JP5454546B2 - Autofocus device - Google Patents

Autofocus device Download PDF

Info

Publication number
JP5454546B2
JP5454546B2 JP2011233057A JP2011233057A JP5454546B2 JP 5454546 B2 JP5454546 B2 JP 5454546B2 JP 2011233057 A JP2011233057 A JP 2011233057A JP 2011233057 A JP2011233057 A JP 2011233057A JP 5454546 B2 JP5454546 B2 JP 5454546B2
Authority
JP
Japan
Prior art keywords
value
aperture value
aperture
focus
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011233057A
Other languages
Japanese (ja)
Other versions
JP2012053477A (en
Inventor
宏明 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011233057A priority Critical patent/JP5454546B2/en
Publication of JP2012053477A publication Critical patent/JP2012053477A/en
Application granted granted Critical
Publication of JP5454546B2 publication Critical patent/JP5454546B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

本発明は、カメラ等に設けられるオートフォーカス装置およびカメラに関し、合焦精度の向上を図るものである。   The present invention relates to an autofocus device and a camera provided in a camera or the like, and aims to improve focusing accuracy.

コントラスト方式のAF(オートフォーカス)制御を行うカメラが知られている。コントラスト方式では、被写体をCCD等の撮像素子で撮像して画像信号を取得し、そのうち所定のAFエリア内の信号から所定空間周波数帯域の成分を取り出し、その絶対値を積分することで焦点評価値を演算する。この焦点評価値は、焦点検出エリアのコントラストに応じた量であり、コントラストが高いほどその値が高くなる。像のコントラストは、合焦レンズが合焦位置に近いほど高くなるから、上記焦点評価値がピークとなるレンズ位置を合焦位置と判断することができ、そのピーク位置を見つけて合焦レンズを駆動することで、AFエリア内の被写体に精度よく合焦させることができる。   A camera that performs contrast AF (autofocus) control is known. In the contrast method, a subject is imaged by an image sensor such as a CCD to obtain an image signal, a component in a predetermined spatial frequency band is extracted from the signal in a predetermined AF area, and the absolute value is integrated to obtain a focus evaluation value. Is calculated. This focus evaluation value is an amount corresponding to the contrast of the focus detection area, and the higher the contrast, the higher the value. Since the contrast of the image becomes higher as the focusing lens is closer to the in-focus position, the lens position where the focus evaluation value reaches a peak can be determined as the in-focus position. By driving, it is possible to focus on the subject in the AF area with high accuracy.

上記のようなコントラストAFを絞り開放で行うようにしたカメラが知られている(例えば、特許文献1参照)。これは、被写界深度が最も浅い状態(絞り開放状態)で焦点評価値演算用の画像データを取得することで、ピーク位置の検出を容易にし、以てピント精度を高めるというものである。   A camera is known in which the above-described contrast AF is performed with the aperture fully open (see, for example, Patent Document 1). This is to obtain the focus evaluation value calculation image data in a state where the depth of field is the shallowest (aperture open state), thereby facilitating detection of the peak position and thus improving the focus accuracy.

特開2004−280048号公報JP 2004-280048 A

しかしながら、実際はレンズの球面収差の影響により、絞り開放時と絞り込み時とで最良像面位置は一致せず、絞り込みによって最良像面位置は変化する。このため、絞り開放時のデータに基づくAFは、絞り開放か絞り込み量が少ないときの撮影には有効であるが、大きく絞り込んで撮影する場合は、上記最良像面のずれによるピント誤差が生ずる。   However, in practice, due to the spherical aberration of the lens, the best image plane position does not match when the aperture is opened and when the aperture is reduced, and the best image plane position changes due to the aperture stop. For this reason, AF based on the data when the aperture is fully open is effective for shooting when the aperture is fully open or when the aperture is small. However, when shooting with a large aperture, a focus error occurs due to the shift of the best image plane.

請求項1の発明に係るオートフォーカス装置は、撮影レンズおよび絞りを通過した光束を受光して焦点調節状態を検出する焦点検出部と、前記焦点検出部の検出結果に基づいて焦点調節制御を行う制御部と、前記焦点調節状態を検出するにあたって設定する焦点検出絞り値を、撮影絞り値に基づいて決定する決定部とを含み、前記決定部は、被写体の輝度が第1輝度値である場合において前記撮影絞り値が所定値より小さいときには、前記撮影絞り値が大きくなるほど前記焦点検出絞り値が大きくなるように前記焦点検出絞り値を決定し、前記被写体の輝度が前記第1輝度値である場合において前記撮影絞り値が前記所定値より大きいときには、前記撮影絞り値が大きくなっても前記焦点検出絞り値が大きくならないように前記焦点検出絞り値を決定することを特徴とする An autofocus device according to a first aspect of the present invention receives a light beam that has passed through a photographing lens and a diaphragm and detects a focus adjustment state, and performs focus adjustment control based on a detection result of the focus detection unit. A control unit; and a determination unit that determines a focus detection aperture value that is set when detecting the focus adjustment state based on a shooting aperture value, wherein the determination unit has a first luminance value as a luminance of the subject. wherein when photographing aperture is smaller than a predetermined value, the photographing aperture is enough to determine the focus detection aperture said as focus detection aperture value increases significantly, the luminance of the subject is in the first luminance value in wherein when shooting aperture value is larger than the predetermined value in the case, the photographing aperture even increases the focus detection aperture value become not the focus detecting diaphragm as large And determining the.

本発明によれば、絞り込みによる最良像面位置移動の影響を最小限に止めると同時に、光量不足による焦点検出の信頼性低下も抑制でき、以て高精度のオートフォーカス制御を実現できる。   According to the present invention, it is possible to minimize the influence of the movement of the best image plane position due to the narrowing down, and to suppress a decrease in the reliability of focus detection due to insufficient light quantity, thereby realizing highly accurate autofocus control.

本発明の一実施形態におけるデジタルカメラの制御ブロック図。The control block diagram of the digital camera in one Embodiment of this invention. 絞り込みによる最良像面位置の移動を説明する図。The figure explaining the movement of the best image plane position by narrowing down. AF制御の手順を示すフローチャート。The flowchart which shows the procedure of AF control. AF絞り値を求める際に用いる線図。The diagram used when calculating | requiring AF aperture value. 他の実施形態における制御手順を示すフローチャート。The flowchart which shows the control procedure in other embodiment.

図1〜図5により本発明の一実施の形態を説明する。
図1は本実施形態におけるデジタルスチルカメラの機能ブロック図である。撮影光学系30は、絞り31および合焦レンズ32を含み、その透過光束はCCD等の撮像素子2に導かれる。撮像素子2の光電変換出力は、画像信号としてアナログ信号処理部3に入力され、ここで相関二重サンプリング処理(CDS処理)等の処理が行われる。アナログ信号処理部3で処理された画像信号は、A/D変換器4によりデジタル信号に変換された後、一旦バッファメモリ12に記憶される。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a functional block diagram of a digital still camera according to this embodiment. The photographing optical system 30 includes a diaphragm 31 and a focusing lens 32, and the transmitted light flux is guided to the image pickup device 2 such as a CCD. The photoelectric conversion output of the image sensor 2 is input as an image signal to the analog signal processing unit 3, where processing such as correlated double sampling processing (CDS processing) is performed. The image signal processed by the analog signal processing unit 3 is converted into a digital signal by the A / D converter 4 and then temporarily stored in the buffer memory 12.

バッファメモリ12に記憶されたデータは、デジタル信号処理部5に読み出され、ここで輪郭補償やガンマ補正などの種々の画像処理が施される。デジタル処理後のデータは、再びバッファメモリ12に記憶された後、記録・再生信号処理部14を介してメモリカード等の外部記憶媒体15に記録される。   The data stored in the buffer memory 12 is read out to the digital signal processing unit 5 where various image processing such as contour compensation and gamma correction is performed. The data after the digital processing is stored again in the buffer memory 12 and then recorded in the external storage medium 15 such as a memory card via the recording / reproducing signal processing unit 14.

表示装置8は、画像表示が可能な液晶モニタ等から成る。画像表示に際しては、バッファメモリ12に記憶された画像データをモニタ処理部6に読み出し、表示用にリサイズした画像をD/A変換器7でアナログ映像信号に変換し、そのアナログ映像信号を用いて表示装置8に表示する。   The display device 8 includes a liquid crystal monitor capable of displaying an image. When displaying an image, the image data stored in the buffer memory 12 is read out to the monitor processing unit 6, and the image resized for display is converted into an analog video signal by the D / A converter 7, and the analog video signal is used. It is displayed on the display device 8.

フォーカスモータ10は、CPU9の指示に応じて撮影光学系30の合焦レンズ32を駆動して焦点調節を行う。露出制御部11は、CPU9の指示に応じて絞り31や不図示のシャッタを駆動して露出制御を行う。   The focus motor 10 adjusts the focus by driving the focusing lens 32 of the photographing optical system 30 in accordance with an instruction from the CPU 9. The exposure control unit 11 performs exposure control by driving a diaphragm 31 and a shutter (not shown) in accordance with an instruction from the CPU 9.

操作部材13は、カメラの電源をオン・オフするための電源スイッチ、レリーズボタンの半押し操作でオンする半押しスイッチ、レリーズボタンの全押し操作でオンする全押しスイッチ、レリーズボタンとは別に設けられたAF−ONボタン、その他のボタンに連動する複数のスイッチを含む。CPU9は、これらのスイッチの状態によって各ボタンの操作の有無を検知する。   The operation member 13 is provided separately from a power switch for turning the camera on and off, a half-push switch that is turned on by half-pressing the release button, a full-push switch that is turned on by full-pressing the release button, and a release button. And a plurality of switches that are linked to other buttons. The CPU 9 detects the presence / absence of operation of each button according to the state of these switches.

本実施形態におけるAF制御について説明する。
撮影画面には、予め1箇所または複数箇所にAFエリアが設定されており、そのAFエリアの画像信号に基づいて、コントラスト方式のAF制御を行う。コントラスト法は、像のボケの程度とコントラストとの間に相関があることに着目し、焦点が合ったときに像のコントラストが最大になることを利用して焦点合わせを行うものである。コントラストの大小は画像信号の高周波成分の大小により評価することができるので、CPU9は、撮像によって得られた画像信号から所定帯域の高周波成分を抽出し、抽出した高周波成分の絶対値をAFエリアごとに積分し、これを焦点評価値とする。
The AF control in this embodiment will be described.
An AF area is set in advance in one or a plurality of locations on the shooting screen, and contrast-type AF control is performed based on image signals in the AF area. The contrast method pays attention to the fact that there is a correlation between the degree of blur of an image and the contrast, and performs focusing using the fact that the contrast of the image is maximized when focused. Since the magnitude of the contrast can be evaluated by the magnitude of the high-frequency component of the image signal, the CPU 9 extracts a high-frequency component in a predetermined band from the image signal obtained by imaging, and calculates the absolute value of the extracted high-frequency component for each AF area. And this is used as the focus evaluation value.

焦点評価値は、像のコントラスト、換言すれば合焦レンズ32の焦点調節状態に応じて変化する量であり、合焦してコントラストが最大となったときに最大値(ピーク値)とな
る。そこで、焦点評価値がピークとなるレンズ位置を求め、その位置に合焦レンズ32をもたらすことで、AFエリア内の被写体に合焦させることができる。以下、焦点評価値がピークとなるレンズ位置を求める動作をAFサーチと呼ぶ。
The focus evaluation value is an amount that changes in accordance with the contrast of the image, in other words, the focus adjustment state of the focusing lens 32, and becomes the maximum value (peak value) when the contrast becomes maximum after focusing. Therefore, by obtaining a lens position where the focus evaluation value reaches a peak and bringing the focusing lens 32 to that position, it is possible to focus on the subject in the AF area. Hereinafter, an operation for obtaining a lens position where the focus evaluation value reaches a peak is referred to as an AF search.

AFサーチの手法としては、例えば山登り方式が知られている。山登り方式では、合焦レンズ32を移動させながら所定のサンプリングピッチごとに焦点評価値を演算し、演算のたびにその焦点評価値を前回サンプリング時の同評価値(記憶値)と比較する。今回の評価値が前回の評価値よりも増加していれば、ピークに近づいていることになるので、同方向に合焦レンズ32を移動させつつサンプリングを続ける。今回の評価値が前回の評価値よりも減少していれば、ピークから遠ざかっていることになるので、逆方向に合焦レンズ32を移動させつつサンプリングを続ける。かかる動作を繰り返すことで、最終的にピーク位置(山の頂上)に合焦レンズ32をもたらすことができる。   As an AF search method, for example, a mountain climbing method is known. In the hill-climbing method, a focus evaluation value is calculated for each predetermined sampling pitch while moving the focusing lens 32, and the focus evaluation value is compared with the same evaluation value (memory value) at the previous sampling each time the calculation is performed. If the current evaluation value is higher than the previous evaluation value, the peak is approaching, so sampling is continued while moving the focusing lens 32 in the same direction. If the current evaluation value is smaller than the previous evaluation value, the distance from the peak means that the sampling is continued while moving the focusing lens 32 in the opposite direction. By repeating this operation, the focusing lens 32 can finally be brought to the peak position (the peak of the mountain).

上述のようなコントラストAFは、絞り開放時の画像信号に基づいて行うのが基本である。被写界深度が浅いときの焦点評価値を用いた方がピントの山を掴み易いからである。しかし、絞り開放でのAF制御には、以下のような欠点がある。   The above-described contrast AF is basically performed based on the image signal when the aperture is opened. This is because it is easier to use the focus evaluation value when the depth of field is shallower to grasp the focus mountain. However, AF control with the aperture fully open has the following drawbacks.

図2は絞り込みによる最良像面の移動を説明する図である。これは、開放絞り値がF1.4のレンズを用いた例で、絞り開放時の最良像面位置を0としたものである。最良像面の移動は、レンズの球面収差により、レンズの中心を通った光と周辺を通った光とで結像位置にずれが生ずるために起こる。絞り31が絞り込まれる(絞り値が大きくなる)に従い、周辺光量がカットされるため、最良像面は近軸像面側に移動する。このため、絞り開放時の画像信号を用いて高精度のコントラストAFを行ったとしても、その後に図の撮影絞り値まで絞り込んで撮影を行った場合は、a1の分だけピントずれが発生してしまう。   FIG. 2 is a diagram for explaining the movement of the best image plane by narrowing down. This is an example in which a lens with an open aperture value of F1.4 is used, and the best image plane position when the aperture is open is 0. The movement of the best image plane occurs because the image forming position is shifted between the light passing through the center of the lens and the light passing through the periphery due to the spherical aberration of the lens. As the aperture 31 is reduced (the aperture value is increased), the peripheral light quantity is cut, so that the best image plane moves to the paraxial image plane side. For this reason, even if high-precision contrast AF is performed using the image signal when the aperture is opened, if the image is subsequently reduced to the imaging aperture value shown in the figure, a focus shift occurs by a1. End up.

かかるピントずれを防止するには、コントラストAFで用いる画像データを得るときの絞り値(以下、AF絞り値と呼ぶ)を、撮影絞り値と一致させる必要がある。例えば撮影絞り値をF5.6とした場合は、F5.6まで絞り込んで撮像した画像データから焦点評価値を演算し、それに基づいてコントラストAFを行うことで、上述したようなピントずれを防止できる。   In order to prevent such out-of-focus, it is necessary to make the aperture value (hereinafter referred to as AF aperture value) when obtaining image data used in contrast AF coincide with the photographing aperture value. For example, when the photographing aperture value is set to F5.6, the focus evaluation value is calculated from the image data captured with the aperture stopped down to F5.6, and the contrast AF is performed based on the calculated focus evaluation value, thereby preventing the above-described defocusing. .

しかし、絞り込み量が多くなるほど撮像素子2に導かれる光量は少なくなり、撮像素子2の蓄積時間が長くなるととともに、画像信号の値が小さくなってノイズ成分の割合が増大する(S/N比が悪化する)。これらの問題は、被写体輝度が暗いほど顕著である。コントラストAFは、上述したように撮像(蓄積)を繰り返し行うので、1回の蓄積時間が長くなると、AF速度の大幅な低下をもたらす。またS/N比の悪化は、焦点評価値の信頼性の低下を招き、AF精度の悪化につながる。このことから、撮影絞り値が大きいとき(絞り込み量が多いとき)や、被写体が暗いときは、無理にAF絞り値を撮影絞り値と一致させるのではなく、AF絞り値を撮影絞り値よりもある程度小さくする(開放側の値とする)ことが望ましい。   However, as the amount of narrowing increases, the amount of light guided to the image sensor 2 decreases, and as the accumulation time of the image sensor 2 increases, the value of the image signal decreases and the ratio of noise components increases (the S / N ratio increases). Getting worse). These problems become more prominent as the subject brightness is darker. In contrast AF, imaging (accumulation) is repeatedly performed as described above. Therefore, if the accumulation time for one time is increased, the AF speed is significantly reduced. In addition, the deterioration of the S / N ratio causes a decrease in the reliability of the focus evaluation value, leading to a deterioration in AF accuracy. For this reason, when the aperture value is large (when the amount of aperture is large) or when the subject is dark, the AF aperture value is not forced to match the aperture value, but rather than the aperture value. It is desirable to make it small to some extent (the value on the open side).

ただし、AF絞り値をあまり小さくすると、撮影絞り値との差が大きくなり、先に述べたようなピントずれが発生する。このため、AFにおいて絞り31を開く量は必要最小限に止めるべきである。   However, if the AF aperture value is too small, the difference from the shooting aperture value increases and the above-described focus shift occurs. For this reason, the amount of opening of the diaphragm 31 in AF should be kept to the minimum necessary.

そこで本実施形態では、AF絞り値を常に一定とするのではなく、撮影絞り値および被写体の輝度に基づいてAF絞り値を決定するようにした。以下、その詳細を説明する。   Therefore, in this embodiment, the AF aperture value is not always constant, but the AF aperture value is determined based on the shooting aperture value and the brightness of the subject. Details will be described below.

図3はAF制御を含む撮影時の処理手順を示すフローチャートである。
CPU9は、ステップS1でAF−ONボタンの操作が確認されると、ステップS2で
絞り開放状態で撮像を行い、得られた画像信号に基づいてAE演算を行う。AE演算により、適正露出を得るための露出値(撮影絞り値およびシャッタ秒時)を得る。なお、撮影絞り値が予め撮影者によって設定されている場合には、撮影シャッタ秒時のみ求める。また撮影絞り値およびシャッタ秒時の双方が撮影者によって設定されている場合も、AE演算は行う。
FIG. 3 is a flowchart showing a processing procedure during photographing including AF control.
When the operation of the AF-ON button is confirmed in step S1, the CPU 9 performs imaging with the aperture opened in step S2, and performs AE calculation based on the obtained image signal. An exposure value (shooting aperture value and shutter speed) for obtaining proper exposure is obtained by AE calculation. In addition, when the photographing aperture value is set in advance by the photographer, it is obtained only at the time of photographing shutter. The AE calculation is also performed when both the photographing aperture value and the shutter time are set by the photographer.

ステップS3では、上記画像信号のうちAFエリアに相当する信号に基づいて被写体輝度を得る。ステップS4では、撮影絞り値およびAFエリアの輝度に基づき、図4の線図からAF絞り値を求める。すなわち、
(1)AFエリアの輝度が所定値b1以上であれば、最小絞り値まで絞り込んでもS/N比の悪化およびAF速度の低下は許容範囲であると判断し、AF絞り値=撮影絞り値とする。
(2)AFエリアの輝度が所定値b1未満でb2(b1>b2)以上の場合は、例えば撮影絞り値がF16以下であればAF絞り値=撮影絞り値とするが、撮影絞り値がF16を越えるときは、S/N比の悪化またはAF速度の低下が許容範囲を超えると判断し、AF絞り値をF16に制限する。
(3)AFエリアの輝度が所定値b2を下回る場合は、例えば撮影絞り値がF8以下であればAF絞り値=撮影絞り値とし、撮影絞り値がF8を越えるときは、S/N比の悪化またはAF速度の低下が許容範囲を超えると判断し、AF絞り値をF8に制限する。
In step S3, subject brightness is obtained based on a signal corresponding to the AF area among the image signals. In step S4, the AF aperture value is obtained from the diagram of FIG. 4 based on the photographing aperture value and the brightness of the AF area. That is,
(1) If the brightness of the AF area is equal to or greater than the predetermined value b1, it is determined that the deterioration of the S / N ratio and the decrease in the AF speed are within the allowable range even when the aperture value is reduced to the minimum aperture value, and AF aperture value = shooting aperture value To do.
(2) When the brightness of the AF area is less than the predetermined value b1 and is not less than b2 (b1> b2), for example, if the shooting aperture value is F16 or less, AF aperture value = shooting aperture value, but the shooting aperture value is F16. If it exceeds A, it is determined that the deterioration of the S / N ratio or the decrease in the AF speed exceeds the allowable range, and the AF aperture value is limited to F16.
(3) When the brightness of the AF area is lower than the predetermined value b2, for example, if the shooting aperture value is F8 or less, AF aperture value = shooting aperture value, and if the shooting aperture value exceeds F8, the S / N ratio It is determined that the deterioration or the decrease in AF speed exceeds the allowable range, and the AF aperture value is limited to F8.

図2はAF絞り値がF8で制限された例を示している。この場合、AF時と撮影時の最良像面のずれ量はa2となり、上記a1(AF絞り値=開放絞り値の場合)と比べて小さくなる。   FIG. 2 shows an example in which the AF aperture value is limited to F8. In this case, the amount of deviation of the best image plane during AF and shooting is a2, which is smaller than a1 (when AF aperture value = open aperture value).

なお、図4は単に一例を示したものであり、開放絞り値や最小絞り値はレンズによって異なる。また輝度の閾値b1,b2やAF絞り値の制限値などは、上記許容範囲をどの程度に設定するかによって変わってくる。さらに像面移動特性もレンズによって異なり、球面収差が補正された高性能レンズでは絞り込みによる像面移動量は少ない。したがって、レンズごとに上記閾値b1,b2や制限値などを決めることが望ましい。その場合は、像面移動量に関する情報はレンズメモリに格納されているので、ここから読み出して利用すればよい。   FIG. 4 is merely an example, and the maximum aperture value and the minimum aperture value differ depending on the lens. Further, the threshold values b1 and b2 of the brightness, the limit value of the AF aperture value, and the like vary depending on how much the allowable range is set. Further, the image plane movement characteristics vary depending on the lens, and a high-performance lens in which spherical aberration is corrected has a small amount of image plane movement due to narrowing. Therefore, it is desirable to determine the threshold values b1 and b2 and the limit value for each lens. In that case, information relating to the amount of movement of the image plane is stored in the lens memory.

AF絞り値が決まると、ステップS5でAF絞り値まで絞り31を絞り込む。なお、AF絞り値が開放値の場合に絞り込みを行わないことは言うまでもない。絞り込み後、ステップS6で上記コントラストAFを行って合焦レンズ32を合焦位置にもたらす。   When the AF aperture value is determined, the aperture 31 is narrowed down to the AF aperture value in step S5. Needless to say, no narrowing is performed when the AF aperture value is an open value. After narrowing down, the contrast AF is performed in step S6 to bring the focusing lens 32 to the in-focus position.

ステップS7,S8のループでは、レリーズボタンの全押し操作、または半押し解除を待ち、半押し解除されると処理を終了する。全押し操作がなされると、ステップS9で露出制御および撮像を行う。その際、撮影絞り値=AF絞り値でない場合は、撮影絞り値までの絞り込みが行われ、しかる後に撮像が行われる。次いで得られた画像データをステップS10で外部記憶媒体15に記録し、処理を終了させる。   In the loop of steps S7 and S8, the release button is fully pressed or half-pressed is released, and the process is terminated when the half-press is released. When the full pressing operation is performed, exposure control and imaging are performed in step S9. At this time, if the shooting aperture value is not equal to the AF aperture value, the aperture is reduced to the shooting aperture value, and then imaging is performed. Next, the obtained image data is recorded in the external storage medium 15 in step S10, and the process is terminated.

このように本実施形態では、基本的にはAF絞り値を撮影絞り値と一致させ、光量不足によるS/N比の悪化やAF速度の低下が無視できない場合に限り、AF絞り値が撮影絞り値よりも開放側の値となるようにした。また、AF絞り値を開放側の値にする場合も開放絞り値とするのではなく、両絞り値の差が必要最小限(例えば、図2のa2)に止まるようにした。したがって、AF絞り値を無条件で絞り開放値とする従来カメラでと比べ、最良像面の移動によるピントずれを軽減できる。またS/N比の悪化によるAFの信頼性の低下や、AF速度の低下も最小限に抑えることができる。   As described above, in this embodiment, the AF aperture value is basically equal to the shooting aperture value, and the AF aperture value is set only when the deterioration of the S / N ratio and the decrease in the AF speed due to insufficient light quantity cannot be ignored. The value was set to the open side rather than the value. Also, when the AF aperture value is set to the open side value, the aperture value is not set to the maximum value, but the difference between the two aperture values is kept to the minimum necessary (for example, a2 in FIG. 2). Therefore, compared with a conventional camera in which the AF aperture value is unconditionally set to the full aperture value, it is possible to reduce the focus shift due to the movement of the best image plane. In addition, a decrease in AF reliability and a decrease in AF speed due to a deterioration in the S / N ratio can be minimized.

図5は他の実施形態を示している。
これは、図4の線図を利用することに代えて、実際に撮影絞り値まで絞り込んでから被写体輝度を求め、その輝度値に基づいてAF絞り値を決定するものである。なお、図3と同様のステップには同一のステップ番号を付す。
FIG. 5 shows another embodiment.
In this method, instead of using the diagram of FIG. 4, the subject brightness is obtained after actually narrowing down to the photographing aperture value, and the AF aperture value is determined based on the brightness value. Steps similar to those in FIG. 3 are denoted by the same step numbers.

図5において、ステップS2で撮影絞り値が決まった後、その撮影絞り値まで絞り31を絞り込む(ステップS21)。この状態で撮像を行い、得られた画像信号からAFエリアの輝度を得る(ステップS22)。この場合の輝度は、実際の被写体の輝度と、絞り込みによる光量低下の双方を反映している。そこで、その輝度からAF絞り値を求めることができる(ステップS23)。例えば、上記輝度が所定値c以上であればAF絞り値=撮影絞り値とし、所定値c未満の場合は、c以上となる最大の絞り値をAF絞り値とする。後者の場合はAF絞り値<撮影絞り値となり、かつ両絞り値の差は必要最小限に止められる。したがって、先の実施形態と同様の作用効果が得られる。   In FIG. 5, after the shooting aperture value is determined in step S2, the aperture 31 is narrowed down to the shooting aperture value (step S21). Imaging is performed in this state, and the brightness of the AF area is obtained from the obtained image signal (step S22). The luminance in this case reflects both the actual luminance of the subject and a decrease in the light amount due to narrowing down. Therefore, the AF aperture value can be obtained from the brightness (step S23). For example, if the luminance is greater than or equal to a predetermined value c, AF aperture value = shooting aperture value, and if it is less than the predetermined value c, the largest aperture value that is greater than or equal to c is the AF aperture value. In the latter case, the AF aperture value is smaller than the shooting aperture value, and the difference between both aperture values is minimized. Therefore, the same effect as the previous embodiment can be obtained.

また、AF絞り値と撮影絞り値とが一致しない場合に、その差に応じた像面移動分だけ合焦レンズ位置を補正することで、より正確なAF結果を得ることができる。この場合は、上述したレンズメモリに格納されたレンズ固有の像面移動特性を読み出し、その特性から両絞り値の差に応じた像面移動量を求め、その移動量をレンズ移動量に換算して補正値とすればよい。なお、レンズ交換不能なコンパクトタイプのカメラの場合は、上記特性をカメラ内のメモリに格納しておけば、同様の制御を行える。   In addition, when the AF aperture value and the photographing aperture value do not match, a more accurate AF result can be obtained by correcting the focus lens position by the amount of image plane movement corresponding to the difference. In this case, the lens-specific image plane movement characteristics stored in the lens memory described above are read out, the image plane movement amount corresponding to the difference between the two aperture values is obtained from the characteristics, and the movement amount is converted into the lens movement amount. The correction value may be used. In the case of a compact camera in which lenses cannot be exchanged, the same control can be performed if the above characteristics are stored in a memory in the camera.

以上はコントラストAFについて説明したが、それ以外のAF方式であっても本発明を適用可能である。   The contrast AF has been described above, but the present invention can also be applied to other AF methods.

2 撮像素子
9 CPU
10 フォーカスモータ
11 露出制御部
31 絞り
32 合焦レンズ
2 Image sensor 9 CPU
DESCRIPTION OF SYMBOLS 10 Focus motor 11 Exposure control part 31 Aperture 32 Focusing lens

Claims (4)

撮影レンズおよび絞りを通過した光束を受光して焦点調節状態を検出する焦点検出部と、
前記焦点検出部の検出結果に基づいて焦点調節制御を行う制御部と、
前記焦点調節状態を検出するにあたって設定する焦点検出絞り値を、撮影絞り値に基づいて決定する決定部とを含み、
前記決定部は、被写体の輝度が第1輝度値である場合において前記撮影絞り値が所定値より小さいときには、前記撮影絞り値が大きくなるほど前記焦点検出絞り値が大きくなるように前記焦点検出絞り値を決定し、前記被写体の輝度が前記第1輝度値である場合において前記撮影絞り値が前記所定値より大きいときには、前記撮影絞り値が大きくなっても前記焦点検出絞り値が大きくならないように前記焦点検出絞り値を決定することを特徴とするオートフォーカス装置。
A focus detection unit that detects a focus adjustment state by receiving a light beam that has passed through a photographing lens and an aperture;
A control unit that performs focus adjustment control based on a detection result of the focus detection unit;
A determination unit that determines a focus detection aperture value that is set when detecting the focus adjustment state based on a shooting aperture value;
In the case where the luminance of the subject is the first luminance value and the photographic aperture value is smaller than a predetermined value, the determining unit determines the focus detection aperture value so that the focus detection aperture value increases as the photographic aperture value increases. When the brightness of the subject is the first brightness value and the shooting aperture value is greater than the predetermined value, the focus detection aperture value does not increase even if the shooting aperture value increases. An autofocus device characterized by determining a focus detection aperture value.
請求項1に記載されたオートフォーカス装置であって、
被写体の輝度を検出する輝度検出部を有し、
前記決定部は、前記輝度が高いとき、前記輝度が低いときよりも前記所定値を高くすることを特徴とするオートフォーカス装置。
The autofocus device according to claim 1,
A luminance detection unit for detecting the luminance of the subject;
The determination unit is configured to increase the predetermined value when the luminance is high than when the luminance is low.
請求項1又は請求項2に記載されたオートフォーカス装置であって、
前記決定部は、前記撮影絞り値が所定値より小さいときには、前記撮影絞り値に比例して前記焦点検出絞り値を増大させ、前記撮影絞り値が前記所定値より大きいときには、前記焦点検出絞り値を一定値にすることを特徴とするオートフォーカス装置。
The autofocus device according to claim 1 or 2,
The determining unit increases the focus detection aperture value in proportion to the imaging aperture value when the imaging aperture value is smaller than a predetermined value, and the focus detection aperture value when the imaging aperture value is greater than the predetermined value. An autofocus device characterized by setting a constant value.
請求項1に記載されたオートフォーカス装置であって、
前記絞りを撮影絞り値まで絞った状態で前記絞りを通過した光量を検出することにより被写体の輝度を検出する輝度検出部を含み、
前記焦点検出部は、コントラスト方式で焦点調節状態を検出し、
前記決定部は、前記輝度検出部により検出された前記輝度に基づいて、前記焦点検出絞り値を決定することを特徴とするオートフォーカス装置
The autofocus device according to claim 1,
Including a luminance detector that detects the luminance of the subject by detecting the amount of light that has passed through the aperture in a state where the aperture is set to the shooting aperture value;
The focus detection unit detects a focus adjustment state by a contrast method,
The auto-focus device, wherein the determination unit determines the focus detection aperture value based on the luminance detected by the luminance detection unit .
JP2011233057A 2011-10-24 2011-10-24 Autofocus device Expired - Fee Related JP5454546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011233057A JP5454546B2 (en) 2011-10-24 2011-10-24 Autofocus device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233057A JP5454546B2 (en) 2011-10-24 2011-10-24 Autofocus device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006279991A Division JP4946337B2 (en) 2006-10-13 2006-10-13 Autofocus device and camera

Publications (2)

Publication Number Publication Date
JP2012053477A JP2012053477A (en) 2012-03-15
JP5454546B2 true JP5454546B2 (en) 2014-03-26

Family

ID=45906774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011233057A Expired - Fee Related JP5454546B2 (en) 2011-10-24 2011-10-24 Autofocus device

Country Status (1)

Country Link
JP (1) JP5454546B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116907647B (en) * 2023-09-13 2023-12-08 长春理工大学 Strong light interference resistant polarization imaging device and imaging method for spatial light modulation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580386A (en) * 1991-09-18 1993-04-02 Kyocera Corp Video system camera
JP3562820B2 (en) * 1992-10-15 2004-09-08 京セラ株式会社 Automatic focusing device

Also Published As

Publication number Publication date
JP2012053477A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP4946337B2 (en) Autofocus device and camera
US9344621B2 (en) Imaging device and control method for imaging device
JP4727534B2 (en) Imaging device
US8988579B2 (en) Imaging apparatus
US9955069B2 (en) Control apparatus, storage medium for storing control program, control method, and optical apparatus
US10200589B2 (en) Autofocus apparatus and optical apparatus
JP5393300B2 (en) Imaging device
US9591202B2 (en) Image processing apparatus and image processing method for generating recomposed images
JP2011013645A5 (en)
US10630882B2 (en) Image pickup apparatus having function of correcting defocusing and method for controlling the same
US9591205B2 (en) Focus control apparatus, optical apparatus, focus control method, and storage medium storing focus detection program
US9036075B2 (en) Image pickup apparatus, method for controlling the same, and storage medium
US10313602B2 (en) Image capture apparatus and method for controlling the same
US11496663B2 (en) Focusing apparatus, image pickup apparatus, focusing method, and storage medium, which can provide stable focusing
JP5454546B2 (en) Autofocus device
US10911660B2 (en) Control apparatus, imaging apparatus, control method, and storage medium
JP2006330394A (en) Autofocus device
JP4502376B2 (en) Focus control device and photographing device
US9832364B2 (en) Automatic focal adjustment apparatus and method of controlling automatic focal adjustment apparatus, and image capture apparatus
WO2018128098A1 (en) Imaging device and focus adjusting method
JP2006243609A (en) Autofocus device
JP2019086580A (en) Focus adjustment device, focus adjustment method and imaging apparatus
JP4779383B2 (en) Digital camera
JP2011112731A (en) Image pickup device
KR101176840B1 (en) Camera and method for auto-focusing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5454546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees