法を説明するための工程図で、軟磁性薄膜を形成する工程図である。次に、図6に示すように、レジスト開口部7aにホウ素とニッケルと鉄から成る軟磁性薄膜6を電解めっき法により形成する。軟磁性薄膜6の膜厚は、磁気収束効果を実現するため厚い方が好ましいが、レジスト7より厚く成膜すると軟磁性薄膜6が垂直に成長せず、キノコ状に成長してしまう。そのため軟磁性薄膜6の膜厚は、レジスト7の膜厚より小さいことが望ましく、特に、4〜30μmの範囲が好ましい。   FIG. 6 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2, and is a process diagram for forming a soft magnetic thin film. Next, as shown in FIG. 6, a soft magnetic thin film 6 made of boron, nickel and iron is formed in the resist opening 7a by electrolytic plating. The soft magnetic thin film 6 is preferably thicker in order to achieve the magnetic convergence effect. However, if the film is thicker than the resist 7, the soft magnetic thin film 6 does not grow vertically but grows in a mushroom shape. Therefore, the film thickness of the soft magnetic thin film 6 is desirably smaller than the film thickness of the resist 7, and is particularly preferably in the range of 4 to 30 μm.

電解めっきを行うために、下地導電層5を形成したウエハをカソードとして、アノードとしてニッケルや鉄、白金などの可溶解性、もしくは不溶解性の金属板を用いて、電気を流すことでカソードの被めっき部分に軟磁性薄膜を形成することができる。めっき液としては、硫酸ニッケル、塩化ニッケル、硫酸鉄、ホウ酸、サッカリン、塩化ナトリウムとホウ素系還元剤であるテトラメチルアミンボラン(TMAB)やジメチルアミンボラン(DMAB)を用いた。ホウ素はめっき液中にTMABやDMABを添加することで、軟磁性薄膜中に共析させた。   In order to perform electroplating, the cathode on which the conductive layer 5 is formed is used as a cathode, and a soluble or insoluble metal plate such as nickel, iron, or platinum is used as an anode. A soft magnetic thin film can be formed on the portion to be plated. As the plating solution, nickel sulfate, nickel chloride, iron sulfate, boric acid, saccharin, sodium chloride and boron-based reducing agents such as tetramethylamine borane (TMAB) and dimethylamine borane (DMAB) were used. Boron was co-deposited in the soft magnetic thin film by adding TMAB or DMAB to the plating solution.

また、本めっき液を用いて電解めっきを行う場合、めっき膜の析出電位は、めっき液の温度で変化するため、めっき液の温度を熱電対とヒーターやチラーを用いて、加熱冷却する必要がある。めっき液の温度は、電流密度やpHなどのめっき条件で大きく変わるが20〜60℃の間が好ましい。また、めっき時の陰極電流密度やpHも最適化する必要がある。陰極電流密度は、1〜70mA/cm2が好ましく、pHを2.0以下に下げると水素の発生量が多くなり、同じめっき時間でもめっき厚が薄くなるため、pHは2.0以上が好ましい。   In addition, when electrolytic plating is performed using this plating solution, the deposition potential of the plating film changes depending on the temperature of the plating solution, so the temperature of the plating solution must be heated and cooled using a thermocouple, heater, or chiller. is there. The temperature of the plating solution varies greatly depending on plating conditions such as current density and pH, but is preferably 20 to 60 ° C. Also, it is necessary to optimize the cathode current density and pH during plating. The cathode current density is preferably 1 to 70 mA / cm 2. When the pH is lowered to 2.0 or less, the amount of hydrogen generated increases, and the plating thickness becomes thin even during the same plating time. Therefore, the pH is preferably 2.0 or more.

図7は、図2に示した半導体装置の製造方法を説明するための工程図で、レジストを除去する工程図である。次に、図7に示すように、レジスト7を除去する。その結果、軟磁性薄膜6が下地通電層5上に残ることになる。   FIG. 7 is a process diagram for explaining the method of manufacturing the semiconductor device shown in FIG. 2, and is a process diagram for removing the resist. Next, as shown in FIG. 7, the resist 7 is removed. As a result, the soft magnetic thin film 6 remains on the underlayer conductive layer 5.

図8は、図2に示した半導体装置の製造方法を説明するための工程図で、下地導電層を除去する工程図である。最後に、図8に示すように、不要になった下地導電層5を、軟磁性薄膜6をマスクとして、ドライエッチング法、もしくはウエットエッチング法により除去する。その際、磁性材料が同時にエッチングされないようにすることが重要である。   FIG. 8 is a process diagram for explaining the method of manufacturing the semiconductor device shown in FIG. 2, and is a process diagram for removing the underlying conductive layer. Finally, as shown in FIG. 8, the base conductive layer 5 that is no longer needed is removed by a dry etching method or a wet etching method using the soft magnetic thin film 6 as a mask. At that time, it is important to prevent the magnetic material from being etched at the same time.

また、電解めっきにより形成した軟磁性薄膜の評価法として、ホウ素の含有量は、誘導結合プラズマ発光分析法(ICP)を、NiFeの配向度と結晶子のサイズはX線回折法を用いて算出した。また、磁気特性測定には、振動試料型磁力計(VSM)を用いて測定を行った。   As an evaluation method for soft magnetic thin films formed by electroplating, boron content is calculated using inductively coupled plasma emission spectrometry (ICP), and NiFe orientation and crystallite size are calculated using X-ray diffraction. did. Further, the magnetic characteristics were measured using a vibrating sample magnetometer (VSM).

軟磁性薄膜6中のホウ素量は、誘導結合プラズマ発光分析法(ICP)を用いて行った。塩酸(1+1)と硝酸中に軟磁性薄膜を投入し、ヒーター上で加熱させ、軟磁性膜、下地通電層を溶解させ、ICPでニッケルと鉄とホウ素の発光強度を測定し、濃度が既知のニッケルと鉄とホウ素の標準試料を溶解させた検量線から各元素の含有量の算出を行った。軟磁性薄膜中の含有量は、ニッケルと鉄とホウ素の合計を100重量%とした時の各元素の含有量を重量%で表した。   The amount of boron in the soft magnetic thin film 6 was measured using inductively coupled plasma emission spectrometry (ICP). A soft magnetic thin film is put into hydrochloric acid (1 + 1) and nitric acid, heated on a heater, the soft magnetic film and the base energizing layer are dissolved, and the emission intensity of nickel, iron and boron is measured by ICP, and the concentration is known. The content of each element was calculated from a calibration curve in which standard samples of nickel, iron and boron were dissolved. The content in the soft magnetic thin film was expressed in terms of wt% of the content of each element when the total of nickel, iron and boron was 100 wt%.

軟磁性薄膜の結晶配向性は、励起線としてCu Kα線を用いて、out of plane方向に2θ/ωでのX線回折法により測定を行い、結晶子NiFe合金由来の(111)と(200)のピーク強度の積分値を算出し、(111)と(200)のピーク積分値の合計に対し、(111)のピーク積分値がどの程度あるかを評価することで(111)への配向度(%)を評価した。また、結晶子サイズは、X線回折から得られたNiとFeの合金の(111)ピークの半価幅からScherrerの式を用いて算出した。   The crystal orientation of the soft magnetic thin film was measured by an X-ray diffraction method at 2θ / ω in the out of plane direction using Cu Kα ray as an excitation line, and (111) and (200 ) To calculate the integrated value of the peak intensities of (111) and (111) by evaluating how much of the peak integrated value of (111) is relative to the sum of the peak integrated values of (111) and (200). The degree (%) was evaluated. The crystallite size was calculated using the Scherrer equation from the half-value width of the (111) peak of the alloy of Ni and Fe obtained from X-ray diffraction.

また、磁気特性測定は、軟磁性薄膜を形成した半導体装置チップを試料台にセットし、電磁石により磁場を発生しながら試料を振動した際に発生する磁化曲線を描くことで、保磁力や残留磁束密度を算出した。   Magnetic characteristic measurement is performed by setting a semiconductor device chip on which a soft magnetic thin film is formed on a sample table and drawing a magnetization curve generated when the sample is vibrated while generating a magnetic field by an electromagnet. Density was calculated.

以下、本発明の実施形態に基づき各実施例について具体的に説明する。なお、本発明がこれらの実施例に限定されるものではない。   Hereinafter, each example will be described in detail based on the embodiment of the present invention. Note that the present invention is not limited to these examples.

[実施例1及び比較例1]
まず、本発明の半導体装置に係る軟磁性薄膜の実施例1及び比較例1について説明する。
半導体基板1としてシリコン基板を用いて、信号処理回路とホール素子を組み合わせたICを形成する。ICの外部接続用端子パッド3は、Alを用いて形成されており、Alパッドを開口してポリイミドを5μmの厚みで形成する。
[Example 1 and Comparative Example 1]
First, Example 1 and Comparative Example 1 of the soft magnetic thin film according to the semiconductor device of the present invention will be described.
Using a silicon substrate as the semiconductor substrate 1, an IC in which a signal processing circuit and a Hall element are combined is formed. The external connection terminal pad 3 of the IC is formed using Al, and the Al pad is opened to form polyimide with a thickness of 5 μm.

その上に下地通電層5としてスパッタリング法でTiを1500Å、Cuを6000Å形成したものに、20μmのポジレストを用いて、ICのチップ単位毎に、円形300μmの開口を露光、現像処理で開口した。   On top of that, the base energizing layer 5 was formed by sputtering using Ti of 1500 mm and Cu of 6000 mm, and using a 20 μm positive rest, a 300 μm circular opening was opened by exposure and development processing for each chip unit of the IC.

レジスト開口を行った半導体基板1をカソードとしてめっき用ホルダにセットし、アノードとして純度が4NのNi板を用いて、電解めっきに浸漬し、通電を行うことで電解めっきを行った。電解用めっき液としては、硫酸鉄・7水和物を5g/Lに、硫酸ニッケル・6水和物を35g/L、塩化ニッケル・6水和物を85g/L配合しためっき液に、添加剤としてホウ酸、塩化ナトリウムをそれぞれ25g/L、サッカリン酸ナトリウムを1.5g/Lを配合して、最後に1N塩酸を用いてめっき液のpHをp3.6で調整した薬液を用い、めっき時の陰極電流密度を6mA/cm2、液温を30℃に固定し、実施例1としては、TMABを0.3、2.5、4.0、8.0、12.0、15.0g/L添加して電解めっきを行った。   The semiconductor substrate 1 in which the resist was opened was set as a cathode in a plating holder, and a nickel plate having a purity of 4N was used as an anode. The substrate was immersed in electrolytic plating and energized to perform electroplating. As a plating solution for electrolysis, added to a plating solution containing 5 g / L of iron sulfate heptahydrate, 35 g / L of nickel sulfate hexahydrate, and 85 g / L of nickel chloride hexahydrate As a chemical agent, boric acid and sodium chloride were mixed at 25 g / L and sodium saccharate at 1.5 g / L respectively. Finally, a chemical solution in which the pH of the plating solution was adjusted with p3.6 using 1N hydrochloric acid was used for plating. The cathode current density at the time was fixed at 6 mA / cm 2, and the liquid temperature was fixed at 30 ° C. As Example 1, TMAB was 0.3, 2.5, 4.0, 8.0, 12.0, 15.0 g. Electrolytic plating was performed by adding / L.

また、比較例1としてTMABを添加しないで、軟磁性薄膜の膜厚が実施例と同様に13μmになるようめっき時間を調整し、電解めっきを行った。   Further, as Comparative Example 1, without adding TMAB, the plating time was adjusted so that the thickness of the soft magnetic thin film was 13 μm as in the example, and electrolytic plating was performed.

次に、NMPからなる有機溶剤でレジスト除去を行い、ウエットエッチング法でTiとCuを除去し、本発明の半導体装置を作成した。   Next, the resist was removed with an organic solvent made of NMP, and Ti and Cu were removed by a wet etching method to produce a semiconductor device of the present invention.

作成した半導体装置の軟磁性薄膜を塩酸(1+1)と硝酸中に溶解させてICP測定を行い軟磁性薄膜中のホウ素量を同定した。また、半導体装置に軟磁性薄膜が付いている状態で、X線回折を行い、結晶方位と結晶サイズ、そして、VSMにより磁気特性評価を行い、TMABの添加量を変えることで軟磁性薄膜中のホウ素含有量を変化させることによる磁気特性及び結晶構造の影響を実験的に確かめた。   The soft magnetic thin film of the prepared semiconductor device was dissolved in hydrochloric acid (1 + 1) and nitric acid, and ICP measurement was performed to identify the boron content in the soft magnetic thin film. In addition, X-ray diffraction is performed with the soft magnetic thin film attached to the semiconductor device, the magnetic orientation is evaluated by crystal orientation and crystal size, and VSM, and the amount of TMAB added is changed to change the amount of the soft magnetic thin film. The effect of magnetic properties and crystal structure by changing boron content was experimentally confirmed.

図9は、実施例1及び比較例1における軟磁性薄膜中のホウ素含有量と保磁力の関係を示す図で、図10は、実施例1及び比較例1におけるホウ素含有量と残留磁束密度の関係を示す図である。   FIG. 9 is a diagram showing the relationship between the boron content and the coercive force in the soft magnetic thin film in Example 1 and Comparative Example 1, and FIG. 10 shows the boron content and the residual magnetic flux density in Example 1 and Comparative Example 1. It is a figure which shows a relationship.

軟磁性薄膜6中にホウ素が多くなるほど、保磁力と残留磁束密度は低下することが分かった。ホウ素が軟磁性薄膜6中に含有しない比較例1では、保磁力が37A/m、残留磁束密度が0.67Tに対し、軟磁性薄膜6中にホウ素を0.2wt%含有させることで、保磁力は22A/m、残留磁束密度は0.35Tまで低下し、ホウ素含有量が0.4wt%まではホウ素含有量が増えるに従って保磁力、残留磁束密度が低下する。しかし、ホウ素量が0.62wt%になると保磁力は15A/m、残留磁束密度は0.20Tまで若干上昇するが、従来技術よりヒステリシスを低減できることを確認した。これによりヒステリシスを低減させるためには、軟磁性薄膜6中のホウ素量が0.2〜0.6wt%であることが望ましいことを実験的に確認した。   It was found that the coercive force and the residual magnetic flux density decrease as the amount of boron in the soft magnetic thin film 6 increases. In Comparative Example 1 in which boron is not contained in the soft magnetic thin film 6, the coercive force is 37 A / m, the residual magnetic flux density is 0.67 T, and the soft magnetic thin film 6 contains 0.2 wt% of boron. The magnetic force decreases to 22 A / m, the residual magnetic flux density decreases to 0.35 T, and the coercive force and residual magnetic flux density decrease as the boron content increases until the boron content reaches 0.4 wt%. However, when the boron content is 0.62 wt%, the coercive force is slightly increased to 15 A / m and the residual magnetic flux density is slightly increased to 0.20 T, but it has been confirmed that hysteresis can be reduced as compared with the prior art. Thus, in order to reduce the hysteresis, it was experimentally confirmed that the boron content in the soft magnetic thin film 6 is preferably 0.2 to 0.6 wt%.

図11は、実施例1及び比較例1におけるX線回折により軟磁性薄膜中のホウ素含有量と((111)配向度(結晶方位)の関係を示す図で、図12は、実施例1及び比較例1における軟磁性薄膜中のホウ素含有量と結晶子サイズとの関係を示す図である。   FIG. 11 is a diagram showing the relationship between the boron content in the soft magnetic thin film and ((111) degree of orientation (crystal orientation) by X-ray diffraction in Example 1 and Comparative Example 1, and FIG. It is a figure which shows the relationship between the boron content and the crystallite size in the soft-magnetic thin film in the comparative example 1.

軟磁性薄膜6中にホウ素が取り込まれる量が多いほど、結晶方位が(111)方向に配向して、かつ結晶子サイズも小さくなることが分かる。よって、軟磁性薄膜6中のホウ素量が0.2wt%以上であれば、そのホウ素取り込み量によらず、(111)の方向に70%以上配向して、かつ10nm以下の結晶子サイズの軟磁性薄膜6を作成できることを実験的に確認できた。   It can be seen that the greater the amount of boron incorporated into the soft magnetic thin film 6, the more the crystal orientation is oriented in the (111) direction and the crystallite size is smaller. Therefore, if the amount of boron in the soft magnetic thin film 6 is 0.2 wt% or more, regardless of the amount of boron incorporation, 70% or more is oriented in the direction of (111) and the crystallite size is 10 nm or less. It was confirmed experimentally that the magnetic thin film 6 can be formed.

図13は、実施例1及び比較例1におけるめっき液へのTMAB添加量と軟磁性薄膜中のホウ素含有量との関係を示す図である。軟磁性薄膜6中のホウ素含有量は、めっき液中に加えるホウ素系還元剤であるTMABの量に依存する。TMABを2g/L以上めっき液に添加することで軟磁性薄膜6中に0.2wt%のホウ素が含有され、TMABの量を増やすことで、膜中のホウ素量は増加する。今回の実験では最大添加量としてTMABを15g/L添加した場合は軟磁性薄膜6中に0.62wt%のホウ素を含有させることができることを確認した。   FIG. 13 is a diagram showing the relationship between the amount of TMAB added to the plating solution and the boron content in the soft magnetic thin film in Example 1 and Comparative Example 1. The boron content in the soft magnetic thin film 6 depends on the amount of TMAB that is a boron-based reducing agent added to the plating solution. By adding TMAB to the plating solution in an amount of 2 g / L or more, 0.2 wt% of boron is contained in the soft magnetic thin film 6, and by increasing the amount of TMAB, the amount of boron in the film increases. In this experiment, it was confirmed that 0.62 wt% boron can be contained in the soft magnetic thin film 6 when TMAB is added as a maximum addition amount of 15 g / L.

これにより、TMABをめっき液中に添加して膜中にホウ素を含有させることで、保磁力と残留磁束密度の小さい軟磁性膜をすることができた。   Thus, a soft magnetic film having a small coercive force and residual magnetic flux density could be obtained by adding TMAB to the plating solution and containing boron in the film.

[実施例2及び比較例2]
次に、本発明の半導体装置に係る実施例2及び比較例2について説明する。
磁気センシング用途として用いる場合、磁気飽和を防ぐため、軟磁性薄膜6は厚い方が好ましい。電解めっき工程のみ、TMABの添加量を12.0g/Lに固定し、電流密度は6mA/cm2、液温を30℃に固定して、めっき時間を変えることで膜厚を変化させた実験を実施例2として行った。また、同じように、TMABを添加せずにめっき時間を変えることで膜厚を変化させた比較例2として実験を行った。
[Example 2 and Comparative Example 2]
Next, Example 2 and Comparative Example 2 according to the semiconductor device of the present invention will be described.
When used as a magnetic sensing application, the soft magnetic thin film 6 is preferably thick in order to prevent magnetic saturation. Only in the electroplating process, the amount of TMAB added was fixed at 12.0 g / L, the current density was fixed at 6 mA / cm2, the liquid temperature was fixed at 30 ° C., and the film thickness was changed by changing the plating time. Example 2 was performed. Similarly, an experiment was conducted as Comparative Example 2 in which the film thickness was changed by changing the plating time without adding TMAB.

図14は、実施例2及び比較例2における軟磁性薄膜の膜厚と保磁力の関係を示す図で、図15は、実施例2及び比較例2における軟磁性薄膜の膜厚と残留磁束密度の関係を示す図である。   14 is a diagram showing the relationship between the thickness of the soft magnetic thin film and the coercive force in Example 2 and Comparative Example 2, and FIG. 15 is the thickness and residual magnetic flux density of the soft magnetic thin film in Example 2 and Comparative Example 2. It is a figure which shows the relationship.

膜厚を変えると保磁力と飽和磁束密度は大きく変化し、TMABを添加しない場合は保磁力に関しては、1μmの薄膜では120A/mで、膜厚が厚くなるほど保磁力は小さくなっていくが、8μm以上の厚みで40A/m程度で飽和するのに対し、TMABを12.0g/L添加することで1μmでも保磁力を40A/mまで低減でき、4μm以上の厚みでは20A/m以下でほぼ一定になることが分かる。また、飽和磁束密度も1μmの薄膜では0.9Tで、膜厚が厚くなれば若干低減するが0.7T程度までしか下がらない。これに対し、TMABを12.0g/L添加することで1μmでも飽和磁束密度は0.6Tであり、TMABを増やすことで0.1T程度まで低減し、32μmの膜厚まで残留磁束密度が変化しないことを確認できた。   When the film thickness is changed, the coercive force and the saturation magnetic flux density change greatly. When TMAB is not added, the coercive force is 120 A / m for a 1 μm thin film, and the coercive force decreases as the film thickness increases. While it is saturated at about 40 A / m at a thickness of 8 μm or more, by adding 12.0 g / L of TMAB, the coercive force can be reduced to 40 A / m even at 1 μm, and at about 20 A / m or less at a thickness of 4 μm or more. It turns out that it becomes constant. Further, the saturation magnetic flux density is 0.9 T for a thin film having a thickness of 1 μm, and is slightly reduced as the film thickness is increased, but only decreases to about 0.7 T. On the other hand, the saturation magnetic flux density is 0.6T even at 1μm by adding 12.0g / L of TMAB, and it is reduced to about 0.1T by increasing TMAB, and the residual magnetic flux density changes to the film thickness of 32μm. I confirmed that I did not.

これにより、保磁力30A/m以下、残留磁束密度0.6T以下を実現するためには軟磁性薄膜6の厚みを4〜30μmすることが望ましいことを実験的に確認できた。   Thereby, in order to realize a coercive force of 30 A / m or less and a residual magnetic flux density of 0.6 T or less, it was experimentally confirmed that the thickness of the soft magnetic thin film 6 is desirably 4 to 30 μm.

[実施例3]
次に、本発明の半導体装置に係る実施例3について説明する。
電解めっきを用いて軟磁性薄膜6を作成する場合、めっき時の電流密度は、その生産性を決める上で重要なファクターである。電流密度を上げることでめっき時間の短縮が可能になり、そのまま生産性の向上に直結する。そこで、実施例3として電流密度を実施例1、2の5倍である30mA/cm2でTMAB添加量は12.0g/L、膜厚は13μmでめっきを行った。ICPによるホウ素含有量は0.5wt%で、保磁力は15A/m、残留磁束密度は0.12Tと電流密度を上げても低いヒステリシスの軟磁性薄膜6を作成できた。そのときの軟磁性薄膜6のNiFe(111)配向度は95%、結晶子サイズは8.5nmであった。
[Example 3]
Next, a third embodiment according to the semiconductor device of the present invention will be described.
When the soft magnetic thin film 6 is produced using electrolytic plating, the current density at the time of plating is an important factor in determining the productivity. By increasing the current density, the plating time can be shortened, which directly improves productivity. Therefore, as Example 3, plating was performed with a current density of 30 mA / cm 2 which is five times that of Examples 1 and 2, a TMAB addition amount of 12.0 g / L, and a film thickness of 13 μm. The boron content by ICP was 0.5 wt%, the coercive force was 15 A / m, and the residual magnetic flux density was 0.12 T. Even when the current density was increased, the soft magnetic thin film 6 with low hysteresis could be produced. At that time, the NiFe (111) orientation degree of the soft magnetic thin film 6 was 95%, and the crystallite size was 8.5 nm.

[実施例4及び比較例3]
次に、本発明の半導体装置に係る実施例4及び比較例3を説明する。
半導体基板1としてGaAsを用い、ホール素子2としてはInAsからなる化合物半導体を用いた。また、外部電極はTiとAuの積層構造を蒸着法で形成した。ホール素子2の直上にはポリイミドを5μmの厚みで形成し、その上に下地通電層5としてスパッタリング法でTiを1500Å、Cuを6000Å形成したものにレジストパターンを形成し、実施例4として、実施例3に記載したTMABを12g/L配合しためっき液を用い13μmの厚みで軟磁性薄膜6を形成した。
[Example 4 and Comparative Example 3]
Next, Example 4 and Comparative Example 3 according to the semiconductor device of the present invention will be described.
GaAs was used as the semiconductor substrate 1, and a compound semiconductor made of InAs was used as the Hall element 2. The external electrode was formed by depositing a laminated structure of Ti and Au. A polyimide is formed in a thickness of 5 μm immediately above the Hall element 2, and a resist pattern is formed on the base energizing layer 5 formed by sputtering with Ti of 1500 mm and Cu of 6000 mm. A soft magnetic thin film 6 having a thickness of 13 μm was formed using a plating solution containing 12 g / L of TMAB described in Example 3.

また、比較例2としてTMABを添加しないめっき液を用いて、13μmの厚みで軟磁性薄膜6を形成した。レジスト剥離とエッチング処理を行い作成した素子に、磁場を+40mT→−40mT→+40mTに変化させながら、3V印加時のホール起電力のヒステリシス幅を評価した。   Moreover, the soft magnetic thin film 6 was formed in thickness of 13 micrometers using the plating solution which does not add TMAB as the comparative example 2. FIG. The hysteresis width of the Hall electromotive force when 3 V was applied was evaluated while changing the magnetic field from +40 mT → −40 mT → + 40 mT on the element formed by resist stripping and etching.

実施例4と比較例3のヒステリシス幅を比較した。ヒステリシス幅は、+40mT→−40mTに磁場を変えた時にホール出力がゼロになる磁場量と、逆に−40mT→+40mTに磁場を変えた時のホール出力がゼロになるときの磁場量の差で定義した場合、実施例4では、0.01mTのヒステリシス幅に対し、比較例3では0.1mTと、TMABを加えることでヒステリシス幅が約1/10に低減することをホール素子として実験的に確認できた。   The hysteresis widths of Example 4 and Comparative Example 3 were compared. The hysteresis width is the difference between the amount of magnetic field where the Hall output becomes zero when the magnetic field is changed from +40 mT to −40 mT, and the magnetic field amount when the Hall output becomes zero when the magnetic field is changed from −40 mT to +40 mT. When defined, the hysteresis width of 0.01 mT in Example 4 is 0.1 mT in Comparative Example 3, and that the hysteresis width is reduced to about 1/10 by adding TMAB as an experimental Hall element. It could be confirmed.

こうすることによって、数mTの磁場環境化でも精度よく磁気センシングを行うが可能になった。また、ヒステリシス量が小さくなることで、不平衡電圧の絶対値とそのばらつきを低減出来ることが期待できる。   By doing so, it is possible to perform magnetic sensing with high accuracy even in a magnetic field environment of several mT. Moreover, it can be expected that the absolute value of the unbalanced voltage and its variation can be reduced by reducing the amount of hysteresis.

1 半導体基板
2 ホール素子
3 外部接続端子パッド
4 有機絶縁膜
5 下地導電層(金属導電膜)
6 軟磁性薄膜
7 レジスト
7a レジスト空隙部
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Hall element 3 External connection terminal pad 4 Organic insulating film 5 Ground conductive layer (metal conductive film)
6 Soft magnetic thin film 7 Resist 7a Resist gap

Claims (1)

半導体基板と、
前記半導体基板に設けられたホール素子と、
前記ホール素子の上のCu系材料からなる下地導電層上に設けられ、電解めっきにより形成された軟磁性薄膜と、
を備え、前記軟磁性薄膜で磁気収束する半導体装置であって、
前記軟磁性薄膜の保磁力が0.1〜30A/m、かつ残留磁束密度が0.05〜0.6Tであり、かつ
前記軟磁性薄膜中に含まれる鉄、ニッケル、ホウ素の合計を100重量%としたときに、鉄含有量が15〜30重量%、ホウ素含有量が0.2〜0.6重量%、残部がニッケルであり、その厚みが4〜30μmであり、かつ
前記軟磁性薄膜の結晶子のサイズが10nm以下であり、かつ結晶方位が(111)の方向に70%以上配向していることを特徴とする半導体装置。
A semiconductor substrate;
Hall elements provided on the semiconductor substrate;
A soft magnetic thin film provided on an underlying conductive layer made of a Cu-based material on the Hall element and formed by electrolytic plating ;
A semiconductor device that converges magnetically with the soft magnetic thin film,
The coercive force of the soft magnetic thin film is 0.1 to 30 A / m, the residual magnetic flux density is 0.05 to 0.6 T, and the total of iron, nickel, and boron contained in the soft magnetic thin film is 100 wt. %, The iron content is 15-30 wt%, the boron content is 0.2-0.6 wt%, the balance is nickel, the thickness is 4-30 μm, and the soft magnetic thin film The size of the crystallite is 10 nm or less, and the crystal orientation is 70% or more oriented in the direction of (111).
JP2009000682A 2009-01-06 2009-01-06 Semiconductor device and manufacturing method thereof Active JP5463562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000682A JP5463562B2 (en) 2009-01-06 2009-01-06 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000682A JP5463562B2 (en) 2009-01-06 2009-01-06 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010159982A JP2010159982A (en) 2010-07-22
JP5463562B2 true JP5463562B2 (en) 2014-04-09

Family

ID=42577256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000682A Active JP5463562B2 (en) 2009-01-06 2009-01-06 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5463562B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448470B (en) * 2017-12-04 2022-07-22 株式会社村田制作所 Magnetic sensor
WO2019111782A1 (en) * 2017-12-04 2019-06-13 株式会社村田製作所 Magnetic sensor
WO2019111766A1 (en) 2017-12-04 2019-06-13 株式会社村田製作所 Magnetic sensor
CN113691189B (en) * 2021-08-26 2024-04-23 聚辰半导体股份有限公司 Method for correcting non-linearity of zero magnetic area of magnet of closed-loop voice coil motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372611A (en) * 1989-08-11 1991-03-27 Tetsuya Aisaka Electroless plated soft magnetic thin film
JPH0547583A (en) * 1991-08-13 1993-02-26 Toyota Autom Loom Works Ltd Forming method of soft magnetic film
JP2003347120A (en) * 2002-05-28 2003-12-05 Univ Waseda Magnetic film and its formation method
JP2006173403A (en) * 2004-12-16 2006-06-29 Fujitsu Ltd Soft magnetic thin film, its manufacturing method, vertical magnetic recording medium and magnetic recording and reproducing device
JP2007278733A (en) * 2006-04-03 2007-10-25 Asahi Kasei Electronics Co Ltd Magnetic sensor and its manufacturing method

Also Published As

Publication number Publication date
JP2010159982A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
US10971576B2 (en) High resistivity soft magnetic material for miniaturized power converter
US7402529B2 (en) Method of applying cladding material on conductive lines of MRAM devices
US6936763B2 (en) Magnetic shielding for electronic circuits which include magnetic materials
US10002919B2 (en) High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors
JP5463562B2 (en) Semiconductor device and manufacturing method thereof
JP5635421B2 (en) Semiconductor device and manufacturing method thereof
US20080157911A1 (en) Soft magnetic layer for on-die inductively coupled wires with high electrical resistance
CN117222303A (en) Sensor device having soft magnetic alloy with reduced coercivity and method of manufacture
US20080157910A1 (en) Amorphous soft magnetic layer for on-die inductively coupled wires
CN104775049B (en) Au Cu alloy materials, include its pure spin current device and its application
JP2001004726A (en) Magnetic field sensor
Scheck et al. Sharp ferromagnet/semiconductor interfaces by electrodeposition of Ni thin films onto n-GaAs (001) substrates
Yichun et al. Direct electrodeposition of Fe-Ni alloy films on silicon substrate
TW468168B (en) Magnetoresistive devices, giant magnetoresistive devices and methods for making same background of the invention
Franz et al. Electrodeposition of micromagnets of CoPtW (P) alloys
CN114530549B (en) Semiconductor structure and preparation method thereof
Kuru et al. Relation between ferromagnetic layer thickness (NiCu) and properties of NiCu/Cu multilayers
Kang et al. Electroplating a magnetic core for micro fluxgate sensor
Kruppe et al. Optimization of Mechanical and Magnetic Properties in High, Electroplated Co–Fe-Flux Guides
Kok et al. Template Assisted Growth and Characterization of Electrodeposited Permalloy (Ni80Fe20)/Cu Multilayered Nanowires
Cojocaru et al. Electrodeposition of Ni/Co and Ni Magnetic Nanowires Using Allumina Template
Lee et al. Magnetoimpedance of Galvanostatically Electroplated Ni-Fe Permalloy Wires
Crozier Electrodeposition of iron-cobalt alloys from a dibasic ammonium citrate stabilized plating solution
Yi et al. Magnetic properties and magneto-impedance effect of CoNiFe/Cu composite wires by electroplating
Zhong et al. Magnetoimpedance effects in electrodepositing FeCoNi thin films directly on n-Si (100)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R150 Certificate of patent or registration of utility model

Ref document number: 5463562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350