JP5456640B2 - 海水淡水化システムおよびエネルギー交換チャンバー - Google Patents

海水淡水化システムおよびエネルギー交換チャンバー Download PDF

Info

Publication number
JP5456640B2
JP5456640B2 JP2010245206A JP2010245206A JP5456640B2 JP 5456640 B2 JP5456640 B2 JP 5456640B2 JP 2010245206 A JP2010245206 A JP 2010245206A JP 2010245206 A JP2010245206 A JP 2010245206A JP 5456640 B2 JP5456640 B2 JP 5456640B2
Authority
JP
Japan
Prior art keywords
seawater
energy exchange
chamber
flow paths
exchange chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010245206A
Other languages
English (en)
Other versions
JP2012096151A (ja
Inventor
圭瑞 高橋
和昭 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2010245206A priority Critical patent/JP5456640B2/ja
Publication of JP2012096151A publication Critical patent/JP2012096151A/ja
Application granted granted Critical
Publication of JP5456640B2 publication Critical patent/JP5456640B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、海水から塩分を除去して海水を淡水化する海水淡水化システムおよび該海水淡水化システム(海水淡水化プラント)に好適に用いられるエネルギー交換チャンバーに関するものである。
従来、海水を淡水化するシステムとして、海水を逆浸透膜分離装置に通水して脱塩する海水淡水化システムが知られている。この海水淡水化システムにおいては、取水された海水は、前処理装置により一定水質の条件に整えられたのち、高圧ポンプにより加圧され、逆浸透膜分離装置へと圧送され、逆浸透膜分離装置内の高圧海水の一部は、逆浸透圧力に打ち勝って逆浸透膜を通過し、塩分が除去された淡水として取り出される。その他の海水は、塩分濃度が高くなり濃縮された状態で逆浸透膜分離装置からリジェクト(濃縮海水)として排出される。ここで、海水淡水化システムにおける最大の運用コスト(電力費)は、前処理後の海水を浸透圧に打ち勝てる圧力即ち逆浸透圧まで上昇させるためのエネルギー、つまり高圧ポンプによる加圧エネルギーに大きく依存する。
すなわち、海水淡水化プラントにおける最大の運用コストである電力費の半分以上は、高圧ポンプによる加圧に費やされることが多い。従って、逆浸透膜分離装置から排出される高塩分濃度で高圧のリジェクト(濃縮海水)が保有する圧力エネルギーを、海水の一部を昇圧するエネルギーに利用することが行われている。そして、逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを海水の一部を昇圧するエネルギーに利用する手段として、円筒の筒内に移動可能に嵌装されたピストンによって円筒の内部を二つの容積室に分離し、2つの分離した空間の一方に濃縮海水の出入りを行う濃縮海水ポートを設け、もう一方に海水の出入りを行う海水ポートを設けたエネルギー交換チャンバーを利用することが行われている。
図22は、従来の海水淡水化システムの構成例を示す模式図である。図22に示すように、取水ポンプ(図示しない)により取水された海水は、前処理装置により前処理されて所定の水質条件に整えられたのち、海水供給ライン1を介してモータMが直結された高圧ポンプ2へ供給される。高圧ポンプ2で昇圧された海水は吐出ライン3を介して逆浸透膜分離装置4に供給される。逆浸透膜分離装置4は、海水を塩分濃度の高い濃縮海水と塩分濃度の低い淡水に分離し海水から淡水を得る。この時、塩分濃度の高い濃縮海水が逆浸透膜分離装置4から排出されるが、この濃縮海水は依然高い圧力を有している。逆浸透膜分離装置4から濃縮海水を排出する濃縮海水ライン5は、方向切換弁6を介してエネルギー交換チャンバー10の濃縮海水ポートP1へ接続している。前処理された低圧の海水を供給する海水供給ライン1は、高圧ポンプ2の上流で分岐してバルブ7を介してエネルギー交換チャンバー10の海水ポートP2へ接続している。エネルギー交換チャンバー10は、内部にピストン12を備え、ピストン12はエネルギー交換チャンバー10内を二つの容積室に分離しながら移動可能に嵌装されている。
エネルギー交換チャンバー10において濃縮海水の圧力を利用して昇圧された海水は、ブースターポンプ8に供給される。そして、ブースターポンプ8によって海水は高圧ポンプ2の吐出ライン3と同じレベルの圧力になるようにさらに昇圧され、昇圧された海水はバルブ9を介して高圧ポンプ2の吐出ライン3に合流して逆浸透膜分離装置4に供給される。
この種の海水淡水化システムおよびエネルギー交換チャンバーは、例えば、米国特許第5306428号公報、米国特許公開第2006−0151033号公報、米国特許第7168927号公報などに記載されている。
エネルギー交換チャンバー10においては、海水ポートP2の海水を吸込むために、方向切換弁6が濃縮海水を排水する側へ切り換わり、海水ポートP2から海水がエネルギー交換チャンバー10内に流れ込み、ピストン12が濃縮海水ポートP1側へ移動する。この状態でエネルギー交換チャンバー10内には海水がほぼ満たされる。そして、方向切換弁6が高圧の濃縮海水をエネルギー交換チャンバー10に供給する側に切り換わると、エネルギー交換チャンバー10内に流入した海水を押し出すようにピストン12が海水ポートP2側へ移動し、海水ポートP2側のバルブ7がブースターポンプ8側へ海水を供給する。
海水ポートP2側のバルブ7は、高圧流体をブースターポンプ8側へ流し、低圧の流体をエネルギー交換チャンバー10へ流すようにチェック弁や方向切換弁などの周知の流体機器で構成されている。
ブースターポンプ8は、エネルギー交換チャンバー10によって昇圧された海水を高圧ポンプ2と同じ程度の圧力に昇圧するので、僅かなエネルギーで駆動することができる。すなわち、逆浸透膜分離装置4に供給される海水の流量は、高圧ポンプ2とエネルギー交換チャンバー10からの海水の流量を加算した流量となり、システム全体の処理流量が多く得られ、エネルギー交換チャンバー10からの海水は高圧の濃縮海水のエネルギーを利用して昇圧されているので、システム全体としての投入エネルギーを少なくすることができる。換言すれば、同じ処理流量を得るために高圧ポンプの容量および駆動エネルギーを少なくできるシステムを構築することができる。
前述した従来のエネルギー交換チャンバーは、海水淡水化システムで処理すべき容量(流量)によって大きさや数が適宜選定されるが、一般的に大径かつ長尺な円筒型をなし、チャンバー内を二つの容積室に分離しながら、移動可能に嵌装されているピストンを備えている。
図23は、従来のエネルギー交換チャンバー10の構成例を示す断面図である。図23に示すように、エネルギー交換チャンバー10は、円筒形状のシリンダ11と、シリンダ11内で往復動するピストン12と、シリンダ11の両開口端を閉塞するフランジ13とにより構成されている。フランジ13は、シリンダ11のフランジ部11fにボルト14およびナット15により固定されており、一方のフランジ13に濃縮海水ポートP1が形成され、他方のフランジ13に海水ポートP2が形成されている。
ここで、ピストン12はシリンダ内壁との摺動性を向上させる目的から、円筒形のピストン12の円筒面には摺動リング16が嵌め込まれている。摺動リング16は低摩擦で耐摩耗性に優れた材質からなり、例えば、エンジニアリングプラスチックなどが選定されている。ピストン12は、海水をチャンバー内に流入させて濃縮海水で押し出すため、常時チャンバー内を往復動作している。このため、ピストン12は、耐摩耗性に優れた材質であっても、やがては摩耗して交換が必要になる。また、ピストン12は、チャンバー内を往復動作しているため、摩耗状態を把握することが難しい。摺動シール16が摩耗すると、ピストン12の金属部がシリンダ11の金属部と直接接触し、各部材に損傷を与えてしまう。場合によっては、チャンバー自体を交換しなければならない事態になってしまう。
また、エネルギー交換チャンバーの内径はピストンの外径(摺動シール外径)に合わせて均一な円筒であることが必要である。したがって、チャンバーが数メートルもの長尺になると、内径の加工が難しくなり、ひいてはチャンバー自体が非常に高価な製品になってしまう。
米国特許第5306428号公報 米国特許公開第2006−0151033号公報 米国特許第7168927号公報
上述したように、従来のエネルギー交換チャンバーは、海水の吸い込みと吐出のためにピストンをチャンバー内で往復動作させる必要があり、チャンバー内のピストンの位置を濃縮海水ポート側と海水ポート側の間を往復動作させていた。
このため、従来のエネルギー交換チャンバー内のピストンは、シリンダ内壁と摺動することになり、ピストンの摺動部材が摩耗するので定期的な交換が必要であった。また、長尺のチャンバーの内径をピストンの外形に合わせて精度よく加工する必要があり、加工コストが非常に高価であった。
本発明者らは、ピストンの無い形態のエネルギー交換チャンバーを海水淡水化システムに適用することを検討してみた。このエネルギー交換チャンバーにおいては、濃縮海水と海水の界面(interface)が、濃縮海水と海水の双方の圧力バランスによりチャンバー内を移動する方式である。
本方式の問題点は、界面での濃縮海水と海水の混合により、取水海水の塩分濃度がチャンバー内で高くなることである。これにより、チャンバー内で昇圧される、いわゆる被昇圧海水と高圧ポンプから吐出された海水が合流して、逆浸透膜分離装置に導入される際に、該被昇圧海水の塩分濃度が高くなることで、逆浸透膜の淡水化率を低下させることに加え、逆浸透膜の寿命を低下させ逆浸透膜自体の交換周期が短くなるなどの問題があった。
本発明は、上述の事情に鑑みなされたもので、海水淡水化システムの逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーにより海水の一部を昇圧するエネルギー交換チャンバーをピストンが無い形態とすることにより、摺動部材の摩耗の問題を解消し、またチャンバーに過大な加工精度が要求されることなくかつ長尺加工も必要とすることなく、さらにピストンの無い形態にも拘らずチャンバー内での濃縮海水と海水の混合を抑制することができるエネルギー交換チャンバーおよび該エネルギー交換チャンバーを備えた海水淡水化システムを提供することを目的とする。
上述した目的を達成するために、本発明の海水淡水化システムは、ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて、前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の一部を昇圧するエネルギーに利用するエネルギー交換チャンバーを備え、前記エネルギー交換チャンバーは、前記濃縮海水の出入りを行う濃縮海水ポートと、前記海水の出入りを行う海水ポートと、チャンバー内に設けられるとともに前記濃縮海水ポートと前記海水ポートとを連通させる複数の区画された流路とを備え、前記複数の区画された流路は同一の断面積および同一の形状を有し、それ以外の部分の流路を流体が流動しないように中実に形成したことを特徴とする。
本発明の海水淡水化システムによれば、濃縮海水ポートからチャンバー内に流入した濃縮海水と海水ポートからチャンバー内に流入した海水とは、複数の区画された流路に流入し、これらの流路内で濃縮海水と海水が接触するが、流路断面積が小さい流路内で生じる渦は管路内の小さな渦になるので、大きく拡散せずに濃縮海水と海水の界面が乱れない。このように流路断面積の小さい流路が複数個集まって大きなチャンバーを構成しているため、各流路で濃縮海水と海水の界面(interface)が維持され、全体として濃縮海水と海水の界面を維持したまま、すなわち濃縮海水と海水の混合を抑制しながら、濃縮海水によって海水を加圧し吐出することができる。なお、濃縮海水と海水とが接している境界では両者が混合するため、ここで界面とは、濃縮海水と海水との境界部であって濃縮海水と海水とが所定の割合で混合した領域(後述する)を云い、この領域は所定の容積をもった領域である。
本発明の海水淡水化システムによれば、チャンバー内のピストンが不要となり、メンテナンスが不要となりシステムとしての信頼性を向上することができる。また、チャンバー内の円筒の加工が容易になるので、チャンバーの製作が容易かつ安価になる。
本発明の海水淡水化システムによれば、チャンバー内にチューブ、ハニカム、格子等によって、同一形状および同一断面積となるように複数の区画された流路を形成し、それ以外の部分は流体が流動しないようになっている。このように構成することにより、チャンバー内の全ての区画流路における流動抵抗を均一にすることができるとともに界面の挙動を均一にすることができる。
本発明の好ましい態様は、前記複数の区画された流路を保持するパイプを備え、該パイプは前記エネルギー交換チャンバー内に嵌装されることを特徴とする。
本発明によれば、複数の区画された流路を保持するパイプをチャンバーの内径とほぼ同径のパイプとしてチャンバーに着脱可能とすることで、チューブ、ハニカム等からなる流路自体の交換を容易に行うことができる。また、チャンバーへチューブ、ハニカム等からなる流路を実装する場合に、耐圧容器であるチャンバーへの加工や溶接、接着などを施すことなく、流路を実装したパイプを別ピースとしてチャンバーに嵌め込むだけでよく、構成が簡易となり、組立も容易となる。
本発明の好ましい態様は、前記パイプは長手方向に複数に分割されていることを特徴とする。
本発明によれば、複数の区画された流路を保持するパイプを複数に分割することにより、パイプ内の流路も長手方向に複数に分割する構成を採用することができ、流路を構成するチューブやハニカム等の製作が容易となる。
本発明の好ましい態様は、前記パイプは前記エネルギー交換チャンバー内の前記複数の区画された流路の無い空間にも延設されていることを特徴とする。
本発明によれば、パイプを複数の区画された流路の無い空間にも延設することにより、この延設されたパイプ内に整流手段等を設置することが可能となる。
本発明の好ましい態様は、前記パイプには内径側と外形側を連通する孔が設けられていることを特徴とする。
本発明によれば、パイプの内径側と外径側を連通する孔が圧力バランス孔として機能するため、パイプに高い内圧がかかっても、この内圧を圧力バランス孔からリリースすることによりパイプの内外の圧力を同一とすることができ、パイプに作用する力を相殺することができる。
本発明の好ましい態様は、前記エネルギー交換チャンバーを複数備え、前記複数のエネルギー交換チャンバーにおける濃縮海水ポートへの濃縮海水の供給と該濃縮海水ポートからの濃縮海水の排出とを切換える少なくとも1つの切換弁を備えたことを特徴とする。
本発明によれば、少なくとも2個のエネルギー交換チャンバーを備えることにより、以下の動作形態をとることができる。
1)高圧の濃縮海水が切換弁を通じて第1のエネルギー交換チャンバーに導入され、第1のエネルギー交換チャンバー内の海水を濃縮海水の圧力を利用して昇圧し、昇圧された海水を第1のエネルギー交換チャンバーから吐出できる。これと併行して、第2のエネルギー交換チャンバー内に海水が導入され、同時に、第2のエネルギー交換チャンバー内の濃縮海水が切換弁を通じて排出される。
2)高圧の濃縮海水が切換弁を通じて第2のエネルギー交換チャンバーに導入され、第2のエネルギー交換チャンバー内の海水を濃縮海水の圧力を利用して昇圧し、昇圧された海水を第2のエネルギー交換チャンバーから吐出できる。これと併行して、第1のエネルギー交換チャンバー内に海水が導入され、同時に、第1のエネルギー交換チャンバー内の濃縮海水が方向切換弁を通じて排出される。
したがって、本発明によれば、昇圧された海水を常時吐出することができ、エネルギー交換チャンバーからの吐出流量を安定させることができ、ひいては逆浸透膜分離装置からの淡水の供給を安定して行うことができる。
本発明の好ましい態様は、前記複数の区画された流路は同一の断面積および同一の形状を有し、前記それ以外の部分の流路は流体が入らないように埋められていることを特徴とする。
本発明によれば、流体が入らないように埋める加工は、光硬化性樹脂を用いた光造形法により行うことができる。
本発明の好ましい態様は、前記複数の区画された流路をチャンバーの長手方向に複数に分割し、長手方向に分割された複数の流路の各接続部において前記流体が入らないように埋められた箇所に位置決め手段を設けたことを特徴とする。前記位置決め手段は、例えば位置決めピンと位置決め用の穴からなる。
このように複数の区画された流路をチャンバーの長手方向に複数に分割しても、位置決め手段を設けることにより、分割した面で流路断面積や形状が不均一になることなく流路を構成することができる。これにより、複数の区画された流路をチャンバーに入れる際にチャンバー全長と同じ長さの部材を挿入することなく、分割した流路をチャンバーに挿入すればよく作業性が向上する。また、流路を分割することで流路自体の製作が容易になる。
本発明のエネルギー交換チャンバーは、ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水を昇圧するエネルギーに利用するエネルギー交換チャンバーであって、前記エネルギー交換チャンバーは、前記濃縮海水の出入りを行う濃縮海水ポートと、前記海水の出入りを行う海水ポートと、チャンバー内に設けられるとともに前記濃縮海水ポートと前記海水ポートとを連通させる複数の区画された流路とを備え、前記複数の区画された流路は同一の断面積および同一の形状を有し、それ以外の部分の流路を流体が流動しないように中実に形成したことを特徴とする。
本発明のエネルギー交換チャンバーによれば、濃縮海水ポートからチャンバー内に流入した濃縮海水と海水ポートからチャンバー内に流入した海水とは、複数の区画された流路に流入し、これらの流路内で濃縮海水と海水が接触するが、流路断面積が小さい流路内で生じる渦は管路内の小さな渦になるので、大きく拡散せずに濃縮海水と海水の界面が乱れない。このように流路断面積の小さい流路が複数個集まって大きなチャンバーを構成しているため、各流路で濃縮海水と海水の界面(interface)が維持され、全体として濃縮海水と海水の界面を維持したまま、すなわち濃縮海水と海水の混合を抑制しながら、濃縮海水によって海水を加圧し吐出することができる。
本発明のエネルギー交換チャンバーによれば、チャンバー内のピストンが不要となり、メンテナンスが不要となりシステムとしての信頼性を向上することができる。また、チャンバー内の円筒の加工が容易になるので、チャンバーの製作が容易かつ安価になる。
本発明のエネルギー交換チャンバーによれば、チャンバー内にチューブ、ハニカム、格子等によって、同一形状および同一断面積となるように複数の区画された流路を形成し、それ以外の部分は流体が流動しないようになっている。このように構成することにより、チャンバー内の全ての区画流路における流動抵抗を均一にすることができるとともに界面の挙動を均一にすることができる。
本発明のエネルギー交換チャンバーの好ましい態様は、前記複数の区画された流路を保持するパイプを備え、該パイプは前記エネルギー交換チャンバー内に嵌装されることを特徴とする。
本発明によれば、複数の区画された流路を保持するパイプをチャンバーの内径とほぼ同径のパイプとしてチャンバーに着脱可能とすることで、チューブ、ハニカム等からなる流路自体の交換を容易に行うことができる。また、チューブ、ハニカム等からなる流路を実装する場合に、耐圧容器であるチャンバーへの加工や溶接、接着などを施すことなく、流路を実装したパイプを別ピースとしてチャンバーに嵌め込むだけでよく、構成が簡易となり、組立も容易となる。
本発明のエネルギー交換チャンバーの好ましい態様は、前記パイプは長手方向に複数に分割されていることを特徴とする。
本発明によれば、複数の区画された流路を保持するパイプを複数に分割することにより、パイプ内の流路も長手方向に複数に分割する構成を採用することができ、流路の製作が容易となる。
本発明のエネルギー交換チャンバーの好ましい態様は、前記パイプは前記エネルギー交換チャンバー内の前記複数の区画された流路の無い空間にも延設されていることを特徴とする。
本発明によれば、パイプを複数の区画された流路の無い空間にも延設することにより、この延設されたパイプ内に整流手段等を設置することが可能となる。
本発明のエネルギー交換チャンバーの好ましい態様は、前記パイプには内径側と外形側を連通する孔が設けられていることを特徴とする。
本発明によれば、パイプの内径側と外径側を連通する孔が圧力バランス孔として機能するため、パイプに高い内圧がかかっても、この内圧を圧力バランス孔からリリースすることによりパイプの内外の圧力を同一とすることができ、パイプに作用する力を相殺することができる。
本発明のエネルギー交換チャンバーの好ましい態様は、前記濃縮海水ポートと前記複数の区画された流路との間に整流手段を備えたことを特徴とする。
本発明によれば、チャンバーに流入する濃縮海水を区画された流路に均一に流すことができるので、濃縮海水と海水の界面を均一にすることができる。
本発明のエネルギー交換チャンバーの好ましい態様は、前記海水ポートと前記複数の区画された流路との間に整流手段を備えたことを特徴とする。
本発明によれば、チャンバーに流入する海水を区画された流路に均一に流すことができるので、濃縮海水と海水の界面を均一にすることができる。
本発明のエネルギー交換チャンバーの好ましい態様は、前記複数の区画された流路は同一の断面積および同一の形状を有し、前記それ以外の部分の流路は流体が入らないように埋められていることを特徴とする。
本発明によれば、流体が入らないように埋める加工は、ラピッドプロトタイピングにより行うことができる。
本発明のエネルギー交換チャンバーの好ましい態様は、前記複数の区画された流路をチャンバーの長手方向に複数に分割し、長手方向に分割された複数の流路の各接続部において前記流体が入らないように埋められた箇所に位置決め手段を設けたことを特徴とする。前記位置決め手段は、例えば位置決めピンと位置決め用の穴からなる。
このように複数の区画された流路をチャンバーの長手方向に複数に分割しても、位置決め手段を設けることにより、分割した面で流路断面積や形状が不均一になることなく流路を構成することができる。これにより、複数の区画された流路をチャンバーに入れる際にチャンバー全長と同じ長さの部材を挿入することなく、分割した流路をチャンバーに挿入すればよく作業性が向上する。また、流路を分割することで流路自体の製作が容易になる。
本発明によれば、以下に列挙する効果を奏する。
1)チャンバー内にピストンが無い形態であるため、摺動部材の摩耗の問題を解消し、またチャンバーに過大な加工精度が要求されることなくかつ長尺加工も必要としない。したがって、チャンバーの製作コストを低減することができる。
2)チャンバー内にピストンが無い形態にも拘らずチャンバー内での濃縮海水と海水の混合を抑制し、濃縮海水と海水の界面を維持したまま、濃縮海水によって海水を加圧することができる。
3)チャンバー内での乱流拡散による濃縮海水と海水の混合を抑制でき、濃度の高い海水を逆浸透膜分離装置に送ってしまうことがないので、逆浸透膜分離装置の性能を十分に発揮することができるとともに、逆浸透膜自体の交換周期を長くすることができる。
4)チャンバー内の複数の区画された流路は同一の断面積および同一の形状を有し、それ以外の部分は流体が流動しないようになっているため、チャンバー内の全ての区画流路における流動抵抗を均一にすることができるとともに界面の挙動を均一にすることができる。
5)複数の区画された流路を保持するパイプをチャンバーの内径とほぼ同径のパイプとしてチャンバーに着脱可能とすることで、チューブ、ハニカム等からなる流路自体の交換を容易に行うことができる。また、チャンバーへチューブ、ハニカム等からなる流路を実装する場合に、耐圧容器であるチャンバーへの加工や溶接、接着などを施すことなく、流路を実装したパイプを別ピースとしてチャンバーに嵌め込むだけでよく、構成が簡易となり、組立も容易となる。
図1は、本発明の海水淡水化システムの構成例を示す模式図である。 図2は、本発明のエネルギー交換チャンバーの構成例を示す断面図である。 図3は、図2のIII−III線断面図である。 図4は、チャンバー内に区画された複数の流路がある場合と無い場合の濃縮海水と海水の界面の状態を示す模式的断面図である。 図5は、円形断面のチューブ、ハニカム状の流路および格子状の流路における流路断面積や形状を均一にする例を示す図である。 図6は、図5(b)に示す流路Rを長手方向に複数に分割した場合を示す斜視図である。 図7は、図2に示すエネルギー交換チャンバーに整流手段を設けた実施形態を示す断面図である。 図8は、エネルギー交換チャンバーに他の整流手段を設けた実施形態を示す断面図である。 図9は、図8に示す整流手段の斜視図である。 図10は、エネルギー交換チャンバーにさらに他の整流手段を設けた実施形態を示す断面図である。 図11は、図10に示す整流手段の平面図である。 図12は、図10に示す実施形態において濃縮海水と海水の界面の状態を示す模式的断面図である。 図13は、図10で示したチューブで形成された多数の流路と多孔板からなる整流手段を4枚備えたエネルギー交換チャンバーに濃縮海水排水ポートを設けた実施形態を示す模式的断面図である。 図14は、本発明のエネルギー交換チャンバーにおいて整流手段とチューブとをシリンダ内に設置する場合の具体例を示す図であり、エネルギー交換チャンバーの断面図である。 図15は、本発明のエネルギー交換チャンバーにおいて整流手段とチューブとをシリンダ内に設置する場合の具体例を示す図であり、シリンダの略半分を取り除いてシリンダの内部を示す斜視図である。 図16は、図14の要部拡大図である。 図17は、図14のXVII部の拡大断面図である。 図18は、エネルギー交換チャンバーへの濃縮海水の導入およびエネルギー交換チャンバーの濃縮海水の排出を切換える方向切換弁と、エネルギー交換チャンバーへの取水海水の供給およびエネルギー交換チャンバーからの取水海水の排出用のバルブの構成を具体的に示した回路図である。 図19は、本発明のエネルギー交換チャンバーを2個備えた海水淡水化システムの構成例を示す模式図である。 図20(a)および図20(b)は、図19に示す海水淡水化システムにおける方向切換弁と2個のエネルギー交換チャンバーの関係を示す模式的断面図である。 図21は、本発明のエネルギー交換チャンバーを3個備えた海水淡水化システムの構成例を示す模式図である。 図22は、従来の海水淡水化システムの構成例を示す模式図である。 図23は、従来のエネルギー交換チャンバーの構成例を示す断面である。
以下、本発明に係る海水淡水化システムの実施形態について図1乃至図21を参照して説明する。なお、図1乃至図21において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
図1は、本発明の海水淡水化システムの構成例を示す模式図である。図1に示すように、取水ポンプ(図示しない)により取水された海水は、前処理装置により前処理されて所定の水質条件に整えられたのち、海水供給ライン1を介してモータMが直結された高圧ポンプ2へ供給される。高圧ポンプ2で昇圧された海水は吐出ライン3を介して逆浸透膜分離装置4に供給される。逆浸透膜分離装置4は、海水を塩分濃度の高い濃縮海水と塩分濃度の低い淡水に分離し海水から淡水を得る。この時、塩分濃度の高い濃縮海水が逆浸透膜分離装置4から排出されるが、この濃縮海水は依然高い圧力を有している。逆浸透膜分離装置4から濃縮海水を排出する濃縮海水ライン5は、方向切換弁6を介してエネルギー交換チャンバー20の濃縮海水ポートP1へ接続している。前処理された低圧の海水を供給する海水供給ライン1は、高圧ポンプ2の上流で分岐してバルブ7を介してエネルギー交換チャンバー20の海水ポートP2へ接続している。エネルギー交換チャンバー20は、チャンバー内の濃縮海水ポートP1と海水ポートP2の間に区画された流路を有しており、濃縮海水と海水の界面によって二流体を分離しながらエネルギー伝達を行うものである。
エネルギー交換チャンバー20において濃縮海水の圧力を利用して昇圧された海水は、ブースターポンプ8に供給される。そして、ブースターポンプ8によって海水は高圧ポンプ2の吐出ライン3と同じレベルの圧力になるようにさらに昇圧され、昇圧された海水はバルブ9を介して高圧ポンプ2の吐出ライン3に合流して逆浸透膜分離装置4に供給される。一方、海水を昇圧してエネルギーを失った濃縮海水は、エネルギー交換チャンバー20から方向切換弁6を介して濃縮海水排出ライン17に排出される。
図2は、本発明のエネルギー交換チャンバー20の構成例を示す断面図である。図2に示すように、エネルギー交換チャンバー20は、長尺の円筒形状のシリンダ21と、シリンダ21の両開口端を閉塞するフランジ23を備えている。フランジ23は、シリンダ21のフランジ部21fにボルト14およびナット15により固定されており、一方のフランジ23に濃縮海水ポートP1が形成され、他方のフランジ23に海水ポートP2が形成されている。シリンダ21内には、シリンダ21内に形成されたチャンバーの長手方向に延びる多数の区画された流路Rが形成されている。そして、これら流路Rによって濃縮海水ポートP1と海水ポートP2が連通されている。
図3は、図2のIII−III線断面図である。図3に示すように、シリンダ21内に形成されたチャンバー内に小径の複数のチューブ25が配設されている。そして、各チューブ25内に濃縮海水および海水が流入する流路Rが形成されている。各チューブ25は小径のチューブからなるため、チューブ内の流路断面積は小さく設定されている。図3に示す多数の流路Rを形成する方法は後述する。
ここで、この区画された流路が無い場合、濃縮海水ポートP1から流入した濃縮海水が海水ポートP2から吸い込んだ海水に拡散し、混ざり合ってしまう。海水ポートP2から海水を吸い込む場合においても、同様に濃縮海水内に海水が拡散してしまう。これは、チャンバー内でそれぞれの流体が流入する際に渦を作って大きく拡散してしまうためである。
本発明のエネルギー交換チャンバー20によれば、チャンバー内に吸い込まれた流体は、区画された流路断面積の小さい流路Rに流入する。この時、濃縮海水と海水が接触するが、流路断面積が小さい流路R内で生じる渦は管路内の小さな渦になるので、大きく拡散せずに濃縮海水と海水の界面が乱れない。このように流路断面積の小さい流路Rが複数個集まって大きなチャンバーを構成しているため、各流路Rで濃縮海水と海水の界面が維持され、全体として濃縮海水と海水の界面を維持したまま、すなわち濃縮海水と海水の混合を抑制しながら、濃縮海水によって海水を加圧し吐出することができる。
図4(a)および図4(b)は、海水が満たされているチャンバー内に濃縮海水ポートから濃縮海水が流入したときの混合の様子を示す図であり、チャンバー内に区画された複数の流路がある場合と無い場合の濃縮海水と海水の界面の状態を示す模式的断面図である。図4(a)は、チャンバー内に区画された複数の流路が無く単一の流路のみある場合の濃縮海水と海水の界面の状態を示し、図4(b)は、チャンバー内に区画された複数の流路Rがある場合の濃縮海水と海水の界面の状態を示す。
図4(a)および図4(b)において、A10で示した領域が濃縮海水100%〜90%の領域であり、濃縮海水ポートP1から海水ポートP2に向かうにつれて各領域(A9〜A2)ごとに濃度が10%低くなり、A1で示した領域は濃縮海水10%〜0%の領域である。なお、A1で示した領域においても、領域A2との境界部や領域A2に近接した部分では濃縮海水10%であるが、海水ポートP2に近い部分では濃縮海水0%、すなわち、海水100%である。
図4(a)に示すように、チャンバー内に区画された複数の流路が無い場合には、濃縮海水ポートP1から流入した濃縮海水が海水ポートP2から吸い込んだ海水に拡散し、広範囲にわたって混ざり合ってしまう。海水ポートP2から海水を吸い込む場合においても、同様に濃縮海水内に海水が拡散してしまう。これは、チャンバー内でそれぞれの流体が流入する際に、A9からA2で示す各領域で示すように、渦を作って大きく拡散してしまうためである。
これに対し、図4(b)に示すように、チャンバー内に区画された複数の流路Rがある場合には、濃縮海水ポートP1から濃縮海水が区画された流路断面積の小さい各流路Rに流入し、海水ポートP2から海水が各流路Rに流入する。この時、各流路R内で濃縮海水と海水が接触するが、流路断面積が小さい流路R内で生じる渦は管路内の小さな渦になるので、大きく拡散せずに濃縮海水と海水の界面I(A9〜A2で示す領域)が乱れない。
すなわち、図4(b)においてA10で示した領域は濃縮海水100%〜90%の領域であり、濃縮海水ポートP1から海水ポートP2に向かうにつれて各領域ごとに濃度が10%低くなり、A1で示した領域は濃縮海水10%〜0%の領域である。濃縮海水ポートP1から海水ポートP2方向にみた場合、領域A10に隣接する濃縮海水が90%〜80%の領域A9から10%ずつ濃縮海水の割合が減少していき、濃縮海水と海水の界面は、濃縮海水が90%〜80%の領域A9から濃縮海水が20%〜10%の領域A2までの8つの細い帯状の領域の集合であり、界面Iで示される。
このように流路断面積の小さい流路Rが複数個集まって大きなチャンバーを構成するため、各流路Rで濃縮海水と海水の界面Iが維持され、全体として濃縮海水と海水の界面を維持したまま、すなわち濃縮海水と海水の混合を抑制しながら、濃縮海水によって海水を加圧し吐出することができる。
本発明によれば、図4(b)に示すように、チャンバー内のピストンを無くしても、チャンバー内に区画された複数の流路Rを設けることにより、濃縮海水と海水をほぼ二分したままでエネルギー交換をすることができる。
このような形態では、複数に区画された流路を界面が往復動することになるが、濃縮海水が間違って海水の方へ漏れ出すことを防止したり、海水と濃縮海水の投入、排出の切替えタイミングの制御性を高めたりするには、全ての流路において界面の挙動が同一であることが望ましい。
本件出願人は、先に、特願2010−112803号において、図3の実施形態でシリンダ21内のチャンバーに円形断面を有するチューブ25を多数配置したエネルギー交換チャンバー20を提案しているが、この形態ではチューブ25とチューブ25との間の空間や、チャンバー内の外径部でチューブ25が円形断面を維持できない箇所で、区画された流路の断面積が大きく異なってしまう。また、同出願の図5の実施形態でシリンダ21内のチャンバーにハニカム状の流路や格子状の流路を形成した構成を提案しているが、この形態もチャンバー内の外径部で断面積や形状の大きく異なる区画流路ができてしまう。
このように断面積や形状の大きく異なる区画流路では、他の区画流路とは流動抵抗が異なり、界面の挙動も異なってしまうおそれがある。界面の挙動が他の流路と一致しないと、制御性が低下し、逆浸透膜(RO)に供給される海水に濃縮海水が混入してしまう可能性もある。
図5に示す実施形態は、特願2010−112803号の図3や図5に示す円形断面のチューブ、ハニカム状の流路および格子状の流路における流路断面積や形状が不均一になる欠点を解消したものである。
図5(a)に示す例では、シリンダ21内に形成されたチャンバー内に小径の複数のチューブ25が配設されている。各チューブ25内に濃縮海水および海水が流入する流路Rが形成されている。そして、チャンバー内の外径部でチューブが円形断面を維持できない箇所(斜線部分)は、樹脂等を埋めてしまうことにより中実に形成して流体が流入できないようにしている。
図5(b)に示す例では、シリンダ21内に形成されたチャンバー内に仕切り26を設けてハニカム状の複数の流路Rを形成している。そして、チャンバー内の外径部でハニカムが六角形断面を維持できない箇所(斜線部分)は、樹脂等を埋めてしまうことにより中実に形成して流体が流入できないようにしている。
図5(c)に示す例では、シリンダ21内に形成されたチャンバー内に仕切り26を設けて格子状の複数の流路Rを形成している。そして、チャンバー内の外径部で格子部が四角形断面を維持できない箇所(斜線部分)は樹脂等を埋めてしまうことにより中実に形成して流体が流入できないようにしている。
図5(a),(b),(c)に示すように、チャンバー内にチューブ、ハニカム、格子等によって、同一形状および同一断面積となるように複数の区画された流路Rを形成し、それ以外の部分は流体が流動しないように埋めてしまう。このように構成することにより、チャンバー内の全ての区画流路Rの流動抵抗を均一にすることができるとともに界面の挙動を均一にすることができる。
また、多数の流路Rを形成することにより、各流路R内で生じる渦は管路内の小さな渦になるので、大きく拡散せずに濃縮海水と海水の界面が乱れることがない。このように流路断面積の小さい流路Rが複数個集まって大きなチャンバーを構成しているため、各流路Rで濃縮海水と海水の界面が維持され、全体として濃縮海水と海水の界面を維持したまま、すなわち濃縮海水と海水の混合を抑制しながら、濃縮海水によって海水を加圧し吐出することができる。図5(a),(b),(c)に示す形状の流路の場合、チューブの直径、ハニカムや格子の対向する2辺の距離は5〜10mm程度がよい。
図5(a),(b),(c)に示すような形態は、例えば、光造形法、粉末法などのラピッドプロトタイピングにより製造することができる。光造形法とは、光が当たると硬化する光硬化性樹脂を用い、光を光硬化性樹脂に選択的に当てて選択的に硬化させる造形方法である。粉末法は粉状の材料を層状に敷き詰めレーザーを照射し、レーザーを照射した箇所を選択的に焼結して結合する方法である。
また、ラピッドプロトタイピングで造形した部材を型として利用し、実際の製品を成形で製作することも可能である。実際の製品は海水を利用することから、樹脂材料が望ましく、エポキシ、シリコン、ABS、PEEKなどを適宜選定する。
図6は、図5(b)に示すチャンバー内にハニカム状の複数の流路Rを形成し、チャンバー内の外径部でハニカムが六角形を維持できない箇所を樹脂で埋め、さらにチャンバーの長手方向に流路Rを複数に分割した場合を示す斜視図である。
図6に示すように、チャンバーの長手方向に流路Rを分割してチャンバー内に収容するとき、分割した流路がチャンバー全長に亘ってずれないように両端面の六角形のハニカムを維持できない外径部に位置決め用の穴61を形成している。そして、分割された流路をチャンバーに収容するときに、位置決めピン60を位置決め用の穴61に挿入し、ピン60が穴61に入るように組み立てることによって、区画した流路がずれることなくチャンバー全長に亘って合うようにしている。
このように複数の区画された流路Rをチャンバーの長手方向に複数に分割しても、位置決めピン60と位置決め用の穴61とを設けることにより、分割した面で流路断面積や形状が不均一になることなく流路を構成することができる。これにより、複数の区画された流路をチャンバーに入れる際にチャンバー全長と同じ長さの部材を挿入することなく、分割した流路をチャンバーに挿入すればよく作業性が向上する。また、流路を分割することで流路自体の製作が容易になる。
図7は、図2に示すエネルギー交換チャンバー20に整流手段を設けた実施形態を示す断面図である。図7に示すように、濃縮海水ポートP1,海水ポートP2と流路Rの間に空間S1,S2を設け、各空間S1,S2に流入する際に流体の整流を行う整流手段27,27を設けている。整流手段27は、小径のポートから大径のチャンバー内円筒部に向かってラッパ状に拡がる円錐状の整流板からなっている。
図8は、エネルギー交換チャンバー20に他の整流手段を設けた実施形態を示す断面図である。なお、図8に示すエネルギー交換チャンバー20は、図2におけるエネルギー交換チャンバー20と比較して、濃縮海水ポートP1および海水ポートP2の径に対してチャンバーの内径がより大きくなっている。
図8に示す実施形態においては、チャンバー内の空間S1,S2の中央部に流入側から拡大し、さらに縮小する円錐が底面で合わせられた形状の整流手段28,28を設けている。この整流手段28によってチャンバー中央部に供給された流体が一旦外側に広がり、再び内側へ縮小することで、小径のポートからの流れをチャンバー内の区画された各流路に均一に流すことができる。
図7において説明した小径のポートから大径のチャンバー内円筒部に向かってラッパ状に拡がる円錐状の整流板は、ポート内径とチャンバー内径の比が比較的小さい場合、すなわち、ポートからチャンバーへの拡大幅が小さい場合に有効であるが、図8に示すように、ポート内径とチャンバー内径の比が大きい場合、すなわちポートからチャンバーへの拡大幅が大きい場合には本実施形態の整流手段28が有効である。
図9は、図8に示す整流手段28の斜視図である。図9に示すように、整流手段28は、左側から右側に向かって拡大していく円錐28aと左側から右側に向かって縮小していく円錐28bとが互いに底面で合わせられた形状をしている。この整流手段28は、チャンバー中央に保持するために、円錐部材に複数の支持板28cを取り付けており、これら支持板28cをチャンバーの内壁に固定する。
図7乃至図9に示すように、チャンバー内に流入する流れを各流路Rに均等に流れるように整流することにより、濃縮海水と海水の界面がチャンバー内の1つの空間を2分することができる。方向切換弁やバルブによって流れの方向が変わり、濃縮海水と海水の界面が濃縮海水ポートP1と海水ポートP2の間を往復動作する。
図10は、本発明のさらに他の実施形態におけるエネルギー交換チャンバー20の構成を示す断面図である。図10に示す実施形態においては、他の整流手段を設けている。濃縮海水ポートP1と流路Rの間および海水ポートP2と流路Rの間に空間S1,S2を設け、各空間S1,S2に流入する際に流体の整流を行う整流手段29a,29b,29c,29dを設けている。
図11は、図10に示す整流手段の平面図である。図11に示すように、整流手段29a(29b,29c,29d)は、円板状の部材に多数の孔29hを形成した多孔板から構成されている。多孔板はポートP1,P2から所定の距離離間し、また隣接する多孔板どうしも所定の距離離間して配置されている。そして、多孔板は区画された流路の端部からも所定の距離離間するように配置されている。
図10に示す本実施形態も流入するポート内径に対するチャンバーの内径の比が大きい場合に有効である。このように、多孔板を配置することによって小径のポートP1,P2から流入する流れを大径のチャンバー内に均一に分散させ複数の区画された流路に均一に流れるようにすることができる。
図11に示す多孔板は、円板状の部材に多数の孔29hが形成されたパンチングプレートを用いている。パンチングプレートは、孔の直径や孔間ピッチによってプレート全面積に対する空孔率が計算できる。空孔率は、多孔板が大きな圧力損失にならない程度で、良好な整流作用を有するような数値を選定する。
また、一方のポート側に設けた2枚の多孔板による整流手段29a,29b(または29c,29d)は、それぞれの孔径や空孔率が異なるものでもよい。
図12は、図10に示す実施形態において海水が満たされているエネルギー交換チャンバー20内に濃縮海水ポートP1から濃縮海水が流入したときの混合の様子を示す図であり、濃縮海水と海水の界面の状態を示す模式的断面図である。図12において、A10で示した領域は濃縮海水100%〜90%の領域であり、濃縮海水ポートP1から海水ポートP2に向かうにつれて各領域ごとに濃度が10%低くなり、A1で示した領域は濃縮海水10%〜0%の領域である。濃縮海水ポートP1から海水ポートP2方向にみた場合、領域A10に隣接する濃縮海水が90%〜80%の領域A9から10%ずつ濃縮海水の割合が減少していき、濃縮海水と海水の界面は、濃縮海水が90%〜80%の領域A9から濃縮海水が20%〜10%の領域A2までの8つの細い帯状の領域の集合であり、界面Iで示す。
多孔板を整流手段29a,29b,29c,29dとして使用することにより、小径のポートから大径のチャンバーへ流路が拡大しても、濃縮海水と海水の界面Iが、チャンバー内を二つのポートP1,P2の間で流体を領域A10と領域A1とに二分割していることがわかる。濃縮海水ポートP1からさらに濃縮海水を流入させると界面Iが海水ポートP2側へ移動していき、海水ポートP2からは濃縮海水の圧力と同圧に昇圧された海水が吐出される。次に、海水ポートP2から海水を吸い込み、濃縮海水を濃縮海水ポートP1から排水する。この時も同様に海水ポートP2側の2枚の多孔板による整流手段29c,29dによってチャンバー内に均一に流れるように整流された海水が複数の区画された流路Rに均一に分散して流れ込み、流路Rによって乱流拡散が抑制され、界面Iによって2つの流体の混合を最小限としながら濃縮海水を排出する。
図13は、図3に示したチューブで形成された多数の流路と図10に示した多孔板からなる整流手段を4枚備えたエネルギー交換チャンバーに濃縮海水排水ポートを設けた実施形態を示す模式的断面図である。図13において、濃縮海水排水ポートP3は、濃縮海水ポートP1側の細管と多孔板による整流手段29bの間のシリンダ21の壁面に設けられている。
チャンバーが海水の吸込みを行う工程のとき、濃縮海水を濃縮海水排水ポートP3から排水し、濃縮海水と海水の混合領域にある流体を整流手段29bの手前で濃縮海水排水ポートP3から排出するようにしている。すなわち、混合領域にある流体を整流手段29bの手前で排出したうえで、次に再度濃縮海水により海水を押し出すときには濃縮海水を濃縮海水供給ポートP1から供給する。このように、混合領域にある流体をチャンバー内から排出することによって常に新しい界面が形成され、界面の往復動作によって濃縮海水と海水の混合が拡大していくのを防ぐことができる。
なお、制御によって、吸い込み吐出しサイクルの何回かに1回、吸い込み工程の時間を長く取り、混合領域にある流体を濃縮海水排水ポートP3から排出するようにしてもよい。
図14および図15は、本発明のエネルギー交換チャンバー20において整流手段29a,29b,29c,29dとチューブ25とをシリンダ21内に設置する場合の具体例を示す図であり、図14はエネルギー交換チャンバー20の断面図であり、図15はシリンダ21の略半分を取り除いてシリンダ21の内部を示す斜視図である。
図14および図15に示すように、エネルギー交換チャンバー20のシリンダ21内には、濃縮海水ポートP1側から海水ポートP2側に向かって、パイプPA、パイプPB、パイプPC、パイプPD、パイプPE、パイプPF、パイプPE、パイプPD、パイプPC、パイプPB、パイプPAの順序に配置されている。これらのパイプPA〜PFは、整流手段29a〜29dおよびチューブ25をチャンバーに固定するための部材として用いられている。パイプPA、パイプPB、パイプPC、パイプPD、パイプPEは、パイプPFを中心として左右対称に配置されている。整流手段29aはパイプPBとパイプPCとにより挟持され、整流手段29bはパイプPCとパイプPDにより挟持されている。また、整流手段29cはパイプPCとパイプPDとにより挟持され、整流手段29dはパイプPBとパイプPCとにより挟持されている。
図16は、図14の要部拡大図である。図16に示すように、パイプPA、パイプPB、パイプPC、パイプPD、パイプPE、パイプPFは、それぞれ軸方向において、その外端部にて凹凸形状をしており、これら凹凸部55で各々嵌合されて接続されている。
ここで、整流手段29a,29b(29c,29d)は、パイプPBとパイプPC間およびパイプPCとパイプPD間の凹凸部55の空隙に挟まれるように設置され、軸方向に固定されている。
また、図14に示すように、チューブで形成された流路Rは、パイプPFと2つのパイプPE内に設置されている。
図14に示す例では、チューブで形成された流路Rを軸方向に3分割してチャンバー内に設置している。流路Rの分割数、各パイプの軸方向の長さ、および各パイプの内外径は使用条件により適宜設定するものであり、図14に示す形態(3分割)に限るものではない。
なお、各パイプPA〜PFには、その外周面上の1箇所もしくは複数箇所に圧力バランス孔56を設けている。圧力バランス孔56の径、圧力バランス孔56の軸方向および円周方向の数は、適宜設定する。
図17は、図14のXVII部の拡大断面図である。図17に示すように、パイプPAの端部には固定ワッシャー57が設けられている。固定ワッシャー57は軸部57aを有しており、軸部57aはパイプPAの端部に形成された孔hに嵌合されている。そして、固定ワッシャー57とパイプPAの端面との間にはOリング58が設置されている。
固定ワッシャー57の軸部57aは、孔h内で軸方向に可動になっており、孔hの深さおよび軸部57aの長さは、固定ワッシャー57が軸方向に所望の距離だけ移動できるように設定されている。なお、固定ワッシャー57は、図17に示すパイプPAと対称位置にあるもう1つのパイプPAにも設置されている(図14参照)。
図14および図17に示すように、パイプPAの端部に、Oリング58の弾性変形によって軸方向に移動可能な固定ワッシャー57を設置し、固定ワッシャー57をフランジ23で押さえることにより、パイプPA〜PFをチャンバー内で軸方向に固定することができる。
図18は、エネルギー交換チャンバー20への濃縮海水の導入およびエネルギー交換チャンバー20からの濃縮海水の排出を切換える方向切換弁6と、エネルギー交換チャンバー20への取水海水の供給およびエネルギー交換チャンバー20からの取水海水の排出用のバルブ7の構成を具体的に示した回路図である。方向切換弁6は、供給ポート、制御ポート、戻りポートを備えた三方弁であり、弁開度を外部信号に応じて任意に調整することができる制御弁である。また、バルブ7は、チェック弁を2個備えたチェック弁モジュールである。
図19は、本発明のエネルギー交換チャンバーを2個備えた海水淡水化システムの構成例を示す模式図である。図1に示す海水淡水化システムと同様に、逆浸透膜分離装置4からの高圧の濃縮海水は方向切換弁6に供給される。本実施形態においては、方向切換弁6は、出力ポートを2つ備えた四方弁であり、2つのエネルギー交換チャンバー20の何れか一方へ濃縮海水を供給し同時にもう一方のエネルギー交換チャンバー20から濃縮海水を排水するように動作する。海水ポートP2に設けたバルブ7は、図1および図18で説明したものと同様である。
本実施形態においては、方向切換弁6に四方弁を採用することによって、2つのエネルギー交換チャンバー20へ交互に濃縮海水を供給し、2つのエネルギー交換チャンバー20から交互に昇圧された海水を吐出するため、逆浸透膜分離装置4から得られる淡水の流量を安定に保つことができる。
図20(a)および図20(b)は、図19に示す海水淡水化システムにおける方向切換弁と2個のエネルギー交換チャンバーの関係を示す模式的断面図である。図20(a)および図20(b)においては、2個のエネルギー交換チャンバーを区別して説明するために、一方のチャンバーを20Aで示し、他方のチャンバーを20Bで示す。図20(a)および図20(b)に示すように、方向切換弁6は、ハウジング101、スプール102、駆動部103からなり、ハウジング101にスプール102を嵌合させ、スプール102を移動させることにより、流路の切換えを行う方式のものである。
方向切換弁6には、1つの供給ポートP、2つの制御ポートA,B、2つの戻りポートQが形成される。本発明における方向切換弁6では、供給ポートPは濃縮海水ライン5に連通し、2つの制御ポートA,Bは、それぞれエネルギー交換チャンバー20A,20Bに連通し、戻りポートQは濃縮海水排出ライン17に連通している。
本方向切換弁6の機能は、方向切換弁6に供給される逆浸透膜分離装置4からの高圧の濃縮海水をスプール102の動作により、エネルギー交換チャンバー20A,20Bに交互に導入しつつ、エネルギー交換チャンバー20A,20B内の海水を排出することである。
図20(a)および図20(b)に示す実施形態による方向切換弁6の例では、スプール102は3ランドであるが、方向切換弁に1つ以上の供給ポートP、2つの制御ポートA,B、2つ以上の戻りポートQが形成され、スプールの動作(制御弁内の流路の切換)により、供給ポートPと何れか一方の制御ポートA(又はB)が連通し、また何れかもう一方の制御ポートB(又はA)と戻りポートQが連通するものであれば、回転スプール形など、本図の構造・形態例に限らない。
次に、方向切換弁6のスプール102の動作による方向切換例を説明する。
(A)図20(a)は、方向切換弁6の供給ポートPと制御ポートAが連通する方向にスプール102が動作した場合を示す。
高圧の濃縮海水が方向切換弁6を通じて(Pポート→Aポート)エネルギー交換チャンバー20A(図20(a)中の上)に導入される。
エネルギー交換チャンバー20A(図20(a)中の上)内の界面(濃縮海水と海水の界面)Iが同図中の右方向に移動する。
エネルギー交換チャンバー20A内にバルブ7(図19参照)を通じて導入された海水が界面Iの移動により昇圧され、昇圧された海水がバルブ7を通じてブースターポンプ8(図19参照)に供給される。
また併行して、方向切換弁6の制御ポートBと戻りポートQが連通し、エネルギー交換チャンバー20B内におけるエネルギーを失って低圧になった濃縮海水が濃縮海水排出ライン17に排出されるとともに海水供給ライン1から海水がバルブ7を通じてエネルギー交換チャンバー20B(図20(a)中の下)に導入される。
(B)図20(b)は、方向切換弁6の供給ポートPと制御ポートBが連通する方向にスプール102が動作した場合を示す。
高圧の濃縮海水が方向切換弁6を通じて(Pポート→Bポート)エネルギー交換チャンバー20B(図20(b)中の下)に導入される。
エネルギー交換チャンバー20B(図20(b)中の下)内の界面Iが同図中の右方向に移動する。
エネルギー交換チャンバー20B内にバルブ7(図19参照)を通じて導入された海水が界面Iの移動により昇圧され、昇圧された海水がバルブ7を通じてブースターポンプ8(図19参照)に供給される。
また併行して、方向切換弁6の制御ポートAと戻りポートQが連通し、エネルギー交換チャンバー20A内におけるエネルギーを失って低圧になった濃縮海水が濃縮海水排出ライン17に排出されるとともに海水供給ライン1から海水がバルブ7を通じてエネルギー交換チャンバー20A(図20(b)中の上)に導入される。
図21は、本発明のエネルギー交換チャンバーを3個備えた海水淡水化システムの構成例を示す模式図である。本実施形態においては、3つのエネルギー交換チャンバー20,20,20のそれぞれの濃縮海水ポートに方向切換弁6を備え、海水ポートにバルブ7を備えている。3個のエネルギー交換チャンバーの濃縮海水と海水の出入りのタイミングをずらし、2個のエネルギー交換チャンバーから同時に高圧海水を吐出するようにし、併行して、1個のエネルギー交換チャンバーに海水を吸込むように3個の方向切換弁6を制御する。2個のエネルギー交換チャンバーを備えた図19および図20で示した実施形態の場合、2個のチャンバーから交互に海水を吐出するために2個のチャンバーで1個のチャンバー分の吐出流量が得られるのに対し、本実施形態においては、3個のエネルギー交換チャンバーを備えることで、2個のチャンバー分の吐出流量が得られる。
図19乃至図21に示すように、本発明のエネルギー交換チャンバー20を複数個配置して海水淡水化システムを構成することも可能であり、海水淡水化システムの造水量の規模に応じてエネルギー交換チャンバー20の数を増減することで任意の造水量に対応することができる。
なお、図21において、エネルギー交換チャンバー20の濃縮海水ポートに設置される方向切換弁6と、エネルギー交換チャンバー20の海水ポートに設置されるバルブ7は、配管で接続するのではなく、チャンバーのフランジに直接取り付けるように構成している。このようにすれば、チャンバーの数を増設しやすく、また管路による損失を最小限に抑えることができる。
これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことはいうまでもなく、例えば、エネルギー交換チャンバーの形態等は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
1 海水供給ライン
2 高圧ポンプ
3 吐出ライン
4 逆浸透膜分離装置
5 濃縮海水ライン
6 方向切換弁
7 バルブ
8 ブースターポンプ
9 バルブ
10 エネルギー交換チャンバー
11 シリンダ
11f フランジ部
12 ピストン
13 フランジ
14 ボルト
15 ナット
16 摺動リング
17 濃縮海水排出ライン
20 エネルギー交換チャンバー
20A,20B エネルギー交換チャンバー
21 シリンダ
21f フランジ部
23 フランジ
25 チューブ
26 仕切り
27,28 整流手段
28a,28b 円錐
28c 支持板
29a,29b,29c,29d 整流手段
29h 多孔板の孔
55 凹凸部
56 圧力バランス孔
57 固定ワッシャー
57a 軸部
58 Oリング
60 位置決めピン
61 位置決め用の穴
101 ハウジング
102 スプール
103 駆動部
A 制御ポート
B 制御ポート
I 界面
P 供給ポート
Q 戻りポート
R 流路
A10 濃縮海水100%〜90%の領域
A1 濃縮海水10%〜0%の領域
A9〜A2 濃縮海水と海水との領域(界面)
P1 濃縮海水ポート
P2 海水ポート
P3 濃縮海水排水ポート
S1,S2 空間

Claims (17)

  1. ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて、
    前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水の一部を昇圧するエネルギーに利用するエネルギー交換チャンバーを備え、
    前記エネルギー交換チャンバーは、前記濃縮海水の出入りを行う濃縮海水ポートと、前記海水の出入りを行う海水ポートと、チャンバー内に設けられるとともに前記濃縮海水ポートと前記海水ポートとを連通させる複数の区画された流路とを備え、
    前記複数の区画された流路は同一の断面積および同一の形状を有し、それ以外の部分の流路を流体が流動しないように中実に形成したことを特徴とする海水淡水化システム。
  2. 前記複数の区画された流路を保持するパイプを備え、該パイプは前記エネルギー交換チャンバー内に嵌装されることを特徴とする請求項1に記載の海水淡水化システム。
  3. 前記パイプは長手方向に複数に分割されていることを特徴とする請求項2に記載の海水淡水化システム。
  4. 前記パイプは前記エネルギー交換チャンバー内の前記複数の区画された流路の無い空間にも延設されていることを特徴とする請求項2または3に記載の海水淡水化システム。
  5. 前記パイプには内径側と外形側を連通する孔が設けられていることを特徴とする請求項2乃至4のいずれか1項に記載の海水淡水化システム。
  6. 前記エネルギー交換チャンバーを複数備え、前記複数のエネルギー交換チャンバーにおける濃縮海水ポートへの濃縮海水の供給と該濃縮海水ポートからの濃縮海水の排出とを切換える少なくとも1つの切換弁を備えたことを特徴とする請求項1乃至5のいずれか1項に記載の海水淡水化システム。
  7. 前記複数の区画された流路は同一の断面積および同一の形状を有し、前記それ以外の部分の流路は流体が入らないように埋められていることを特徴とする請求項1記載の海水淡水化システム。
  8. 前記複数の区画された流路をチャンバーの長手方向に複数に分割し、長手方向に分割された複数の流路の各接続部において前記流体が入らないように埋められた箇所に位置決め手段を設けたことを特徴とする請求項7記載の海水淡水化システム。
  9. ポンプによって昇圧した海水を逆浸透膜分離装置に通水して淡水と濃縮海水に分離して海水から淡水を生成する海水淡水化システムにおいて前記逆浸透膜分離装置から吐出される濃縮海水の圧力エネルギーを前記海水を昇圧するエネルギーに利用するエネルギー交換チャンバーであって、
    前記エネルギー交換チャンバーは、前記濃縮海水の出入りを行う濃縮海水ポートと、前記海水の出入りを行う海水ポートと、チャンバー内に設けられるとともに前記濃縮海水ポートと前記海水ポートとを連通させる複数の区画された流路とを備え、
    前記複数の区画された流路は同一の断面積および同一の形状を有し、それ以外の部分の流路を流体が流動しないように中実に形成したことを特徴とするエネルギー交換チャンバー。
  10. 前記複数の区画された流路を保持するパイプを備え、該パイプは前記エネルギー交換チャンバー内に嵌装されることを特徴とする請求項9に記載のエネルギー交換チャンバー。
  11. 前記パイプは長手方向に複数に分割されていることを特徴とする請求項10に記載のエネルギー交換チャンバー。
  12. 前記パイプは前記エネルギー交換チャンバー内の前記複数の区画された流路の無い空間にも延設されていることを特徴とする請求項10または11に記載のエネルギー交換チャンバー。
  13. 前記パイプには内径側と外形側を連通する孔が設けられていることを特徴とする請求項10乃至12のいずれか1項に記載のエネルギー交換チャンバー。
  14. 前記濃縮海水ポートと前記複数の区画された流路との間に整流手段を備えたことを特徴とする請求項9に記載のエネルギー交換チャンバー。
  15. 前記海水ポートと前記複数の区画された流路との間に整流手段を備えたことを特徴とする請求項9に記載のエネルギー交換チャンバー。
  16. 前記複数の区画された流路は同一の断面積および同一の形状を有し、前記それ以外の部分の流路は流体が入らないように埋められていることを特徴とする請求項9記載のエネルギー交換チャンバー。
  17. 前記複数の区画された流路をチャンバーの長手方向に複数に分割し、長手方向に分割された複数の流路の各接続部において前記流体が入らないように埋められた箇所に位置決め手段を設けたことを特徴とする請求項16記載のエネルギー交換チャンバー。
JP2010245206A 2010-11-01 2010-11-01 海水淡水化システムおよびエネルギー交換チャンバー Active JP5456640B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245206A JP5456640B2 (ja) 2010-11-01 2010-11-01 海水淡水化システムおよびエネルギー交換チャンバー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245206A JP5456640B2 (ja) 2010-11-01 2010-11-01 海水淡水化システムおよびエネルギー交換チャンバー

Publications (2)

Publication Number Publication Date
JP2012096151A JP2012096151A (ja) 2012-05-24
JP5456640B2 true JP5456640B2 (ja) 2014-04-02

Family

ID=46388714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245206A Active JP5456640B2 (ja) 2010-11-01 2010-11-01 海水淡水化システムおよびエネルギー交換チャンバー

Country Status (1)

Country Link
JP (1) JP5456640B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010466B2 (ja) * 2013-01-16 2016-10-19 株式会社荏原製作所 海水淡水化システムおよびエネルギー回収装置
JP6192336B2 (ja) 2013-04-02 2017-09-06 協和機電工業株式会社 塩水淡水装置
JP6113833B2 (ja) * 2013-04-03 2017-04-12 株式会社荏原製作所 海水淡水化システムおよびエネルギー回収装置
CN105050695B (zh) * 2013-04-05 2016-12-07 株式会社荏原制作所 海水淡化系统以及能量回收装置
CN110307741B (zh) * 2019-06-09 2024-02-06 天津融渌众乐科技有限公司 一种促进能量交换的损益系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541665B2 (ja) * 1974-04-30 1979-01-27
JPS53124178A (en) * 1977-01-20 1978-10-30 Kobe Steel Ltd Separating method by reverse osmosis
DE2830982A1 (de) * 1978-07-14 1980-01-24 Steinmueller Gmbh L & C Membrandoppelspeicher zur anwendung in reversosmoseanlagen
JPS60241926A (ja) * 1984-05-15 1985-11-30 Mitsubishi Heavy Ind Ltd 発熱を伴なう触媒リアクタ
JPH11235503A (ja) * 1998-02-20 1999-08-31 Nippon Steel Corp 面状ろ過材を用いたフィルターの支持構造
JP2008080267A (ja) * 2006-09-28 2008-04-10 Toray Ind Inc 複合式熱交換型反応器およびそれを用いたポリカプロアミドプレポリマーの製造方法

Also Published As

Publication number Publication date
JP2012096151A (ja) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5964541B2 (ja) 海水淡水化システムおよびエネルギー交換チャンバー
JP5848184B2 (ja) 海水淡水化システムおよびエネルギー交換チャンバー
JP5456640B2 (ja) 海水淡水化システムおよびエネルギー交換チャンバー
JP5571005B2 (ja) 圧力交換装置及び圧力交換装置の性能調整方法
US7850847B2 (en) Filtration system manifolds
KR101572435B1 (ko) 수동 압력원을 갖춘 회분식 역삼투압 시스템
DE69712518T2 (de) Fluidbetriebene pumpen und vorrichtung mit solchen pumpen
KR102074257B1 (ko) 원통형 역전기투석 발전장치
US8202422B2 (en) Fluid system
JP6113833B2 (ja) 海水淡水化システムおよびエネルギー回収装置
CN106794423B (zh) 海水淡化系统及能量回收装置
CA2826026A1 (en) Split pressure vessel for two flow processing
JP6595174B2 (ja) 多数並行フィルタ素子を備えた流体フィルタ及び関連する方法
JP6010466B2 (ja) 海水淡水化システムおよびエネルギー回収装置
JP5405435B2 (ja) 海水淡水化システムおよびエネルギー交換チャンバー
JP6234723B2 (ja) 流体混合装置
JP6152416B2 (ja) 海水淡水化システムおよびエネルギー回収装置
KR101385362B1 (ko) 삼투용 다공성 유출관
JP6066045B2 (ja) 圧力交換装置
RU2005111154A (ru) Клапан обратный
CN103232120A (zh) 过滤单元
RU2102127C1 (ru) Аппарат для фильтрации жидкости

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250