JP5451926B1 - Horizontal wing wind turbine and wind turbine generator - Google Patents

Horizontal wing wind turbine and wind turbine generator Download PDF

Info

Publication number
JP5451926B1
JP5451926B1 JP2013117322A JP2013117322A JP5451926B1 JP 5451926 B1 JP5451926 B1 JP 5451926B1 JP 2013117322 A JP2013117322 A JP 2013117322A JP 2013117322 A JP2013117322 A JP 2013117322A JP 5451926 B1 JP5451926 B1 JP 5451926B1
Authority
JP
Japan
Prior art keywords
horizontal
wind
horizontal wing
rotation
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013117322A
Other languages
Japanese (ja)
Other versions
JP2014224521A (en
Inventor
善夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013117322A priority Critical patent/JP5451926B1/en
Application granted granted Critical
Publication of JP5451926B1 publication Critical patent/JP5451926B1/en
Publication of JP2014224521A publication Critical patent/JP2014224521A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

【課題】上下左右の風向に追従し、風速のむらにも対応し、さらに、水平翼体の回転の脈動もなく、風力を効率よく回転エネルギーに回収できる水平翼型風力装置と、該風力装置を用いた風力発電装置を提供する。
【解決手段】複数の分割水平翼体からなる水平翼体2と水平回転軸4が、クラッチ5を介して風洞1に軸支され、その中央に出力部3が連接され、出力部3の垂直回転軸7が支持台9の動力伝達部に連係される。水平尾翼の風向感知手段の指令により回動制御手段6eで風洞1は軸受体6に回動自在に軸支され、旋回台軸受8を介して支持台9に旋回自在に軸支される。風洞1の受風口は水平回転軸4の軸心を含む水平面より下部に開口される。風洞1の内周面に吸引通路が連通される。また、水平翼型風力装置が動力伝達部の連結軸を介して複数個所に渡って直列に連結され、最終連結軸が回転数変換部を介して発電機に連結される。
【選択図】図1
A horizontal wing-type wind power device that follows up and down, left and right wind directions, can cope with uneven wind speed, and can efficiently recover wind power into rotational energy without pulsation of rotation of the horizontal wing body, and the wind power device The wind power generator used is provided.
A horizontal wing body 2 comprising a plurality of divided horizontal wing bodies and a horizontal rotating shaft 4 are pivotally supported by a wind tunnel 1 via a clutch 5, an output section 3 is connected to the center thereof, and a vertical section of the output section 3 is connected. The rotating shaft 7 is linked to the power transmission unit of the support base 9. The wind tunnel 1 is pivotally supported on the bearing body 6 by the rotation control means 6e according to the command from the wind direction sensing means of the horizontal tail, and is pivotally supported on the support base 9 via the swivel bearing 8. The wind receiving opening of the wind tunnel 1 is opened below the horizontal plane including the axis of the horizontal rotation shaft 4. A suction passage is communicated with the inner peripheral surface of the wind tunnel 1. Further, the horizontal wing-type wind power device is connected in series across a plurality of locations via the connecting shaft of the power transmission unit, and the final connecting shaft is connected to the generator via the rotation speed conversion unit.
[Selection] Figure 1

Description

本発明は、水平回転軸の軸心に沿う長手方向に正対し、上下左右の風向きに追従可能にしてその軸心を含む水平面より下方に受風口を開口する風洞に、水平回転軸をクラッチを介して風力遮断伝達自在に軸支し、出力部を挟んで左右の水平回転軸に水平翼体を外嵌結介し、該出力部の垂直回転軸を動力伝達部に連係して成る、水平翼型風力装置とそれを用いた風力発電装置に関する。  In the present invention, the horizontal rotary shaft is disposed in a wind tunnel that faces the longitudinal direction along the axis of the horizontal rotary shaft and can follow the wind direction of the top, bottom, left, and right, and opens the air receiving opening below the horizontal plane including the axis. A horizontal blade that is supported so as to be able to transmit and receive wind power through a windshield, and that a horizontal blade is externally fitted to the left and right horizontal rotation shafts across the output portion, and the vertical rotation shaft of the output portion is linked to the power transmission portion. The present invention relates to a type wind turbine and a wind turbine generator using the same.

水平回転軸の軸心に沿う長手方向に正対して受風口を開口する風洞に、該水平回転軸を軸支するとともに、その外周に複数個(4枚)の水平受圧翼を配設し、水平受圧翼に対する相殺又は損失となる風流をガイドして渦巻き流に変更して風力エネルギーの損失を極力少なくしようとする技術が、実用新案登録第3172493号(特許文献1)に提案されているが、該特許文献1の技術は水平受圧翼が水平回転軸の長手方向に一体であるため、受風口から受ける風速に強弱があると、弱風側が強風側から得られる回転力の抵抗になり風力エネルギーの損失を生じる上、受風口が常に一定であるため、吹き下ろしや吹き上げの風向には正対できず、風力エネルギーを有効に回収できない欠点を有し、しかも、強風時には受風口の姿勢を変更できないから、その強風をまともに受け、水平受圧翼を破損する恐れがある、などの問題を内在するものである。  The horizontal rotating shaft is pivotally supported in a wind tunnel that opens in the longitudinal direction along the axial center of the horizontal rotating shaft, and a plurality of (four) horizontal pressure receiving blades are disposed on the outer periphery thereof. A technique for reducing the loss of wind energy as much as possible by guiding the wind flow that is offset or lost to the horizontal pressure receiving blade and changing it to a spiral flow is proposed in Utility Model Registration No. 3172493 (Patent Document 1). In the technique of Patent Document 1, since the horizontal pressure receiving blade is integrated in the longitudinal direction of the horizontal rotation shaft, if the wind speed received from the wind receiving port is strong or weak, the weak wind side becomes resistance to the rotational force obtained from the strong wind side. In addition to causing energy loss, the wind inlet is always constant, so the wind direction of downwinding and blowing up cannot be directly opposed, and wind energy cannot be collected effectively. Can be changed Good to, decent received the high winds, there is a risk of damage to the horizontal pressure receiving wing, is intended to inherent problems such as.

実用新案登録第3172493号Utility Model Registration No. 3172493

本発明は、水平翼型風力装置において、上下左右の風向に追従し、また、水平回転軸の長手方向における風速のむらにも対応し、さらには、水平翼体の回転における脈動を発現することなく、風速のエネルギーを効率よく回転エネルギーに回収できる水平翼型風力装置と、該風力装置を用いた風力発電装置の提供をその目的とする。  In the horizontal wing type wind power device, the present invention follows up and down, left and right wind directions, and also supports uneven wind speed in the longitudinal direction of the horizontal rotation shaft, and further, without causing pulsation in rotation of the horizontal wing body. An object of the present invention is to provide a horizontal wing-type wind power device that can efficiently recover wind energy into rotational energy and a wind power generator using the wind power device.

本発明の請求項1記載の水平翼型風力装置は、水平回転軸の軸心に沿う長手方向に正対して受風口を開口する風洞に水平回転軸を軸支し、該水平回転軸にその軸心に沿って複数個の受風翼を放射状に配設した水平翼体を外嵌接合して成る水平翼型風力装置において、前記受風口が水平回転軸の軸心を含む水平面より下部でその軸心に沿う長手方向に正対して開口され、前記水平回転軸はその長手方向中央に出力部が配設され、該出力部を挟んでその左右に前記水平翼体が配設され、左右の各水平翼体はそれぞれクラッチを介して水平回転軸にその回転力が伝達され、前記風洞はその左右外面に隣接して台座に立設された軸支板に、回動制御手段を介して所要回動範囲で該水平回転軸の周りに回動自在に軸支され、前記台座は支持台に鉛直軸を旋回中心とする旋回台軸受を介して旋回自在に軸支されて成る。  According to a first aspect of the present invention, there is provided a horizontal wing-type wind power device that supports a horizontal rotation shaft in a wind tunnel that opens a wind receiving opening facing the longitudinal direction along the axis of the horizontal rotation shaft. In a horizontal wing-type wind power device in which a horizontal blade body in which a plurality of wind receiving blades are radially arranged along an axis is externally fitted and joined, the wind receiving port is located below a horizontal plane including the axis of the horizontal rotation shaft. The horizontal rotation shaft is opened facing the longitudinal direction along the axial center, and the horizontal rotation shaft has an output portion disposed at the center in the longitudinal direction, and the horizontal wing body is disposed on the left and right sides of the output portion. The horizontal wing bodies of the horizontal wings are each transmitted with a rotational force to a horizontal rotary shaft through a clutch, and the wind tunnel is provided on a shaft support plate erected on a pedestal adjacent to the left and right outer surfaces via a rotation control means. The pedestal is pivotally supported around the horizontal rotation axis within a required rotation range. Formed by pivotally supported via a swivel slide bearing according to times center.

請求項2記載の発明は、請求項1記載の水平翼型風力装置において、前記左右の各水平翼体は、その回転軸心方向で複数個の分割水平翼体に分割され、各分割水平翼体は所要角度の配列位相で、かつ左右対称に水平推力が相殺される姿勢で水平回転軸に配列されて成る。  According to a second aspect of the present invention, in the horizontal wing-type wind turbine apparatus according to the first aspect, the left and right horizontal wing bodies are divided into a plurality of divided horizontal wing bodies in the direction of the rotation axis thereof, and each divided horizontal wing body is divided. The body is arranged on the horizontal rotation shaft in an arrangement phase of a required angle and in a posture in which the horizontal thrust is offset symmetrically.

請求項3記載の発明は、請求項1又は2記載の水平翼型風力装置において、前記出力部が差動傘歯車機構から成る。  According to a third aspect of the present invention, in the horizontal wing-type wind power device according to the first or second aspect, the output portion is formed of a differential bevel gear mechanism.

請求項4記載の発明は、請求項1乃至3のいずれかに記載の水平翼型風力装置において、前記風洞の水平回転軸の軸心より上部の内周面に後方の排風側から開口された吸引通路を連通して成る。  According to a fourth aspect of the present invention, in the horizontal blade-type wind power device according to any one of the first to third aspects, an opening is provided on the inner peripheral surface above the axis of the horizontal rotation shaft of the wind tunnel from the rear wind exhaust side. The suction passage is connected.

請求項5記載の発明は、前記水平翼型風力装置が複数列に動力伝達部の連結軸を介して直列に連設され、該動力伝達部の連結軸回動手段に一方向回転クラッチを内蔵し、最終連結軸が回転数変換部を介して発電機に連結されて成る。  According to a fifth aspect of the present invention, the horizontal wing wind turbines are connected in series via a connecting shaft of a power transmission unit in a plurality of rows, and a one-way rotation clutch is built in the connecting shaft rotating means of the power transmission unit. The final connecting shaft is connected to the generator via the rotation speed conversion unit.

本発明は水平回転軸の長手方向中央に出力部を設けて大型化した場合の風力エネルギーの回収に際し、該水平回転軸の長手方向の左右で風速の強弱があっても、それぞれの風力による回転力が取り出せるように該出力部に差動傘歯車機構を内在するものであり、また、回動制御手段により、風洞を水平回転軸の周りに所要範囲で回動自在とし、受風口を吹き下ろし流や吹き上げ流に正対できるようにしつつ、強風下では強風を避けて受風口を変向できるものであり、しかも、クラッチにより水平回転軸に対し水平翼体を開放することにより、該水平翼体の破損を防止できるものである。  In the present invention, when wind power is recovered when an output portion is provided in the center in the longitudinal direction of the horizontal rotating shaft, and the wind speed is recovered, even if the wind speed is strong on the left and right in the longitudinal direction of the horizontal rotating shaft, A differential bevel gear mechanism is incorporated in the output section so that force can be taken out. Further, the rotation control means makes the wind tunnel rotatable around the horizontal rotation axis within a required range, and blows down the air receiving port. It is possible to turn the wind receiving port by avoiding strong winds under strong winds while allowing it to face the flow and blow-up flow, and by opening the horizontal blade body with respect to the horizontal rotating shaft by the clutch, It can prevent body damage.

さらに、水平翼体を水平回転軸の軸心に沿って所要に分割し、かつ、所要の位相差を以って該水平回転軸に受風翼を放射状に配列した場合は、一定配列に起こりがちな脈動がなくスムーズな回転で回転効率が向上する。  Furthermore, if the horizontal wing body is divided as required along the axis of the horizontal rotating shaft and the wind receiving blades are radially arranged on the horizontal rotating shaft with the required phase difference, this will occur in a fixed arrangement. Rotation efficiency is improved by smooth rotation without pulsation.

このほか、出力部を挟んで左右の水平回転軸に分割水平翼体を所要の位相差を以って配列する水平翼体を外嵌接合する場合には、左右対称なリードで分割水平翼体が各水平回転軸に配列されるから左右からの水平推力が相殺されるものである。  In addition, when the horizontal wing body is arranged on the left and right horizontal rotation shafts with the output section sandwiched between the horizontal wing bodies with the required phase difference, the split horizontal wing body is provided with symmetrical left and right leads. Are arranged on each horizontal rotation axis, the horizontal thrust from the left and right is offset.

本発明に係る水平翼型風力装置Aの一部を縦断した正面図。The front view which cut through a part of horizontal wing type wind power device A concerning the present invention longitudinally. 出力部3の説明図。Explanatory drawing of the output part 3. FIG. 図1の右側面図。The right view of FIG. 図3のA−A矢視図。FIG. 4 is an AA arrow view of FIG. 3. 水平翼体2の要部説明図。The principal part explanatory drawing of the horizontal wing body 2. FIG. 水平翼体2の分解正面図で、(a)は第1分割水平翼体2a、(b)は第2分割水平翼体2b、(c)は第3分割水平翼体2c、(d)は第4分割水平翼体2d、(e)は第5分割水平翼体2e、(f)は第6分割水平翼体2fを示す。FIG. 4 is an exploded front view of the horizontal wing body 2, (a) is a first divided horizontal wing body 2 a, (b) is a second divided horizontal wing body 2 b, (c) is a third divided horizontal wing body 2 c, (d) is The fourth divided horizontal wing body 2d, (e) shows the fifth divided horizontal wing body 2e, and (f) shows the sixth divided horizontal wing body 2f. 本発明に係る風力発電装置Pの説明図。Explanatory drawing of the wind power generator P which concerns on this invention. 本発明に係る水平翼型風力装置Bの正面図。The front view of the horizontal wing type | mold wind power apparatus B which concerns on this invention. 図8の一部を破断した右側面図。The right view which fractured | ruptured a part of FIG.

出力部(差動傘歯車機構内蔵)を挟んでその左右で水平回転軸に配設される水平翼体は、分割水平翼体が一括されてクラッチを介して水平回転軸にその回転力を伝達するものから、それぞれが2分されてクラッチを介して水平回転軸に回転力を伝達するものなどである。  Horizontal wings arranged on the horizontal rotating shaft on both sides of the output unit (with built-in differential bevel gear mechanism), the divided horizontal wings are gathered together to transmit the rotational force to the horizontal rotating shaft via the clutch. From what to do, each is divided into two parts, and the rotational force is transmitted to the horizontal rotating shaft through the clutch.

また、垂直尾翼(方位制御手段)を設けることにより、風洞は旋回台軸受によってその左右の風向に正対できるものである。この左右の風向に対してはオーバーラン防止として、ブレーキ機構を伴って対応することもできる。その場合のブレーキ機構とは、強風時に受風口を変向することにも利用され得るものである。  Further, by providing the vertical tail (direction control means), the wind tunnel can be directly opposed to the right and left wind directions by the swivel bearing. The left and right wind directions can be handled with a brake mechanism as an overrun prevention. The brake mechanism in that case can also be used to change the direction of the air receiving opening during a strong wind.

さらに、水平尾翼の風向感知手段による上下方向への風洞の回転制御手段とは、風洞の側板の内面に接合した大歯車に、軸受体の軸支板に設けたパルスモータで駆動されるピニオンを噛合するものから、風洞の側板の外面に接合したウォームギャーに、前記の軸支板に設けたパルスモータで駆動されるウォームを噛合するものなどであり、これらの回転制御手段は、風洞の片側又は両側に設けられる。  Further, the wind tunnel rotation control means in the vertical direction by the wind direction sensing means of the horizontal tail means that a pinion driven by a pulse motor provided on the shaft support plate of the bearing body is attached to the large gear joined to the inner surface of the side plate of the wind tunnel. From the meshing type to the worm gear joined to the outer surface of the side plate of the wind tunnel, the worm driven by the pulse motor provided on the shaft support plate is meshed. Or it is provided on both sides.

風洞は単に分割水平翼体を連結した水平翼体を回転自在に軸支案内するものから、吸引通路を形成し、吸引口を介して該水平翼体の回転時の負圧解消を図るものなどで提供される。  The wind tunnel simply pivots and guides the horizontal wings connected to the divided horizontal wings, forms a suction passage, and eliminates negative pressure during rotation of the horizontal wings through the suction port, etc. Provided in.

本発明の水平翼型風力装置Aを実施例により説明すると、その構成は図1に示すように、上部風案内体1aと、下部風案内体1bと、左右の側板1cによって構成される風洞1と、その風洞1を上下左右の風向に追従させるため、図3に示す垂直尾翼1daと、水平尾翼1dbによって構成される風向感知手段1dにより成る受風部と、風洞1に収められる水平翼体2と、該水平翼体2が軸着され、その中央部に図2に示す差動傘歯車機構3aを内蔵した出力部3を有し、両端が軸支板6bによって支えられる水平回転軸4と、該水平回転軸4に水平翼体2からの動力を遮断伝達自在に制御するクラッチとしての電磁クラッチ5と、前記軸支板6bと台座6aからなる軸受体6と、前記出力部3からの動力を出力する垂直回転軸7と、前記軸受体6を鉛直軸の周りに旋回自在に軸支する旋回台軸受8と、該旋回台軸受8を取着する支持台9と、出力部3の支持手段であるとともに、垂直回転軸7を保護する円筒ケース7aと、前記風向感知手段1dにより風洞1の上下方向の回動姿勢を制御する回動制御手段6eと、図外の動力伝達部とから成る。そして、垂直回転軸7に外嵌される円筒ケース7aは、軸受体6の台座6aと出力部3のボックス3bとの間に接合されて、該出力部3を軸受体6に位置決め支持する。  The horizontal wing type wind power device A according to the present invention will be described with reference to an embodiment. As shown in FIG. 1, the configuration of the wind turbine 1 includes an upper wind guide body 1 a, a lower wind guide body 1 b, and left and right side plates 1 c. In order to cause the wind tunnel 1 to follow the vertical, left, and right wind directions, a wind receiving portion composed of the wind direction sensing means 1d constituted by the vertical tail 1da and the horizontal tail 1db shown in FIG. 2 and a horizontal rotary shaft 4 having a horizontal wing body 2 pivotally mounted, having an output portion 3 incorporating a differential bevel gear mechanism 3a shown in FIG. 2 at its center, and both ends supported by a shaft support plate 6b. And an electromagnetic clutch 5 as a clutch for controlling the power from the horizontal blade body 2 to be cut off and transmitted to the horizontal rotating shaft 4, a bearing body 6 comprising the shaft support plate 6b and a base 6a, and the output section 3 Vertical rotating shaft 7 for outputting the power of the A swivel bearing 8 that pivotally supports the body 6 about a vertical axis, a support base 9 for mounting the swivel bearing 8, and a support means for the output unit 3, and also protects the vertical rotation shaft 7. A cylindrical case 7a, a rotation control means 6e for controlling the vertical attitude of the wind tunnel 1 by the wind direction sensing means 1d, and a power transmission unit (not shown). The cylindrical case 7 a that is externally fitted to the vertical rotating shaft 7 is joined between the pedestal 6 a of the bearing body 6 and the box 3 b of the output unit 3 to position and support the output unit 3 on the bearing body 6.

前記風洞1に関して詳述すると、上部風案内体1aの前後方向中央部の内面には水平翼体2の上部外周面に近接する円弧面1aaを形成し、その前方に風上に向けてくさび状風案内面1abを配設し、その後方に風除けひさし1acを延出して成る。  The wind tunnel 1 will be described in detail. An arc surface 1aa close to the upper outer peripheral surface of the horizontal wing body 2 is formed on the inner surface of the upper wind guide body 1a in the front-rear direction, and a wedge shape is formed in front of the wind wing toward the windward side. A wind guide surface 1ab is provided, and a windshield eaves 1ac is extended behind the wind guide surface 1ab.

下部風案内体1bの前後方向中央部の内面には、水平翼体2の下部外周面に近接する円弧面1baを形成し、その前方にゆるやかな昇り傾斜面を有する下部風案内面1bbを配設し、その後方に排風案内座1bcを形成しており、また、その中央部前部から後部にかけ、出力部3を位置決め支持して垂直回転軸7を保護する円筒ケース7aを所要範囲に案内する切欠き溝1bdを形成して成る。  An arc surface 1ba close to the lower outer peripheral surface of the horizontal wing body 2 is formed on the inner surface of the lower wind guide body 1b in the front-rear direction central portion, and the lower wind guide surface 1bb having a gently rising and inclined surface is disposed in front of the arc surface. A wind guide seat 1bc is formed on the rear side thereof, and a cylindrical case 7a that protects the vertical rotary shaft 7 by positioning and supporting the output part 3 from the front part of the center part to the rear part is provided within a required range. A notch groove 1bd for guiding is formed.

風洞1の回動制御手段6eは、風洞1の内部に設けられる回転手段の一部としての大歯車1eと、側板1cに設けられる風洞1の上下の回動範囲に見合う円弧溝1caと、水平回転軸4を軸支する軸受6cが固着される軸支板6bに設けるパルスモータ6dと、前記大歯車1eと噛合し、パルスモータ6dのモータ軸に接合されるピニオン6daとから成る。
上記の回動制御手段6eへの回動指令は、図3、図4に示すように水平尾翼1dbの風向感知手段1dによってなされ、下向き風向の場合は、水平尾翼1dbが垂直尾翼1daに軸支されたピン1ddを回動中心として右回動するから、水平尾翼1dbと一体の作動子1deが上方へ押し上げられこれと一体の操作子1dfが上スイッチ1dgを押し込み、パルスモータ6dによって風洞1が右回転し受風口1fが上向きとなる。
The rotation control means 6e of the wind tunnel 1 includes a large gear 1e as a part of the rotation means provided inside the wind tunnel 1, an arc groove 1ca corresponding to the vertical rotation range of the wind tunnel 1 provided in the side plate 1c, and a horizontal A pulse motor 6d provided on a shaft support plate 6b to which a bearing 6c for supporting the rotary shaft 4 is fixed, and a pinion 6da that meshes with the large gear 1e and is joined to the motor shaft of the pulse motor 6d.
The rotation command to the rotation control means 6e is made by the wind direction sensing means 1d of the horizontal tail 1db as shown in FIGS. 3 and 4, and in the case of the downward wind direction, the horizontal tail 1db is pivotally supported by the vertical tail 1da. Since the right pin 1dd is rotated about the rotation center, the actuator 1de integrated with the horizontal tail 1db is pushed upward, the operator 1df integrated therewith pushes the upper switch 1dg, and the wind tunnel 1 is driven by the pulse motor 6d. Rotate clockwise and the air inlet 1f faces upward.

上向き風向の場合は、水平尾翼1dbが上記要領でピン1ddを回動中心として左回動し、作動子1deが下方へ押し下げられ、これと一体の操作子1dfが下スイッチ1dhを押し込み、パルスモータ6dによって風洞1が左回転し受風口1fが下向きとなる。  In the case of the upward wind direction, the horizontal tail 1db rotates to the left with the pin 1dd as the center of rotation as described above, the operating element 1de is pushed downward, and the operating element 1df integrated therewith pushes the lower switch 1dh into the pulse motor. By 6d, the wind tunnel 1 rotates counterclockwise and the air receiving opening 1f faces downward.

次に、水平翼体2について説明すると、図5乃至図6に示すように、第1分割水平翼体2aは円盤体2gと、該円盤体2gにその中心から外周に向けて放射状に一体に溶着等で接合される6枚の受風翼2hと、該円盤体2gをそのフランジ2iaに固定ネジ2ibで接合し、外周に一対のキー溝2icが凹設される中空軸2iと、該中空軸2iにセットスクリュー2jaで回り止めされる軸受メタル2jとから成り、第2分割水平翼体2b、第3分割水平翼体2c、第4分割水平翼体2d、第5分割水平翼体2e、第6分割水平翼体2fは前記中空軸2iに外嵌され、該中空軸2iにキー2kで接合される一対のキー溝2kaが内設され、その外径と幅が中空軸2iに固着するフランジ2iaと同寸のボス2lと、該ボス2lに固定ネジ2laで接合され、前記6枚の受風翼2hがそれぞれ第1分割水平翼体2aの受風翼2hに比しそれぞれ所要の配設位相(本実施例では15°)で配設される円盤体2gとから成る。
したがって、第2分割水平翼体2bから第6分割水平翼体2fのそれぞれがキー2kを介して中空軸2iに外嵌され、適宜に位置を決め固定される。
Next, the horizontal wing body 2 will be described. As shown in FIGS. 5 to 6, the first divided horizontal wing body 2a is integrated with the disk body 2g and the disk body 2g in a radially integrated manner from the center toward the outer periphery. 6 wind-receiving blades 2h to be joined by welding or the like, the disc body 2g are joined to the flange 2ia with a fixing screw 2ib, and a hollow shaft 2i having a pair of key grooves 2ic recessed on the outer periphery, and the hollow The shaft 2i includes a bearing metal 2j that is prevented from rotating by a set screw 2ja, and includes a second divided horizontal wing body 2b, a third divided horizontal wing body 2c, a fourth divided horizontal wing body 2d, a fifth divided horizontal wing body 2e, The sixth divided horizontal wing body 2f is externally fitted to the hollow shaft 2i, and a pair of key grooves 2ka joined to the hollow shaft 2i with a key 2k is provided therein, and the outer diameter and width thereof are fixed to the hollow shaft 2i. A boss 2l having the same size as the flange 2ia, and a fixing screw 2l to the boss 2l The six wind receiving blades 2h are respectively arranged at a required arrangement phase (15 ° in this embodiment) as compared with the wind receiving blades 2h of the first divided horizontal blade body 2a. 2g.
Accordingly, each of the second divided horizontal wing body 2b to the sixth divided horizontal wing body 2f is externally fitted to the hollow shaft 2i via the key 2k, and is positioned and fixed appropriately.

そして、第1分割水平翼体2aのフランジ2iaは電磁クラッチ5のアーマチュァハブ5aにボルト5aaで接合され、中空軸2iの軸受メタル2jに案内される水平回転軸4はキー5baを介して電磁クラッチ5のロータ5bに接合される。  The flange 2ia of the first divided horizontal wing body 2a is joined to the armature hub 5a of the electromagnetic clutch 5 by a bolt 5aa, and the horizontal rotary shaft 4 guided to the bearing metal 2j of the hollow shaft 2i is connected to the electromagnetic clutch 5 via the key 5ba. The rotor 5b is joined.

ここで、第1分割水平翼体2aから第6分割水平翼体2fにおける円盤体2gに設けられる各受風翼2hの配列位相について説明すると、各円盤体2gにおける6枚の受風翼2hは60°の配列位相で整列され、第2分割水平翼体2b乃至第6分割水平翼体2fにおけるボス2lの内周に凹設される一対のキー溝2kaが、第1分割水平翼体2aが固着される中空軸2iの一対のキー溝2icに対してそれぞれ15°、30°、45°、60°、75°の位相差で順次配設されるから、第1分割水平翼体2aの中空軸2iに第2分割水平翼体2bから第6分割水平翼体2fまでの各ボス2lをキー2kで接合したときは、各円盤体2gに接合される各受風翼2hは相互に15°の配列位相で配列される。
したがって、受風時の水平回転軸4の回転が滑らかとなる。
Here, the arrangement phase of the wind receiving blades 2h provided on the disk body 2g in the first divided horizontal blade body 2a to the sixth divided horizontal blade body 2f will be described. The six wind receiving blades 2h in each disk body 2g are: A pair of key grooves 2ka that are aligned at an arrangement phase of 60 ° and are recessed in the inner periphery of the boss 2l in the second divided horizontal wing body 2b to the sixth divided horizontal wing body 2f are the first divided horizontal wing bodies 2a. Since the pair of key grooves 2ic of the hollow shaft 2i to be fixed are sequentially arranged with a phase difference of 15 °, 30 °, 45 °, 60 ° and 75 °, the hollow of the first divided horizontal wing body 2a. When the bosses 2l from the second divided horizontal wing body 2b to the sixth divided horizontal wing body 2f are joined to the shaft 2i with the key 2k, the wind receiving wings 2h joined to the respective disc bodies 2g are 15 ° to each other. It is arranged with the arrangement phase of.
Therefore, the rotation of the horizontal rotation shaft 4 during wind reception becomes smooth.

このようにして成る水平翼体2は、出力部3を挟んで左右に配設されるものであるから、該出力部3に不要な推力が作用しないように、左方側の水平翼体2では、左端に第1分割水平翼体2aを配設して電磁クラッチ5に連接し、順次中空軸2iに第2分割水平翼体2bから第6分割水平翼体2fまで右方側に対称の姿勢で設けるものである。  Since the horizontal wing body 2 configured in this manner is disposed on the left and right sides with the output unit 3 interposed therebetween, the left side horizontal wing body 2 is prevented so that unnecessary thrust does not act on the output unit 3. Then, the first divided horizontal wing body 2a is disposed at the left end and is connected to the electromagnetic clutch 5. The hollow shaft 2i is sequentially symmetrical to the right side from the second divided horizontal wing body 2b to the sixth divided horizontal wing body 2f. It is provided in a posture.

さらに、第1分割水平翼体2aから第6分割水平翼体2fに渡る先端部の接合について説明すると、第1分割水平翼体2aと第2分割水平翼体2b、第3分割水平翼体2cと第4分割水平翼体2d及び第5分割水平翼体2eと第6分割水平翼体2fはそれぞれ接合孔a、aにおいてボルト2gaとナット2gbで接合され、第2分割水平翼体2bと第3分割水平翼体2c及び第4分割水平翼体2dと第5分割水平翼体2eはそれぞれ接合孔b、bにおいてボルト2gaとナット2gbで接合される。  Further, the joining of the tip portion from the first divided horizontal wing body 2a to the sixth divided horizontal wing body 2f will be described. The first divided horizontal wing body 2a, the second divided horizontal wing body 2b, and the third divided horizontal wing body 2c. , The fourth divided horizontal wing body 2d, the fifth divided horizontal wing body 2e, and the sixth divided horizontal wing body 2f are joined by bolts 2ga and nuts 2gb in the joining holes a and a, respectively. The 3-split horizontal wing body 2c, the fourth split horizontal wing body 2d, and the fifth split horizontal wing body 2e are joined by bolts 2ga and nuts 2gb at joint holes b and b, respectively.

なお、受風翼2hの形状は、風向きに対して凹状となる凹湾曲面2haと、該凹湾曲面2haの突端で風向きに対して凸状となる凸湾曲面2hbとで形成される。
このように、上記受風翼2hの突端を凸状となる凸湾曲面2hbに形成することにより、受風翼2hへの風力が、該受風翼2hの先端を下に押し下げる作用をし、したがって、受風時の水平回転軸4の回転が滑らかとなる。
The shape of the wind receiving blade 2h is formed by a concave curved surface 2ha that is concave with respect to the wind direction, and a convex curved surface 2hb that is convex with respect to the wind direction at the tip of the concave curved surface 2ha.
Thus, by forming the projecting tip of the wind receiving blade 2h on the convex curved surface 2hb having a convex shape, the wind force applied to the wind receiving blade 2h acts to push down the tip of the wind receiving blade 2h, Therefore, the rotation of the horizontal rotation shaft 4 during wind reception becomes smooth.

ここで、本発明の水平翼型風力装置Aを用いた風力発電装置Pについて説明すると、その構成は図7に示すように、水平回転軸4に軸着された水平翼体2を収めた風洞1と、出力部3と、軸受体6と、垂直回転軸7と、該垂直回転軸7を内蔵・保護し、かつ出力部3を位置決め支持する円筒ケース7aと、支持台9と、軸受体6と支持台9とを旋回自在に接合する旋回台軸受8と、風向感知手段1dと、回動制御手段6eと、動力伝達部10とから成る前述の水平翼型風力装置Aが複数個所に渡って直列に連接され、各動力伝達部10は相互に連結軸10cによって適宜なカップリング(図外)を介して連結される。
そして、最終の連結軸10cが回転数変換部(図外)を介して発電機Gに連結される。
Here, the wind power generator P using the horizontal wing type wind power generator A of the present invention will be described. As shown in FIG. 7, the configuration is a wind tunnel containing a horizontal wing body 2 pivotally attached to a horizontal rotating shaft 4. 1, an output unit 3, a bearing body 6, a vertical rotating shaft 7, a cylindrical case 7 a that incorporates and protects the vertical rotating shaft 7 and supports the positioning of the output unit 3, a support base 9, and a bearing body The horizontal wing type wind power device A composed of the swivel bearing 8 that joins the support 6 and the support 9 so as to swivel, the wind direction sensing means 1d, the rotation control means 6e, and the power transmission unit 10 is provided at a plurality of locations. The power transmission units 10 are connected to each other in series through an appropriate coupling (not shown) by a connecting shaft 10c.
And the last connection shaft 10c is connected with the generator G via a rotation speed conversion part (not shown).

また、動力伝達部10は、垂直回転軸7に接合され、その動力が伝達される連結軸回動手段としての傘歯車10aと、該傘歯車10aに噛合する一方向回転クラッチ10baを内蔵する傘歯車10bにより構成される。  The power transmission unit 10 is joined to the vertical rotating shaft 7 and a bevel gear 10a as a connecting shaft rotating means to which the power is transmitted, and an umbrella including a one-way rotating clutch 10ba meshing with the bevel gear 10a. It is comprised by the gearwheel 10b.

このようにして成る水平翼型風力装置Aによって得られた風力エネルギーは、各出力部3から差動傘歯車機構3aを介して垂直回転軸7に出力され、さらに該垂直回転軸7から各動力伝達部10に入力され、該垂直回転軸7に接合する傘歯車10aからこれと噛合する他方の傘歯車10bに内蔵する一方向回転クラッチ10baを介して連結軸10cに伝達され、その先の図外の回転数変換部を介して発電機Gを駆動し、電力に変換される。
なお、風力発電装置Pは各動力伝達部10の動力出力状態が区々であっても、一方向回転クラッチ10baによってそれぞれの連結軸10cは拘束されることなく、状況に応じた動力を発電機Gに供給できる。
The wind energy obtained by the horizontal wing type wind power device A thus configured is output from each output unit 3 to the vertical rotating shaft 7 via the differential bevel gear mechanism 3a, and further from the vertical rotating shaft 7 to each power. Input to the transmission unit 10 and transmitted from the bevel gear 10a joined to the vertical rotary shaft 7 to the connecting shaft 10c via the one-way rotary clutch 10ba built in the other bevel gear 10b meshing with the bevel gear 10a. The generator G is driven through an external rotation speed conversion unit, and converted into electric power.
In addition, even if the power output state of each power transmission part 10 is divided, the wind power generator P does not restrain each connection shaft 10c by the one-way rotation clutch 10ba, and generates power according to the situation as a generator. G can be supplied.

本発明の他の実施態様としての水平翼型風力装置Bは、図8、図9に示すように、基本構成すなわち、風洞1と、風洞1に回転自在に軸支される水平翼体2と、風洞1を回動制御手段6eを介して所要回動範囲で軸支する、台座6aと軸支板6bと軸受6cにより構成される軸受体6と、軸受体6を旋回台軸受8を介して鉛直軸の周りに軸支する支持台9と、支持台9に内蔵される動力伝達部10とから成る構成は、前記の水平翼型風力装置Aと同様であるが、本実施例での風洞1には、負圧解消手段として、上部風案内体1aの水平翼体2の上部に近接する円弧面1aaに沿って、風除けひさし1acの下面から吸引通路1adを吸引口1aeを介して前記円弧面1aaに連通して成り、また、風洞1に収められる水平翼体2は出力部3を挟んで左右それぞれの第3分割水平翼体2cと第4分割水平翼体2dとの間にクラッチ5cが配設されたものであり、加えて水平尾翼1dbの前記風向感知手段1dにより指令されて風洞1の受風口1fを風向に正対させる回動制御手段6eは、風洞1の側板1cの外面に接合したウォームギヤ1eaと、軸受体6の軸支板6bに接合されるパルスモータ6dに駆動され、該ウォームギヤ1eaに噛合されるウォーム6dbとから成るものである。
そして、回動制御手段6eへの回動指令は、実施例1で示した風向感知手段1dの要素によってなされる。
As shown in FIGS. 8 and 9, a horizontal wing wind turbine B as another embodiment of the present invention has a basic configuration, that is, a wind tunnel 1 and a horizontal wing body 2 that is rotatably supported by the wind tunnel 1. The bearing body 6 is constituted by a pedestal 6a, a shaft support plate 6b and a bearing 6c, which supports the wind tunnel 1 in a required rotation range via the rotation control means 6e, and the bearing body 6 is connected via the swivel bearing 8. The configuration comprising the support base 9 pivotally supported around the vertical axis and the power transmission unit 10 built in the support base 9 is the same as that of the horizontal wing type wind power device A described above. In the wind tunnel 1, as a negative pressure eliminating means, the suction passage 1ad is passed through the suction port 1ae from the lower surface of the wind shield 1ac along the circular arc surface 1aa close to the upper portion of the horizontal wing body 2 of the upper wind guide body 1a. The horizontal wing body 2 that communicates with the circular arc surface 1aa and is housed in the wind tunnel 1 is connected to the output section 3. The clutch 5c is disposed between the left and right third divided horizontal wing bodies 2c and the fourth divided horizontal wing body 2d. In addition, the wind direction is instructed by the wind direction detecting means 1d of the horizontal tail 1db. The rotation control means 6e for directing the one air inlet 1f in the wind direction is driven by a worm gear 1ea joined to the outer surface of the side plate 1c of the wind tunnel 1 and a pulse motor 6d joined to the shaft support plate 6b of the bearing body 6. And a worm 6db meshed with the worm gear 1ea.
And the rotation command to the rotation control means 6e is made by the element of the wind direction sensing means 1d shown in the first embodiment.

したがって、風向に正対する風洞1の内部で出力部3を挟んで回転する左右の水平翼体2は、それぞれクラッチ5cを介してきめ細かに強風対策や軸強度の保全が図られる上、風力エネルギーを滑らかな軸回転に変換し、周回方向の脈動を発現させることなく、出力部3の垂直回転軸7を介して動力伝達部10に入力し、前記の風力発電装置Pに利用されたり、単独で図外の回転数変換部を介して発電機Gを駆動するなどである。  Therefore, the left and right horizontal wing bodies 2 that rotate with the output portion 3 sandwiched inside the wind tunnel 1 facing the wind direction can be finely protected against strong winds and maintained in shaft strength through the clutch 5c, respectively. It is converted into smooth shaft rotation, and is input to the power transmission unit 10 via the vertical rotation shaft 7 of the output unit 3 without causing pulsation in the circumferential direction, and is used for the wind power generator P or alone. For example, the generator G is driven through a rotation speed converter not shown.

この場合の水平翼型風力装置Bは、受風翼2hに受けられて水平回転軸4を滑らかに回転させた後の排風が巻き込まれて圧縮状態の回転抵抗とならぬように、負圧解消手段により、吸引通路1adから取り込まれた空気が吸引口1aeより左右の水平翼体2の外周面に流入し、負圧を解消して動力効率の向上が図られる。
なお、前記の吸引通路1adと吸引口1aeから成る負圧解消手段が、実施例1で示した水平翼型風力装置Aにおいても適用されることは、云うまでもなく当然のことである。
In this case, the horizontal wing type wind power device B has a negative pressure so that the exhausted wind after the horizontal rotating shaft 4 is smoothly rotated by being received by the wind receiving blades 2h does not become a rotational resistance in a compressed state. By the canceling means, the air taken in from the suction passage 1ad flows into the outer peripheral surfaces of the left and right horizontal wing bodies 2 from the suction port 1ae, and the negative pressure is canceled to improve the power efficiency.
Needless to say, the negative pressure canceling means including the suction passage 1ad and the suction port 1ae is also applied to the horizontal blade type wind power device A shown in the first embodiment.

さらに、本発明における水平翼体2は、複数個に分割された分割水平翼体から成るため、受風翼2hの背丈を含む形状や個数の変更が簡易である上、配列のリード(配列位相)はボス2lにおけるキー溝2icの位置でその態様の自由度が広範となり、併せて製作コストも受風翼2hの一体型に比して安価になるなどの特徴を呈する。  Furthermore, since the horizontal wing body 2 in the present invention is composed of a divided horizontal wing body divided into a plurality of parts, the shape and number of the wind receiving wings 2h including the height can be easily changed, and the arrangement lead (arrangement phase) can be changed. ) Is characterized in that the degree of freedom of the mode is wide at the position of the key groove 2ic in the boss 21 and that the manufacturing cost is lower than that of the integrated type of the wind receiving blade 2h.

本発明の水平翼型風力装置は、水平回転軸の軸心に沿い長手方向に正対する上下左右の風向きに追従可能な受風口を設けることにより、受風面積に比し風エネルギーの回収を高効率化することができ、よって小型・高性能な風力エネルギーの回収装置が可能となり、該装置を、動力伝達部を介して複数連結することにより、狭小な場所で高出力の風力発電装置を実現できる上、水力発電装置にも転用できることから、本発明の需要は大いに期待できる。  The horizontal wing-type wind power device of the present invention is provided with a wind receiving port that can follow the vertical, left, and right wind directions facing the longitudinal direction along the axis of the horizontal rotation axis, thereby improving wind energy recovery compared to the wind receiving area. It is possible to improve efficiency, and thus a small and high-performance wind energy recovery device is possible. By connecting multiple devices via a power transmission unit, a high-output wind power generator can be realized in a small place. In addition, the demand for the present invention can be greatly expected because it can be diverted to a hydroelectric generator.

1 :風洞
1a :上部風案内体
1aa:円弧面
1ab:くさび状風案内面
1ac:風除けひさし
1ad:吸引通路(負圧解消)
1ae:吸引口
1b :下部風案内体
1ba:円弧面
1bb:下部風案内面
1bc:排風案内座
1bd:切欠き溝(円筒ケース案内用)
1c :側板
1ca:円弧溝(ピニオン案内用)
1d :風向感知手段
1da:垂直尾翼
1db:水平尾翼
1dc:軸受
1dd:ピン
1de:作動子
1df:操作子
1dg:上スイッチ
1dh:下スイッチ
1di:案内棒
1e :大歯車
1ea:ウオームギヤ
1f :受風口
2 :水平翼体
2a :第1分割水平翼体
2b :第2分割水平翼体
2c :第3分割水平翼体
2d :第4分割水平翼体
2e :第5分割水平翼体
2f :第6分割水平翼体
2g :円盤体
2ga:ボルト
2gb:ナット
2h :受風翼
2ha:凹湾曲面
2hb:凸湾曲面
2i :中空軸
2ia:フランジ
2ib:固定ネジ
2ic:キー溝
2j :軸受メタル
2ja:セットスクリュー
2k :キー
2ka:キー溝
2l :ボス
2la:固定ネジ
3 :出力部
3a :差動傘歯車機構
3b :ボックス
4 :水平回転軸
5 :電磁クラッチ
5a :アーマチュアハブ
5aa:ボルト
5b :ロータ
5ba:キー
5c :クラッチ
6 :軸受体
6a :台座
6b :軸支板
6c :軸受
6d :パルスモータ
6da:ピニオン
6db:ウォーム
6dc:軸受(ウォーム軸と共にその軸端に軸着される傘歯車を軸支するもの)
6e :回動制御手段
7 :垂直回転軸
7a :円筒ケース
8 :旋回台軸受
9 :支持台
10 :動力伝達部
10a:傘歯車
10b:傘歯車
10ba:一方向回転クラッチ
10c :連結軸
a、b :接合孔
G :発電機
A、B :水平翼型風力装置
P :風力発電装置
1: Wind tunnel 1a: Upper wind guide body 1aa: Arc surface 1ab: Wedge-shaped wind guide surface 1ac: Wind shield eaves 1ad: Suction passage (removing negative pressure)
1ae: Suction port 1b: Lower wind guide body 1ba: Arc surface 1bb: Lower wind guide surface 1bc: Exhaust air guide seat 1bd: Notch groove (for cylindrical case guide)
1c: side plate 1ca: arc groove (for pinion guide)
1d: Wind direction sensing means 1da: Vertical tail 1db: Horizontal tail 1dc: Bearing 1dd: Pin 1de: Actuator 1df: Operating element 1dg: Upper switch 1dh: Lower switch 1di: Guide rod 1e: Large gear 1ea: Worm gear 1f: Wind receiving port 2: Horizontal wing body 2a: First divided horizontal wing body 2b: Second divided horizontal wing body 2c: Third divided horizontal wing body 2d: Fourth divided horizontal wing body 2e: Fifth divided horizontal wing body 2f: Sixth divided Horizontal wing body 2g: disk body 2ga: bolt 2gb: nut 2h: wind receiving blade 2ha: concave curved surface 2hb: convex curved surface 2i: hollow shaft 2ia: flange 2ib: fixing screw 2ic: key groove 2j: bearing metal 2ja: set Screw 2k: Key 2ka: Key groove 21: Boss 2la: Fixing screw 3: Output part 3a: Differential bevel gear mechanism 3b: Box 4: Horizontal rotating shaft 5: Electromagnetic clutch 5a: Armature hub 5aa: Bolt 5b: Rotor 5ba: Key 5c: Clutch 6: Bearing body 6a: Base 6b: Shaft support plate 6c: Bearing 6d: Pulse motor 6da: Pinion 6db: Worm 6dc: Bearing (at the shaft end together with the worm shaft) (Supporting a bevel gear that is pivotally attached)
6e: rotation control means 7: vertical rotation shaft 7a: cylindrical case 8: swivel bearing 9: support base 10: power transmission unit 10a: bevel gear 10b: bevel gear 10ba: one-way rotation clutch 10c: connecting shafts a and b : Joining hole G: Generators A and B: Horizontal wing type wind turbine P: Wind turbine generator

Claims (5)

水平回転軸の軸心に沿う長手方向に正対して受風口を開口する風洞に水平回転軸を軸支し、該水平回転軸にその軸心に沿って複数個の受風翼を放射状に配設した水平翼体を外嵌結合して成る水平翼型風力装置において、前記受風口が水平回転軸の軸心を含む水平面より下部でその軸心に沿う長手方向に正対して開口され、前記水平回転軸はその長手方向中央に出力部が配設され、該出力部を挟んでその左右に前記水平翼体が配設され、左右の各水平翼体はそれぞれクラッチを介して水平回転軸にその回転力が伝達され、前記風洞はその左右外面に隣接して台座に立設された軸支板に、回動制御手段を介して所要回動範囲で該水平回転軸の周りに回動自在に軸支され、前記台座は支持台に鉛直軸を旋回中心とする旋回台軸受を介して旋回自在に軸支されて成る水平翼型風力装置。  A horizontal rotating shaft is axially supported in a wind tunnel that opens a wind receiving opening facing the longitudinal direction along the axis of the horizontal rotating shaft, and a plurality of wind receiving blades are radially arranged on the horizontal rotating shaft along the axis. In the horizontal wing type wind power device formed by externally coupling the installed horizontal wing body, the wind receiving opening is opened facing the longitudinal direction along the axis below the horizontal plane including the axis of the horizontal rotation shaft, The horizontal rotating shaft has an output portion disposed in the center in the longitudinal direction, the horizontal wing bodies are disposed on the left and right sides of the output portion, and the left and right horizontal wing bodies are respectively connected to the horizontal rotating shaft via a clutch. The rotational force is transmitted, and the wind tunnel is freely rotatable around the horizontal rotation shaft within a required rotation range via a rotation control means on a shaft support plate standing on the pedestal adjacent to the left and right outer surfaces. The pedestal can be pivoted on a support base via a swivel bearing having a vertical axis as a pivot center. Horizontal airfoil wind device comprising been supported. 前記左右の各水平翼体は、その回転軸心方向で複数個の分割水平翼体に分割され、各分割水平翼体は所要角度の配列位相で、かつ左右対称に水平推力が相殺される姿勢で水平回転軸に配列されて成る請求項1記載の水平翼型風力装置。  Each of the left and right horizontal wing bodies is divided into a plurality of divided horizontal wing bodies in the direction of the rotation axis, and each divided horizontal wing body has an arrangement phase of a required angle and a horizontal thrust is offset symmetrically. The horizontal wing type wind power device according to claim 1, wherein the horizontal wing type wind power device is arranged on a horizontal rotating shaft. 前記出力部が差動傘歯車機構から成る請求項1又は2記載の水平翼型風力装置。  The horizontal wing type wind power device according to claim 1 or 2, wherein the output unit is formed of a differential bevel gear mechanism. 前記風洞の水平回転軸の軸心より上部の内周面に後方の排風側から開口された吸引通路を連通して成る請求項1乃至3のいずれかに記載の水平翼型風力装置。  The horizontal wing type wind power device according to any one of claims 1 to 3, wherein a suction passage opened from a rear exhaust side is communicated with an inner peripheral surface above an axis of a horizontal rotation shaft of the wind tunnel. 前記請求項1乃至4のいずれかに記載した水平翼型風力装置が複数列に動力伝達部の連結軸を介して直列に連設され、該動力伝達部の連結軸回動手段に一方向回転クラッチを内蔵し、最終連結軸が回転数変換部を介して発電機に連結されて成る風力発電装置。5. The horizontal wing type wind turbine apparatus according to any one of claims 1 to 4 is connected in series via a connecting shaft of a power transmission unit in a plurality of rows, and is rotated in one direction by a connecting shaft rotating means of the power transmission unit. A wind turbine generator with a built-in clutch and a final connecting shaft connected to a generator via a rotation speed converter.
JP2013117322A 2013-05-16 2013-05-16 Horizontal wing wind turbine and wind turbine generator Expired - Fee Related JP5451926B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013117322A JP5451926B1 (en) 2013-05-16 2013-05-16 Horizontal wing wind turbine and wind turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013117322A JP5451926B1 (en) 2013-05-16 2013-05-16 Horizontal wing wind turbine and wind turbine generator

Publications (2)

Publication Number Publication Date
JP5451926B1 true JP5451926B1 (en) 2014-03-26
JP2014224521A JP2014224521A (en) 2014-12-04

Family

ID=50614518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013117322A Expired - Fee Related JP5451926B1 (en) 2013-05-16 2013-05-16 Horizontal wing wind turbine and wind turbine generator

Country Status (1)

Country Link
JP (1) JP5451926B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105955186A (en) * 2016-06-16 2016-09-21 河北工程大学 Rotary table control system for sand-dust wind tunnel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1333987A (en) * 1919-05-31 1920-03-16 Frank S Mcmanigal Windmill
JPS54124129A (en) * 1978-02-24 1979-09-26 Nasa Fanndriven generator
FR2587763A1 (en) * 1985-09-23 1987-03-27 Thomas Louis Dynamic and static wind machine
US20100329841A1 (en) * 2009-01-21 2010-12-30 O'neil John Lee California wind engine
JP2013047518A (en) * 2004-11-16 2013-03-07 Israel Hirshberg Use of air internal energy and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1333987A (en) * 1919-05-31 1920-03-16 Frank S Mcmanigal Windmill
JPS54124129A (en) * 1978-02-24 1979-09-26 Nasa Fanndriven generator
FR2587763A1 (en) * 1985-09-23 1987-03-27 Thomas Louis Dynamic and static wind machine
JP2013047518A (en) * 2004-11-16 2013-03-07 Israel Hirshberg Use of air internal energy and device
US20100329841A1 (en) * 2009-01-21 2010-12-30 O'neil John Lee California wind engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105955186A (en) * 2016-06-16 2016-09-21 河北工程大学 Rotary table control system for sand-dust wind tunnel

Also Published As

Publication number Publication date
JP2014224521A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US8198749B2 (en) Wind turbine generator
JP4355635B2 (en) Single rotor type wind power generator system combining horizontal and vertical axes
US5876181A (en) Multi-unit rotor blade system integrated wind turbine
EP2604852B1 (en) Apparatus for generating electric power from wind energy
CN102187093A (en) Cable-stayed rotor for wind and water turbines
EP1371845A2 (en) Wind turbine hub
CN201793017U (en) Rotary retractable four-rotor flight device
CN105041872B (en) The enhancing pitch variable bearings of wind turbine
JP4322845B2 (en) Tapered Savonius vertical axis wind turbine, gyromill vertical axis wind turbine and wind power generator using it
JP2007536454A (en) Wind turbine for power generation
EP3653870B1 (en) Pitch bearing arrangement
CN1727672A (en) Drive unit with variable airscrew pitch of wind driven generator
JP4658768B2 (en) Rotor blade and power generator using the rotor blade
JP5451926B1 (en) Horizontal wing wind turbine and wind turbine generator
CN103161691A (en) A modular gear unit for a wind turbine
WO2010053450A2 (en) Tandem tip-joined blades for wind turbines
WO2011058664A1 (en) Compound-type wind-driven electric power generator
WO2014023837A1 (en) Segmented rotor hub
US8779620B1 (en) Rotary windmill power generator
JP2010520414A (en) Hubless windmill
CN111042996B (en) Barring gear and wind generating set
JP2000064941A (en) Wind power generation set
JP2021523322A (en) Rotor bearing housing and wind turbine with rotor bearing housing
TWI651466B (en) Wind power equipment
KR101230231B1 (en) Apparatus for wind power generation with vertical axis

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130613

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5451926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees