JP5460980B2 - Process for producing transition metal phosphate - Google Patents

Process for producing transition metal phosphate Download PDF

Info

Publication number
JP5460980B2
JP5460980B2 JP2008179607A JP2008179607A JP5460980B2 JP 5460980 B2 JP5460980 B2 JP 5460980B2 JP 2008179607 A JP2008179607 A JP 2008179607A JP 2008179607 A JP2008179607 A JP 2008179607A JP 5460980 B2 JP5460980 B2 JP 5460980B2
Authority
JP
Japan
Prior art keywords
transition metal
compound
metal phosphate
aqueous solution
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008179607A
Other languages
Japanese (ja)
Other versions
JP2010018473A (en
Inventor
舞子 坂井
裕一郎 今成
武継 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008179607A priority Critical patent/JP5460980B2/en
Priority to US13/003,280 priority patent/US8795889B2/en
Priority to EP09794540A priority patent/EP2301890A4/en
Priority to PCT/JP2009/062648 priority patent/WO2010005097A1/en
Priority to CN2009801267229A priority patent/CN102089239A/en
Priority to KR1020117000386A priority patent/KR20110036807A/en
Publication of JP2010018473A publication Critical patent/JP2010018473A/en
Application granted granted Critical
Publication of JP5460980B2 publication Critical patent/JP5460980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ナトリウムイオンをドープかつ脱ドープ可能な遷移金属リン酸塩の製造方法に関する。詳しくは、ナトリウム二次電池用活物質として有用な遷移金属リン酸塩の製造方法に関するものである。   The present invention relates to a method for producing a transition metal phosphate that can be doped and dedoped with sodium ions. In detail, it is related with the manufacturing method of the transition metal phosphate useful as an active material for sodium secondary batteries.

携帯電話やノートパソコンなどの小型電源として、非水電解質二次電池、中でもリチウム二次電池が実用化され広く用いられている。また、電気自動車用や分散型電力貯蔵用などの大型電源のための非水電解質二次電池への要求が増大しつつある。   Non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, have been put into practical use and widely used as small power sources for mobile phones and notebook computers. In addition, there is an increasing demand for non-aqueous electrolyte secondary batteries for large power sources such as electric vehicles and distributed power storage.

しかしながら、リチウム二次電池で使用されているリチウムは、資源的に豊富とは言えず、将来的には、リチウム資源の枯渇が懸念される。一方、同じアルカリ金属に属するナトリウムは、リチウムに比べて資源的にも豊富に存在し、リチウムより1桁安価である。また、ナトリウムは標準電位も比較的高いことから、ナトリウム二次電池は高容量な二次電池になり得ると考えられている。ここで、ナトリウム二次電池としては、正極にナトリウムを含有する正極活物質を用い、かつ負極には金属ナトリウムまたはナトリウム合金を用いる二次電池や、正極にナトリウムを含有する正極活物質を用い、かつ負極に炭素材料等を用いる二次電池などが挙げられる。現行のリチウム二次電池の代わりに、ナトリウム二次電池を使用することができれば、資源枯渇の心配をすることなくして、例えば、車載用二次電池や分散型電力貯蔵用二次電池などの大型二次電池を大量に生産することが可能となる。   However, the lithium used in the lithium secondary battery cannot be said to be abundant in terms of resources, and there is a concern about the depletion of lithium resources in the future. On the other hand, sodium belonging to the same alkali metal is present in abundant resources as compared with lithium, and is one digit cheaper than lithium. Moreover, since sodium has a relatively high standard potential, it is considered that a sodium secondary battery can be a high-capacity secondary battery. Here, as a sodium secondary battery, a positive electrode active material containing sodium is used for the positive electrode, and a secondary battery using metal sodium or a sodium alloy is used for the negative electrode, or a positive electrode active material containing sodium is used for the positive electrode, In addition, a secondary battery using a carbon material or the like for the negative electrode can be used. If a sodium secondary battery can be used instead of the current lithium secondary battery, there is no need to worry about resource depletion. For example, a large battery such as an in-vehicle secondary battery or a distributed power storage secondary battery can be used. Secondary batteries can be produced in large quantities.

ところで、ナトリウム二次電池の正極に用いられる正極活物質としては、例えば、特許文献1には、原料を混合してアルゴン雰囲気中で、750℃で8時間焼成してリン酸鉄ナトリウムを得て、これを正極活物質として用いることが開示されている。   By the way, as a positive electrode active material used for the positive electrode of a sodium secondary battery, for example, in Patent Document 1, a raw material is mixed and fired at 750 ° C. for 8 hours in an argon atmosphere to obtain sodium iron phosphate. , It is disclosed that this is used as a positive electrode active material.

特表2004−533706号公報Special table 2004-533706 gazette

しかしながら、一般に遷移金属リン酸塩は導電性が乏しいにも関わらず、前記特許文献1で開示されているように、従来技術では、高温、長時間の熱処理が必要であるため一次粒子が大きく成長してしまい、その結果、得られる遷移金属リン酸塩の導電性は一層低下する。また、結晶純度の高い遷移金属リン酸塩が得られ難く、高容量を実現できる二次電池用正極活物質として好適に用いることが困難である。さらに、焼成雰囲気もアルゴンや窒素のような不活性雰囲気中に制限されているため、簡便な合成ができない。   However, in general, although transition metal phosphates have poor conductivity, as disclosed in Patent Document 1, the conventional technique requires heat treatment for a long time at a high temperature, so primary particles grow greatly. As a result, the conductivity of the resulting transition metal phosphate is further reduced. Moreover, it is difficult to obtain a transition metal phosphate having a high crystal purity, and it is difficult to suitably use it as a positive electrode active material for a secondary battery capable of realizing a high capacity. Furthermore, since the firing atmosphere is limited to an inert atmosphere such as argon or nitrogen, a simple synthesis cannot be performed.

このような状況下、本発明の目的は、ナトリウム二次電池用活物質、特に正極活物質として好適な遷移金属リン酸塩を、簡便でかつ安価に製造することができる遷移金属リン酸塩の製造方法を提供することにある。   Under such circumstances, an object of the present invention is to provide a transition metal phosphate that can be easily and inexpensively produced a transition metal phosphate suitable as an active material for a sodium secondary battery, particularly a positive electrode active material. It is to provide a manufacturing method.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、上記目的に合致する製造方法を見出し、本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a production method that meets the above-mentioned purpose and have reached the present invention.

すなわち本発明は、次の製造方法に係るものである。
<1> 次の工程を含む遷移金属リン酸塩の製造方法。
(1)P源、Na源、M源(ただし、Mは1種以上の遷移金属元素である。)および水を接触させて液状物を得る工程
(2)前記液状物から水を分離して、遷移金属リン酸塩を得る工程
<2> 前記工程(1)が、PおよびNaを含有する水溶液と、M化合物またはM化合物を含有する水溶液とを接触させて液状物を得る工程である前記<1>記載の遷移金属リン酸塩の製造方法。
<3> 前記工程(1)が、NaおよびMを含有する水溶液と、Pを含有する水溶液とを接触させて液状物を得る工程である前記<1>記載の遷移金属リン酸塩の製造方法。
<4> 前記Mが、2価の遷移金属元素を含有する前記<1>から<3>のいずれかに記載の遷移金属リン酸塩の製造方法。
<5> 前記Mが、少なくともFeまたはMnを含有する前記<1>から<4>のいずれかに記載の遷移金属リン酸塩の製造方法。
<6> 前記工程(2)が、水を蒸発させる工程を含む前記<1>記載の遷移金属リン酸塩の製造方法。
<7> 前記水の蒸発が、加熱による前記<6>記載の遷移金属リン酸塩の製造方法。
That is, the present invention relates to the following manufacturing method.
<1> A method for producing a transition metal phosphate including the following steps.
(1) Step of obtaining a liquid material by contacting P source, Na source, M source (where M is one or more transition metal elements) and water (2) separating water from the liquid material Step 2 for obtaining a transition metal phosphate The step (1) is a step in which an aqueous solution containing P and Na is brought into contact with an aqueous solution containing an M compound or an M compound to obtain a liquid material. The manufacturing method of the transition metal phosphate of <1> description.
<3> The method for producing a transition metal phosphate according to <1>, wherein the step (1) is a step of obtaining a liquid by bringing an aqueous solution containing Na and M into contact with an aqueous solution containing P. .
<4> The method for producing a transition metal phosphate according to any one of <1> to <3>, wherein M contains a divalent transition metal element.
<5> The method for producing a transition metal phosphate according to any one of <1> to <4>, wherein M contains at least Fe or Mn.
<6> The method for producing a transition metal phosphate according to <1>, wherein the step (2) includes a step of evaporating water.
<7> The method for producing a transition metal phosphate according to <6>, wherein the water is evaporated by heating.

本発明の製造方法によれば、ナトリウム二次電池用活物質として好適な遷移金属リン酸塩を、従来技術のような高温、長時間での焼成を必要とせず、しかも不活性雰囲気も必要とすることなくして、簡便かつ安価に製造することができるため、本発明は、工業的に極めて有用である。   According to the production method of the present invention, a transition metal phosphate suitable as an active material for a sodium secondary battery does not require firing at a high temperature for a long time as in the prior art, and also requires an inert atmosphere. Therefore, the present invention is extremely useful industrially because it can be produced easily and inexpensively.

以下、本発明につき詳細に説明する。
まず、本発明の製造方法は、次の工程を含む遷移金属リン酸塩の製造方法に係るものである。
(1)P源、Na源、M源(ただし、Mは1種以上の遷移金属元素である。)および水を接触させて液状物を得る工程
(2)前記液状物から水を分離して、遷移金属リン酸塩を得る工程
Hereinafter, the present invention will be described in detail.
First, the manufacturing method of this invention concerns on the manufacturing method of the transition metal phosphate containing the following process.
(1) Step of obtaining a liquid material by contacting P source, Na source, M source (where M is one or more transition metal elements) and water (2) separating water from the liquid material , Obtaining a transition metal phosphate

即ち、本発明は、まず、(1)少なくとも、P源、Na源、M源および水を接触させて液状物を得る工程、次に、(2)前記液状物から水を分離して、遷移金属リン酸塩を得る工程を含むものである。
なお、本発明において、P源、Na源、M源のそれぞれとしては、P化合物、Na化合物、M化合物を用いてもよいし、P、Na、Mの単体を用いてもよい。また、本発明において、液状物とは溶質が完全に溶解した水溶液であってもよいし、該溶解後に析出した固形分を含む固液混合物であってもよい。
That is, in the present invention, first, (1) at least a P source, a Na source, an M source and water are brought into contact with each other to obtain a liquid material, and then (2) water is separated from the liquid material to make transition. It includes a step of obtaining a metal phosphate.
In the present invention, as each of the P source, the Na source, and the M source, a P compound, a Na compound, and an M compound may be used, or a simple substance of P, Na, and M may be used. In the present invention, the liquid substance may be an aqueous solution in which a solute is completely dissolved, or a solid-liquid mixture containing a solid content precipitated after the dissolution.

前記工程(1)のP源、Na源、M源および水を接触させて液状物を得る工程について説明する。
本工程では、例えば、P化合物、Na化合物、M化合物および水を接触させることにより、液状物を得る。この場合、P化合物、Na化合物の代わりに、PとNaとを含有する複合化合物を使用してもよいし、P化合物、M化合物の代わりにPとMとを含有する複合酸化物を使用してもよいし、Na化合物、M化合物の代わりにNaとMとを含有する複合酸化物を使用してもよい。PおよびNaを含有する複合酸化物としてNaH2PO4、Na2HPO4、Na3PO4等を挙げることができるし、MおよびPを含有する化合物として、Mのリン酸塩(例えば、リン酸鉄、リン酸マンガン等)を挙げることもできる。これらの複合酸化物の中で、特にNaH2PO4が有用である。
The process of obtaining a liquid substance by contacting the P source, Na source, M source and water in the step (1) will be described.
In this step, for example, a liquid material is obtained by bringing a P compound, a Na compound, an M compound and water into contact with each other. In this case, a composite compound containing P and Na may be used instead of the P compound and Na compound, or a composite oxide containing P and M may be used instead of the P compound and M compound. Alternatively, a complex oxide containing Na and M may be used instead of the Na compound and the M compound. As complex oxides containing P and Na, NaH 2 PO 4 , Na 2 HPO 4 , Na 3 PO 4 and the like can be mentioned. As compounds containing M and P, phosphates of M (for example, phosphorus And iron oxide, manganese phosphate, etc.). Among these complex oxides, NaH 2 PO 4 is particularly useful.

P源としては、通常、P化合物を使用されるが、赤リン、黒リンなどのPの単体を使用することもできる。前記P化合物としては、Pを含有する化合物であれば特に限定されることは無く、例えば、P25、P46などの酸化物、PCl5、PF5、PBr5、PI5などのハロゲン化物、POF3、POCl3、POF3などのオキシハロゲン化物、(NH4)2HPO4、(NH4)H2PO4などのアンモニウム塩、H3PO4などのリン酸などが挙げられる。工程(1)において、Na源および/またはM源との反応性が向上する点で、P化合物は水に溶解して得られる水溶液(以下、「P化合物水溶液」と呼ぶこともある。)として使用されることが好ましい。
例えば、Pのアンモニウム塩などを用いる場合には、該アンモニウム塩を水に溶解させて、P化合物水溶液を製造すればよい。P化合物が水に溶解し難い場合、例えば、酸化物などの場合は、塩酸、硫酸、硝酸、酢酸をはじめとする有機酸などの酸性水溶液にP化合物を溶解させて、P化合物水溶液を製造すればよい。また、上述の水溶性化合物、溶解が困難な化合物のうち、2種以上を併用してもよい。工程(1)において、簡便な方法でP化合物水溶液が得られる観点で、P化合物は、(NH4)2HPO4および/または(NH4)H2PO4であることが好ましく、結晶純度の高い遷移金属リン酸塩が得られる点で、(NH4)2HPO4が特に好ましい。
As the P source, a P compound is usually used, but a simple substance of P such as red phosphorus or black phosphorus can also be used. The P compound is not particularly limited as long as it is a compound containing P, and examples thereof include oxides such as P 2 O 5 and P 4 O 6 , PCl 5 , PF 5 , PBr 5 , and PI 5. Halides such as, oxyhalides such as POF 3 , POCl 3 and POF 3 , ammonium salts such as (NH 4 ) 2 HPO 4 and (NH 4 ) H 2 PO 4, and phosphoric acids such as H 3 PO 4 It is done. In the step (1), the P compound is dissolved in water as an aqueous solution (hereinafter also referred to as “P compound aqueous solution”) in that the reactivity with the Na source and / or the M source is improved. It is preferably used.
For example, when an ammonium salt of P is used, the ammonium salt may be dissolved in water to produce a P compound aqueous solution. When the P compound is difficult to dissolve in water, for example, in the case of an oxide, the P compound is dissolved in an acidic aqueous solution such as an organic acid such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, etc. That's fine. Moreover, you may use 2 or more types together among the above-mentioned water-soluble compound and the compound which is difficult to melt | dissolve. In the step (1), from the viewpoint of obtaining a P compound aqueous solution by a simple method, the P compound is preferably (NH 4 ) 2 HPO 4 and / or (NH 4 ) H 2 PO 4 . (NH 4 ) 2 HPO 4 is particularly preferred in that a high transition metal phosphate can be obtained.

Na源としては、通常、Na化合物を使用されるが、Naの単体(金属Na)を使用することもできる。前記Na化合物としては、Naを含有する化合物であれば特に限定されることは無く、例えば、Na2O、Na22などの酸化物、NaOHなどの水酸化物、NaCl、NaFなどのハロゲン化物、NaNO3などの硝酸塩、Na2SO4などの硫酸塩、Na2CO3、NaHCO3などの炭酸塩、Na224などのシュウ酸塩、Na(CH3COO)などの酢酸塩などが挙げられる。工程(1)において、P源および/またはM源との反応性が向上する点で、Na化合物は水に溶解して得られる水溶液(以下、「Na化合物水溶液」と呼ぶこともある。)として使用されることが好ましい。例えば、酸化物、水酸化物、ハロゲン化物などの水溶性化合物を用いる場合には、該化合物を水に溶解させて、Na化合物水溶液を製造すればよい。また、一般的にNa化合物は水に溶解し易いものが多いが、溶解が困難な化合物の場合は、塩酸、硫酸、硝酸、酢酸をはじめとする有機酸などの酸性水溶液に溶解させて、Na化合物水溶液を製造すればよい。また、上述の水溶性化合物、溶解が困難な化合物のうち、2種以上を併用してもよい。工程(1)において、簡便な方法でNa化合物水溶液が得られる観点で、Na化合物は、NaOHおよび/またはNaClであることが好ましく、後述の通り、Na化合物水溶液がアルカリ性であることが好ましい点で、NaOHが特に好ましい。 As the Na source, a Na compound is usually used, but Na simple substance (metal Na) can also be used. The Na compound is not particularly limited as long as it is a compound containing Na. Examples of the Na compound include oxides such as Na 2 O and Na 2 O 2 , hydroxides such as NaOH, and halogens such as NaCl and NaF. , Nitrates such as NaNO 3 , sulfates such as Na 2 SO 4 , carbonates such as Na 2 CO 3 and NaHCO 3 , oxalates such as Na 2 C 2 O 4 , acetic acid such as Na (CH 3 COO) Examples include salt. In the step (1), the Na compound is an aqueous solution obtained by dissolving in water (hereinafter also referred to as “Na compound aqueous solution”) in that the reactivity with the P source and / or the M source is improved. It is preferably used. For example, in the case of using a water-soluble compound such as an oxide, hydroxide, or halide, the compound may be dissolved in water to produce an aqueous Na compound solution. In general, Na compounds are often easily dissolved in water. However, in the case of compounds that are difficult to dissolve, Na compounds can be dissolved in an acidic aqueous solution such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid and other organic acids. What is necessary is just to manufacture compound aqueous solution. Moreover, you may use 2 or more types together among the above-mentioned water-soluble compound and the compound which is difficult to melt | dissolve. In the step (1), from the viewpoint of obtaining an aqueous Na compound solution by a simple method, the Na compound is preferably NaOH and / or NaCl. As described later, the aqueous Na compound solution is preferably alkaline. NaOH is particularly preferred.

M源(ただし、Mは遷移金属元素である。)としては、通常、M化合物を使用されるが、Mの単体(金属M)を使用することもできる。遷移金属元素Mとしては、例えば、TI、V、Cr、Mn、Fe、Co、NIおよびCuなどが挙げられる。本発明の製造方法により得られる遷移金属リン酸塩を正極活物質とした場合に、高容量な二次電池が得られる点で、Mは2価の遷移金属元素であることが好ましい。また、Mが少なくともFeまたはMnを含有することがより好ましく、MがFeおよび/またはMnであることが特に好ましい。   As the M source (where M is a transition metal element), an M compound is usually used, but a simple substance of M (metal M) can also be used. Examples of the transition metal element M include TI, V, Cr, Mn, Fe, Co, NI, and Cu. When the transition metal phosphate obtained by the production method of the present invention is used as a positive electrode active material, M is preferably a divalent transition metal element in that a high-capacity secondary battery can be obtained. Further, it is more preferable that M contains at least Fe or Mn, and it is particularly preferable that M is Fe and / or Mn.

前記M化合物は、Mを含有する化合物であれば特に限定されることは無く、MO、MO2、M23、MO4などの酸化物、M(OH)2、M(OH)3などの水酸化物、MOOHなどのオキシ水酸化物、MF2、MF3、MCl2、MCl3、MI2、MI3などのハロゲン化物、M(NO3)2、M(NO3)3などの硝酸塩、M(SO4)、M2(SO4)3などの硫酸塩、MCO3などの炭酸塩、MC24などのシュウ酸塩、M(CH3COO)2、M(CH3COO)3などの酢酸塩、M(HCOO)2などのギ酸塩、M(C25COO)2などのプロピオン酸塩、M(CH2(COO)2)などのマロン酸塩、M(C24(COO)2)などのコハク酸塩などが挙げられる。
工程(1)において、P源および/またはNa源との反応性が向上する点でM化合物は水に溶解して得られる水溶液(以下、「M化合物水溶液」と呼ぶこともある。)であることが好ましい。例えば、ハロゲン化物、硝酸塩、硫酸塩、シュウ酸塩、酢酸塩などの水溶性化合物を用いる場合には、該化合物を水に溶解させて、M化合物水溶液を製造すればよい。また、M化合物が水に溶解し難い場合、例えば、M化合物が、酸化物、水酸化物、オキシ水酸化物、炭酸塩などの場合は、塩酸、硫酸、硝酸、酢酸をはじめとする有機酸などの酸性水溶液に溶解させて、M化合物水溶液を製造すればよい。また、上述の水溶性化合物、溶解が困難な化合物のうち、2種以上を併用してもよい。工程(1)において、簡便な方法でM化合物水溶液が得られる観点で、M化合物はハロゲン化物であることが好ましく、MCl2が特に好ましい。
The M compound is not particularly limited as long as it is a compound containing M. Oxides such as MO, MO 2 , M 2 O 3 , MO 4 , M (OH) 2 , M (OH) 3, etc. Hydroxides, oxyhydroxides such as MOOH, halides such as MF 2 , MF 3 , MCl 2 , MCl 3 , MI 2 , MI 3 , M (NO 3 ) 2 , M (NO 3 ) 3, etc. Nitrates, sulfates such as M (SO 4 ), M 2 (SO 4 ) 3 , carbonates such as MCO 3 , oxalates such as MC 2 O 4 , M (CH 3 COO) 2 , M (CH 3 COO ) Acetates such as 3 , formates such as M (HCOO) 2 , propionates such as M (C 2 H 5 COO) 2 , malonates such as M (CH 2 (COO) 2 ), M (C Succinate such as 2 H 4 (COO) 2 ).
In the step (1), the M compound is an aqueous solution obtained by dissolving in water (hereinafter also referred to as “M compound aqueous solution”) in that the reactivity with the P source and / or Na source is improved. It is preferable. For example, when a water-soluble compound such as a halide, nitrate, sulfate, oxalate, or acetate is used, the compound may be dissolved in water to produce an aqueous M compound solution. When the M compound is difficult to dissolve in water, for example, when the M compound is an oxide, hydroxide, oxyhydroxide, carbonate, etc., organic acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid An M compound aqueous solution may be produced by dissolving in an acidic aqueous solution such as Moreover, you may use 2 or more types together among the above-mentioned water-soluble compound and the compound which is difficult to melt | dissolve. In the step (1), the M compound is preferably a halide, and MCl 2 is particularly preferable from the viewpoint of obtaining an M compound aqueous solution by a simple method.

なお、工程(1)では、PおよびNaを含有する水溶液と、M化合物を含有する水溶液とを接触させて液状物を得ることができる。PおよびNaを含有する水溶液としては、PおよびNaの単体、前記P化合物および前記Na化合物の中から任意の物質を選択して、水に溶解させ水溶液を製造すればよい。
この場合、PおよびNaを含有する水溶液は、PとNaとを含有する複合化合物と水とを接触させて形成した水溶液であってもよい。
In step (1), an aqueous solution containing P and Na and an aqueous solution containing an M compound can be contacted to obtain a liquid material. As an aqueous solution containing P and Na, an arbitrary substance may be selected from simple substances of P and Na, the P compound and the Na compound, and dissolved in water to produce an aqueous solution.
In this case, the aqueous solution containing P and Na may be an aqueous solution formed by bringing a complex compound containing P and Na into contact with water.

また、工程(1)では、NaおよびMを含有する水溶液と、Pを含有する水溶液とを接触させて液状物を得ることもできる。NaおよびMを含有する水溶液としては、NaおよびMの単体、前記Na化合物および前記M化合物の中から任意の物質を選択して、水に溶解させ水溶液を製造すればよい。
この場合、NaおよびMを含有する水溶液は、NaとMとを含有する複合化合物と水とを接触させて形成した水溶液であってもよい。
In step (1), an aqueous solution containing Na and M and an aqueous solution containing P can be brought into contact with each other to obtain a liquid material. As an aqueous solution containing Na and M, an arbitrary substance may be selected from Na and M alone, the Na compound and the M compound, and dissolved in water to produce an aqueous solution.
In this case, the aqueous solution containing Na and M may be an aqueous solution formed by bringing a complex compound containing Na and M into contact with water.

さらに、工程(1)では、P化合物水溶液とNa化合物水溶液とM化合物水溶液を接触させて液状物を得ることができる。P化合物水溶液、Na化合物水溶液およびM化合物水溶液としては、必要な各化合物を任意に選択して、水に溶解させ各化合物水溶液を製造すればよい。   Furthermore, in the step (1), the P compound aqueous solution, the Na compound aqueous solution and the M compound aqueous solution can be brought into contact with each other to obtain a liquid material. As the P compound aqueous solution, the Na compound aqueous solution, and the M compound aqueous solution, each required compound may be arbitrarily selected and dissolved in water to produce each compound aqueous solution.

上記のように、P化合物、Na化合物、M化合物が均一に反応した液状物が得られる点で、P化合物、Na化合物、M化合物は、それぞれの化合物を含有する水溶液として用いられることが好ましく、特にM化合物は、水溶液として用いられることが好ましい。
また、本発明の目的を損なわない範囲において、前記液状物にはP、Na、Mまたは水以外の成分を含有してもよい。
As described above, the P compound, the Na compound, and the M compound are preferably used as an aqueous solution containing each compound, in that a liquid product obtained by uniformly reacting the P compound, the Na compound, and the M compound is obtained. In particular, the M compound is preferably used as an aqueous solution.
Moreover, in the range which does not impair the objective of this invention, you may contain components other than P, Na, M, or water in the said liquid substance.

以下、工程(1)の具体例として、P化合物にリン酸水素二アンモニウム((NH4)2HPO4)、Na化合物に水酸化ナトリウム(NaOH)、M化合物に塩化鉄(II)四水和物(FeCl2・4H2O)を用いた場合を例に挙げて説明する。
例えば、好ましい組成の一つであるNaFePO4で表されるリン酸鉄ナトリウムは、水酸化ナトリウム、塩化鉄(II)四水和物、リン酸水素二アンモニウムをNa:Fe:Pのモル比が所定比となるように秤量し、次いで、秤量した各化合物を、イオン交換水にて各々完全溶解させてそれぞれの化合物を含有する水溶液を調整し、次いで、リン酸水素二アンモニウム水溶液と水酸化ナトリウム水溶液を接触させて、PおよびNaを含有する混合水溶液を製造する。通常、この時点で該混合水溶液中に固形物は存在し難い。次に、前記混合水溶液と塩化鉄(II)水溶液を接触させて液状物を得る。通常、この時点で該液状物は固形物を含んだ固液混合物となっている。なお、現時点で理由は明らかではないが、前記固液混合物を得る際に不純物相をより減らすために、Na化合物水溶液はアルカリ性であることが好ましい。
As specific examples of the step (1), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) is used as the P compound, sodium hydroxide (NaOH) is used as the Na compound, and iron (II) chloride tetrahydrate is used as the M compound. A case where a product (FeCl 2 .4H 2 O) is used will be described as an example.
For example, sodium iron phosphate represented by NaFePO 4 , which is one of the preferred compositions, includes sodium hydroxide, iron (II) chloride tetrahydrate, and diammonium hydrogen phosphate in a molar ratio of Na: Fe: P. Weigh each compound so that it has a predetermined ratio, and then completely dissolve each weighed compound in ion-exchanged water to prepare an aqueous solution containing each compound. Then, diammonium hydrogenphosphate aqueous solution and sodium hydroxide are prepared. An aqueous solution is contacted to produce a mixed aqueous solution containing P and Na. Usually, at this time, it is difficult for solids to be present in the mixed aqueous solution. Next, the mixed aqueous solution and the iron (II) chloride aqueous solution are contacted to obtain a liquid material. Usually, at this time, the liquid is a solid-liquid mixture containing a solid. In addition, although a reason is not clear at this time, in order to reduce an impurity phase more when obtaining the said solid-liquid mixture, it is preferable that Na compound aqueous solution is alkaline.

各水溶液を接触させる順番は上記に限定されるものではなく、水酸化ナトリウム水溶液と塩化鉄(II)水溶液を接触させて、NaとFeを含有する混合水溶液を得、次いで該混合水溶液にリン酸水素二アンモニウム水溶液を接触させて液状物を得る方法でもよいし、リン酸水素二アンモニウム水溶液と塩化鉄(II)水溶液を接触させて、PとFeを含有する混合水溶液を得、次いで該混合水溶液に水酸化ナトリウム水溶液を接触させて液状物を得る方法でもよい。   The order in which each aqueous solution is contacted is not limited to the above, and a sodium hydroxide aqueous solution and an iron (II) chloride aqueous solution are contacted to obtain a mixed aqueous solution containing Na and Fe, and then the phosphoric acid is added to the mixed aqueous solution. A method of obtaining a liquid by contacting an aqueous solution of diammonium hydrogen may be used, or an aqueous solution of diammonium hydrogenphosphate and an aqueous solution of iron (II) chloride may be contacted to obtain a mixed aqueous solution containing P and Fe, and then the mixed aqueous solution Alternatively, a method may be used in which a sodium hydroxide aqueous solution is brought into contact with each other to obtain a liquid.

前記混合水溶液および/または液状物を得る工程において、任意の方法で攪拌することができる。混合装置としては、スターラーによる攪拌混合、攪拌翼による攪拌混合、V型混合機、W型混合機、リボン混合機、ドラムミキサー、ボールミル等を挙げることができる。   In the step of obtaining the mixed aqueous solution and / or liquid, stirring can be performed by any method. Examples of the mixing apparatus include stirring and mixing with a stirrer, stirring and mixing with a stirring blade, a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, a ball mill, and the like.

本発明の製造方法によって得られる遷移金属リン酸塩は、下記の式(I)で表されることが好ましく、ナトリウム二次電池用正極活物質により好適である。
NaxyPO4 (I)
(ただし、式(I)において、xは0を超え1.5以下の範囲であり、yは0.8以上1.2以下の範囲でありMは1種以上の遷移金属元素である。)
The transition metal phosphate obtained by the production method of the present invention is preferably represented by the following formula (I), and more preferably a positive electrode active material for a sodium secondary battery.
Na x M y PO 4 (I )
(However, in the formula (I), x is in the range of more than 0 and 1.5 or less, y is in the range of 0.8 to 1.2, and M is one or more transition metal elements.)

また、高容量で安価なナトリウム二次電池が得られる点で、式(I)において、Mが少なくともFeまたはMnを含有することが好ましく、MがFeおよび/またはMnであることが特に好ましい。   In addition, in the formula (I), M preferably contains at least Fe or Mn, and M is particularly preferably Fe and / or Mn in that a high-capacity and inexpensive sodium secondary battery can be obtained.

本発明の製造方法によって得られる遷移金属リン酸塩を、正極活物質として用いる場合、上記液状物は、導電性材料を含有することが好ましい。導電性材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラックなどの炭素材料や導電性高分子材料等が挙げられる。液状物に導電性材料を含有させることにより、遷移金属リン酸塩の導電性が飛躍的に向上し、ナトリウム二次電池用正極とした場合の放電容量が高くなる。   When the transition metal phosphate obtained by the production method of the present invention is used as a positive electrode active material, the liquid material preferably contains a conductive material. Examples of the conductive material include carbon materials such as natural graphite, artificial graphite, cokes, and carbon black, and conductive polymer materials. By containing a conductive material in the liquid material, the conductivity of the transition metal phosphate is dramatically improved, and the discharge capacity in the case of a positive electrode for a sodium secondary battery is increased.

また、ナトリウム二次電池用正極とした場合高い放電容量を維持できる範囲で、上記液状物に、Na、P、M以外の元素を含む物質を添加し、遷移金属リン酸塩におけるNa、P、Mの一部を、他元素で置換してもよい。ここで、他元素としては、LI、B、C、N、F、Mg、Al、SI、S、Cl、K、Ca、Sc、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Tc、Ru、Pd、Rh、Ag、In、Sn、I、Ba、Hf、Ta、W、Ir、Ln(ランタノイド)等の元素を挙げることができる。   Moreover, in the range which can maintain a high discharge capacity when setting it as a positive electrode for sodium secondary batteries, the substance containing elements other than Na, P, and M is added to the said liquid substance, Na, P in transition metal phosphate, A part of M may be substituted with another element. Here, as other elements, LI, B, C, N, F, Mg, Al, SI, S, Cl, K, Ca, Sc, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Examples of the element include Mo, Tc, Ru, Pd, Rh, Ag, In, Sn, I, Ba, Hf, Ta, W, Ir, and Ln (lanthanoid).

また、工程(1)では、前記液状物を加熱する工程を含んでもよく、加熱することによって、P源、Na源、M源の反応を促進する効果を得られる場合がある。加熱を行う温度範囲は、40℃以上100℃以下であることが好ましい。なお、前記液状物を攪拌および/または混合しながら加熱すると、加熱による反応促進効果が増すため好ましい。   Further, in the step (1), a step of heating the liquid material may be included, and an effect of promoting the reaction of the P source, the Na source, and the M source may be obtained by heating. It is preferable that the temperature range which heats is 40 degreeC or more and 100 degrees C or less. In addition, it is preferable to heat the liquid while stirring and / or mixing because the reaction promoting effect by heating is increased.

前記液状物を加熱する工程の雰囲気は特に限定されるものではなく、酸素を含有する酸化性雰囲気中や大気雰囲気、窒素やアルゴンなどを含有する不活性雰囲気、水素を含有する還元性雰囲気などが挙げられる。すなわち、酸素と窒素、酸素とアルゴンなどを適宜混合し、酸化性雰囲気の状態を調整することもできるし、水素と窒素、水素とアルゴンなどを適宜混合し、還元性雰囲気の状態を調整することもできるが、簡便な大気雰囲気が通常選択される。   The atmosphere of the step of heating the liquid is not particularly limited, and includes an oxidizing atmosphere containing oxygen or an air atmosphere, an inert atmosphere containing nitrogen or argon, a reducing atmosphere containing hydrogen, or the like. Can be mentioned. That is, oxygen and nitrogen, oxygen and argon can be mixed as appropriate to adjust the state of the oxidizing atmosphere, or hydrogen and nitrogen, hydrogen and argon can be mixed as appropriate, and the state of the reducing atmosphere can be adjusted. However, a simple atmospheric atmosphere is usually selected.

次に、工程(2)について説明する。工程(2)は、工程(1)で得られた液状物から水を分離する工程である。分離方法は特に限定されず、例えば、濾過、遠心分離、水を蒸発させる方法が挙げられる。特に、前記液状物から水を分離する工程において、水を蒸発させる方法を含むことが好ましく、最終的に加熱・減圧・自然乾燥などの方法で水を蒸発させることで、乾燥した遷移金属リン酸塩を得ることができる。特に加熱によって水を蒸発させる方法は、容易に均質な遷移金属リン酸塩を得ることができるため好適である。   Next, process (2) is demonstrated. Step (2) is a step of separating water from the liquid material obtained in step (1). The separation method is not particularly limited, and examples thereof include filtration, centrifugation, and a method of evaporating water. In particular, the step of separating water from the liquid material preferably includes a method of evaporating water, and finally the transition metal phosphoric acid dried by evaporating water by a method such as heating, reduced pressure, or natural drying. A salt can be obtained. In particular, the method of evaporating water by heating is preferable because a homogeneous transition metal phosphate can be easily obtained.

また、上記の水の分離方法を組み合わせてもよい。例えば、前記液状物が、固形分を含む固液混合物である場合は、濾過、遠心分離などによって、液状物から固形分を分離した後に、該固形分から水を蒸発させて乾燥した遷移金属リン酸塩を得ることができる。
なお、上記液状物から水を分離する工程における雰囲気は特に限定されるものではなく、酸素を含有する酸化性雰囲気中や大気雰囲気、窒素やアルゴンなどを含有する不活性雰囲気、水素を含有する還元性雰囲気などの雰囲気条件を任意に選ぶことができる。すなわち、大気雰囲気で簡便に遷移金属リン酸塩を製造することができる。
Moreover, you may combine said water separation method. For example, when the liquid is a solid-liquid mixture containing a solid, the transition metal phosphoric acid is obtained by separating the solid from the liquid by filtration, centrifugation, etc., and then evaporating water from the solid to dry it. A salt can be obtained.
Note that the atmosphere in the step of separating water from the liquid is not particularly limited, and is an oxidizing atmosphere containing oxygen, an air atmosphere, an inert atmosphere containing nitrogen or argon, or a reduction containing hydrogen. The atmospheric conditions such as sex atmosphere can be selected arbitrarily. That is, a transition metal phosphate can be easily produced in an air atmosphere.

以下、液状物からの水の分離に好適である、加熱による蒸発によって液状物から水を除去する工程(以下、加熱工程と呼ぶことがある。)について説明する。
液状物からの水の蒸発速度、得られる遷移金属リン酸塩の化学安定性の観点から、加熱の温度範囲は、50℃以上250℃以下であることが好ましく、より好ましくは80℃以上200℃以下であり、さらに好ましくは90℃以上180℃以下である。また、上記液状物を入れた容器が破損しない範囲で、前記加熱温度まで急速に到達させることもできる。
Hereinafter, a process of removing water from the liquid material by evaporation by heating, which is suitable for separating water from the liquid material (hereinafter sometimes referred to as a heating process) will be described.
From the viewpoint of the evaporation rate of water from the liquid substance and the chemical stability of the resulting transition metal phosphate, the heating temperature range is preferably 50 ° C. or higher and 250 ° C. or lower, more preferably 80 ° C. or higher and 200 ° C. It is below, More preferably, it is 90 to 180 degreeC. Moreover, it can also be made to reach | attain rapidly to the said heating temperature in the range which does not break the container which put the said liquid substance.

また、上記の濾過、遠心分離、水を蒸発させる方法により、液状物から水を分離する工程で得られた、遷移金属リン酸塩を洗浄することもできる。該洗浄に用いる溶媒は水であることが好ましく、より好ましくは純水および/またはイオン交換水である。純水および/またはイオン交換水による水洗後、乾燥させることで水溶性不純物などが除去された遷移金属リン酸塩を得ることができる。該乾燥の好ましい温度範囲は、前記の加熱の温度範囲と同じである。また、乾燥時の雰囲気は特に限定されるものではなく、前述の工程(2)と同様の雰囲気条件を任意に選んで行うこともできるし、減圧雰囲気中で行うこともできる。また、洗浄と乾燥を2回以上繰り返し行ってもよく、乾燥後に焼成を行ってもよい。   In addition, the transition metal phosphate obtained in the step of separating water from the liquid can be washed by the above filtration, centrifugation, and water evaporation methods. The solvent used for the washing is preferably water, more preferably pure water and / or ion exchange water. A transition metal phosphate from which water-soluble impurities and the like have been removed can be obtained by washing with pure water and / or ion-exchanged water and then drying. A preferable temperature range for the drying is the same as the temperature range for the heating. Moreover, the atmosphere at the time of drying is not specifically limited, It can also carry out by selecting arbitrarily the atmospheric conditions similar to the above-mentioned process (2), and can also carry out in a pressure-reduced atmosphere. Further, washing and drying may be repeated twice or more, and baking may be performed after drying.

本発明の製造方法によって得られた遷移金属リン酸塩を正極活物質、例えば、ナトリウム二次電池用正極活物質として用いる場合、得られた遷移金属リン酸塩を、ボールミルや振動ミル、ジェットミル等を用いて粉砕、分級等を行い、粒度を調節することができる。なお、得られた遷移金属リン酸塩と、Na化合物水溶液とを混合して更に加熱してもよいし、得られた遷移金属リン酸塩について、必要に応じて、Na化合物などと混合して600℃〜1200℃の温度で焼成を行うこともできる。焼成時の雰囲気は特に限定されるものではなく、前述の工程(2)と同様の雰囲気条件を任意に選んで行うことができるが、不活性雰囲気中または還元性雰囲気中で焼成することが好ましい。なお、粉砕と焼成を2回以上繰り返し行ってもよく、得られる遷移金属リン酸塩について、必要に応じて洗浄あるいは分級することもできる。   When the transition metal phosphate obtained by the production method of the present invention is used as a positive electrode active material, for example, a positive electrode active material for a sodium secondary battery, the obtained transition metal phosphate can be used as a ball mill, a vibration mill, or a jet mill. Etc. can be pulverized, classified, etc. to adjust the particle size. In addition, the obtained transition metal phosphate and the Na compound aqueous solution may be mixed and further heated, and the obtained transition metal phosphate may be mixed with Na compound or the like as necessary. Firing can also be performed at a temperature of 600 ° C to 1200 ° C. The atmosphere at the time of firing is not particularly limited, and the same atmosphere conditions as in the above step (2) can be arbitrarily selected, but firing in an inert atmosphere or a reducing atmosphere is preferable. . The pulverization and firing may be repeated twice or more, and the obtained transition metal phosphate can be washed or classified as necessary.

さらに、本発明の製造方法によって得られた遷移金属リン酸塩をコア材として、その粒子(コア材)の表面に、さらにB、Al、Mg、Ga、In、SI、Ge、Sn、Nb、Ta、W、Moおよび遷移金属元素から選ばれる1種以上の元素を含有する化合物を被着させるなどの表面処理を施してもよい。上記元素の中でも、B、Al、Mg、Mn、Fe、Co、NI、Nb、Ta、WおよびMoから選ばれる1種以上が好ましく、操作性の観点からAlがより好ましい。化合物としては、例えば上記元素の酸化物、水酸化物、オキシ水酸化物、炭酸塩、硝酸塩、酢酸塩などの有機酸塩またはこれらの混合物が挙げられる。中でも、酸化物、水酸化物、オキシ水酸化物、炭酸塩またはこれらの混合物が好ましい。以上の中でもより好ましくはアルミナである。   Furthermore, with the transition metal phosphate obtained by the production method of the present invention as a core material, on the surface of the particles (core material), B, Al, Mg, Ga, In, SI, Ge, Sn, Nb, Surface treatment such as deposition of a compound containing one or more elements selected from Ta, W, Mo, and transition metal elements may be performed. Among the above elements, one or more selected from B, Al, Mg, Mn, Fe, Co, NI, Nb, Ta, W, and Mo are preferable, and Al is more preferable from the viewpoint of operability. Examples of the compound include organic acid salts such as oxides, hydroxides, oxyhydroxides, carbonates, nitrates, and acetates of the above elements, or mixtures thereof. Of these, oxides, hydroxides, oxyhydroxides, carbonates or mixtures thereof are preferred. Of these, alumina is more preferable.

上述の遷移金属リン酸塩を、無処理のまま、または上記被着などの表面処理を施すなどして、ナトリウム二次電池用正極活物質などの二次電池用活物質として用いることができる。   The above-mentioned transition metal phosphate can be used as an active material for a secondary battery such as a positive electrode active material for a sodium secondary battery by leaving it untreated or performing a surface treatment such as deposition.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、特に断らない限り、遷移金属リン酸塩の粉末X線回折測定、粒度分布測定、BET比表面積の測定およびSEM観察は下記の方法にて行った。また、充放電試験用コイン型電池の作製は下記の方法にて行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these. Unless otherwise specified, powder X-ray diffraction measurement, particle size distribution measurement, BET specific surface area measurement and SEM observation of transition metal phosphates were performed by the following methods. The coin-type battery for charge / discharge test was produced by the following method.

(1)遷移金属リン酸塩の粉末X線回折測定
粉末X線回折装置として、株式会社リガク製の粉末X線回折測定装置RINT2500TTR型を用いて、下記条件で行った。
X線:CuKα
電圧−電流:40kV−140mA
測定角度範囲:2θ=10〜80°
ステップ:0.02°
スキャンスピード:4°/分
発散スリット幅:(DS)1°
散乱スリット幅:(SS)1°
受光スリット幅:(RS)0.3mm
(1) Powder X-ray diffraction measurement of transition metal phosphate As a powder X-ray diffraction apparatus, a powder X-ray diffraction measurement apparatus RINT2500TTR manufactured by Rigaku Corporation was used under the following conditions.
X-ray: CuKα
Voltage-current: 40 kV-140 mA
Measurement angle range: 2θ = 10-80 °
Step: 0.02 °
Scanning speed: 4 ° / min Divergent slit width: (DS) 1 °
Scattering slit width: (SS) 1 °
Light receiving slit width: (RS) 0.3 mm

(2)遷移金属リン酸塩の粒度分布測定
レーザー回折散乱法粒度分布測定装置として、マルバーン社製のマスターサイザー2000を用いて測定した。分散媒には、0.2重量%ヘキサメタリン酸ナトリウム水溶液を使用した。測定値D50は、体積基準の累積粒度分布において、50%累積時の微小粒子側から見た粒径の値を用いた。
(2) Particle size distribution measurement of transition metal phosphate It measured using the master sizer 2000 by Malvern as a laser diffraction scattering method particle size distribution measuring apparatus. As the dispersion medium, an aqueous 0.2 wt% sodium hexametaphosphate solution was used. As the measured value D50, the value of the particle size viewed from the fine particle side when 50% accumulated in the volume-based cumulative particle size distribution was used.

(3)遷移金属リン酸塩のBET比表面積の測定
遷移金属リン酸塩粉末1gを窒素気流中150℃、15分間乾燥した後、マイクロメリテックス製フローソーブII2300を用いて測定した。
(3) Measurement of BET specific surface area of transition metal phosphate 1 g of transition metal phosphate powder was dried at 150 ° C. for 15 minutes in a nitrogen stream, and then measured using a Micrometrix Flowsorb II2300.

(4)遷移金属リン酸塩のSEM観察
走査型電子顕微鏡観察装置として、日本電子データム株式会社製のJSM−5500を用いて、加速電圧20kVの条件で観察を行った。なお、粒子のアスペクト比(a/b)は、得られたSEM観察写真から任意に抽出した50個の粒子の長径a及び短径bを測定し、その平均値を採用した。
(4) SEM observation of transition metal phosphate As a scanning electron microscope observation apparatus, JSM-5500 made by JEOL Datum Co., Ltd. was used, and observation was performed under the condition of an acceleration voltage of 20 kV. For the aspect ratio (a / b) of the particles, the major axis a and minor axis b of 50 particles arbitrarily extracted from the obtained SEM observation photograph were measured, and the average value thereof was adopted.

(5)充放電試験用コイン型電池の作製
実施例として後述する正極活物質粉末と、導電材となるアセチレンブラック(電気化学工業株式会社製、以下、ABということがある。)と、バインダーとしてPTFE(ダイキン工業株式会社製)とを、正極活物質:AB:PTFEが、重量比で75:20:5となるように混合・混練することにより正極合剤とし、正極集電体となるSUS製メッシュ(#100、10mmφ)に前記正極合剤を塗布し、150℃で8時間真空乾燥を行って正極を得た。得られた正極の重量を測定し、正極の重量からSUS製メッシュの重量を減じ、正極合剤重量を算出し、さらに、上記正極合剤の重量比から正極活物質粉末重量を算出した。得られた正極と、電解液としてプロピレンカーボネート(以下、PCということがある。)にNaClO4を1モル/リットルとなるように溶解したもの(以下、NaClO4/PCと表すことがある。)と、セパレータとしてポリエチレン多孔質膜と、また負極として金属ナトリウムとを用い、これらを組み合わせてコイン型電池(R2032)を作製した。
(5) Production of coin-type battery for charge / discharge test Positive electrode active material powder, which will be described later as an example, acetylene black (hereinafter, also referred to as AB, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, and a binder SUS that becomes a positive electrode mixture by mixing and kneading PTFE (manufactured by Daikin Industries, Ltd.) so that the positive electrode active material: AB: PTFE is 75: 20: 5 in a weight ratio. The positive electrode mixture was applied to a mesh (# 100, 10 mmφ) and vacuum-dried at 150 ° C. for 8 hours to obtain a positive electrode. The weight of the obtained positive electrode was measured, the weight of the SUS mesh was subtracted from the weight of the positive electrode, the weight of the positive electrode mixture was calculated, and the weight of the positive electrode active material powder was calculated from the weight ratio of the positive electrode mixture. A solution obtained by dissolving NaClO 4 in propylene carbonate (hereinafter sometimes referred to as PC) as an electrolyte so as to be 1 mol / liter (hereinafter sometimes referred to as NaClO 4 / PC). Using a polyethylene porous membrane as a separator and metallic sodium as a negative electrode, a coin-type battery (R2032) was produced by combining these.

上記のコイン型電池を用いて、25℃保持下、以下に示す条件で充放電試験を実施した。
(セル構成) 2極式
正極:正極活物質を含む電極
負極:金属ナトリウムからなる電極
電解質:1M NaClO4/PC
(充放電条件)
電圧範囲:1.5−4.2V
充電レート:0.05Cレート(20時間で完全充電する速度)
放電レート:0.05Cレート(20時間で完全放電する速度)
Using the above coin-type battery, a charge / discharge test was performed under the conditions shown below while maintaining at 25 ° C.
(Cell structure) Bipolar type Positive electrode: Electrode containing positive electrode active material Negative electrode: Electrode made of metallic sodium
Electrolyte: 1M NaClO 4 / PC
(Charge / discharge conditions)
Voltage range: 1.5-4.2V
Charging rate: 0.05C rate (speed to fully charge in 20 hours)
Discharge rate: 0.05C rate (rate of complete discharge in 20 hours)

実施例1
(A)遷移金属リン酸塩粉末S1の合成
水酸化ナトリウム(NaOH);1.8g、リン酸水素二アンモニウム((NH42HPO4);2.7g、塩化鉄(II)四水和物(FeCl2・4H2O);2.0gをそれぞれ秤量し、秤量した各化合物を各々ガラス製の100mlビーカーに入れた。次いで、該ビーカーにイオン交換水を各々33gずつ加え、攪拌しながら完全溶解させて各化合物水溶液を調整した。次に、水酸化ナトリウム水溶液とリン酸水素二アンモニウム水溶液とを加えて良く攪拌しながら、さらにここに、前記塩化鉄(II)四水和物水溶液を加え、固形物を含む固液混合物を得た。得られた固液混合物をナス型フラスコに入れ、次いで該ナス型フラスコを170℃に設定したオイルバスにて加熱し、水を蒸発させた乾固品を得た。次に、前記乾固品を回収し、水洗、濾過、乾燥を行って遷移金属リン酸塩粉末S1を得た。
Example 1
(A) Synthesis of transition metal phosphate powder S 1 Sodium hydroxide (NaOH); 1.8 g, diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ); 2.7 g, iron (II) chloride tetrahydrate Japanese (FeCl 2 .4H 2 O); 2.0 g was weighed and each weighed compound was placed in a glass 100 ml beaker. Next, 33 g of ion-exchanged water was added to the beaker and dissolved completely with stirring to prepare each compound aqueous solution. Next, while adding an aqueous sodium hydroxide solution and an aqueous diammonium hydrogen phosphate solution and stirring well, the iron (II) chloride tetrahydrate aqueous solution is further added thereto to obtain a solid-liquid mixture containing solids. It was. The obtained solid-liquid mixture was put into an eggplant-shaped flask, and then the eggplant-shaped flask was heated in an oil bath set at 170 ° C. to obtain a dry solid product in which water was evaporated. Next, the dryness article was collected, washed with water, filtered to give a transition metal phosphate powder S 1 and then dried.

(B)遷移金属リン酸塩粉末S1の各種評価
前記粉末S1のX線回折測定を行ったところ、単相の斜方晶型NaFePO4(マリサイト)であることがわかった(図1)。また、粉末S1の粒度分布およびBET比表面積を測定したところ、D50は1.3μmであり、BET比表面積は20m2/gであった。さらに、粉末S1のSEM観察を行ったところ、棒状の粒子を含み、粒子の長径をa、短径をbとした時のアスペクト比a/bの平均値は9であった(図2)。次に、粉末S1を正極活物質として用いてコイン型電池を作製し、充放電試験を行ったところ、充放電できることが確認され、5サイクル目の放電容量は78mAh/gであった。
(B) Various Evaluations of Transition Metal Phosphate Powder S 1 When X-ray diffraction measurement was performed on the powder S 1 , it was found to be single-phase orthorhombic NaFePO 4 (malisite) (FIG. 1). ). The measured particle size distribution and the BET specific surface area of the powder S 1, D50 is 1.3 .mu.m, the BET specific surface area was 20 m 2 / g. Further, SEM observation of the powder S 1 revealed that the average value of the aspect ratio a / b was 9 when the major axis of the particles was a and the minor axis was b, including rod-shaped particles (FIG. 2). . Next, to prepare a coin battery using Powder S 1 as the positive electrode active material was subjected to a charge and discharge test, it is confirmed that can be charged and discharged, the discharge capacity of 5th cycle was 78 mAh / g.

実施例2
(A)遷移金属リン酸塩粉末S2の合成
水を蒸発させた乾固品の代わりに濾過による固液分離を行って分離品を得、該分離品を水洗、濾過、乾燥したこと以外は、実施例1と同様にして遷移金属リン酸塩粉末S2を得た。
Example 2
(A) Synthesis of transition metal phosphate powder S 2 A solid product is separated by filtration instead of a dry product obtained by evaporating water to obtain a separated product, except that the separated product is washed, filtered and dried. to obtain a transition metal phosphate powder S 2 in the same manner as in example 1.

(B)遷移金属リン酸塩粉末S2の各種評価
前記粉末S2のX線回折測定を行ったところ、単相の斜方晶型NaFePO4であることがわかった(図1)。また、粉末S2の粒度分布およびBET比表面積を測定したところ、D50は1.8μmであり、BET比表面積は36m2/gであった。さらに、粉末S2のSEM観察を行ったところ、棒状の粒子を含み、粒子の長径をa、短径をbとした時のアスペクト比a/bの平均値は5であった(図3)。次に、粉末S2を正極活物質として用いてコイン型電池を作製し、充放電試験を行ったところ、充放電できることが確認され、5サイクル目の放電容量は80mAh/gであった。
(B) Various Evaluations of Transition Metal Phosphate Powder S 2 When X-ray diffraction measurement was performed on the powder S 2 , it was found to be a single-phase orthorhombic NaFePO 4 (FIG. 1). The measured particle size distribution and the BET specific surface area of the powder S 2, D50 is 1.8 .mu.m, the BET specific surface area was 36m 2 / g. Further, when SEM observation of the powder S 2 was performed, the average value of the aspect ratio a / b was 5 when the major axis of the particle was a and the minor axis was b, including rod-shaped particles (FIG. 3). . Next, to prepare a coin battery using Powder S 2 as the positive electrode active material was subjected to a charge and discharge test, it is confirmed that can be charged and discharged, the discharge capacity at the fifth cycle was 80mAh / g.

実施例3
(A)遷移金属リン酸塩粉末S3の合成
前記固液混合物に導電性材料としてアセチレンブラックを、得られる遷移金属リン酸塩に対して10重量%加え、攪拌・混合したこと以外は、実施例1と同様にして遷移金属リン酸塩粉末S3を得た。
Example 3
(A) Synthesis of transition metal phosphate powder S 3 Except that acetylene black as a conductive material was added to the solid-liquid mixture by 10% by weight with respect to the obtained transition metal phosphate, and the mixture was stirred and mixed. example obtain a transition metal phosphate powder S 3 in the same manner as 1.

(B)遷移金属リン酸塩粉末S3の各種評価
前記粉末S3のX線回折測定を行ったところ、単相の斜方晶型NaFePO4であることがわかった(図1)。また、粉末S3の粒度分布およびBET比表面積を測定したところ、D50は2.6μmであり、BET比表面積は32m2/gであった。さらに、粉末S3のSEM観察を行ったところ、棒状の粒子を含み、それぞれの粒子上にアセチレンブラックが均一に付着していることが確認された(図4)。また、粒子の長径をa、短径をbとした時のアスペクト比a/bの平均値は7であった。次に、粉末S3を正極活物質として用いてコイン型電池を作製し、充放電試験を行ったところ、充放電できることが確認され、5サイクル目の放電容量は85mAh/gであった。
(B) Various Evaluations of Transition Metal Phosphate Powder S 3 When X-ray diffraction measurement was performed on the powder S 3 , it was found to be single-phase orthorhombic NaFePO 4 (FIG. 1). The measured particle size distribution and the BET specific surface area of the powder S 3, D50 is 2.6 [mu] m, BET specific surface area was 32m 2 / g. Furthermore, it was subjected to SEM observation of the powder S 3, comprises a rod-like particles, that acetylene black was uniformly attached was verified on each particle (Fig. 4). The average aspect ratio a / b was 7 when the major axis of the particles was a and the minor axis was b. Next, to prepare a coin battery using Powder S 3 as the positive electrode active material was subjected to a charge and discharge test, it is confirmed that can be charged and discharged, the discharge capacity at the fifth cycle was 85mAh / g.

実施例4
(A)遷移金属リン酸塩粉末S4の合成
リン酸水素二アンモニウム;2.7gの代わりにリン酸(H3PO4)水溶液(リン酸濃度85重量%、比重1.69);2mLを使用したこと以外は、実施例と同様にして遷移金属リン酸塩粉末S4を得た。
Example 4
(A) Synthesis of transition metal phosphate powder S 4 Diammonium hydrogen phosphate; phosphoric acid (H 3 PO 4 ) aqueous solution (phosphoric acid concentration 85 wt%, specific gravity 1.69) instead of 2.7 g; 2 mL except for using, to obtain a transition metal phosphate powder S 4 in the same manner as in example 3.

(B)遷移金属リン酸塩粉末S4の各種評価
前記粉末S4のX線回折測定を行ったところ、単相の斜方晶型NaFePO4であることがわかった(図1)。また、粉末S4の粒度分布およびBET比表面積を測定したところ、D50は0.35μmであり、BET比表面積は18m2/gであった。さらに、粉末S4のSEM観察を行ったところ、棒状の粒子を含み、粒子上にアセチレンブラックが均一に付着していることが確認された(図5)。また、粒子の長径をa、短径をbとした時のアスペクト比a/bの平均値は6であった。次に、粉末S4を正極活物質として用いてコイン型電池を作製し、充放電試験を行ったところ、充放電できることが確認され、5サイクル目の放電容量は75mAh/gであった。
(B) Various Evaluations of Transition Metal Phosphate Powder S 4 When X-ray diffraction measurement was performed on the powder S 4 , it was found to be a single-phase orthorhombic NaFePO 4 (FIG. 1). The measured particle size distribution and the BET specific surface area of the powder S 4, D50 is 0.35 .mu.m, BET specific surface area was 18m 2 / g. Furthermore, was subjected to SEM observation of the powder S 4, comprises a rod-like particles, it was confirmed that the acetylene black was uniformly deposited on the particles (FIG. 5). The average value of the aspect ratio a / b was 6 when the major axis of the particles was a and the minor axis was b. Next, to prepare a coin battery using Powder S 4 as the positive electrode active material was subjected to a charge and discharge test, it is confirmed that can be charged and discharged, the discharge capacity of 5th cycle was 75 mAh / g.

実施例5
(A)遷移金属リン酸塩粉末S5の合成
水酸化ナトリウム(NaOH);3.5g、塩化マンガン(II)四水和物(MnCl2・4H2O);3.1g、リン酸(H3PO4)水溶液(リン酸濃度85重量%、比重1.69);2mLをそれぞれ秤量し、秤量した各化合物を各々ガラス製の100mLビーカーに入れた。次いで、該ビーカーにイオン交換水を各々33gずつ加え、攪拌しながら完全溶解させて各化合物水溶液を調整した。次に、水酸化ナトリウム水溶液と塩化マンガン(II)四水和物水溶液とを加えて良く攪拌しながら、さらにここに、前記リン酸水溶液を加え、固形物を含む固液混合物を得た。得られた固液混合物をナス型フラスコに入れ、次いで該ナス型フラスコを170℃に設定したオイルバスにて加熱し、水が蒸発するまで蒸発乾固させて、乾固品を得た。次に、前記乾固品を回収し、水洗、濾過、乾燥を行って遷移金属リン酸塩粉末S5を得た。
Example 5
(A) Synthesis of transition metal phosphate powder S 5 Sodium hydroxide (NaOH); 3.5 g, manganese (II) chloride tetrahydrate (MnCl 2 .4H 2 O); 3.1 g, phosphoric acid (H 3 PO 4 ) aqueous solution (phosphoric acid concentration 85% by weight, specific gravity 1.69); 2 mL was weighed, and each weighed compound was placed in a glass 100 mL beaker. Next, 33 g of ion-exchanged water was added to the beaker and dissolved completely with stirring to prepare each compound aqueous solution. Next, an aqueous sodium hydroxide solution and an aqueous manganese (II) chloride tetrahydrate solution were added and stirred well, and the phosphoric acid aqueous solution was further added thereto to obtain a solid-liquid mixture containing solids. The obtained solid-liquid mixture was put into an eggplant-shaped flask, and then the eggplant-shaped flask was heated in an oil bath set at 170 ° C. and evaporated to dryness until water evaporated to obtain a dried product. Next, the dryness products were collected, washed with water, filtered to give a transition metal phosphate powder S 5 and then dried.

(B)遷移金属リン酸塩粉末S5の各種評価
前記粉末S5のX線回折測定を行ったところ、単相の斜方晶型NaMnPO4であることがわかった(図6)。また、粉末S5の粒度分布およびBET比表面積を測定したところ、D50は1.67μmであり、BET比表面積は4.0m2/gであった。さらに、粉末S5のSEM観察を行ったところ、球状の粒子が確認された(図7)。次に、粉末S5を正極活物質として用いてコイン型電池を作製し、充放電試験を行ったところ、充放電できることが確認された。
(B) Various Evaluations of Transition Metal Phosphate Powder S 5 When X-ray diffraction measurement was performed on the powder S 5 , it was found to be single-phase orthorhombic NaMnPO 4 (FIG. 6). The measured particle size distribution and the BET specific surface area of the powder S 5, D50 is 1.67 .mu.m, BET specific surface area was 4.0 m 2 / g. Furthermore, was subjected to SEM observation of the powder S 5, spherical particles were confirmed (Fig. 7). Next, to prepare a coin battery using Powder S 5 as the positive electrode active material was subjected to a charge and discharge test, it was confirmed that the charge and discharge.

比較例1
(A)比較粉末R1の合成
原料に三酸化二鉄(Fe23);3.2g、炭酸ナトリウム(Na2CO3);2.1g、リン酸水素二アンモニウム((NH42HPO4);5.1gをそれぞれ秤量し、各原料をボールミルで十分に粉砕・混合し、原料混合物を得た。次に、前記原料混合物をアルミナボートに充填し、電気炉において、窒素ガスを5リットル/分で通気しながら750℃の温度で8時間保持、焼成することで比較粉末R1を得た。
Comparative Example 1
(A) Synthesis of comparative powder R 1 As raw materials, ferric trioxide (Fe 2 O 3 ); 3.2 g, sodium carbonate (Na 2 CO 3 ); 2.1 g, diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ); 5.1 g was weighed, and each raw material was sufficiently pulverized and mixed with a ball mill to obtain a raw material mixture. Next, the raw material mixture was filled in an alumina boat, and in an electric furnace, a comparative powder R 1 was obtained by holding and firing at a temperature of 750 ° C. for 8 hours while supplying nitrogen gas at 5 liters / minute.

(B)比較粉末R1の各種評価
前記粉末R1のX線回折測定を行ったところ、主相は単斜晶型のNa3Fe2(PO43であり、単相のNaFePO4は得られなかった(図8)。また、粉末R1の粒度分布およびBET比表面積を測定したところ、D50は14μmであり、BET比表面積は0.10m2/gであった。さらに、粉末R1のSEM観察を行ったところ、粒子形状は不定形状であった(図9)。次に、粉末R1を正極活物質として用いてコイン型電池を作製し、充放電試験を行ったところ、充放電できることを確認できたが、5サイクル目の放電容量は1mAh/gと低かった。
(B) Various evaluations of the comparative powder R 1 When X-ray diffraction measurement was performed on the powder R 1 , the main phase was monoclinic Na 3 Fe 2 (PO 4 ) 3 , and the single phase NaFePO 4 was It was not obtained (FIG. 8). The measured particle size distribution and the BET specific surface area of the powder R 1, D50 is 14 [mu] m, BET specific surface area was 0.10 m 2 / g. Furthermore, it was subjected to SEM observation powder R 1, particle shape was irregular shape (FIG. 9). Next, a coin-type battery was prepared using the powder R 1 as a positive electrode active material and a charge / discharge test was performed. As a result, it was confirmed that charge / discharge was possible, but the discharge capacity at the fifth cycle was as low as 1 mAh / g. .

比較例2
(A)比較粉末R2の合成
原料にシュウ酸鉄二水和物(FeC24・2H2O);5.1g、炭酸ナトリウム(Na2CO3);1.5g、リン酸水素二アンモニウム((NH42HPO4);3.8gをそれぞれ秤量し、各原料をボールミルで十分に粉砕・混合し、原料混合物を得た。次に、前記原料混合物をアルミナボートに充填し、電気炉において、窒素ガスを5リットル/分で通気しながら750℃の温度で24時間保持、焼成することで比較粉末R2を得た。
Comparative Example 2
(A) Synthesis of Comparative Powder R 2 Iron oxalate dihydrate (FeC 2 O 4 .2H 2 O): 5.1 g, sodium carbonate (Na 2 CO 3 ); 1.5 g, diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ); 3.8 g was weighed, and each raw material was sufficiently pulverized and mixed with a ball mill to obtain a raw material mixture. Next, the raw material mixture was filled in an alumina boat, in an electric furnace, a nitrogen gas with 5 liters / min aeration maintained at a temperature of 750 ° C. 24 hours to obtain Comparative Powder R 2 by firing.

(B)比較粉末R2の各種評価
前記粉末R2のX線回折測定を行ったところ、主相は単斜晶型のFe23であり、単相のNaFePO4は得られなかった(図8)。また、粉末R2の粒度分布およびBET比表面積を測定したところ、D50は30μmであり、BET比表面積は0.26m2/gであった。さらに、粉末R2のSEM観察を行ったところ、粒子形状は不定形状であった(図10)。次に、粉末R2を正極活物質として用いてコイン型電池を作製し、充放電試験を行ったところ、1サイクル目の放電容量が2mAh/gと極めて低く、5サイクル目まで充放電することができなかった。
(B) Various evaluations of the comparative powder R 2 When X-ray diffraction measurement was performed on the powder R 2 , the main phase was monoclinic Fe 2 O 3 and no single-phase NaFePO 4 was obtained ( FIG. 8). The measured particle size distribution and the BET specific surface area of the powder R 2, D50 is 30 [mu] m, BET specific surface area was 0.26 m 2 / g. Further, SEM observation of the powder R 2 revealed that the particle shape was indefinite (FIG. 10). Next, a coin-type battery was prepared using the powder R 2 as a positive electrode active material, and a charge / discharge test was performed. I could not.

比較例3
(A)比較粉末R3の合成
焼成時の温度を800℃にしたこと以外は、比較例2と同様にして、比較粉末R3を得た。
Comparative Example 3
(A) except that the temperature during the synthesis calcination of Comparative Powder R 3 to 800 ° C., in the same manner as in Comparative Example 2 to obtain a comparative powder R 3.

(B)比較粉末R3の各種評価
前記粉末R3のX線回折測定を行ったところ、主相は菱面体型のFe23であり、単相のNaFePO4は得られなかった(図8)。また、粉末R3の粒度分布およびBET比表面積を測定したところ、D50は17μmであり、BET比表面積は0.47m2/gであった。さらに、粉末R3のSEM観察を行ったところ、粒子形状は不定形状であった(図11)。次に、粉末R3を正極活物質として用いてコイン型電池を作製し、充放電試験を行ったところ、1サイクル目の放電容量が1mAh/gと極めて低く、5サイクル目まで充放電することができなかった。
(B) Various evaluations of comparative powder R 3 When X-ray diffraction measurement was performed on powder R 3 , the main phase was rhombohedral Fe 2 O 3 , and single-phase NaFePO 4 was not obtained (see FIG. 8). The measured particle size distribution and the BET specific surface area of the powder R 3, D50 is 17 .mu.m, BET specific surface area was 0.47 m 2 / g. Furthermore, it was subjected to SEM observation of the powder R 3, particle shape was irregular shape (FIG. 11). Next, to prepare a coin battery using Powder R 3 as the positive electrode active material was subjected to a charge and discharge test, 1 discharge capacity cycle is as low as 1 mAh / g, it is charged and discharged up to the fifth cycle I could not.

製造例1(積層多孔質フィルムの製造)
(1)塗工液の製造
N−メチルピロリドン(NMP)4200gに塩化カルシウム272.7gを溶解した後、パラフェニレンジアミン132.9gを添加して完全に溶解させた。得られた溶液に、テレフタル酸ジクロライド243.3gを徐々に添加して重合し、パラアラミドを得て、さらにNMPで希釈して、濃度2.0重量%のパラアラミド溶液(A)を得た。得られたパラアラミド溶液100gに、アルミナ粉末(a)2g(日本アエロジル社製、アルミナC,平均粒子径0.02μm)とアルミナ粉末(b)2g(住友化学株式会社製スミコランダム、AA03、平均粒子径0.3μm)とをフィラーとして計4g添加して混合し、ナノマイザーで3回処理し、さらに1000メッシュの金網で濾過、減圧下で脱泡して、スラリー状塗工液(B)を製造した。パラアラミドおよびアルミナ粉末の合計重量に対するアルミナ粉末(フィラー)の重量は、67重量%となる。
Production Example 1 (Production of laminated porous film)
(1) Production of coating liquid After 272.7 g of calcium chloride was dissolved in 4200 g of N-methylpyrrolidone (NMP), 132.9 g of paraphenylenediamine was added and completely dissolved. To the obtained solution, 243.3 g of terephthalic acid dichloride was gradually added and polymerized to obtain para-aramid, which was further diluted with NMP to obtain a para-aramid solution (A) having a concentration of 2.0% by weight. To 100 g of the obtained para-aramid solution, 2 g of alumina powder (a) (Nippon Aerosil Co., Ltd., Alumina C, average particle size 0.02 μm) and 2 g of alumina powder (b) (Sumitomo Chemical Co., Ltd. Sumiko Random, AA03, average particles) 4 g in total as a filler is added and mixed, treated three times with a nanomizer, filtered through a 1000 mesh wire net, and degassed under reduced pressure to produce a slurry coating solution (B) did. The weight of alumina powder (filler) with respect to the total weight of para-aramid and alumina powder is 67% by weight.

(2)積層多孔質フィルムの製造および評価
シャットダウン可能な多孔質フィルムとしては、ポリエチレン製多孔質フィルム(膜厚12μm、透気度140秒/100cc、平均孔径0.1μm、空孔率50%)を用いた。厚み100μmのPETフィルムの上に上記ポリエチレン製多孔質フィルムを固定し、テスター産業株式会社製バーコーターにより、該多孔質フィルムの上にスラリー状塗工液(B)を塗工した。PETフィルム上の塗工された該多孔質フィルムを一体にしたまま、貧溶媒である水中に浸漬させ、パラアラミド多孔層(耐熱多孔層)を析出させた後、溶媒を乾燥させて、耐熱多孔層とポリエチレン製多孔質フィルムとが積層された積層多孔質フィルム1を得た。積層多孔質フィルム1の厚みは16μmであり、パラアラミド多孔層(耐熱多孔層)の厚みは4μmであった。積層多孔質フィルム1の透気度は180秒/100cc、空孔率は50%であった。積層多孔質フィルム1における耐熱層の断面を走査型電子顕微鏡(SEM)により観察をしたところ、0.03μm〜0.06μm程度の比較的小さな微細孔と0.1μm〜1μm程度の比較的大きな微細孔とを有することがわかった。尚、積層多孔質フィルムの評価は以下の方法で行った。
(2) Production and Evaluation of Laminated Porous Film As a porous film that can be shut down, a polyethylene porous film (film thickness 12 μm, air permeability 140 seconds / 100 cc, average pore diameter 0.1 μm, porosity 50%) Was used. The polyethylene porous film was fixed on a PET film having a thickness of 100 μm, and the slurry-like coating liquid (B) was applied onto the porous film by a bar coater manufactured by Tester Sangyo Co., Ltd. While the coated porous film on the PET film is integrated, it is immersed in water which is a poor solvent to deposit a para-aramid porous layer (heat resistant porous layer), and then the solvent is dried to obtain a heat resistant porous layer. And a porous film 1 made of polyethylene were laminated. The thickness of the laminated porous film 1 was 16 μm, and the thickness of the para-aramid porous layer (heat resistant porous layer) was 4 μm. The laminated porous film 1 had an air permeability of 180 seconds / 100 cc and a porosity of 50%. When the cross section of the heat-resistant layer in the laminated porous film 1 was observed with a scanning electron microscope (SEM), relatively small pores of about 0.03 μm to 0.06 μm and relatively large fines of about 0.1 μm to 1 μm. It was found to have pores. The laminated porous film was evaluated by the following method.

積層多孔質フィルムの評価
(A)厚み測定
積層多孔質フィルムの厚み、ポリエチレン製多孔質フィルムの厚みは、JIS規格(K7130−1992)に従い、測定した。また、耐熱層の厚みとしては、積層多孔質フィルムの厚みからポリエチレン製多孔質フィルムの厚みを差し引いた値を用いた。
(B)ガーレー法による透気度の測定
積層多孔質フィルムの透気度は、JIS P8117に基づいて、株式会社安田精機製作所製のデジタルタイマー式ガーレー式デンソメータで測定した。
(C)空孔率
得られた積層多孔質フィルムのサンプルを一辺の長さ10cmの正方形に切り取り、重量W(g)と厚みD(cm)を測定した。サンプル中のそれぞれの層の重量(WI(g))を求め、WIとそれぞれの層の材質の真比重(真比重I(g/cm3))とから、それぞれの層の体積を求めて、次式より空孔率(体積%)を求めた。
空孔率(体積%)=100×{1−(W1/真比重1+W2/真比重2+・・+Wn/真比重n)/(10×10×D)}
Evaluation of laminated porous film (A) Thickness measurement The thickness of the laminated porous film and the thickness of the polyethylene porous film were measured in accordance with JIS standards (K7130-1992). Moreover, as the thickness of the heat-resistant layer, a value obtained by subtracting the thickness of the polyethylene porous film from the thickness of the laminated porous film was used.
(B) Measurement of air permeability by Gurley method The air permeability of the laminated porous film was measured with a digital timer type Gurley type densometer manufactured by Yasuda Seiki Seisakusho, based on JIS P8117.
(C) Porosity A sample of the obtained laminated porous film was cut into a square having a side length of 10 cm, and the weight W (g) and the thickness D (cm) were measured. The weight of each layer in the sample (WI (g)) was determined, and the volume of each layer was determined from WI and the true specific gravity (true specific gravity I (g / cm 3 )) of the material of each layer, The porosity (volume%) was obtained from the following formula.
Porosity (volume%) = 100 × {1− (W1 / true specific gravity 1 + W2 / true specific gravity 2 + ·· + Wn / true specific gravity n) / (10 × 10 × D)}

上記実施例のそれぞれにおいて、セパレータとして、製造例1により得られた積層多孔質フィルムを用いれば、熱破膜温度をより高めることのできるナトリウム二次電池を得ることができる。   In each of the above examples, when the laminated porous film obtained in Production Example 1 is used as a separator, a sodium secondary battery capable of further increasing the thermal membrane breaking temperature can be obtained.

本発明の製造方法によれば、ナトリウム二次電池用活物質として好適な遷移金属リン酸塩を、簡便かつ安価な製造方法にて製造することができ、この遷移金属リン酸塩を含んでなる電極を用いてなるナトリウム二次電池は高容量であることから、ポータブル電子機器などの小型用途だけでなく、ハイブリッド自動車、電力貯蔵用などの中型・大型用途など様々な用途で使用できる。さらに資源として豊富なナトリウムが活物質に含有されており、より安価な非水電解質二次電池を製造することができるので、本発明は工業的に極めて有用である。   According to the production method of the present invention, a transition metal phosphate suitable as an active material for a sodium secondary battery can be produced by a simple and inexpensive production method, and comprises the transition metal phosphate. Since the sodium secondary battery using the electrode has a high capacity, it can be used not only for small applications such as portable electronic devices, but also for various applications such as medium and large applications such as hybrid vehicles and power storage. Furthermore, since abundant sodium as a resource is contained in the active material and a cheaper non-aqueous electrolyte secondary battery can be manufactured, the present invention is extremely useful industrially.

実施例1〜4における粉末X線回折分析結果を示す図である。It is a figure which shows the powder X-ray-diffraction analysis result in Examples 1-4. 実施例1におけるSEM観察写真を示す図である。2 is a view showing an SEM observation photograph in Example 1. FIG. 実施例2におけるSEM観察写真を示す図である。6 is a view showing an SEM observation photograph in Example 2. FIG. 実施例3におけるSEM観察写真を示す図である。6 is a view showing an SEM observation photograph in Example 3. FIG. 実施例4におけるSEM観察写真を示す図である。6 is a view showing an SEM observation photograph in Example 4. FIG. 実施例5における粉末X線回折分析結果を示す図である。FIG. 6 is a graph showing the result of powder X-ray diffraction analysis in Example 5. 実施例5におけるSEM観察写真を示す図である。6 is a view showing an SEM observation photograph in Example 5. FIG. 比較例1〜3における粉末X線回折分析結果を示す図である。It is a figure which shows the powder X-ray-diffraction analysis result in Comparative Examples 1-3. 比較例1におけるSEM観察写真を示す図である。6 is a view showing an SEM observation photograph in Comparative Example 1. FIG. 比較例2におけるSEM観察写真を示す図である。6 is a view showing an SEM observation photograph in Comparative Example 2. FIG. 比較例3におけるSEM観察写真を示す図である。10 is a view showing an SEM observation photograph in Comparative Example 3. FIG.

Claims (7)

次の工程を含むことを特徴とする、斜方晶の結晶構造を有し、式(I)で表される遷移金属リン酸塩の製造方法。
(1)P源、Na源、M源(ただし、Mは1種以上の遷移金属元素である。)および水を接触させて液状物を得る工程
(2)前記液状物から水を分離して、遷移金属リン酸塩を得る工程

Na x y PO 4 (I)
(ただし、式(I)において、xは0を超え1.5以下の範囲であり、yは0.8以上1.2以下の範囲であり、MはFeおよび/またはMnである。)
A method for producing a transition metal phosphate having an orthorhombic crystal structure and represented by formula (I), comprising:
(1) Step of obtaining a liquid material by contacting P source, Na source, M source (where M is one or more transition metal elements) and water (2) separating water from the liquid material , Obtaining a transition metal phosphate

Na x M y PO 4 (I )
(However, in the formula (I), x is in the range of more than 0 and 1.5 or less, y is in the range of 0.8 to 1.2, and M is Fe and / or Mn.)
前記工程(1)が、PおよびNaを含有する水溶液と、M化合物またはM化合物を含有する水溶液とを接触させて液状物を得る工程である請求項1記載の遷移金属リン酸塩の製造方法。   The method for producing a transition metal phosphate according to claim 1, wherein the step (1) is a step of obtaining a liquid by bringing an aqueous solution containing P and Na into contact with an M compound or an aqueous solution containing an M compound. . 前記工程(1)が、NaおよびMを含有する水溶液と、Pを含有する水溶液とを接触させて液状物を得る工程である請求項1記載の遷移金属リン酸塩の製造方法。   2. The method for producing a transition metal phosphate according to claim 1, wherein the step (1) is a step of obtaining a liquid by bringing an aqueous solution containing Na and M into contact with an aqueous solution containing P. 式(I)で表される遷移金属リン酸塩におけるxとyの値がそれぞれ1である請求項1から3のいずれかに記載の遷移金属リン酸塩の製造方法。The method for producing a transition metal phosphate according to any one of claims 1 to 3, wherein each of x and y in the transition metal phosphate represented by the formula (I) has a value of 1. 前記Mが、FeまたはMnである請求項1から4のいずれかに記載の遷移金属リン酸塩の製造方法。  The method for producing a transition metal phosphate according to claim 1, wherein M is Fe or Mn. 前記工程(2)が、水を蒸発させる工程を含む請求項1から5のいずれかに記載の遷移金属リン酸塩の製造方法。 The method for producing a transition metal phosphate according to claim 1, wherein the step (2) includes a step of evaporating water. 前記水の蒸発が、加熱によることを特徴とする請求項6記載の遷移金属リン酸塩の製造方法。   The method for producing a transition metal phosphate according to claim 6, wherein the water is evaporated by heating.
JP2008179607A 2008-07-09 2008-07-09 Process for producing transition metal phosphate Active JP5460980B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008179607A JP5460980B2 (en) 2008-07-09 2008-07-09 Process for producing transition metal phosphate
US13/003,280 US8795889B2 (en) 2008-07-09 2009-07-07 Transition metal phosphate, production process thereof, positive electrode, and sodium secondary battery
EP09794540A EP2301890A4 (en) 2008-07-09 2009-07-07 Transition metal phosphoric acid salt, process for producing same, positive electrode, and sodium secondary battery
PCT/JP2009/062648 WO2010005097A1 (en) 2008-07-09 2009-07-07 Transition metal phosphoric acid salt, process for producing same, positive electrode, and sodium secondary battery
CN2009801267229A CN102089239A (en) 2008-07-09 2009-07-07 Transition metal phosphoric acid salt, process for producing same, positive electrode, and sodium secondary battery
KR1020117000386A KR20110036807A (en) 2008-07-09 2009-07-07 Transition metal phosphoric acid salt, process for producing same, positive electrode, and sodium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179607A JP5460980B2 (en) 2008-07-09 2008-07-09 Process for producing transition metal phosphate

Publications (2)

Publication Number Publication Date
JP2010018473A JP2010018473A (en) 2010-01-28
JP5460980B2 true JP5460980B2 (en) 2014-04-02

Family

ID=41703751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179607A Active JP5460980B2 (en) 2008-07-09 2008-07-09 Process for producing transition metal phosphate

Country Status (1)

Country Link
JP (1) JP5460980B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6189011B2 (en) * 2010-08-06 2017-08-30 住友化学株式会社 Separator and non-aqueous electrolyte secondary battery having the separator
JP2012212648A (en) * 2011-03-24 2012-11-01 Tokyo Univ Of Science Electrode for sodium secondary battery, and sodium secondary battery
CN103145109B (en) * 2013-01-18 2014-12-24 余佩娟 Method for preparing high-purity phosphorus pentafluoride and lithium hexafluorophosphate with organotin fluoride
JP2014149943A (en) * 2013-01-31 2014-08-21 Kyocera Corp Active material and secondary battery using the same
CN106463224B (en) * 2014-06-18 2018-11-06 国立大学法人东京大学 Ferric oxide nano magnetic powder and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814540B1 (en) * 2001-04-06 2008-03-17 발렌스 테크놀로지, 인코포레이티드 Sodium Ion Batteries
JP4260572B2 (en) * 2003-07-29 2009-04-30 日本化学工業株式会社 Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom
JP2008260666A (en) * 2007-04-13 2008-10-30 Kyushu Univ Active material for sodium secondary battery, and method for producing the same
JP4595987B2 (en) * 2007-10-25 2010-12-08 トヨタ自動車株式会社 Cathode active material
JP5383217B2 (en) * 2008-01-28 2014-01-08 住友化学株式会社 Positive electrode active material, sodium secondary battery, and olivine-type phosphate production method

Also Published As

Publication number Publication date
JP2010018473A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
Oh et al. Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis
TWI383533B (en) Electrode-active anion-deficient non-stoichiometric lithium iron phosphate, method for preparing the same, and electrochemical device using the same
WO2016208413A1 (en) Composite hydroxide containing transition metal and method for producing same, positive electrode active material for non-aqueous electrolyte secondary batteries and method for producing same, and non-aqueous electrolyte secondary battery
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5460979B2 (en) Transition metal phosphate, positive electrode for sodium secondary battery using the same, and secondary battery using the positive electrode
US8795889B2 (en) Transition metal phosphate, production process thereof, positive electrode, and sodium secondary battery
JP6519202B2 (en) Lithium titanate powder, active material, and storage device using the same
WO2012141258A1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND PROCESS FOR PRODUCING SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP4826147B2 (en) Aluminum-containing nickel hydroxide particles and method for producing the same
KR102103094B1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5164287B2 (en) Lithium silicate compound and method for producing the same
US20110117415A1 (en) Nonaqueous electrolyte secondary battery
TWI556499B (en) Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP2018006164A (en) Lithium titanate powder for power storage device electrode, active substance material, and power storage device using the active substance material
JP2016000681A5 (en)
JP2006219323A (en) Lithium-manganese-nickel-aluminum complex oxide and its production method
JPWO2017047755A1 (en) Fibrous carbon-containing lithium titanium composite oxide powder, electrode sheet using the same, and electricity storage device using the same
JP2014051418A (en) Composite material, method for producing the same, cathode active material, cathode and nonaqueous electrolyte secondary battery
JP5460980B2 (en) Process for producing transition metal phosphate
JP5370501B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP6536742B2 (en) Method of manufacturing silicon material
JP5828282B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery and secondary battery using the same
JP7484283B2 (en) Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
CN116648426A (en) Spinel lithium manganate, method for producing same, and use thereof
JP6136604B2 (en) Method for producing nickel cobalt composite hydroxide particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5460980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350