JP5462019B2 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP5462019B2
JP5462019B2 JP2010029593A JP2010029593A JP5462019B2 JP 5462019 B2 JP5462019 B2 JP 5462019B2 JP 2010029593 A JP2010029593 A JP 2010029593A JP 2010029593 A JP2010029593 A JP 2010029593A JP 5462019 B2 JP5462019 B2 JP 5462019B2
Authority
JP
Japan
Prior art keywords
phase
power supply
power
supply line
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010029593A
Other languages
Japanese (ja)
Other versions
JP2011167020A (en
Inventor
茂 阿部
金子裕良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2010029593A priority Critical patent/JP5462019B2/en
Publication of JP2011167020A publication Critical patent/JP2011167020A/en
Application granted granted Critical
Publication of JP5462019B2 publication Critical patent/JP5462019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、走行路に沿って移動する移動体に非接触で電力を供給する非接触給電装置に関し、三相給電を可能にしたものである。   The present invention relates to a non-contact power supply device that supplies power in a non-contact manner to a moving body that moves along a traveling path, and enables three-phase power supply.

移動体内の負荷に外部から給電する方式には、移動体の集電装置を給電線に接触させる接触給電方式と、給電線に非接触で給電する非接触給電方式とが存在する。非接触給電方式では、高周波電源に接続する給電線が一次側回路を構成し、移動体側に二次側回路を設けて、一次側回路から二次側回路に電磁誘導を利用して電力が供給される。非接触給電の場合、接触による摩擦粉や火花が発生せず、クリーンで安全であり、保守も容易である。そのため、半導体工場のクリーンルーム内の搬送車や、自動車工場内の搬送車などの給電用に実用化されている。   There are two types of methods for supplying power to the load in the moving body from the outside: a contact power supply method in which the current collector of the moving body is brought into contact with the power supply line; In the non-contact power supply method, the power supply line connected to the high-frequency power source constitutes the primary circuit, the secondary circuit is provided on the moving body side, and power is supplied from the primary circuit to the secondary circuit using electromagnetic induction. Is done. In the case of non-contact power supply, friction powder and sparks are not generated by contact, and it is clean and safe and easy to maintain. For this reason, it has been put to practical use for feeding power to a transport vehicle in a clean room of a semiconductor factory or a transport vehicle in an automobile factory.

図12は、従来の移動型非接触給電装置の一例を模式的に示している。
この装置は、移動体の移動経路に沿って配設された給電線60と、商用電源64よりも高い周波数の交流電力を生成して給電線60に出力するインバータ63と、一次側電源の力率を上げるために給電線に直列に挿入されたコンデンサ62と、移動体側の受電部61とを備えており、受電部61は、フェライトコア611にリッツ線(絶縁被覆された細線を束ねた線)を巻回して構成された二次側巻線610を有している。なお、コンデンサ62をインバータ63の出力端子間に給電線に並列に挿入する方式も良く用いられる。
移動型非接触給電装置は、電磁誘導を利用し、数mmから数cmのギャップを隔てて数kW〜数百kWの電力を給電することができる。
FIG. 12 schematically shows an example of a conventional mobile contactless power supply device.
This apparatus includes a power supply line 60 disposed along a moving path of a moving body, an inverter 63 that generates AC power having a frequency higher than that of the commercial power supply 64 and outputs the AC power to the power supply line 60, and the power of the primary power supply. In order to increase the rate, a capacitor 62 inserted in series with the power supply line and a power receiving unit 61 on the moving body side are provided. The power receiving unit 61 is a wire in which a ferrite core 611 is bundled with litz wires (insulation-coated thin wires). ) Is wound around the secondary side winding 610. A method of inserting the capacitor 62 between the output terminals of the inverter 63 in parallel with the power supply line is also often used.
The mobile non-contact power supply device can supply electric power of several kW to several hundred kW with a gap of several mm to several cm using electromagnetic induction.

しかし、ギャップ長が大きいため、一次側回路と二次側回路との結合係数が低く、大きな漏れインダクタンスが生じる。その対策として、インバータ63で電源周波数を10kHz〜50kHzに設定して二次誘起電圧を上げ、また、一次側回路及び二次側回路にコンデンサを配置して漏れインダクタンスを補償している。図12のコンデンサ62は、一次側回路に配置された補償用のコンデンサである。
また、高周波電圧を受電する受電部61では、コア611にフェライトを用い、表皮効果による巻線抵抗の増大を防ぐために、二次側巻線610をリッツ線で形成している。
However, since the gap length is large, the coupling coefficient between the primary side circuit and the secondary side circuit is low, resulting in a large leakage inductance. As a countermeasure, the inverter 63 sets the power frequency to 10 kHz to 50 kHz to increase the secondary induced voltage, and a capacitor is arranged in the primary side circuit and the secondary side circuit to compensate for the leakage inductance. The capacitor 62 in FIG. 12 is a compensation capacitor arranged in the primary side circuit.
Further, in the power receiving unit 61 that receives a high-frequency voltage, ferrite is used for the core 611, and the secondary winding 610 is formed of a litz wire in order to prevent an increase in winding resistance due to the skin effect.

漏れインダクタンスを補償するコンデンサの配置には、一次側に並列共振コンデンサを置き、二次側に直列共振コンデンサを置く方式(PS方式)や、一次側及び二次側に並列共振コンデンサを置く方式(PP方式)など、様々な方式が提案されている。
下記非特許文献1には、一次側に直列コンデンサを、二次側に並列コンデンサを配置するSP方式が記載されている。SP方式では、両コンデンサの値を適切に選ぶと理想変圧器特性が成り立ち、この理想変圧器特性を利用して、次のような優れた性能を持つ非接触給電装置が得られる。
(1)電源の小型化が可能である(負荷に依らず電源出力の力率を1にできるため)。
(2)電源の効率向上が可能である(電源出力の電圧と電流が同位相になりゼロ電流スイッチングが可能なため)。
(3)コンデンサの値は負荷に依らず、トランス定数だけで決まる。
(4)電源を定電圧/定電流制御すれば負荷も定電圧/定電流になる。
(5)給電効率の向上が可能である(簡単な効率の理論式を用いて送受電トランスの最適設計や最大効率運転が可能となる)。
図12は、SP方式の移動型非接触給電装置を模式的に示している(但し、二次側の並列コンデンサは不図示)。
Capacitors to compensate for the leakage inductance are arranged by placing a parallel resonant capacitor on the primary side and placing a series resonant capacitor on the secondary side (PS method), or placing parallel resonant capacitors on the primary and secondary sides ( Various schemes such as the PP scheme) have been proposed.
Non-Patent Document 1 below describes an SP system in which a series capacitor is arranged on the primary side and a parallel capacitor is arranged on the secondary side. In the SP system, an ideal transformer characteristic is established when the values of both capacitors are appropriately selected, and a non-contact power feeding device having the following excellent performance can be obtained by using the ideal transformer characteristic.
(1) The power supply can be downsized (because the power factor of the power supply output can be made 1 regardless of the load).
(2) The efficiency of the power supply can be improved (because the voltage and current of the power supply output are in phase and zero current switching is possible).
(3) The value of the capacitor is determined only by the transformer constant, regardless of the load.
(4) If the power source is controlled at a constant voltage / constant current, the load also becomes a constant voltage / constant current.
(5) Power supply efficiency can be improved (optimal design and maximum efficiency operation of a power transmission / reception transformer is possible using a simple theoretical formula of efficiency).
FIG. 12 schematically shows an SP-type mobile contactless power supply device (however, the secondary side parallel capacitor is not shown).

現在実用化されている移動型非接触給電装置は、図12に示すように、移動体に対して単相給電を実施しているが、単相交流を用いて給電するときの有効電力は、三相交流で給電するときの有効電力に比べて少ない。三相給電の場合、単相給電の√3倍の有効電力を供給することが可能である。
この利点に着目して、移動型非接触給電装置の三相給電化を図るアイデアが、これ迄にも幾つか提案されている。
As shown in FIG. 12, the mobile non-contact power feeding device currently in practical use performs single-phase power feeding to a moving body, but the effective power when power is fed using single-phase alternating current is Less than the effective power when power is supplied by three-phase AC. In the case of three-phase power feeding, it is possible to supply active power that is √3 times that of single-phase power feeding.
Focusing on this advantage, several ideas have been proposed so far to achieve a three-phase power feeding of the mobile contactless power feeding device.

図13、図14は、下記特許文献1に記載された非接触給電装置の回路図と、給電線及び受電部の斜視図を示している。
この装置は、図13に示すように、高周波電源100が、三相インバータ110Mと、同調フィルタ120Mとを備え、移動体300が、受電部310aと、受電部310aで受電した三相交流を全波整流して負荷Rに供給する整流回路とを備えている。この装置では、PS方式のコンデンサ配置を採用しており、高周波電源100の同調フィルタ120Mに並列共振コンデンサC2が配置され、また、移動体300の受電部310aに直列共振コンデンサC4が配置されている。
図14に示すように、三相インバータのU端子に接続する給電線200L1、V端子に接続する給電線200L2、及び、W端子に接続する給電線200L3から成る3系統の給電線は、受電部310aの移動経路上の所定地点で共通接続されており、この共通接続点が三相の中性点を構成している。また、各給電線200L1、200L2、200L3を通じてU相、V相、W相の三相交流電圧を取得する受電部310aは、三本の給電線200L1、200L2、200L3を個別に囲む収容室が一体成形されたフェライトコアと、このコアの各収容室に巻回された巻線とを備えている。
13 and 14 show a circuit diagram of a non-contact power feeding device described in Patent Document 1 below, and perspective views of a power feeding line and a power receiving unit.
In this apparatus, as shown in FIG. 13, the high-frequency power source 100 includes a three-phase inverter 110M and a tuning filter 120M, and the mobile unit 300 receives all of the three-phase alternating current received by the power receiving unit 310a and the power receiving unit 310a. And a rectifier circuit that rectifies the wave and supplies it to the load R. In this apparatus, a PS type capacitor arrangement is adopted, a parallel resonance capacitor C2 is arranged in the tuning filter 120M of the high frequency power supply 100, and a series resonance capacitor C4 is arranged in the power receiving unit 310a of the moving body 300. .
As shown in FIG. 14, the three power supply lines including the power supply line 200L1 connected to the U terminal of the three-phase inverter, the power supply line 200L2 connected to the V terminal, and the power supply line 200L3 connected to the W terminal are A common connection is made at a predetermined point on the movement path 310a, and this common connection point constitutes a three-phase neutral point. In addition, the power receiving unit 310a that acquires the U-phase, V-phase, and W-phase three-phase AC voltages through each of the feeder lines 200L1, 200L2, and 200L3 has an integrated storage chamber that individually surrounds the three feeder lines 200L1, 200L2, and 200L3. A molded ferrite core and a winding wound around each housing chamber of the core are provided.

特開2002−320347号公報JP 2002-320347 A

藤田・金子・阿部:「直列および並列共振コンデンサを用いた非接触給電システム」,電学論 D,Vol.127,No.2 pp.174-180 (2007)Fujita, Kaneko and Abe: “Non-contact power feeding system using series and parallel resonant capacitors”, D. Vol.127, No.2 pp.174-180 (2007)

しかし、移動型の非接触給電装置に三相給電を適用する場合は、単相給電では起こり得ない次の問題点がある。
(1)実用上、三本の給電線は、等間隔で平面上に置かれるため、各相の一次自己インダクタンスがバランスしない。即ち、給電線のWU間の間隔がUV間、VW間の2倍あり、WU間の自己インダクタンスが他に比べて大きくなる。
(2)各相の受電部間に磁気結合が生じる。図14に示すようなコアを用いた場合は、各相間の磁気結合が避けられない。
これらの問題を解決しなければ、三相のバランスが崩れ、移動体に対し大電力を安定して給電することができない。
However, when three-phase power feeding is applied to a mobile non-contact power feeding device, there is the following problem that cannot occur with single-phase power feeding.
(1) In practice, the three feeders are placed on a flat surface at equal intervals, so the primary self-inductance of each phase does not balance. That is, the interval between the WUs of the power supply line is twice between UV and VW, and the self-inductance between the WUs is larger than the others.
(2) Magnetic coupling occurs between the power reception units of each phase. When the core as shown in FIG. 14 is used, magnetic coupling between the phases is unavoidable.
If these problems are not solved, the three-phase balance is lost, and a large amount of power cannot be stably supplied to the moving body.

本発明は、こうした事情を考慮して創案したものであり、安定した三相給電が可能な非接触給電装置を提供することを目的としている。   The present invention has been made in view of such circumstances, and an object thereof is to provide a non-contact power feeding device capable of stable three-phase power feeding.

本発明は、移動体の走行路に沿って略同一平面上に互に平行に配置されたU相、V相、W相の三本の給電線と、給電線のそれぞれにU相、V相、W相の三相交流を出力する三相交流電源と、移動体に設けた三個のコアのそれぞれに巻回されたU相、V相、W相の三個のコイル(巻線)と、を備え、三本の給電線を一次側とし、三個のコイルを二次側として、電磁誘導により一次側から二次側に給電する非接触給電装置であって、二次側のU相、V相、W相のコイルには、それぞれ並列コンデンサCPU、CPV、CPWが接続され、一次側の三本の給電線は、一方で三相交流電源に接続され、その三相交流電源と反対側の他方で三本が短絡され、三相交流電源と三本の給電線との間には、各相に直列コンデンサCSU、CSV、CSWが挿入され、三本の給電線の中で中央にあるV相給電線と三相交流電源との間に挿入されるコンデンサCSVの値が、他のコンデンサCSU、CSWの値より大きい値に設定されていることを特徴とする。
この非接触給電装置は、SP方式のコンデンサ配置を採用し、V相給電線に挿入する直列コンデンサCSVの値を大きく設定して、各相間の一次側自己インダクタンスのアンバランスを補償している。
The present invention includes three feed lines of U phase, V phase, and W phase arranged in parallel to each other on substantially the same plane along the traveling path of the moving body, and U phase and V phase for each of the feed lines. A three-phase AC power source that outputs three-phase AC of W phase, and three coils (windings) of U phase, V phase, and W phase wound around three cores provided on the moving body, A non-contact power feeding device that feeds power from the primary side to the secondary side by electromagnetic induction, with three feeding lines as the primary side and three coils as the secondary side, and a U-phase on the secondary side , V phase and W phase coils are connected to parallel capacitors C PU , C PV and C PW , respectively, and the three primary power lines are connected to a three-phase AC power source on the one hand, Three capacitors are short-circuited on the other side opposite to the power source, and series capacitors C SU , C SV , C SW are inserted in each phase between the three-phase AC power source and the three feeder lines. The value of the capacitor CSV inserted between the V-phase power supply line at the center and the three-phase AC power supply is set to a value larger than the values of the other capacitors CSU and CSW . It is characterized by that.
This non-contact power feeding device employs an SP-type capacitor arrangement, and sets a large value of the series capacitor C SV inserted into the V-phase power feeding line to compensate for an imbalance of the primary side self-inductance between the phases. .

また、本発明の非接触給電装置では、三個のコアのそれぞれの位置を、給電線が延びる給電線延伸方向にずらし、給電線延伸方向の座標上で各コアの存在する範囲が相互に重ならないように配置している。
こうすることで、三個のコアに巻回されたコイル間の磁気的結合(従って、三個のコイル間の相互インダクタンス)が十分小さくなる。
Further, in the contactless power supply device of the present invention, the positions of the three cores are shifted in the direction of the power supply line extending from the power supply line, and the ranges where the cores exist on the coordinates of the power supply line extending direction overlap each other. It is arranged so as not to become.
By doing so, the magnetic coupling between the coils wound around the three cores (and thus the mutual inductance between the three coils) becomes sufficiently small.

また、本発明の非接触給電装置では、三個のコアのそれぞれの外周に電磁遮蔽のための導体板を配置し、この導体板の給電線延伸方向における長さを、コアの同方向の長さより長くするようにしても良い。
こうすることで、三個のコイル間の相互インダクタンスが十分小さくなる。
Further, in the non-contact power feeding device of the present invention, a conductor plate for electromagnetic shielding is arranged on the outer periphery of each of the three cores, and the length of the conductor plate in the direction of extending the feeder line is set to the length of the core in the same direction. You may make it longer than this.
By doing so, the mutual inductance between the three coils becomes sufficiently small.

また、本発明の非接触給電装置では、導体板を配置する場合に、コアと、当該コアを囲む導体板の内面との間に電気絶縁体を介在させることが望ましい。
コアを流れる交流磁界によって導体板の表面に渦電流が生じるが、電気絶縁体を介在させて、コアと導体板との距離を取ることにより、導体板に発生する渦電流を減らすことができる。
Moreover, in the non-contact electric power feeder of this invention, when arrange | positioning a conductor board, it is desirable to interpose an electrical insulator between a core and the inner surface of the conductor board surrounding the said core.
An eddy current is generated on the surface of the conductor plate due to the AC magnetic field flowing through the core. However, the eddy current generated in the conductor plate can be reduced by interposing an electrical insulator and taking a distance between the core and the conductor plate.

また、本発明の非接触給電装置では、導体板を配置する場合に、三個のコアのそれぞれの外周に配置した導体板を、互いに電気的に絶縁することが望ましい。
各導体板が電気接続していると、一つの導体板に生じた渦電流が他の導体板に流れ、他の導体板に囲まれた二次コイルに誘導電圧を生じさせる可能性があるが、導体板を相互に絶縁することで、そうした事態が防止できる。
Moreover, in the non-contact electric power feeder of this invention, when arrange | positioning a conductor board, it is desirable to electrically insulate the conductor board arrange | positioned on each outer periphery of three cores.
If each conductor plate is electrically connected, eddy current generated in one conductor plate may flow to the other conductor plate, which may cause an induced voltage in the secondary coil surrounded by the other conductor plate. Such a situation can be prevented by insulating the conductive plates from each other.

また、本発明の非接触給電装置では、前記並列コンデンサCPi(i=U,V,W)の値を次のように設定する。
即ち、二次側のコイルの自己インダクタンスをL2i(i=U,V,W)とし、三相交流電源の周波数をf0(角周波数ω0=2πf0)とするとき、
1/(ω0Pi)=ω02i (数1)
を満たすように設定する。
こうすることで、二次側の受電回路が三相交流電源の周波数に共振し、給電効率が向上する。
In the non-contact power feeding device of the present invention, the value of the parallel capacitor C Pi (i = U, V, W) is set as follows.
That is, when the self-inductance of the secondary coil is L 2i (i = U, V, W) and the frequency of the three-phase AC power supply is f 0 (angular frequency ω 0 = 2πf 0 ),
1 / (ω 0 C Pi ) = ω 0 L 2i ( Equation 1)
Set to satisfy.
By doing so, the power reception circuit on the secondary side resonates with the frequency of the three-phase AC power supply, and the power supply efficiency is improved.

また、本発明の非接触給電装置では、前記直列コンデンサCSi(i=U,V,W)の値を次のように設定する。
即ち、二次側コイルの各々に並列コンデンサCPi(i=U,V,W)と同じ値の負荷抵抗RLを接続した時、三相交流電源のUV出力、VW出力、WU出力から見た直列コンデンサCSi、二次側コイル、並列コンデンサCPi及び負荷抵抗RL側のインピーダンスが、リアクタンス分を含まずに純抵抗になるように設定する。
こうすることで、各相間の一次側自己インダクタンスのアンバランスが補償され、一次側回路の力率が改善して、二次側回路への給電効率が向上する。
In the non-contact power feeding device of the present invention, the value of the series capacitor C Si (i = U, V, W) is set as follows.
That is, when the load resistance R L having the same value as the parallel capacitor C Pi (i = U, V, W) is connected to each of the secondary side coils, it can be seen from the UV output, VW output, and WU output of the three-phase AC power supply. The impedance on the side of the series capacitor C Si , the secondary coil, the parallel capacitor C Pi, and the load resistor RL is set so as to be a pure resistance without including reactance.
By doing so, the imbalance of the primary side self-inductance between the phases is compensated, the power factor of the primary side circuit is improved, and the power supply efficiency to the secondary side circuit is improved.

また、本発明の非接触給電装置では、前記直列コンデンサCSi(i=U,V,W)の値を次のように設定しても良い。
即ち、二つの直列コンデンサCSi、CSj(i=U,V,W、j=U,V,W、i≠j)及び二本の給電線を含む三相交流電源のUV間、VW間またはWU間の回路での二つの直列コンデンサCSi、CSjの合成容量をCSij、一方の給電線の漏れインダクタンスをl1i、他方の給電線の漏れインダクタンスをl1j、一方の給電線とそれを跨ぐコアに巻回された二次コイルとの間の相互インダクタンスをMi、他方の給電線とそれを跨ぐコアに巻回された二次コイルとの間の相互インダクタンスをMj、二次側の各コイルの巻数をn、一方の二次側コイルの漏れインダクタンスをl2i、他方の二次側コイルの漏れインダクタンスをl2jとするとき、
からCSijを求め、
の連立方程式を解いて、CSi(i=U,V,W)の値を設定する。
こうして求めたCSi(i=U,V,W)の値を用いることで、各相間の一次側自己インダクタンスのアンバランスが補償され、一次側回路の力率が改善して、二次側回路への給電効率が向上する。
なお、給電線が長くなると(数2)の右辺の第二項の値が大きくなり、第一項を省略しても左辺の値がほぼ同じ値になる。このような場合は(数2)を(数5)で近似して用いても良い。
In the non-contact power feeding device of the present invention, the value of the series capacitor C Si (i = U, V, W) may be set as follows.
That is, between UV and VW of a three-phase AC power source including two series capacitors C Si , C Sj (i = U, V, W, j = U, V, W, i ≠ j) and two feeder lines. Alternatively , the combined capacitance of two series capacitors C Si and C Sj in the circuit between WUs is C Sij , the leakage inductance of one feeder is l 1i , the leakage inductance of the other feeder is l 1j , The mutual inductance between the secondary coil wound around the core and the secondary coil wound around the core is M i , and the mutual inductance between the other feeder and the secondary coil wound around the core across the core is M j , When the number of turns of each secondary coil is n, the leakage inductance of one secondary coil is l 2i , and the leakage inductance of the other secondary coil is l 2j ,
C Sij from
The values of C Si (i = U, V, W) are set by solving the simultaneous equations.
By using the value of C Si (i = U, V, W) thus obtained, the imbalance of the primary side self-inductance between each phase is compensated, the power factor of the primary side circuit is improved, and the secondary side circuit is improved. The power supply efficiency to is improved.
When the feeder line becomes longer, the value of the second term on the right side of (Equation 2) increases, and even if the first term is omitted, the value on the left side becomes substantially the same value. In such a case, (Equation 2) may be approximated by (Equation 5).

また、本発明の非接触給電装置では、二次側の各コイルのU相、V相、W相出力をY結線し、さらに三相整流器で直流に整流して出力するようにしても良い。   In the non-contact power feeding device of the present invention, the U-phase, V-phase, and W-phase outputs of each secondary coil may be Y-connected, and further rectified to a direct current by a three-phase rectifier and output.

本発明の非接触給電装置は、安定した三相給電が可能であり、移動体に対し、電力変動が少ない大電力を非接触で供給することができる。   The contactless power supply device of the present invention can perform stable three-phase power supply, and can supply a large amount of power with little power fluctuation to a moving body in a contactless manner.

本発明の第1の実施形態に係る非接触給電装置を示す図The figure which shows the non-contact electric power feeder which concerns on the 1st Embodiment of this invention. 図1の三相インバータの出力電圧を示す図The figure which shows the output voltage of the three-phase inverter of FIG. 図1の装置の給電線及び受電部の回路構成を示す図The figure which shows the circuit structure of the feeder line and power receiving part of the apparatus of FIG. 図1の装置で受電部に三相整流器を接続した回路構成を示す図The figure which shows the circuit structure which connected the three-phase rectifier to the power receiving part with the apparatus of FIG. 図1の装置におけるUV間の等価回路を示す図The figure which shows the equivalent circuit between UV in the apparatus of FIG. 実験で用いた直列コンデンサ及び並列コンデンサの値を示す図Diagram showing the values of the series capacitor and parallel capacitor used in the experiment 実験結果(電流・電圧波形)を示す図Diagram showing experimental results (current / voltage waveforms) 実験結果(実効値及び力率)を示す図Diagram showing experimental results (effective value and power factor) 実験結果(給電効率)を示す図Diagram showing experimental results (power feeding efficiency) 本発明の第2の実施形態に係る非接触給電装置及び受電部を示す図The figure which shows the non-contact electric power feeder and power receiving part which concern on the 2nd Embodiment of this invention. 図10の受電部の平面図及び側面図FIG. 10 is a plan view and a side view of the power receiving unit in FIG. 従来の非接触給電装置を示す図The figure which shows the conventional non-contact electric power feeder 従来の三相給電を行う非接触給電装置の回路図Circuit diagram of a conventional non-contact power feeding device that performs three-phase power feeding 図13の装置の斜視図FIG. 13 is a perspective view of the apparatus of FIG.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る非接触給電装置を模式的に示し、図3は、その回路構成を示している。
この装置は、商用電源10と、商用交流から高周波の三相交流を生成してU、V、W端子から出力する三相インバータ11と、移動体の移動経路に沿って同一平面上に平行に配設された三本の給電線24、25、26と、三相インバータ11及び三本の給電線24、25、26間に挿入された直列コンデンサ21、22、23と、移動体に設けられた移動体受電部30とを備えている。
(First embodiment)
FIG. 1 schematically shows a non-contact power feeding apparatus according to the first embodiment of the present invention, and FIG. 3 shows its circuit configuration.
This device includes a commercial power source 10, a three-phase inverter 11 that generates a high-frequency three-phase alternating current from a commercial alternating current, and outputs it from the U, V, and W terminals, in parallel on the same plane along the moving path of the moving body. Three power supply lines 24, 25, 26 arranged, series capacitors 21, 22, 23 inserted between the three-phase inverter 11 and the three power supply lines 24, 25, 26, and a moving body The mobile body power receiving unit 30 is provided.

給電線24には、直列コンデンサ21を介して接続する三相インバータ11のU端子からU相の三相交流が出力される。
給電線25には、直列コンデンサ22を介して接続する三相インバータ11のV端子からV相の三相交流が出力される。
また、給電線26には、直列コンデンサ23を介して接続する三相インバータ11のW端子からW相の三相交流が出力される。
三本の給電線24、25、26は、三相インバータ11と反対の側で短絡されており、短絡箇所のNは中性点を表している。
図2には、三相インバータ11から出力される線間電圧(UV間、VW間、WU間電圧)の時間変化を示している。
A U-phase three-phase alternating current is output to the power supply line 24 from the U terminal of the three-phase inverter 11 connected via the series capacitor 21.
A V-phase three-phase alternating current is output to the feeder line 25 from the V terminal of the three-phase inverter 11 connected via the series capacitor 22.
In addition, a W-phase three-phase alternating current is output to the feeder line 26 from the W terminal of the three-phase inverter 11 connected through the series capacitor 23.
The three feeder lines 24, 25, and 26 are short-circuited on the side opposite to the three-phase inverter 11, and N in the short-circuited portion represents a neutral point.
FIG. 2 shows a time change of the line voltage (voltage between UV, voltage VW, voltage between WUs) output from the three-phase inverter 11.

また、移動体受電部30は、U相、V相、W相に対応する三個の受電部31、32、33から成り、各受電部31、32、33は、給電線24、25、26を跨ぐように成形された断面コ字状のフェライトコア311、321、331と、このフェライトコアにリッツ線を巻回して形成された二次側コイル312、322、332と、二次側コイル312、322、332のそれぞれに並列に接続された並列コンデンサ313、323、333とを備えている(図3)。三個の受電部31、32、33は、Y結線されている。   The mobile power receiving unit 30 includes three power receiving units 31, 32, and 33 corresponding to the U phase, the V phase, and the W phase, and each of the power receiving units 31, 32, and 33 includes the power supply lines 24, 25, and 26. Ferrite cores 311, 321, 331 having a U-shaped cross section formed so as to straddle the wire, secondary coils 312, 322, 332 formed by winding litz wires around the ferrite core, and secondary coil 312 322, 332, and parallel capacitors 313, 323, 333 connected in parallel (FIG. 3). The three power receiving units 31, 32, and 33 are Y-connected.

このように、この非接触給電装置は、一次側の給電線24、25、26に直列コンデンサ21、22、23を挿入し、二次側のコイル312、322、332に並列コンデンサ313、323、333を接続しており、SP方式(一次直列二次並列コンデンサ方式)を採用している。
図3において、各受電部31、32、33に接続する抵抗314、324、334は、移動体の負荷を等価抵抗RLiで表している(i=U,V,W)。
なお、Y結線した三個の受電部31、32、33に、図4に示すように、三相整流器を接続し、三相整流器で整流された直流を移動体の負荷に出力するようにしても良い。
In this way, this non-contact power feeding device has the series capacitors 21, 22, 23 inserted in the primary power supply lines 24, 25, 26, and the parallel capacitors 313, 323, 333 is connected and the SP system (primary series secondary parallel capacitor system) is adopted.
In FIG. 3, resistors 314, 324, and 334 connected to the power receiving units 31, 32, and 33 represent the load of the moving body with an equivalent resistance R Li (i = U, V, W).
In addition, as shown in FIG. 4, a three-phase rectifier is connected to the three power receiving units 31, 32, 33 Y-connected so that the DC rectified by the three-phase rectifier is output to the load of the moving body. Also good.

三個の受電部31、32、33は、図1に示すように、給電線24、25、26の延伸方向(給電線延伸方向)にずらし、給電線延伸方向の座標上で各受電部31、32、33のフェライトコア311、321、331の存在する範囲が相互に重ならないように配置している。
このように各受電部31、32、33を物理的にずらして配置することにより、二次側コイル312、322、332の間の磁気的結合が十分小さくなり(各コイル間の相互インダクタンスが十分小さくなり)、「発明が解決しようとする課題」で示した(2)の問題点が解決できる。
As shown in FIG. 1, the three power receiving units 31, 32, and 33 are shifted in the extending direction of the power supply lines 24, 25, and 26 (power supply line extending direction), and each power receiving unit 31 on the coordinates of the power supply line extending direction. , 32 and 33 are arranged so that the ranges where the ferrite cores 311, 321 and 331 exist do not overlap each other.
By arranging the power receiving units 31, 32, and 33 so as to be physically shifted in this way, the magnetic coupling between the secondary side coils 312, 322, and 332 becomes sufficiently small (the mutual inductance between the coils is sufficient). The problem (2) shown in “Problems to be solved by the invention” can be solved.

次に、SP方式で配置した直列コンデンサ21、22、23及び並列コンデンサ313、323、333の値の決め方について説明する。この決め方により、「発明が解決しようとする課題」で示した(1)の問題点が解決できる。
ここでは、直列コンデンサ21、22、23をCSU、CSV、CSWとし、それらを纏めてCSi(i=U,V,W)で表す。また、並列コンデンサ313、323、333をCPU、CPV、CPWとし、それらを纏めてCPi(i=U,V,W)で表す。
Si、CPi(i=U,V,W)の値を決めるために、三相非接触給電回路を、まずUV間、VW間、WU間の3つの単相給電回路に分け、それぞれを三相電圧源で駆動するものとする。
Next, how to determine the values of the series capacitors 21, 22, 23 and the parallel capacitors 313, 323, 333 arranged by the SP method will be described. By this determination method, the problem (1) shown in “Problems to be solved by the invention” can be solved.
Here, the series capacitors 21, 22, and 23 are C SU , C SV , and C SW, and they are collectively expressed as C Si (i = U, V, W). Further, the parallel capacitors 313, 323, and 333 are denoted as C PU , C PV , and C PW, and they are collectively expressed as C Pi (i = U, V, W).
In order to determine the values of C Si and C Pi (i = U, V, W), the three-phase non-contact power feeding circuit is first divided into three single-phase power feeding circuits between UV, VW, and WU. It shall be driven by a three-phase voltage source.

図5は、図3の回路図におけるUV間の詳細等価回路を示している。
各相の受電部間に磁気結合が無ければ、CPiは各相で独立に決めることができる。
SP方式では、並列コンデンサCPi(i=U,V,W)の値を、二次側コイル312、322、332の自己インダクタンスと共振するように設定する。従って、二次側コイル312、322、332の自己インダクタンスをL2i(i=U,V,W)とし、三相インバータ11の周波数をf0(角周波数ω0=2πf0)とするとき、CPi(i=U,V,W)は、次式(数1)から求めることができる。
1/(ω0Pi)=ω02i (数1)
FIG. 5 shows a detailed equivalent circuit between UVs in the circuit diagram of FIG.
If there is no magnetic coupling between the power receiving sections of each phase, C Pi can be determined independently for each phase.
In the SP method, the value of the parallel capacitor C Pi (i = U, V, W) is set so as to resonate with the self-inductance of the secondary coils 312, 322, and 332. Therefore, when the self-inductance of the secondary coils 312, 322, and 332 is L 2i (i = U, V, W) and the frequency of the three-phase inverter 11 is f 0 (angular frequency ω 0 = 2πf 0 ), C Pi (i = U, V, W) can be obtained from the following equation (Equation 1).
1 / (ω 0 C Pi ) = ω 0 L 2i ( Equation 1)

次に、一次側の直列コンデンサの値を決めるため、図5おいて、一次側直列コンデンサのCSUとCSVとの合成容量CSUVの値を、二次側コイルの各々に並列コンデンサCPU、CPVと同じ値の負荷抵抗RLU、RLVを接続した時に、電源から見たインピーダンスZが純抵抗になるように設定する。
図5の等価回路で電源から見たインピーダンスZが純抵抗になるとき、インピーダンスZのjを含む項が0になる。その関係から次式(数2)が得られ、この(数2)を用いて合成容量CSUVの値を求めることができる。
なお、(数2)では、二つの直列コンデンサCSi、CSj(i=U,V,W、j=U,V,W、i≠j)の合成容量をCSij、一方の給電線の漏れインダクタンスをl1i、他方の給電線の漏れインダクタンスをl1j、一方の給電線とそれを跨ぐコアに巻回された二次コイルとの間の相互インダクタンスをMi、他方の給電線とそれを跨ぐコアに巻回された二次コイルとの間の相互インダクタンスをMj、二次側の各コイルの巻数をn、一方の二次側コイルの漏れインダクタンスをl2i、他方の二次側コイルの漏れインダクタンスをl2jとしている。
同様にVW間、WU間の回路を考えることにより、合成容量CSij(i=U,V,W、j=U,V,W、i≠j)の値が決まる。
Then, to determine the value of the series capacitor of the primary side, 5 fraud and mitigating risk value of the composite capacitance C SUV the C SU and C SV of the primary side series capacitor, the parallel capacitor C PU to each of the secondary coil , the load resistance R LU with the same value as C PV, when connecting the R LV, the impedance Z as viewed from the power source is set to be the pure resistance.
When the impedance Z viewed from the power source in the equivalent circuit of FIG. 5 is a pure resistance, the term including j of the impedance Z becomes zero. From the relationship, the following equation (Equation 2) is obtained, and the value of the combined capacitance C SUV can be obtained using this (Equation 2).
In (Equation 2), the combined capacitance of two series capacitors C Si and C Sj (i = U, V, W, j = U, V, W, i ≠ j) is C Sij , The leakage inductance is l 1i , the leakage inductance of the other feeding line is l 1j , the mutual inductance between one feeding line and the secondary coil wound around the core straddling it is M i , the other feeding line and it M j , the number of turns of each secondary coil n, the leakage inductance of one secondary coil l 2i , the other secondary side The coil leakage inductance is l 2j .
Similarly, by considering the circuit between VW and WU, the value of the combined capacitance C Sij (i = U, V, W, j = U, V, W, i ≠ j) is determined.

次いで、3つのCSUV、CSVW、CSWUの式から次式(数3)を用いて連立方程式を解くことにより、CPi(i=U,V,W)の値を求めることができる。
Next, the value of C Pi (i = U, V, W) can be obtained by solving simultaneous equations from the three C SUV , C SVW , and C SWU equations using the following equation (Equation 3).

これらの手順で非接触給電装置の直列コンデンサ21、22、23及び並列コンデンサ313、323、333の値を設定することにより、安定的な三相給電が可能になる。それを実験で確かめた。
この実験は、図1及び図3の装置において、三相インバータ11の出力周波数を20kHzとし、給電線24、25、26に、長さ3.9mのリッツ線(φ0.25mm×24×16)を用い、受電部31、32、33には、断面コ字状のフェライトコア(H38×W40×L80mm)にリッツ線(φ0.25mm×24×2)を6ターン巻いたものを用いて行った。負荷抵抗は、20Ωあるいは50Ωとした。
By setting the values of the series capacitors 21, 22, and 23 and the parallel capacitors 313, 323, and 333 of the non-contact power feeding device by these procedures, stable three-phase power feeding becomes possible. This was confirmed by experiments.
1 and 3, the output frequency of the three-phase inverter 11 is set to 20 kHz, and the Litz wire (φ0.25 mm × 24 × 16) having a length of 3.9 m is fed to the feeder lines 24, 25, and 26. The power receiving units 31, 32, and 33 were obtained by using a ferrite core (H38 × W40 × L80mm) having a U-shaped cross section and winding a litz wire (φ0.25mm × 24 × 2) for 6 turns. . The load resistance was 20Ω or 50Ω.

並列コンデンサ313、323、333の値は、LCRメータで二次コイルの自己インダクタンスを測定し、(数1)により決定した。また、直列コンデンサ21、22、23の値は、実験装置で図5のインピーダンスZ’を直接測定し、Zが純抵抗になる(電源力率が1となる)合成容量を求めた後、(数3)を用いて決定した。並列コンデンサ313、323、333及び直列コンデンサ21、22、23の決定値を図6に示している。なお、図6のカッコ内の値は、LCRメータで測定した図5のトランス定数から(数1)(数2)(数3)を用いて計算した並列コンデンサ及び直列コンデンサの計算値を示している。   The values of the parallel capacitors 313, 323, and 333 were determined by (Equation 1) by measuring the self-inductance of the secondary coil with an LCR meter. Further, the values of the series capacitors 21, 22, and 23 are obtained by directly measuring the impedance Z ′ in FIG. 5 with an experimental apparatus and obtaining a combined capacity in which Z becomes a pure resistance (a power factor of 1 becomes 1). It was determined using Equation 3). The determined values of the parallel capacitors 313, 323, 333 and the series capacitors 21, 22, 23 are shown in FIG. The values in parentheses in FIG. 6 indicate the calculated values of the parallel capacitor and the series capacitor calculated using (Equation 1), (Equation 2), and (Equation 3) from the transformer constant of FIG. 5 measured by the LCR meter. Yes.

図7は、並列コンデンサ313、323、333及び直列コンデンサ21、22、23の値を図6に示した決定値に設定して、三相給電を行ったときのUV間、VW間及びWU間の三相インバータ11の出力電圧(VUV、VVW、VWU)、一次側相電流(IU1、IV1、IW1)、及び、二次側相電圧(VU2、VV2、VW2)を示している。
また、図8は、一次側の各相(U1、V1、W1)及び二次側の各相(U2、V2、W2)における相電圧の実効値(V)、相電流の実効値(I)、及び、力率(pf)を示している。
FIG. 7 shows the values of the parallel capacitors 313, 323, 333 and the series capacitors 21, 22, 23 set to the determined values shown in FIG. 6, and between the UV, VW, and WU when three-phase power feeding is performed. Output voltage (V UV , V VW , V WU ), primary side phase current (I U1 , I V1 , I W1 ), and secondary side phase voltage (V U2 , V V2 , V W2). ).
FIG. 8 shows the effective value (V) of the phase voltage and the phase current in each phase on the primary side (U 1 , V 1 , W 1 ) and each phase on the secondary side (U 2 , V 2 , W 2 ). RMS effective value (I) and power factor (pf) are shown.

図6から、三本の給電線の中で中央にあるV相給電線に挿入されたコンデンサCSVの値が、CSU、CSWの値より大きいことが分かる。コンデンサCSVの値がCSU、CSWに比べて大きいことにより、給電線のWU間の間隔がUV間及びVW間の間隔より広いために生じている各相の自己インダクタンスのアンバランスが補償されている。
また、図7から、一次側相電流と二次側相電圧との位相が一致していることが分かり、図7及び図8から、各相間のバランスが取れた三相給電を確認できる。図8から、各相の力率が略1であることが分かる。二次側の力率は、負荷抵抗のインダクタンス分のために多少低下している。一次側の力率は、一次側直列コンデンサCS1の値を調整することにより、さらに改善できる。
From FIG. 6, it can be seen that the value of the capacitor C SV inserted into the V-phase power supply line at the center among the three power supply lines is larger than the values of C SU and C SW . Capacitor C SV value C SU, by greater than the C SW, each phase of the unbalance of the self-inductance occurring for wider than the spacing between spacing UV between and VW between WU feeders compensation Has been.
Moreover, it turns out that the phase of a primary side phase current and a secondary side phase voltage corresponds from FIG. 7, and can confirm the three-phase electric power feeding with which the balance between each phase was taken from FIG.7 and FIG.8. FIG. 8 shows that the power factor of each phase is approximately 1. The power factor on the secondary side is somewhat reduced due to the inductance of the load resistance. The power factor on the primary side can be further improved by adjusting the value of the primary side series capacitor C S1 .

また、図9は、給電効率ηと負荷抵抗RLとの関係を示している。ここで、点線で示す給電効率ηは、次式(数4)により求めた理論値である。
黒点で示す実験値の一つは給電効率ηが82.1%と狙い通り最大効率に近く、RL=21.4Ωのときに得られている。
この実験により、本発明方式を用いれば理論通りの特性が得られることが確認できた。
FIG. 9 shows the relationship between the power supply efficiency η and the load resistance R L. Here, the feeding efficiency η indicated by the dotted line is a theoretical value obtained by the following equation (Equation 4).
One of the experimental values indicated by black dots is obtained when the power supply efficiency η is 82.1%, which is close to the maximum efficiency as intended, and R L = 21.4Ω.
From this experiment, it was confirmed that the theoretical characteristics could be obtained by using the method of the present invention.

このように、SP方式を採る非接触給電装置では、平面上に配置する三本の給電線に挿入する直列コンデンサCSiの中で、中央のV相給電線に挿入するコンデンサCSVの値を他のコンデンサCSU、CSWよりも大きい値に設定することにより、一次側の各相のバランスを取ることができる。そして、二次側の各相の受電部を、相互間の磁気結合が生じないように配置し、各受電部に設ける並列コンデンサCPiを二次側コイルと共振するように設定することで、移動体への安定した三相給電が可能になる。
なお、一次側である給電線はU相、V相、W相とも1本、即ち、1ターンとして説明してきたが、各相をn1ターン(n1>1)とすることも可能である。この場合は、一次と二次の巻数比aをa=n1/nとし、図5の等価回路の定数を修正し、(数2)でnを(n/n1)に変更するだけで良い。
As described above, in the non-contact power feeding device adopting the SP system, the value of the capacitor C SV inserted into the central V-phase power feeding line among the series capacitors C Si inserted into the three power feeding lines arranged on the plane is set. By setting a value larger than that of the other capacitors C SU and C SW , each phase on the primary side can be balanced. Then, by arranging the power receiving units of each phase on the secondary side so as not to cause magnetic coupling between them, and setting the parallel capacitor C Pi provided in each power receiving unit so as to resonate with the secondary coil, Stable three-phase power feeding to a moving body is possible.
In addition, although the feed line on the primary side has been described as one for the U phase, the V phase, and the W phase, that is, one turn, it is also possible to make each phase n 1 turns (n 1 > 1). . In this case, the primary and secondary turns ratio a is set to a = n 1 / n, the constant of the equivalent circuit in FIG. 5 is corrected, and n is changed to (n / n 1 ) in (Equation 2). good.

(第2の実施形態)
本発明の第2の実施形態では、第1の実施形態と異なる構造の移動体受電部について説明する。
図10(a)は、この移動体受電部40と三本の給電線24、25、26とを備える非接触給電装置を模式的に示している。図10(b)は、移動体受電部40を拡大して示す斜視図である。また、図11(a)は、移動体受電部40の平面図であり、図11(b)は、縦方向(給電線延伸方向)から見た側面図であり、図11(c)は、横方向から見た側面図である。
この移動体受電部40は、U相、V相、W相に対応する三個の受電部41、42、43から成り、各受電部41、42、43は、給電線延伸方向と直交する方向に一列に整列している。
(Second Embodiment)
In the second embodiment of the present invention, a mobile power receiving unit having a structure different from that of the first embodiment will be described.
FIG. 10A schematically shows a non-contact power feeding device including the moving body power receiving unit 40 and the three power feeding lines 24, 25, and 26. FIG. 10B is an enlarged perspective view showing the mobile body power receiving unit 40. FIG. 11A is a plan view of the mobile body power receiving unit 40, FIG. 11B is a side view seen from the vertical direction (feeding line extending direction), and FIG. It is the side view seen from the horizontal direction.
The mobile body power receiving unit 40 includes three power receiving units 41, 42, and 43 corresponding to the U phase, the V phase, and the W phase, and each of the power receiving units 41, 42, and 43 is a direction orthogonal to the feed line extending direction. Are aligned in a row.

各受電部41、42、43の構造は同一である。そのため、受電部42の構造について詳しく説明する。
図11(a)(b)(c)に示すように、受電部42は、給電線25を跨ぐように成形された断面コ字状のフェライトコア421と、このフェライトコアの壁にリッツ線を巻回して形成された二次側コイル422と、電磁遮蔽用の導体板423とを有している。
導体板423は、フェライトコア421と同様に断面形状が略コ字状であり、二次側コイル422が巻回されたフェライトコア421の外周を囲む大きさを有している。給電線延伸方向の導体板423の長さAは、フェライトコア421の長さBよりも長く、フェライトコア421の給電線延伸方向の各端部は、導体板423の対応する端部から等距離だけ引っ込んでいる。また、図11(b)に示すように、フェライトコア421の下方の端部も導体板423により覆われている。
The structures of the power receiving units 41, 42, and 43 are the same. Therefore, the structure of the power receiving unit 42 will be described in detail.
As shown in FIGS. 11A, 11B, and 11C, the power receiving unit 42 includes a ferrite core 421 having a U-shaped cross section formed so as to straddle the feeder line 25, and a litz wire on the wall of the ferrite core. It has a secondary coil 422 formed by winding and a conductor plate 423 for electromagnetic shielding.
The conductor plate 423 has a substantially U-shaped cross section like the ferrite core 421 and has a size surrounding the outer periphery of the ferrite core 421 around which the secondary coil 422 is wound. The length A of the conductor plate 423 in the feed line extending direction is longer than the length B of the ferrite core 421, and each end of the ferrite core 421 in the feed line extending direction is equidistant from the corresponding end of the conductor plate 423. Just retracted. Further, as shown in FIG. 11B, the lower end portion of the ferrite core 421 is also covered with the conductor plate 423.

導体板423は、フェライトコア421に直接接触しておらず、導体板423とフェライトコア421との間には、電気絶縁体が介在している。
また、導体板423は、隣接する受電部41、43の導体板にも直接接触しておらず、各相の受電部41、42、43の導体板は、相互に電気的に絶縁されている。
フェライトコア421に交流磁界が流れると、導体板423表面に渦電流が発生するが、この受電部42では、電気絶縁体を介在させて導体板423とフェライトコア421との距離を離し、導体板423表面に発生する渦電流を減らしている。また、導体板423に発生した渦電流は、この導体板423と絶縁されている他の受電部41、43の導体板には流れない。
そのため、この導体板の存在により、各相の受電部41、42、43間の磁気結合が防止できる。
この移動体受電部40は、第1の実施形態の移動体受電部30に比べて小型に構成することができ、移動体への取り付けが容易である。
The conductor plate 423 is not in direct contact with the ferrite core 421, and an electrical insulator is interposed between the conductor plate 423 and the ferrite core 421.
In addition, the conductor plate 423 is not in direct contact with the conductor plates of the adjacent power receiving units 41 and 43, and the conductor plates of the power receiving units 41, 42, and 43 of each phase are electrically insulated from each other. .
When an AC magnetic field flows through the ferrite core 421, an eddy current is generated on the surface of the conductor plate 423. In the power receiving unit 42, the conductor plate 423 and the ferrite core 421 are separated from each other by interposing an electrical insulator. The eddy current generated on the surface of 423 is reduced. Further, the eddy current generated in the conductor plate 423 does not flow through the conductor plates of the other power receiving units 41 and 43 that are insulated from the conductor plate 423.
Therefore, the magnetic coupling between the power receiving units 41, 42, and 43 of each phase can be prevented by the presence of the conductor plate.
The mobile body power receiving unit 40 can be configured smaller than the mobile body power receiving unit 30 of the first embodiment, and can be easily attached to the mobile body.

本発明の非接触給電装置は、移動体への安定した三相給電が可能であり、半導体工場内の搬送車や、自動車工場内の搬送車など、各種分野の移動体への給電に利用することができる。   The non-contact power feeding device of the present invention is capable of stable three-phase power feeding to a moving body, and is used for feeding power to a moving body in various fields such as a transportation vehicle in a semiconductor factory and a transportation vehicle in an automobile factory. be able to.

10 商用電源
11 三相インバータ
21 直列コンデンサ
22 直列コンデンサ
23 直列コンデンサ
24 給電線
25 給電線
26 給電線
30 移動体受電部
31 受電部
32 受電部
33 受電部
40 移動体受電部
41 受電部
42 受電部
43 受電部
60 給電線
61 受電部
62 コンデンサ
63 インバータ
64 商用電源
100 高周波電源
110 三相インバータ
120 同調フィルタ
200 給電線
300 移動体
310 受電部
311 フェライトコア
312 二次側コイル
313 並列コンデンサ
314 抵抗
321 フェライトコア
322 二次側コイル
323 並列コンデンサ
324 抵抗
331 フェライトコア
332 二次側コイル
333 並列コンデンサ
334 抵抗
421 フェライトコア
422 二次側コイル
423 導体板
610 二次側巻線
611 フェライトコア
DESCRIPTION OF SYMBOLS 10 Commercial power supply 11 Three-phase inverter 21 Series capacitor 22 Series capacitor 23 Series capacitor 24 Feed line 25 Feed line 26 Feed line 30 Mobile power receiving part 31 Power receiving part 32 Power receiving part 33 Power receiving part 40 Mobile power receiving part 41 Power receiving part 42 Power receiving part 43 Power receiving unit 60 Power supply line 61 Power receiving unit 62 Capacitor 63 Inverter 64 Commercial power supply 100 High frequency power supply 110 Three-phase inverter 120 Tuning filter 200 Power supply line 300 Moving body 310 Power receiving unit 311 Ferrite core 312 Secondary coil 313 Parallel capacitor 314 Resistance 321 Ferrite Core 322 Secondary coil 323 Parallel capacitor 324 Resistance 331 Ferrite core 332 Secondary coil 333 Parallel capacitor 334 Resistance 421 Ferrite core 422 Secondary coil 423 Conductor plate 10 secondary winding 611 ferrite core

Claims (9)

移動体の走行路に沿って略同一平面上に互に平行に配置されたU相、V相、W相の三本の給電線と、前記給電線のそれぞれにU相、V相、W相の三相交流を出力する三相交流電源と、前記移動体に設けた三個のコアのそれぞれに巻回されたU相、V相、W相の三個のコイルと、を備え、前記三本の給電線を一次側とし、前記三個のコイルを二次側として、電磁誘導により一次側から二次側に給電する非接触給電装置であって、
二次側の前記U相、V相、W相のコイルには、それぞれ並列コンデンサCPU、CPV、CPWが接続され、
一次側の前記三本の給電線は、一方で前記三相交流電源に接続され、前記三相交流電源と反対側の他方で三本が短絡され、
前記三相交流電源と前記三本の給電線との間には、各相に直列コンデンサCSU、CSV、CSWが挿入され、前記三本の給電線の中で中央にあるV相給電線と前記三相交流電源との間に挿入されるコンデンサCSVの値が、他のコンデンサCSU、CSWの値より大きい値に設定されていることを特徴とする非接触給電装置。
Three feed lines of U-phase, V-phase, and W-phase arranged in parallel with each other on substantially the same plane along the traveling path of the moving body, and U-phase, V-phase, and W-phase for each of the feed lines A three-phase alternating current power source that outputs three-phase alternating current, and three coils of U-phase, V-phase, and W-phase wound around each of three cores provided in the movable body, A non-contact power feeding device that feeds power from the primary side to the secondary side by electromagnetic induction, with the three feeding lines as the primary side and the three coils as the secondary side,
Parallel capacitors C PU , C PV , C PW are connected to the U-phase, V-phase, and W-phase coils on the secondary side, respectively.
The three feeders on the primary side are connected to the three-phase AC power source on the one hand, and the three are short-circuited on the other side opposite to the three-phase AC power source,
Series capacitors C SU , C SV , C SW are inserted in each phase between the three-phase AC power source and the three power supply lines, and the V-phase supply at the center of the three power supply lines is inserted. A non-contact power feeding device, wherein a value of a capacitor C SV inserted between an electric wire and the three-phase AC power supply is set to a value larger than values of other capacitors C SU and C SW .
請求項1に記載の非接触給電装置であって、前記三個のコアのそれぞれの位置を、前記給電線が延びる給電線延伸方向にずらし、給電線延伸方向の座標上で各コアの存在する範囲が相互に重ならないように配置したことを特徴とする非接触給電装置。   2. The contactless power supply device according to claim 1, wherein each of the three cores is shifted in a power supply line extending direction in which the power supply line extends, and each core exists on a coordinate in the power supply line extending direction. A non-contact power feeding device, wherein the ranges are arranged so as not to overlap each other. 請求項1に記載の非接触給電装置であって、前記三個のコアのそれぞれの外周に電磁遮蔽のための導体板を配置し、前記導体板の給電線延伸方向における長さを、前記コアの同方向の長さより長くしたことを特徴とする非接触給電装置。   The contactless power supply device according to claim 1, wherein a conductor plate for electromagnetic shielding is arranged on each outer periphery of the three cores, and the length of the conductor plate in the direction of extending the power supply line is set to the core. The non-contact electric power feeder characterized by making it longer than the length of the same direction. 請求項3に記載の非接触給電装置であって、前記コアと、当該コアを囲む前記導体板の内面との間に電気絶縁体を介在させたことを特徴とする非接触給電装置。   The contactless power supply device according to claim 3, wherein an electrical insulator is interposed between the core and an inner surface of the conductor plate surrounding the core. 請求項4に記載の非接触給電装置であって、前記三個のコアのそれぞれの外周に配置した前記導体板を、互いに電気的に絶縁したことを特徴とする非接触給電装置。   5. The non-contact power feeding device according to claim 4, wherein the conductor plates disposed on the outer circumferences of the three cores are electrically insulated from each other. 請求項1から5のいずれかに記載の非接触給電装置であって、前記並列コンデンサCPi(i=U,V,W)の値が、二次側の前記コイルの自己インダクタンスをL2i(i=U,V,W)とし、前記三相交流電源の周波数をf0(角周波数ω0=2πf0)とするとき、
1/(ω0Pi)=ω02i (数1)
を満たすように設定されていることを特徴とする非接触給電装置。
6. The contactless power supply device according to claim 1, wherein a value of the parallel capacitor C Pi (i = U, V, W) indicates a self-inductance of the secondary coil as L 2i ( i = U, V, W), and the frequency of the three-phase AC power supply is f 0 (angular frequency ω 0 = 2πf 0 ),
1 / (ω 0 C Pi ) = ω 0 L 2i ( Equation 1)
The non-contact electric power feeder characterized by setting so that it may satisfy | fill.
請求項6に記載の非接触給電装置であって、前記直列コンデンサCSi(i=U,V,W)の値は、二次側の前記コイルの各々に並列コンデンサCPi(i=U,V,W)と同じ値の負荷抵抗RLを接続した時、前記三相交流電源のUV出力、VW出力、WU出力から見た直列コンデンサCSi、二次側の前記コイル、並列コンデンサCPi及び負荷抵抗RL側のインピーダンスが、リアクタンス分を含まずに純抵抗になるように設定されていることを特徴とする非接触給電装置。 7. The non-contact power feeding apparatus according to claim 6, wherein the value of the series capacitor C Si (i = U, V, W) is set so that each of the coils on the secondary side has a parallel capacitor C Pi (i = U, When a load resistance RL having the same value as V, W) is connected, the series capacitor C Si viewed from the UV output, VW output, and WU output of the three-phase AC power supply, the secondary side coil, and the parallel capacitor C Pi And the impedance on the load resistance R L side is set so as to be a pure resistance without including a reactance component. 請求項6に記載の非接触給電装置であって、二つの前記直列コンデンサCSi、CSj(i=U,V,W、j=U,V,W、i≠j)及び二本の前記給電線を含む前記三相交流電源のUV間、VW間またはWU間の回路での前記二つの直列コンデンサの合成容量をCSij、一方の給電線の漏れインダクタンスをl1i、他方の給電線の漏れインダクタンスをl1j、一方の給電線とそれを跨ぐコアに巻回された二次コイルとの間の相互インダクタンスをMi、他方の給電線とそれを跨ぐコアに巻回された二次コイルとの間の相互インダクタンスをMj、二次側の各コイルの巻数をn、一方の二次側コイルの漏れインダクタンスをl2i、他方の二次側コイルの漏れインダクタンスをl2jとするとき、
からCSijを求め、
の連立方程式を解いて、CSi(i=U,V,W)の値が設定されていることを特徴とする非接触給電装置。
The contactless power supply device according to claim 6, wherein the two series capacitors C Si , C Sj (i = U, V, W, j = U, V, W, i ≠ j) and the two capacitors C Sij is the combined capacitance of the two series capacitors in the circuit between UV, VW, or WU of the three-phase AC power source including the power supply line, the leakage inductance of one power supply line is l 1i , and the other power supply line The leakage inductance is l 1j , the mutual inductance between one power supply line and the secondary coil wound around the core straddling it is M i , and the other power supply line and the secondary coil wound around the core straddling it M j , the number of turns of each secondary coil is n, the leakage inductance of one secondary coil is l 2i , and the leakage inductance of the other secondary coil is l 2j .
C Sij from
A non-contact power feeding device characterized in that the value of C Si (i = U, V, W) is set by solving the simultaneous equations.
請求項1から8に記載の非接触給電装置であって、二次側の各コイルのU相、V相、W相出力がY結線され、さらに三相整流器で整流されて直流が出力されることを特徴とする非接触給電装置。   9. The contactless power supply device according to claim 1, wherein the U-phase, V-phase, and W-phase outputs of the secondary coils are Y-connected, and further rectified by a three-phase rectifier to output a direct current. The non-contact electric power feeder characterized by the above-mentioned.
JP2010029593A 2010-02-14 2010-02-14 Non-contact power feeding device Expired - Fee Related JP5462019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010029593A JP5462019B2 (en) 2010-02-14 2010-02-14 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029593A JP5462019B2 (en) 2010-02-14 2010-02-14 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2011167020A JP2011167020A (en) 2011-08-25
JP5462019B2 true JP5462019B2 (en) 2014-04-02

Family

ID=44597005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029593A Expired - Fee Related JP5462019B2 (en) 2010-02-14 2010-02-14 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP5462019B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2854146B1 (en) * 2012-05-21 2017-01-18 Technova Inc. Non-contact power supply transformer
WO2013183106A1 (en) * 2012-06-04 2013-12-12 トヨタ自動車株式会社 Power reception device, power transmission device, and vehicle
JP6383086B2 (en) * 2015-02-25 2018-08-29 株式会社東芝 Inductor unit and electric vehicle
WO2017026136A1 (en) * 2015-08-10 2017-02-16 スミダコーポレーション株式会社 Electric-field coupling-type contactless power feed system
JP7359564B2 (en) * 2019-04-12 2023-10-11 東海旅客鉄道株式会社 power supply device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227003A (en) * 1993-12-15 1995-08-22 Fuji Electric Co Ltd Non-contacting power feeding device for traveling object
JP4770052B2 (en) * 2001-04-18 2011-09-07 シンフォニアテクノロジー株式会社 Non-contact power feeding device
JP2003087902A (en) * 2001-09-13 2003-03-20 Ishikawajima Harima Heavy Ind Co Ltd Inductive feeding device and truck mounting the same thereon
JP2010035300A (en) * 2008-07-28 2010-02-12 Showa Aircraft Ind Co Ltd Non-contact power supply apparatus

Also Published As

Publication number Publication date
JP2011167020A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP6371364B2 (en) Non-contact power supply device
US9923388B2 (en) Wireless power transmitter
JP5405694B1 (en) Power transmission device, electronic device and wireless power transmission system
WO2012108432A1 (en) Contactless electrical-power-supplying device
JP2015534422A (en) Non-contact power transmission system
JP5462019B2 (en) Non-contact power feeding device
JP6667163B2 (en) Power transmission device, vehicle equipped with power transmission device, and wireless power transmission system
JP5490385B2 (en) Non-contact power feeding device
JP6551853B2 (en) Power transmission device, vehicle equipped with power transmission device and wireless power transmission system
Al-Saadi et al. Comparison of spiral and square coil configurations in wireless power transfer system for contactless battery charging
KR101393580B1 (en) Wireless Power Transfer System Insensitive to Relative Positions between Transmission-side Coil and Collector-side Coil
JP5384195B2 (en) Non-contact power supply device
US11764613B2 (en) Wireless power transfer pad with multiple windings and magnetic pathway between windings
JP5972297B2 (en) Non-contact power transmission equipment
US10491043B2 (en) Resonant coil, wireless power transmitter using the same, wireless power receiver using the same
KR20170028900A (en) Device for inductively charging an electrical storage unit
US11017941B2 (en) Isolation transformer with low unwanted resonances, energy transfer device having an isolation transformer and energy transfer device for wireless transfer of energy having an isolation transformer
US9991749B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
US11303153B2 (en) Wireless charging pad and wireless charging apparatus
KR20200052034A (en) Wireless charging pad and wireless charging apparatus
Zahedi et al. Comparative study of self-compensated coil geometries for wireless power transfer system
US9935500B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
KR20130068646A (en) Apparatus for transmitting wireless power and system for transmitting wireless power
JP2016164975A (en) Coil unit, wireless power supply device, wireless power reception device and wireless power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Ref document number: 5462019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees