JP5635421B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5635421B2
JP5635421B2 JP2011008944A JP2011008944A JP5635421B2 JP 5635421 B2 JP5635421 B2 JP 5635421B2 JP 2011008944 A JP2011008944 A JP 2011008944A JP 2011008944 A JP2011008944 A JP 2011008944A JP 5635421 B2 JP5635421 B2 JP 5635421B2
Authority
JP
Japan
Prior art keywords
thin film
soft magnetic
magnetic thin
semiconductor device
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011008944A
Other languages
Japanese (ja)
Other versions
JP2012151285A (en
Inventor
宏典 石井
宏典 石井
拓也 石田
拓也 石田
敏昭 福中
敏昭 福中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2011008944A priority Critical patent/JP5635421B2/en
Publication of JP2012151285A publication Critical patent/JP2012151285A/en
Application granted granted Critical
Publication of JP5635421B2 publication Critical patent/JP5635421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、半導体装置及びその製造方法に関し、より詳細には、低保磁力をもつ軟磁性薄膜を備え、この軟磁性薄膜で磁気収束する半導体装置及びその製造方法に関し、特に、ホール素子を含んだ磁気センサに関する。   The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device including a soft magnetic thin film having a low coercive force and magnetically converging with the soft magnetic thin film, and a method for manufacturing the same. It relates to a magnetic sensor.

従来のホール素子を含んだ磁気センサは、磁気収束のために軟磁性薄膜をホール素子の直上に備えられていることが知られている(例えば、特許文献1参照)。このような磁気センサは、ホール素子上に軟磁性薄膜を配置することで、磁気収束効果による高感度化及び磁気収束板の端部から漏れる磁束をホール素子で検知することができ、この軟磁性薄膜は、NiFe合金薄膜を電解めっき法により形成している特徴を有している。   It is known that a conventional magnetic sensor including a Hall element is provided with a soft magnetic thin film immediately above the Hall element for magnetic convergence (see, for example, Patent Document 1). In such a magnetic sensor, a soft magnetic thin film is arranged on the Hall element, so that the Hall element can detect the magnetic flux leaking from the end of the magnetic focusing plate with high sensitivity due to the magnetic convergence effect. The thin film has a feature that a NiFe alloy thin film is formed by electrolytic plating.

図1は、軟磁性薄膜のヒステリシス曲線を示す図で、磁気収束を行う軟磁性薄膜は、磁性材料であるため、外部磁場に対し、磁性材料の出力する飽磁束密度は、図1に示すようなヒステリシス曲線を示している。また、ヒステリシス量は、図1に示すヒステリシス曲線において、X軸の交点となる保磁力とY軸との交点となる残留磁束密度の大きさで定義できる。しかし、ヒステリシス量は、磁場の印加方向や外部磁場の大きさにより変化するため、より高度な磁気センシングを実現するためには、ヒステリシス量を小さくすることが必要である。   FIG. 1 is a diagram showing a hysteresis curve of a soft magnetic thin film. Since a soft magnetic thin film that performs magnetic convergence is a magnetic material, the saturation flux density output from the magnetic material with respect to an external magnetic field is as shown in FIG. A simple hysteresis curve is shown. Further, the amount of hysteresis can be defined by the magnitude of the residual magnetic flux density at the intersection of the coercive force that is the intersection of the X axis and the Y axis in the hysteresis curve shown in FIG. However, since the amount of hysteresis varies depending on the direction in which the magnetic field is applied and the magnitude of the external magnetic field, it is necessary to reduce the amount of hysteresis in order to realize more advanced magnetic sensing.

本発明に関する先行技術を開示したものとしては、例えば、特許文献2に記載のように、1個以上のホール素子と半導体回路が設けられた半導体基板上に、絶縁材料を形成し、この絶縁材料の上に金属導電層を形成し、この金属導電層上で1個以上のホール素子の感磁部を覆うような位置に少なくともホウ素を含有した軟磁性薄膜を形成された半導体装置がある。   For example, as disclosed in Patent Document 2, an insulating material is formed on a semiconductor substrate on which one or more Hall elements and a semiconductor circuit are provided, and this insulating material is disclosed. There is a semiconductor device in which a metal conductive layer is formed thereon, and a soft magnetic thin film containing at least boron is formed on the metal conductive layer so as to cover a magnetic sensitive portion of one or more Hall elements.

特開2003−142752号公報JP 2003-142752 A 特開2010−159982号公報JP 2010-159982 A

上述した特許文献2に記載されているように、軟磁性薄膜は、ホウ素系還元剤を配合した電解めっきで形成されていることを特徴としている。しかしながら、この特許文献2で用いられるテトラメチルアミンボラン(TMAB)のようなホウ素系還元剤では、めっき液中のNiイオンやFeイオンを還元する効果があり、めっき液を調整後数日でNiやFeイオンが沈殿し、めっきが出来なくなるという課題があった。   As described in Patent Document 2 described above, the soft magnetic thin film is characterized by being formed by electrolytic plating containing a boron-based reducing agent. However, a boron-based reducing agent such as tetramethylamine borane (TMAB) used in Patent Document 2 has an effect of reducing Ni ions and Fe ions in the plating solution, and Ni can be obtained within a few days after adjusting the plating solution. There is a problem that Fe ions precipitate and plating cannot be performed.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、ホウ素系還元剤を配合しためっき液を安定化させる炭素系添加剤をめっき液に添加し、軟磁性膜中にめっき液を安定化させる添加剤由来の炭素を膜中に配合することで、膜中のホウ素量を増やすことなく低保磁力の軟磁性薄膜を実現させ、かつこの軟磁性薄膜で磁気収束する半導体装置及び量産性の高い製造方法を提供することにある。   The present invention has been made in view of such problems. The object of the present invention is to add a carbon-based additive that stabilizes a plating solution containing a boron-based reducing agent to the plating solution, and to form a soft magnetic film. By adding carbon derived from additives that stabilize the plating solution into the film, a soft magnetic thin film with a low coercive force can be realized without increasing the amount of boron in the film, and magnetic convergence is achieved with this soft magnetic thin film. An object of the present invention is to provide a semiconductor device and a manufacturing method with high mass productivity.

本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、形成された軟磁性薄膜の総重量を100重量%としたときの鉄含有量が15〜30重量%、ホウ素含有量が0.15〜0.35量%、電解めっき液を安定化するpH緩衝剤に起因する炭素を0.4〜0.8重量%、残部がニッケルである前記軟磁性薄膜を備え、該軟磁性薄膜で磁気収束することを特徴とする。 The present invention has been made to achieve such an object, and the invention according to claim 1 has an iron content of 15 to 15 when the total weight of the formed soft magnetic thin film is 100% by weight. 30 wt%, boron content 0.15 to 0.35 by weight%, 0.4-0.8 wt% of carbon due to pH buffers to stabilize the electrolytic plating solution, the balance nickel A soft magnetic thin film is provided, and magnetic convergence is achieved by the soft magnetic thin film.

また、請求項に記載の発明は、請求項1に記載の発明において、前記半導体装置は、ホール素子を含む磁気センサであることを特徴とする。 According to a second aspect of the present invention, in the first aspect of the present invention, the semiconductor device is a magnetic sensor including a Hall element.

また、請求項に記載の発明は、形成された軟磁性薄膜の総重量を100重量%としたときの鉄含有量が15〜30重量%、ホウ素含有量が0.15〜0.35量%、電解めっき液を安定化するpH緩衝剤に起因する炭素を0.4〜0.8重量%、残部がニッケルである前記軟磁性薄膜を備えた半導体装置の製造方法であって、1個以上のホール素子と半導体回路が設けられた半導体基板上に、絶縁材料を形成し、該絶縁材料の上に金属導電層を形成し、該金属導電層上で1個以上のホール素子の感磁部を覆うような位置に少なくともホウ素及び電解めっき液を安定化するpH緩衝剤に起因する炭素を含有した前記軟磁性薄膜を形成することを特徴とする。 In the invention according to claim 3 , the iron content is 15 to 30% by weight and the boron content is 0.15 to 0.35 when the total weight of the formed soft magnetic thin film is 100% by weight. % Of carbon derived from a pH buffer that stabilizes the electrolytic plating solution, 0.4 to 0.8% by weight, and the manufacturing method of the semiconductor device including the soft magnetic thin film with the balance being nickel, An insulating material is formed on a semiconductor substrate provided with the above Hall elements and a semiconductor circuit, a metal conductive layer is formed on the insulating material, and magnetic sensing of one or more Hall elements is performed on the metal conductive layer. The soft magnetic thin film containing carbon derived from at least boron and a pH buffer that stabilizes the electrolytic plating solution is formed at a position covering the portion.

また、請求項に記載の発明は、請求項に記載の発明において、前記軟磁性薄膜が、ホウ素還元剤と電解めっき液を安定化するpH緩衝剤を配合しためっき液を用いて電解めっきで形成することを特徴とする。 According to a fourth aspect of the present invention, in the invention of the third aspect , the soft magnetic thin film is electroplated using a plating solution containing a boron reducing agent and a pH buffer that stabilizes the electrolytic plating solution. It is characterized by forming in.

本発明によれば、半導体基板に設けられたホール素子と、このホール素子上に設けられた軟磁性薄膜とを備え、この軟磁性薄膜が、少なくともホウ素および電解めっき液を安定化するpH緩衝剤に起因する炭素を更に有することを含有しているので、低保磁力をもつ軟磁性膜を備え、この軟磁性薄膜で磁気収束する半導体装置及びその製造方法を提供することができる。   According to the present invention, a pH buffer comprising a Hall element provided on a semiconductor substrate and a soft magnetic thin film provided on the Hall element, the soft magnetic thin film stabilizing at least boron and an electrolytic plating solution. Therefore, it is possible to provide a semiconductor device that includes a soft magnetic film having a low coercive force and is magnetically converged by the soft magnetic thin film, and a method for manufacturing the same.

また、形成された軟磁性薄膜の総重量を100重量%としたときの鉄含有量が15〜30重量%、ホウ素含有量が0.15〜0.35量%、電解めっき液を安定化するpHこの軟磁性薄膜で磁気収束するので、数mTの磁場環境化でも精度よく磁気センシングを行うが可能になり、また、ヒステリシス量が小さくなることで、不平衡電圧の絶対値とそのばらつきを低減できるという効果を奏する。   Moreover, when the total weight of the formed soft magnetic thin film is 100% by weight, the iron content is 15 to 30% by weight, the boron content is 0.15 to 0.35% by weight, and the electrolytic plating solution is stabilized. Since this soft magnetic thin film converges magnetically, magnetic sensing can be performed accurately even in a magnetic field environment of several mT, and the absolute value of the unbalanced voltage and its variation are reduced by reducing the amount of hysteresis. There is an effect that can be done.

軟磁性薄膜のヒステリシス曲線を示す図である。It is a figure which shows the hysteresis curve of a soft-magnetic thin film. 本発明に係る半導体装置の一実施形態を説明するための構成図である。It is a block diagram for describing one embodiment of a semiconductor device according to the present invention. 図2に示した半導体装置の製造方法を説明するための工程図で、半導体回路を形成する工程図である。FIG. 4 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2 and a process diagram for forming a semiconductor circuit. 図2に示した半導体装置の製造方法を説明するための工程図で、下地導電層を形成する工程図である。FIG. 5 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2 and a process diagram for forming a base conductive layer. 図2に示した半導体装置の製造方法を説明するための工程図で、下地導電層にレジストパターンを形成する工程図である。FIG. 4 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2 and a process diagram for forming a resist pattern on a base conductive layer. 図2に示した半導体装置の製造方法を説明するための工程図で、軟磁性薄膜を形成する工程図である。FIG. 4 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2 and a process diagram for forming a soft magnetic thin film. 図2に示した半導体装置の製造方法を説明するための工程図で、レジストを除去する工程図である。FIG. 4 is a process diagram for explaining the method of manufacturing the semiconductor device shown in FIG. 2 and a process diagram for removing a resist. 図2に示した半導体装置の製造方法を説明するための工程図で、下地導電層を除去する工程図である。FIG. 4 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2 and a process diagram for removing a base conductive layer. 実施例1及び比較例1におけるクエン酸三ナトリウム添加量と保磁力の関係を示す図である。It is a figure which shows the relationship between trisodium citrate addition amount and coercive force in Example 1 and Comparative Example 1. 実施例1及び比較例1におけるクエン酸三ナトリウム添加量と残留磁束密度の関係を示す図である。It is a figure which shows the relationship between the trisodium citrate addition amount and the residual magnetic flux density in Example 1 and Comparative Example 1. 実施例1及び比較例1におけるクエン酸三ナトリウム添加量と軟磁性薄膜中のホウ素含有量の関係を示す図である。It is a figure which shows the relationship between the trisodium citrate addition amount and the boron content in a soft-magnetic thin film in Example 1 and Comparative Example 1. 実施例1及び比較例1におけるクエン酸三ナトリウム添加量と軟磁性薄膜中の炭素含有量の関係を示す図である。It is a figure which shows the relationship between the amount of trisodium citrate addition in Example 1 and the comparative example 1, and the carbon content in a soft-magnetic thin film. 特許文献2と実施例1の軟磁性薄膜中のホウ素含有量と保磁力の関係を示す図である。It is a figure which shows the relationship between the boron content in the soft magnetic thin film of patent document 2 and Example 1, and a coercive force. 実施例1における軟磁性薄膜のTOF―SIMSでのクエン酸存在を同定宇するために実施した分析結果を示す図である。It is a figure which shows the analysis result implemented in order to identify the presence of a citric acid in TOF-SIMS of the soft-magnetic thin film in Example 1. FIG. 実施例1及び比較例2におけるクエン酸三ナトリウム添加量と保磁力の関係を示す図である。It is a figure which shows the relationship between trisodium citrate addition amount and coercive force in Example 1 and Comparative Example 2.

以下、図面を参照して本発明の実施形態について説明する。
図2は、本発明に係る半導体装置の一実施形態を説明するための構成図で、図中符号1は半導体基板、2はホール素子、3は外部接続端子パッド、4は有機絶縁膜、5は下地導電層(金属導電膜)、6は軟磁性薄膜を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 is a block diagram for explaining an embodiment of a semiconductor device according to the present invention. In the figure, reference numeral 1 denotes a semiconductor substrate, 2 denotes a Hall element, 3 denotes an external connection terminal pad, 4 denotes an organic insulating film, 5 Indicates a base conductive layer (metal conductive film), and 6 indicates a soft magnetic thin film.

本発明の半導体装置は、従来の磁性材料により磁気収束をしていた半導体装置に対して、ホウ素を所定量含有させた軟磁性薄膜をホール素子上に設けることで、ヒステリシス量の小さい半導体装置が得られたものである。なお、本発明の半導体装置は、ホール素子を備えた磁気センサであることも含まれている。   The semiconductor device of the present invention is a semiconductor device having a small amount of hysteresis by providing a soft magnetic thin film containing a predetermined amount of boron on a Hall element compared to a semiconductor device that has been magnetically converged by a conventional magnetic material. It is obtained. The semiconductor device of the present invention includes a magnetic sensor provided with a Hall element.

本発明の半導体装置は、半導体基板1に設けられたホール素子2と、このホール素子1上に設けられた軟磁性薄膜6とを備え、この軟磁性薄膜6が、少なくともホウ素を含有している。また、半導体基板1上で、かつホール素子2上に設けられた有機絶縁膜4と、この有機絶縁膜4と軟磁性薄膜6との間に設けられた金属導電層5とを備え、軟磁性薄膜6が、金属導電層5上で少なくとも1個以上のホール素子2の感磁部を覆うように配置されている。   The semiconductor device of the present invention includes a Hall element 2 provided on a semiconductor substrate 1 and a soft magnetic thin film 6 provided on the Hall element 1, and the soft magnetic thin film 6 contains at least boron. . In addition, an organic insulating film 4 provided on the semiconductor substrate 1 and on the Hall element 2 and a metal conductive layer 5 provided between the organic insulating film 4 and the soft magnetic thin film 6 are provided. A thin film 6 is disposed on the metal conductive layer 5 so as to cover at least one magnetic sensing portion of the Hall element 2.

つまり、本発明の半導体装置の特徴は、半導体基板1にホール素子2を備えており、半導体基板1上に有機絶縁膜4を備え、ホール素子1の直上に下地通電層5と軟磁性薄膜6を設けたものである。   That is, the semiconductor device of the present invention is characterized in that the semiconductor substrate 1 is provided with the Hall element 2, the organic insulating film 4 is provided on the semiconductor substrate 1, and the underlying conductive layer 5 and the soft magnetic thin film 6 are provided immediately above the Hall element 1. Is provided.

軟磁性薄膜6は、形成された軟磁性薄膜の総重量を100重量%としたときの鉄含有量が15〜30重量%、ホウ素含有量が0.15〜0.35量%、電解めっき液を安定化するpH緩衝剤に起因する炭素を0.4〜0.8重量%、残部がニッケルであることを特徴とする半導体装置その厚みが4〜40μmにコントロールすることで保磁力の低減が可能になる。因みに、その時の軟磁性薄膜における結晶子サイズは5〜10nmで、NiFe(111)の結晶配向度は70〜100%である。また、軟磁性薄膜の保磁力は、0.1乃至15A/mで、かつ残留磁束密度は、0.05乃至0.6Tである。   The soft magnetic thin film 6 has an iron content of 15 to 30% by weight and a boron content of 0.15 to 0.35% by weight when the total weight of the formed soft magnetic thin film is 100% by weight. The semiconductor device is characterized by 0.4 to 0.8% by weight of carbon resulting from a pH buffer that stabilizes the semiconductor, and the balance is nickel, and the coercive force can be reduced by controlling the thickness to 4 to 40 μm. It becomes possible. Incidentally, the crystallite size in the soft magnetic thin film at that time is 5 to 10 nm, and the crystal orientation degree of NiFe (111) is 70 to 100%. The soft magnetic thin film has a coercive force of 0.1 to 15 A / m and a residual magnetic flux density of 0.05 to 0.6 T.

図3乃至図8は、図2に示した半導体装置の製造方法を説明するための工程図である。本発明に係る半導体装置の製造方法は、1個以上のホール素子と半導体回路が設けられた半導体基板上に有機絶縁膜4を形成し、この有機絶縁膜4上に金属導電層5を形成し、この金属導電層5上で、かつ1個以上のホール素子の感磁部を覆うような位置に少なくともホウ素を含有した軟磁性薄膜6を形成するものである。また、軟磁性薄膜6は、ホウ素還元剤を配合しためっき液を用いて電解めっきで形成するものである。   3 to 8 are process diagrams for explaining a method of manufacturing the semiconductor device shown in FIG. In the method of manufacturing a semiconductor device according to the present invention, an organic insulating film 4 is formed on a semiconductor substrate provided with one or more Hall elements and a semiconductor circuit, and a metal conductive layer 5 is formed on the organic insulating film 4. The soft magnetic thin film 6 containing at least boron is formed on the metal conductive layer 5 and at a position covering the magnetically sensitive portion of one or more Hall elements. The soft magnetic thin film 6 is formed by electrolytic plating using a plating solution containing a boron reducing agent.

以下に、本発明に係る半導体装置の製造方法を工程順に沿って説明する。
図3は、図2に示した半導体装置の製造方法を説明するための工程図で、半導体回路を形成する工程図である。まず、図3に示すように、半導体基板1上に磁気センシングを行うホール素子2が少なくとも1個以上配置され、外部電極と電気的な接続を行うため外部接続端子パッド3を開口した状態で、有機絶縁膜4を形成する。半導体基板1としてはシリコンウエハでも、GaAs基板のいずれでもよく、ホール素子2はSiなどの信号処理の回路が形成された半導体やInSb、InAs,GaAsなどの化合物半導体などが好ましく、それらの積層構造や不純物をSnやZnやSiなどをドープしたものを用いてもよい。また、外部接続端子パッド3の材料としては、AL系やAu系の材料が一般的である。また、有機絶縁膜4は、有機材料であるポリイミド、もしくはポリベンゾオキサゾール、ベンゾシクロブテン、感光性シリコーンなどを用いることが望ましい。
Below, the manufacturing method of the semiconductor device which concerns on this invention is demonstrated along process order.
FIG. 3 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2, and is a process diagram for forming a semiconductor circuit. First, as shown in FIG. 3, at least one Hall element 2 for magnetic sensing is disposed on the semiconductor substrate 1, and the external connection terminal pad 3 is opened for electrical connection with the external electrode. An organic insulating film 4 is formed. The semiconductor substrate 1 may be either a silicon wafer or a GaAs substrate, and the Hall element 2 is preferably a semiconductor on which a signal processing circuit such as Si is formed or a compound semiconductor such as InSb, InAs, or GaAs. Alternatively, an impurity doped with Sn, Zn, Si, or the like may be used. Further, as the material of the external connection terminal pad 3, an AL-based material or an Au-based material is generally used. The organic insulating film 4 is preferably made of an organic material such as polyimide, polybenzoxazole, benzocyclobutene, or photosensitive silicone.

図4は、図2に示した半導体装置の製造方法を説明するための工程図で、下地導電層を形成する工程図である。図4に示すように、有機絶縁膜4上及び外部接続端子パッド3上に下地通電層5を配置する。下地通電層5としては積層膜を用いており、第1層としてTi、TiWなどのTi系材料を、第2層として、Cu系材料やAL材料、NiFe系材料を真空蒸着法、スパッタリング法、電解・無電解めっき法により形成する。Ti系材料は外部接続端子パッド3のAl系材料と下地通電層5のCu系材料の拡散バリヤ層として少なくとも0.1μm以上の厚みが望ましい。   FIG. 4 is a process diagram for explaining the method of manufacturing the semiconductor device shown in FIG. 2, and is a process diagram for forming a base conductive layer. As shown in FIG. 4, the base conductive layer 5 is disposed on the organic insulating film 4 and the external connection terminal pads 3. A laminated film is used as the base energizing layer 5, a Ti-based material such as Ti or TiW as the first layer, a Cu-based material, an AL material, or a NiFe-based material as the second layer by vacuum evaporation, sputtering, It is formed by electrolytic / electroless plating. The Ti-based material desirably has a thickness of at least 0.1 μm or more as a diffusion barrier layer of the Al-based material of the external connection terminal pad 3 and the Cu-based material of the ground conductive layer 5.

また、第2層目の、Cu系材料やAL材料、NiFe系材料は電気抵抗を下げるため厚い方が好ましく、0.1〜10μmが望ましい。また、Cuは(111)の結晶方位に配向している。軟磁性薄膜6の結晶方位のミスマッチを減らすためにも(111)の結晶方位を持つCuを、軟磁性薄膜6を堆積する層として用いた方が良い。   Further, the second layer, Cu-based material, AL material, and NiFe-based material are preferably thicker in order to lower the electrical resistance, and preferably 0.1 to 10 μm. Cu is oriented in the crystal orientation of (111). In order to reduce the mismatch of the crystal orientation of the soft magnetic thin film 6, it is better to use Cu having the crystal orientation of (111) as a layer for depositing the soft magnetic thin film 6.

図5は、図2に示した半導体装置の製造方法を説明するための工程図で、下地導電層にレジストパターンを形成する工程図である。次に、図5に示すように、下地導電層5上に軟磁性薄膜6のパターンを形成するためにレジスト7を形成し、露光、現像を行い、レジスト空隙部7aを形成する。レジスト材料としては、ポジレジスト、ネガレジストのどちらでも良いが、一般的には、めっき時の耐酸性と剥離性を両立できるナフトキノン・ジアゾ型のポジレジストが望ましい。レジスト7の膜厚は、フェノールノボラック系のポジレジストを用いることで最大50μmの膜厚が成膜可能である。また、レジスト7の膜厚は、軟磁性薄膜6よりも厚いことが必要であるため5〜50μmが望ましい。   FIG. 5 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2, and is a process diagram for forming a resist pattern on the underlying conductive layer. Next, as shown in FIG. 5, a resist 7 is formed on the underlying conductive layer 5 in order to form a pattern of the soft magnetic thin film 6, and exposure and development are performed to form a resist gap 7a. As the resist material, either a positive resist or a negative resist may be used, but in general, a naphthoquinone diazo type positive resist capable of satisfying both acid resistance and releasability during plating is desirable. The resist 7 can be formed to a maximum thickness of 50 μm by using a phenol novolac positive resist. Further, since the resist 7 needs to be thicker than the soft magnetic thin film 6, it is preferably 5 to 50 μm.

図6は、図2に示した半導体装置の製造方法を説明するための工程図で、軟磁性薄膜を形成する工程図である。次に、図6に示すように、レジスト空隙部7aにホウ素とニッケルと鉄から成る軟磁性薄膜6を電解めっき法により形成する。軟磁性薄膜6の膜厚は、磁気収束効果を実現するため厚い方が好ましいが、レジスト7より厚く成膜すると軟磁性薄膜6が垂直に成長せず、キノコ状に成長してしまう。そのため軟磁性薄膜6の膜厚は、レジスト7の膜厚より小さいことが望ましく、特に、4〜40μmの範囲が好ましい。   FIG. 6 is a process diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 2, and is a process diagram for forming a soft magnetic thin film. Next, as shown in FIG. 6, a soft magnetic thin film 6 made of boron, nickel and iron is formed in the resist gap 7a by electrolytic plating. The soft magnetic thin film 6 is preferably thicker in order to achieve the magnetic convergence effect. However, if the film is thicker than the resist 7, the soft magnetic thin film 6 does not grow vertically but grows in a mushroom shape. Therefore, the film thickness of the soft magnetic thin film 6 is desirably smaller than the film thickness of the resist 7, and is particularly preferably in the range of 4 to 40 μm.

電解めっきを行うために、下地導電層5を形成したウエハをカソードとして、アノードとしてニッケルや鉄などの可溶解性、もしくは白金などの不溶解性の金属板を用いて、電気を流すことでカソードの被めっき部分に軟磁性薄膜を形成することができる。めっき液としては、硫酸ニッケル、塩化ニッケル、硫酸鉄、ホウ酸、サッカリン、塩化ナトリウムとホウ素系還元剤であるテトラメチルアミンボラン(TMAB)やジメチルアミンボラン(DMAB)を用いた。ホウ素はめっき液中にTMABやDMABを添加することで、軟磁性薄膜中に共析させた。   In order to perform electroplating, the cathode on which the wafer on which the underlying conductive layer 5 is formed is used as a cathode, and an anode is used by using a soluble metal plate such as nickel or iron or an insoluble metal plate such as platinum as an anode. A soft magnetic thin film can be formed on the portion to be plated. As the plating solution, nickel sulfate, nickel chloride, iron sulfate, boric acid, saccharin, sodium chloride and boron-based reducing agents such as tetramethylamine borane (TMAB) and dimethylamine borane (DMAB) were used. Boron was co-deposited in the soft magnetic thin film by adding TMAB or DMAB to the plating solution.

また、本めっき液を用いて電解めっきを行う場合、めっき膜の析出電位は、めっき液の温度で変化するため、めっき液の温度を熱電対とヒーターやチラーを用いて、加熱冷却する必要がある。めっき液の温度は、電流密度やpHなどのめっき条件で大きく変わるが20〜60℃の間が好ましい。また、めっき時の陰極電流密度やpHも最適化する必要がある。陰極電流密度は、1〜70mA/cm2が好ましい。更に、pHを2.0以下に下げると水素の発生量が多くなり、同じめっき時間でもめっき厚が薄くなるため、pHは2.0以上が好ましく、かつpH7.0以上になるとTMABを還元剤とする無電解めっき反応がおこりNiとFeが沈殿してしまうため、pHは2.0から7.0の間が好ましい。   In addition, when electrolytic plating is performed using this plating solution, the deposition potential of the plating film changes depending on the temperature of the plating solution, so the temperature of the plating solution must be heated and cooled using a thermocouple, heater, or chiller. is there. The temperature of the plating solution varies greatly depending on plating conditions such as current density and pH, but is preferably 20 to 60 ° C. Also, it is necessary to optimize the cathode current density and pH during plating. The cathode current density is preferably 1 to 70 mA / cm 2. Further, when the pH is lowered to 2.0 or less, the amount of hydrogen generated increases, and the plating thickness becomes thin even during the same plating time. Therefore, the pH is preferably 2.0 or more, and when the pH is 7.0 or more, TMAB is reduced to a reducing agent. Since the electroless plating reaction occurs and Ni and Fe are precipitated, the pH is preferably between 2.0 and 7.0.

更に、TMABのようなホウ素還元剤は加水分解によりOH−イオンを放出し、その反応はアルカリ側ではより顕著である。そのためTMABが分解することにより更にTMABの分解が促進されるため、NiとFeが一日程度で無電解反応による沈殿が形成され、めっきが出来なくなってしまう。沈殿反応を防止するためにはTMABの加水分解反応を抑制するためにpH緩衝剤を加えるのがより好ましい。pH緩衝剤としては、ギ酸、シュウ酸やマロン酸やコハク酸、酒石酸、クエン酸などのカルボン酸類や、L-アスコルビン酸、もしくはそれ以外のpH緩衝効果をもつ有機酸であれば例示した物質に限定しない。このときpH緩衝剤を添加すると保磁力とpHとの関係が緩衝剤の有無により変化する。更に前記軟磁性薄膜はこの有機系のpH緩衝剤に起因する炭素を含有することになる。   Furthermore, boron reducing agents such as TMAB release OH- ions upon hydrolysis, and the reaction is more pronounced on the alkali side. Therefore, the decomposition of TMAB is further promoted by the decomposition of TMAB, so that precipitation due to electroless reaction is formed in Ni and Fe in about one day, and plating cannot be performed. In order to prevent the precipitation reaction, it is more preferable to add a pH buffering agent in order to suppress the hydrolysis reaction of TMAB. Examples of the pH buffering agent include carboxylic acids such as formic acid, oxalic acid, malonic acid, succinic acid, tartaric acid, citric acid, L-ascorbic acid, or other organic acids having a pH buffering effect. Not limited. At this time, when a pH buffer is added, the relationship between the coercive force and the pH changes depending on the presence or absence of the buffer. Further, the soft magnetic thin film contains carbon resulting from the organic pH buffer.

図7は、図2に示した半導体装置の製造方法を説明するための工程図で、レジストを除去する工程図である。次に、図7に示すように、レジスト7を除去する。その結果、軟磁性薄膜6が下地通電層5上に残ることになる。   FIG. 7 is a process diagram for explaining the method of manufacturing the semiconductor device shown in FIG. 2, and is a process diagram for removing the resist. Next, as shown in FIG. 7, the resist 7 is removed. As a result, the soft magnetic thin film 6 remains on the underlayer conductive layer 5.

図8は、図2に示した半導体装置の製造方法を説明するための工程図で、下地導電層を除去する工程図である。最後に、図8に示すように、不要になった下地導電層5を、軟磁性薄膜6をマスクとして、ドライエッチング法、もしくはウエットエッチング法により除去する。その際、磁性材料が同時にエッチングされないようにすることが重要である。   FIG. 8 is a process diagram for explaining the method of manufacturing the semiconductor device shown in FIG. 2, and is a process diagram for removing the underlying conductive layer. Finally, as shown in FIG. 8, the base conductive layer 5 that is no longer needed is removed by a dry etching method or a wet etching method using the soft magnetic thin film 6 as a mask. At that time, it is important to prevent the magnetic material from being etched at the same time.

また、電解めっきにより形成した軟磁性薄膜の評価法として、ホウ素の含有量は、誘導結合プラズマ発光分析法(ICP)を、NiFeの配向度と結晶子のサイズはX線回折法を用いて算出した。また、磁気特性測定には、直流磁化測定装置を用いて測定を行った。   As an evaluation method for soft magnetic thin films formed by electroplating, boron content is calculated using inductively coupled plasma emission spectrometry (ICP), and NiFe orientation and crystallite size are calculated using X-ray diffraction. did. Further, the magnetic characteristics were measured using a direct current magnetization measuring device.

軟磁性薄膜6中のホウ素量、炭素量は、誘導結合プラズマ発光分析法(ICP)を用いて行った。塩酸(1+1)と硝酸中に軟磁性薄膜を投入し、ヒーター上で加熱させ、軟磁性膜、下地通電層を溶解させ、ICPで発光強度を測定し、濃度が既知の標準試料を溶解させた検量線から各元素の含有量の算出を行った。   The amount of boron and the amount of carbon in the soft magnetic thin film 6 were measured using inductively coupled plasma emission spectrometry (ICP). A soft magnetic thin film was put into hydrochloric acid (1 + 1) and nitric acid, heated on a heater, the soft magnetic film and the base conductive layer were dissolved, the emission intensity was measured by ICP, and a standard sample with a known concentration was dissolved. The content of each element was calculated from the calibration curve.

軟磁性薄膜の結晶配向性は、励起線としてCu Kα線を用いて、out of plane方向に2θ/ωでのX線回折法により測定を行い、結晶子NiFe合金由来の(111)と(200)のピーク強度の積分値を算出し、(111)と(200)のピーク積分値の合計に対し、(111)のピーク積分値がどの程度あるかを評価することで(111)への配向度(%)を評価した。また、結晶子サイズは、X線回折から得られたNiとFeの合金の(111)ピークの半価幅からScherrerの式を用いて算出した。   The crystal orientation of the soft magnetic thin film was measured by an X-ray diffraction method at 2θ / ω in the out of plane direction using Cu Kα ray as an excitation line, and (111) and (200 ) To calculate the integrated value of the peak intensities of (111) and (111) by evaluating how much of the peak integrated value of (111) is relative to the sum of the peak integrated values of (111) and (200). The degree (%) was evaluated. The crystallite size was calculated using the Scherrer equation from the half-value width of the (111) peak of the alloy of Ni and Fe obtained from X-ray diffraction.

また、磁気特性測定は、軟磁性薄膜を形成した半導体装置チップを試料台にセットし、電磁石により磁場を発生しながら試料を振動した際に発生する磁化曲線を描くことで、保磁力や残留磁束密度を算出した。   Magnetic characteristic measurement is performed by setting a semiconductor device chip on which a soft magnetic thin film is formed on a sample table and drawing a magnetization curve generated when the sample is vibrated while generating a magnetic field by an electromagnet. Density was calculated.

以下、本発明の実施形態に基づき各実施例について具体的に説明する。なお、本発明がこれらの実施例に限定されるものではない。
[実施例1及び比較例1]
まず、本発明の半導体装置に係る軟磁性薄膜の実施例1及び比較例1について説明する。
半導体基板1としてシリコン基板を用いて、信号処理回路とホール素子を組み合わせたICを形成する。ICの外部接続用端子パッド3は、Alを用いて形成されており、Alパッドを開口してポリイミドを5μmの厚みで形成する。
Hereinafter, each example will be described in detail based on the embodiment of the present invention. Note that the present invention is not limited to these examples.
[Example 1 and Comparative Example 1]
First, Example 1 and Comparative Example 1 of the soft magnetic thin film according to the semiconductor device of the present invention will be described.
Using a silicon substrate as the semiconductor substrate 1, an IC in which a signal processing circuit and a Hall element are combined is formed. The external connection terminal pad 3 of the IC is formed using Al, and the Al pad is opened to form polyimide with a thickness of 5 μm.

その上に下地通電層5としてスパッタリング法でTiを1500Å、Cuを6000Å形成したものに、20μmのポジレストを用いて、ICのチップ単位毎に、円形300μmの開口を露光、現像処理で開口した。   On top of that, the base energizing layer 5 was formed by sputtering using Ti of 1500 mm and Cu of 6000 mm, and using a 20 μm positive rest, a 300 μm circular opening was opened by exposure and development processing for each chip unit of the IC.

レジスト開口を行った半導体基板1をカソードとしてめっき用ホルダにセットし、アノードとして純度が4NのNi板を用いて、電解めっきに浸漬し、通電を行うことで電解めっきを行った。電解用めっき液としては、硫酸鉄・7水和物を5g/Lに、硫酸ニッケル・6水和物を35g/L、塩化ニッケル・6水和物を85g/L配合しためっき液に、添加剤としてホウ酸、塩化ナトリウムをそれぞれ25g/L、サッカリン酸ナトリウムを1.5g/L、TMABを12g/Lを配合して、最後に1N塩酸を用いてめっき液のpHをp3.6で調整した薬液を用い、めっき時の陰極電流密度を6mA/cm2、液温を30℃に固定し、実施例1としては、pH緩衝剤としてクエン酸三ナトリウムを2.5、5.0、10.0、20.0、30.0g/L添加して電解めっきを行った。   The semiconductor substrate 1 in which the resist was opened was set as a cathode in a plating holder, and a nickel plate having a purity of 4N was used as an anode. The substrate was immersed in electrolytic plating and energized to perform electroplating. As a plating solution for electrolysis, added to a plating solution containing 5 g / L of iron sulfate heptahydrate, 35 g / L of nickel sulfate hexahydrate, and 85 g / L of nickel chloride hexahydrate Boric acid and sodium chloride 25g / L, sodium saccharinate 1.5g / L and TMAB 12g / L were added as agents, and finally the pH of the plating solution was adjusted with p3.6 using 1N hydrochloric acid. The cathode current density during plating was fixed at 6 mA / cm 2 and the solution temperature was fixed at 30 ° C., and in Example 1, trisodium citrate was added as a pH buffering agent in 2.5, 5.0, 10. 0, 20.0, 30.0 g / L was added and electroplating was performed.

また、比較例1としてクエン酸三ナトリウムを添加しないで、軟磁性薄膜の膜厚が実施例と同様に13μmになるようめっき時間を調整し、電解めっきを行った。   Further, as Comparative Example 1, without adding trisodium citrate, the plating time was adjusted so that the thickness of the soft magnetic thin film was 13 μm as in the example, and electrolytic plating was performed.

次に、NMPからなる有機溶剤でレジスト除去を行い、ウエットエッチング法でTiとCuを除去し、本発明の半導体装置を作成した。   Next, the resist was removed with an organic solvent made of NMP, and Ti and Cu were removed by a wet etching method to produce a semiconductor device of the present invention.

作成した半導体装置の軟磁性薄膜を塩酸(1+1)と硝酸中に溶解させてICP測定を行い軟磁性薄膜中のホウ素量を同定した。また、半導体装置に軟磁性薄膜が付いている状態で、X線回折を行い、結晶方位と結晶サイズ、そして、直流磁化測定装置により磁気特性評価を行い、TMABの添加量を変えることで軟磁性薄膜中のホウ素含有量を変化させることによる磁気特性及び結晶構造の影響を実験的に確かめた。   The soft magnetic thin film of the prepared semiconductor device was dissolved in hydrochloric acid (1 + 1) and nitric acid, and ICP measurement was performed to identify the boron content in the soft magnetic thin film. In addition, with the soft magnetic thin film attached to the semiconductor device, X-ray diffraction is performed, the crystal orientation and crystal size, and the magnetic characteristics are evaluated with a DC magnetometer, and the amount of TMAB added is changed to change the soft magnetism. The effect of magnetic properties and crystal structure by changing the boron content in the thin film was experimentally confirmed.

図9は、実施例1及び比較例1における軟磁性薄膜中のクエン酸三ナトリウム添加量と保磁力の関係を示す図で、図10は、実施例1及び比較例1におけるクエン酸三ナトリウム添加量と残留磁束密度の関係を示す図で、図11は、実施例1及び比較例1におけるクエン酸三ナトリウム添加量と軟磁性薄膜6中のホウ素含有量の関係を示す図で、図12は、実施例1及び比較例1におけるクエン酸添加量と軟磁性薄膜6中の炭素含有量の関係を示す図である。   FIG. 9 is a diagram showing the relationship between the amount of trisodium citrate added in the soft magnetic thin film and the coercive force in Example 1 and Comparative Example 1, and FIG. 10 shows the addition of trisodium citrate in Example 1 and Comparative Example 1. 11 is a diagram showing the relationship between the amount and the residual magnetic flux density. FIG. 11 is a diagram showing the relationship between the trisodium citrate addition amount and the boron content in the soft magnetic thin film 6 in Example 1 and Comparative Example 1. FIG. FIG. 5 is a graph showing the relationship between the amount of citric acid added in Example 1 and Comparative Example 1 and the carbon content in the soft magnetic thin film 6.

図9で示すように同じTMABの添加量でも、めっき液中でのクエン酸三ナトリウムの添加量が2.5から20g/Lの間では保磁力は5A/m程度であり、クエン酸三ナトリウムを30g/L添加すると保磁力は30A/mに増加することからクエン酸三ナトリウムを20g/L以上添加するのは好ましくないと考えられる。また図10にはクエン酸添加量と軟磁性膜中の残留磁束密度の関係を示す。クエン酸三ナトリウムを20g/L以上添加すると残留磁束密度が0.5T程度まで増加することが分かった。また、図11では、クエン酸三ナトリウム添加量と軟磁性薄膜6中のホウ素含有量、図12では、クエン酸三ナトリウムの量添加量と炭素含有量の関係を調査した。比較例1のクエン酸が入っていない系では、ホウ素量が0.50重量%、炭素量が0.3重量%含有しているのに対し、クエン酸を2.5g/Lから10g/L添加することで、ホウ素の含有量が0.2重量%程度減少するのに対し、炭素量は0.2重量%増加することが確認できた。   As shown in FIG. 9, even when the same amount of TMAB was added, the coercive force was about 5 A / m when the amount of trisodium citrate in the plating solution was 2.5 to 20 g / L. When 30 g / L is added, the coercive force increases to 30 A / m, so it is considered not preferable to add 20 g / L or more of trisodium citrate. FIG. 10 shows the relationship between the amount of citric acid added and the residual magnetic flux density in the soft magnetic film. It was found that the residual magnetic flux density increased to about 0.5 T when trisodium citrate was added at 20 g / L or more. Further, in FIG. 11, the relationship between the added amount of trisodium citrate and the boron content in the soft magnetic thin film 6 was examined, and in FIG. 12, the relationship between the added amount of trisodium citrate and the carbon content was investigated. In the system containing no citric acid in Comparative Example 1, the boron content is 0.50% by weight and the carbon content is 0.3% by weight, whereas the citric acid is 2.5 g / L to 10 g / L. By adding, it was confirmed that the boron content decreased by about 0.2% by weight, whereas the carbon content increased by 0.2% by weight.

図13は、特許文献2と実施例1の軟磁性薄膜中のホウ素含有量と保磁力の関係を示す図である。図13に示しように、特許文献2のホウ素含有量と保磁力の関係を比較すると、特許文献2に比較して少ないホウ素量で低保磁力を実現出来ることが分かり、同じホウ素含有量でもTMAB単独よりも保磁力を小さくすることが出来ることを実験的に確認できた。また、特許文献2と同様に、クエン酸三ナトリウムを5.0g/L添加した軟磁性薄膜の結晶構造を評価したところ、(111)配向度(結晶方位)は73%であり、かつ結晶子サイズは8nmと非常に小さいことを確認した。   FIG. 13 is a diagram showing the relationship between the boron content and the coercive force in the soft magnetic thin films of Patent Document 2 and Example 1. As shown in FIG. 13, comparing the relationship between the boron content and the coercive force of Patent Document 2, it can be seen that a low coercive force can be realized with a smaller amount of boron compared to Patent Document 2, and even with the same boron content, TMAB can be realized. It was confirmed experimentally that the coercive force can be made smaller than that of the single substance. Similarly to Patent Document 2, when the crystal structure of the soft magnetic thin film to which 5.0 g / L of trisodium citrate was added was evaluated, the degree of (111) orientation (crystal orientation) was 73%, and the crystallite It was confirmed that the size was as small as 8 nm.

更に、クエン酸の存在を確認するため、軟磁性膜中の有機酸をC量として同定するため併せて分析により定量された炭素が添加したクエン酸が供給源であることを同定するために、TOF―SIMSによりフラグメントの分析を行った。その結果を図14に示す。   Furthermore, in order to confirm the presence of citric acid, in order to identify the organic acid in the soft magnetic film as the amount of C, in addition to identify that the citric acid added by carbon quantified by analysis is the source, Fragments were analyzed by TOF-SIMS. The result is shown in FIG.

図14は、実施例1における軟磁性薄膜のTOF―SIMSでのクエン酸存在を同定宇するために実施した分析結果を示す図である。クエン酸のフラグメントイオン(C3H3O3)であるm/z=87とカルボン酸由来であるm/z=45のピークは検出されており、めっき液中に有機酸以外のカルボン酸源は供給していないことから、軟磁性薄膜中にクエン酸分子の存在を同定することができた。   FIG. 14 is a diagram showing the results of analysis performed to identify the presence of citric acid in TOF-SIMS of the soft magnetic thin film in Example 1. Peaks of citric acid fragment ion (C3H3O3) m / z = 87 and carboxylic acid-derived m / z = 45 were detected, and no carboxylic acid source other than organic acid was supplied in the plating solution. Thus, the presence of citrate molecules in the soft magnetic thin film could be identified.

また、めっき液にクエン酸三ナトリウムを加えることで、めっき液の安定性が向上した。表1に示すように比較例1のTMABのみ添加しためっき液ではめっき液作成後2日でめっき液にFeの沈殿物と保磁力が55A/mまで大幅に増加したのに対し、実施例1のクエン酸を2.5g/L、5.0g/L添加した系では30日でも保磁力は増加せずめっき可能なことを実験的に確認できた。   Moreover, the stability of the plating solution was improved by adding trisodium citrate to the plating solution. As shown in Table 1, in the plating solution in which only TMAB of Comparative Example 1 was added, the precipitate and coercive force of Fe significantly increased to 55 A / m in the plating solution 2 days after the preparation of the plating solution, whereas Example 1 It was confirmed experimentally that the coercive force did not increase even in 30 days in the system added with 2.5 g / L and 5.0 g / L of citric acid.

表1は、実施例1と比較例1のめっき液作成からの経時日数による保磁力の推移を示す表である。   Table 1 is a table showing the transition of the coercive force depending on the number of days elapsed from the preparation of the plating solutions of Example 1 and Comparative Example 1.

Figure 0005635421
Figure 0005635421

[比較例2]
実施例1の結果から、クエン酸にも保磁力低減効果があることが確認できたため、今度は上記実施例1の製法と基本的に同じであるが、TMABは添加せずにクエン酸のみを添加しためっき液を作成し、めっきを行った。その結果を図15に示す。
[Comparative Example 2]
From the result of Example 1, since it was confirmed that citric acid also has a coercive force reducing effect, it is basically the same as the production method of Example 1 above, but only citric acid is added without adding TMAB. The added plating solution was prepared and plated. The result is shown in FIG.

図15は、実施例1及び比較例2におけるクエン酸三ナトリウム添加量と保磁力の関係を示す図である。実施例1と同じようにクエン酸濃度をふっても保磁力は30〜50A/mとなり、クエン酸三ナトリウム単独ではTMABのような保磁力を下げる効果がないことを確認でききた。クエン酸三ナトリウムは、TMABとクエン酸三ナトリウムを共存させることで保磁力を下げる効果が発現できることを実験的に確認できた。   FIG. 15 is a graph showing the relationship between the trisodium citrate addition amount and the coercive force in Example 1 and Comparative Example 2. Similar to Example 1, even when the citric acid concentration was varied, the coercive force was 30 to 50 A / m, and it has been confirmed that trisodium citrate alone has no effect of reducing the coercive force like TMAB. It has been experimentally confirmed that trisodium citrate can exhibit the effect of reducing the coercive force by coexisting TMAB and trisodium citrate.

これらの結果から長期間の使用でも液が崩壊せず量産性に優れ、かつ保磁力を15A/m以下に下げるためには、TMABのようなホウ素系還元剤とクエン酸三ナトリウムのようなpH緩衝剤を共存させることが非常に重要であることを実験的に確認できた。   From these results, in order to reduce the liquid even after long-term use and to be excellent in mass productivity and to reduce the coercive force to 15 A / m or less, a boron-based reducing agent such as TMAB and a pH such as trisodium citrate are used. It was confirmed experimentally that it is very important to coexist the buffer.

[実施例2]
半導体基板としてGaAsを用い、ホール素子としては、InAsからなる化合物半導体を用いた。また、外部電極は、TiとAuの積層構造を蒸着法で形成した。ホール素子直上にはポリイミドを5μmの厚みで形成し、その上に下地通電層としてスパッタリング法でTiを1500Å、Cuを6000Å形成したものにレジストパターンを形成し、実施例2として、実施例1に記載したTMABを12g/L、クエン酸三ナトリウムを5.0g/L配合しためっき液を用い13μmの厚みで軟磁性膜を形成した。また、比較例2としてTMABを添加しないめっき液を用いて、13μmの厚みで軟磁性膜を形成した。レジスト剥離とエッチング処理を行い作成した素子に、磁場を+40mT→−40mT→+40mTに変化させながら、3V印加時のホール起電力のヒステリシス幅を評価した。
[Example 2]
GaAs was used as the semiconductor substrate, and a compound semiconductor made of InAs was used as the Hall element. As the external electrode, a laminated structure of Ti and Au was formed by vapor deposition. A polyimide pattern is formed directly on the Hall element to a thickness of 5 μm, and a resist pattern is formed on the base energizing layer formed by sputtering with Ti of 1500 mm and Cu of 6000 mm. A soft magnetic film having a thickness of 13 μm was formed using a plating solution containing 12 g / L of TMAB and 5.0 g / L of trisodium citrate. Further, as Comparative Example 2, a soft magnetic film having a thickness of 13 μm was formed using a plating solution to which TMAB was not added. The hysteresis width of the Hall electromotive force when 3 V was applied was evaluated while changing the magnetic field from +40 mT → −40 mT → + 40 mT on the element produced by resist stripping and etching.

ヒステリシス幅は、+40mT→−40mTに磁場を変えた時にホール出力がゼロになる磁場量と、逆に−40mT→+40mTに磁場を変えた時のホール出力がゼロになるときの磁場量の差で定義した場合、0.01mTと非常に小さなヒステリシス幅であることを確認できた。実際に半導体装置においても、軟磁性薄膜6中のホウ素量と炭素量を適切に管理することで、ヒステリシス量の小さい磁気センシングが実現でき、かつ量産性に優れた製造方法を提供出来ることが期待出来る。   The hysteresis width is the difference between the amount of magnetic field where the Hall output becomes zero when the magnetic field is changed from +40 mT to −40 mT, and the magnetic field amount when the Hall output becomes zero when the magnetic field is changed from −40 mT to +40 mT. When defined, it was confirmed that the hysteresis width was as small as 0.01 mT. In fact, even in semiconductor devices, it is expected that magnetic sensing with a small amount of hysteresis can be realized and a manufacturing method with excellent mass productivity can be provided by appropriately managing the amount of boron and the amount of carbon in the soft magnetic thin film 6. I can do it.

1 半導体基板
2 ホール素子
3 外部接続端子パッド
4 有機絶縁膜
5 下地導電層(金属導電膜)
6 軟磁性薄膜
7レジスト
7a レジスト空隙部
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Hall element 3 External connection terminal pad 4 Organic insulating film 5 Ground conductive layer (metal conductive film)
6 Soft magnetic thin film 7 Resist 7a Resist gap

Claims (4)

形成された軟磁性薄膜の総重量を100重量%としたときの鉄含有量が15〜30重量%、ホウ素含有量が0.15〜0.35重量%、電解めっき液を安定化するpH緩衝剤に起因する炭素を0.4〜0.8重量%、残部がニッケルである前記軟磁性薄膜を備え、該軟磁性薄膜で磁気収束することを特徴とする半導体装置。   When the total weight of the formed soft magnetic thin film is 100% by weight, the iron content is 15 to 30% by weight, the boron content is 0.15 to 0.35% by weight, and the pH buffer stabilizes the electrolytic plating solution. A semiconductor device comprising: the soft magnetic thin film having 0.4 to 0.8% by weight of carbon derived from an agent and the balance being nickel, and magnetically converges with the soft magnetic thin film. 前記半導体装置は、ホール素子を含む磁気センサであることを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the semiconductor device is a magnetic sensor including a Hall element. 形成された軟磁性薄膜の総重量を100重量%としたときの鉄含有量が15〜30重量%、ホウ素含有量が0.15〜0.35重量%、電解めっき液を安定化するpH緩衝剤に起因する炭素を0.4〜0.8重量%、残部がニッケルである前記軟磁性薄膜を備えた半導体装置の製造方法であって、
1個以上のホール素子と半導体回路が設けられた半導体基板上に、絶縁材料を形成し、該絶縁材料の上に金属導電層を形成し、該金属導電層上で1個以上のホール素子の感磁部を覆うような位置に少なくともホウ素及び電解めっき液を安定化するpH緩衝剤に起因する炭素を含有した前記軟磁性薄膜を形成することを特徴とする半導体装置の製造方法。
When the total weight of the formed soft magnetic thin film is 100% by weight, the iron content is 15 to 30% by weight, the boron content is 0.15 to 0.35% by weight, and the pH buffer stabilizes the electrolytic plating solution. A method of manufacturing a semiconductor device comprising the soft magnetic thin film, wherein carbon caused by the agent is 0.4 to 0.8% by weight and the balance is nickel,
An insulating material is formed on a semiconductor substrate provided with one or more Hall elements and a semiconductor circuit, a metal conductive layer is formed on the insulating material, and one or more Hall elements are formed on the metal conductive layer. A method of manufacturing a semiconductor device, comprising: forming the soft magnetic thin film containing at least boron and carbon derived from a pH buffer that stabilizes an electrolytic plating solution at a position covering a magnetic sensitive portion.
前記軟磁性薄膜が、ホウ素還元剤と電解めっき液を安定化するpH緩衝剤を配合しためっき液を用いて電解めっきで形成することを特徴とする請求項に記載の半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 3 , wherein the soft magnetic thin film is formed by electrolytic plating using a plating solution containing a boron reducing agent and a pH buffer that stabilizes the electrolytic plating solution.
JP2011008944A 2011-01-19 2011-01-19 Semiconductor device and manufacturing method thereof Active JP5635421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008944A JP5635421B2 (en) 2011-01-19 2011-01-19 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008944A JP5635421B2 (en) 2011-01-19 2011-01-19 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012151285A JP2012151285A (en) 2012-08-09
JP5635421B2 true JP5635421B2 (en) 2014-12-03

Family

ID=46793273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008944A Active JP5635421B2 (en) 2011-01-19 2011-01-19 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5635421B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9523745B2 (en) * 2015-02-19 2016-12-20 Sii Semiconductor Corporation Magnetic sensor and method of manufacturing the same
JP6831627B2 (en) 2015-02-19 2021-02-17 エイブリック株式会社 Magnetic sensor and its manufacturing method
JP6632373B2 (en) 2015-02-26 2020-01-22 エイブリック株式会社 Magnetic sensor and method of manufacturing the same
JP7298159B2 (en) * 2019-01-11 2023-06-27 Tdk株式会社 Piezoelectric thin film, piezoelectric thin film element, piezoelectric actuator, piezoelectric sensor, head assembly, head stack assembly, hard disk drive, printer head, and inkjet printer device
JP7363556B2 (en) * 2020-02-17 2023-10-18 Tdk株式会社 Laminates and electronic devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285743A (en) * 1987-05-18 1988-11-22 Ricoh Co Ltd Production of magneto-optical recording medium made of spiral ferrite
JPH02104688A (en) * 1988-10-13 1990-04-17 Nisshin Steel Co Ltd Electrolytically depositing method for fe-ni alloy to produce fe-ni alloy foil
JPH06122990A (en) * 1992-10-12 1994-05-06 Sumitomo Metal Ind Ltd Co-fe-b alloy electroplating film and its production
JPH06274834A (en) * 1993-03-24 1994-09-30 Sumitomo Metal Ind Ltd Thin-film magnetic head and its production
JP2002056507A (en) * 2000-08-08 2002-02-22 Hitachi Ltd Method for manufacturing thin film magnetic head, thin film magnetic head and magnetic disk device
JP4645555B2 (en) * 2005-09-15 2011-03-09 Tdk株式会社 Soft magnetic film, recording head using this soft magnetic film, method of manufacturing soft magnetic film, and method of manufacturing recording head

Also Published As

Publication number Publication date
JP2012151285A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
US9653532B2 (en) High resistivity soft magnetic material for miniaturized power converter
JP5635421B2 (en) Semiconductor device and manufacturing method thereof
US10002919B2 (en) High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors
Gong et al. Composition gradient, structure, stress, roughness and magnetic properties of 5–500 nm thin NiFe films obtained by electrodeposition
JP5463562B2 (en) Semiconductor device and manufacturing method thereof
US20080157910A1 (en) Amorphous soft magnetic layer for on-die inductively coupled wires
Spada et al. Thin films of FexNi1− x electroplated on silicon (1 0 0)
JP4183554B2 (en) Method for manufacturing soft magnetic film and method for manufacturing thin film magnetic head
Leistner et al. Phase formation, microstructure, and hard magnetic properties of electrodeposited FePt films
Yanai et al. Electrodeposited Fe–Ni films prepared in a citric-acid-based bath with different pH values
Yichun et al. Direct electrodeposition of Fe-Ni alloy films on silicon substrate
Schlörb et al. Electrodeposition of Fe-based magnetic alloy nanowires
Karpuz et al. Study of electrolyte pH in production of Cu–Co–Ni ternary alloys and its effect on microstructural and magnetic properties
Franz et al. Electrodeposition of micromagnets of CoPtW (P) alloys
JP2002525859A (en) Magnetoresistive device, giant magnetoresistive device, and method of manufacturing them
Zong et al. N2 purging effect on electrodeposition of active ferromagnetic thin FeCo films
Xu et al. Electrodeposition of Co–P films from alkaline electrolytes
CN114530549B (en) Semiconductor structure and preparation method thereof
Tabakovic et al. CoFeRh alloys: Part 2. Electrodeposition of CoFeRh alloys with high saturation magnetic flux density and high corrosion resistance
Kruppe et al. Optimization of Mechanical and Magnetic Properties in High, Electroplated Co–Fe-Flux Guides
Cojocaru et al. Electrodeposition of Ni/Co and Ni Magnetic Nanowires Using Allumina Template
Krause et al. Investigation of nucleation processes under the influence of magnetic fields
Butta Effect of saccharin in electroplated NiFe alloy on the noise of fluxgate
JPH0636929A (en) Plated magnetic thin film and manufacture thereof
Kok et al. Template Assisted Growth and Characterization of Electrodeposited Permalloy (Ni80Fe20)/Cu Multilayered Nanowires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141016

R150 Certificate of patent or registration of utility model

Ref document number: 5635421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350