JP4322845B2 - Tapered Savonius vertical axis wind turbine, gyromill vertical axis wind turbine and wind power generator using it - Google Patents

Tapered Savonius vertical axis wind turbine, gyromill vertical axis wind turbine and wind power generator using it Download PDF

Info

Publication number
JP4322845B2
JP4322845B2 JP2005174710A JP2005174710A JP4322845B2 JP 4322845 B2 JP4322845 B2 JP 4322845B2 JP 2005174710 A JP2005174710 A JP 2005174710A JP 2005174710 A JP2005174710 A JP 2005174710A JP 4322845 B2 JP4322845 B2 JP 4322845B2
Authority
JP
Japan
Prior art keywords
wind turbine
vertical axis
wind
savonius
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005174710A
Other languages
Japanese (ja)
Other versions
JP2006348810A (en
Inventor
宣行 竹内
陽介 川島
Original Assignee
竹内鉄工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 竹内鉄工株式会社 filed Critical 竹内鉄工株式会社
Priority to JP2005174710A priority Critical patent/JP4322845B2/en
Publication of JP2006348810A publication Critical patent/JP2006348810A/en
Application granted granted Critical
Publication of JP4322845B2 publication Critical patent/JP4322845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Description

本発明は、受風面が上下方向にテーパ形状をもったサボニウス垂直軸風車と、ジャイロミル垂直軸風車と、それを応用した風力発電装置に関するものである。   The present invention relates to a Savonius vertical axis wind turbine having a wind receiving surface tapered in the vertical direction, a gyromill vertical axis wind turbine, and a wind power generator using the same.

サボニウス風車は、微風でも回転し始めるという特徴があることで知られている。従来のサボニウス風車は、2枚以上の円弧形状のブレードを段違いに重ね合わせたスタイルの受風面で横から風を受けて回転するものである。しかしながら、微風でも回転し始めるという特徴を有する反面、強風時での出力効率が悪い側面があり、このエネルギーの大きい風速の高い風を利用するべく種々の改善が試みられている。   The Savonius windmill is known for its characteristic of starting to rotate even in light winds. A conventional Savonius windmill rotates by receiving wind from the side with a wind receiving surface of a style in which two or more arc-shaped blades are stacked in steps. However, while it has the feature that it starts to rotate even with a light wind, it has an aspect in which the output efficiency in a strong wind is bad, and various improvements have been tried to use this high energy wind with a high wind speed.

出力効率を改善するものとして、ブレードの内面と外面の形状を異なるものにした発明が知られており(例えば、特許文献1、特許文献2を参照。)、またブレードにねじりを与えたツイスト型サボニウス風車がウインドサイド社(フィンランド)により製造されている。   In order to improve the output efficiency, an invention in which the shape of the inner surface and the outer surface of the blade is different is known (see, for example, Patent Document 1 and Patent Document 2), and a twist type in which the blade is twisted The Savonius windmill is manufactured by Windside (Finland).

また、サボニウス風車の形状の違いによる性能検討がなされており、ブレード周りの気流の挙動解析が知られている(非特許文献1)。従来の研究成果から、サボニウス風車の形状の違いによる性能は、バッハ型と半円形(オーバラップ有)と半円形(オーバラップ無)の3つの形状のサボニウス風車を比較した場合、バッハ型が一番効率良く、次いで半円形(オーバラップ有)、そして半円形(オーバラップ無)となっている。   In addition, performance studies based on differences in the shape of the Savonius wind turbine have been made, and behavioral analysis of the airflow around the blade is known (Non-Patent Document 1). Based on the results of previous research, the performance of the Savonius wind turbine in terms of the difference in the shape of the Savonius wind turbine is the same as that of the Bach type, when comparing the Savonius wind turbine with three shapes, semicircular (with overlap) and semicircular (no overlap). It is most efficient, then semicircular (with overlap) and semicircular (no overlap).

非特許文献1では、従来、バッハ型の一番効率が良いのは、その形状から、モーメントのかかる部分が半円型のものより外側にあるため、それだけトルクを得やすいためと考えられていたが、ブレード周りの気流の挙動解析から、バッハ型は、その形状から戻り側にバケットの直線部分があるため、半円型より受風バケットに流入しようとする気流の流れが多いことが指摘されている。また、半円型の場合、受風バケットに流入しようとする気流の流れを、戻り側のバケットの凸部が遮ろうとしてしまう(戻り運動時の抵抗の)ためにトルクが奪われ、効率が悪くなると指摘されている。   In Non-Patent Document 1, conventionally, the most efficient of the Bach type was considered to be because it is easier to obtain torque because the portion where the moment is applied is outside the semicircular type. However, from the analysis of the air flow around the blade, it is pointed out that the Bach type has a straight portion of the bucket on the return side from its shape, so there is more air flow flowing into the wind receiving bucket than the semicircular type. ing. In the case of a semi-circular shape, the torque of the return side bucket tends to block the flow of the airflow that is about to flow into the wind receiving bucket (due to the resistance during the return movement), and the efficiency is reduced. It is pointed out that it gets worse.

このように従来のサボニウス風車は、2枚以上の円弧形状のブレードを段違いに重ね合わせた形状のブレードを有しているが、そのブレードの上下方向(縦方向)は直線形状であり、受風面積は上下どの断面をとっても同じである。
一方、風は地上からの高さ方向(上下方向)で風速差があり、一般的には上側の風速が高く、勿論エネルギーも大きい。
従来のサボニウス風車では、上側のエネルギーの大きい高風速域の風を小さな受風面積を有する断面で受け、一方、下側のエネルギーの小さい低風速域の風から得られるエネルギーに対して、戻り運動時の抵抗が大きくなってしまい、風車の出力を増大させることができなかった。
As described above, the conventional Savonius windmill has a blade having a shape in which two or more arc-shaped blades are stacked in steps, but the vertical direction (longitudinal direction) of the blade is a linear shape. The area is the same regardless of the top or bottom cross section.
On the other hand, the wind has a difference in wind speed in the height direction (vertical direction) from the ground, and generally the upper wind speed is high, and of course the energy is large.
In the conventional Savonius wind turbine, the wind in the high wind speed region where the upper energy is large is received by a cross section having a small wind receiving area, while the return motion is performed with respect to the energy obtained from the wind in the low wind velocity region where the lower energy is small. The resistance at the time increased, and the output of the windmill could not be increased.

特許公開平8−93627号公報Japanese Patent Publication No. 8-93627 特開2003−293928号公報JP 2003-293928 A 第22回風力エネルギーシンポジウム講演集「垂直軸風車の内部流れの可視化による性能評価」Proc. 22nd Wind Energy Symposium “Performance Evaluation by Visualizing Internal Flow of Vertical Axis Wind Turbine”

上述した従来のサボニウス風車では、均一な風速の風には効率改善されているが、風速差の有る実際の風には不十分で、特に上側高速風と下側低速風のエネルギーをうまく吸収できず、出力減少となっていた。   In the conventional Savonius windmill described above, the efficiency is improved for uniform wind speed, but it is insufficient for the actual wind with a difference in wind speed, and especially the energy of the upper high speed wind and the lower low speed wind can be absorbed well. The output decreased.

また、風車自体が重いため軸受けへの抵抗が大きいことや、吹き降ろし風によるブレード周りの気流の乱れが抵抗となる問題があり、実際の風にあわせて、風受効率のよい風車が希求されていた。   In addition, since the windmill itself is heavy, there is a problem that the resistance to the bearing is large and the turbulence of the airflow around the blade due to the downwind wind becomes a resistance, and there is a demand for a windmill with good wind receiving efficiency according to the actual wind It was.

本発明に係るサボニウス垂直軸風車は、風車の出力効率を更に向上させることを目指して、エネルギーの大きい風速の高い風を利用できること、及び風速の小さい領域において、戻り運動時の風による抵抗を少なくできることを課題とする。
出力効率の高いジャイロミル垂直軸風車を提供し、本発明に係るサボニウス垂直軸風車と複合させて風力発電装置を提供することを目的とする。
The Savonius vertical axis wind turbine according to the present invention aims to further improve the output efficiency of the wind turbine, and can use wind with high energy and high wind speed, and in the region where the wind speed is low, the resistance by wind during return movement is reduced. Let's make it a subject.
An object of the present invention is to provide a gyromill vertical axis wind turbine having high output efficiency, and to provide a wind power generator in combination with the Savonius vertical axis wind turbine according to the present invention.

本発明者らは、種々の試作品を作製し改良を重ねた結果、本発明に係るサボニウス垂直軸風車を完成した。
本発明に係るサボニウス垂直軸風車は、エネルギーの大きい風速の高い風を利用すること、及び風速の小さい領域において戻り運動時の風による抵抗を少なくするために、風車ブレードの上下方向(縦方向)に断面積の違いを付けるようブレードをテーパ形状とした。一般的には上側の風速が高いので、風車ブレードのテーパ形状を、上側の受風断面積を大きくし、下側の受風断面積を小さくなるようにする。もし、風速差が上下逆の地点(上側の風速が低く、下側の風速が高い)の場合は、風車ブレードのテーパ形状を下側の受風断面積を大きくし、上側の受風断面積を小さくする。
そして、本発明に係るサボニウス垂直軸風車は、構造上、ブレードが一回転する間に、風によりエネルギーを得る運動と、風に反抗して回転する戻り運動を行うようにした。
As a result of producing and improving various prototypes, the present inventors have completed the Savonius vertical axis wind turbine according to the present invention.
The Savonius vertical axis windmill according to the present invention uses wind of high energy and high wind speed, and reduces wind resistance during the return motion in a low wind speed region, so that the windmill blades are vertically moved (vertical direction). The blade was tapered so as to give a difference in cross-sectional area. In general, since the upper wind speed is high, the taper shape of the wind turbine blade is set so that the upper wind receiving sectional area is increased and the lower wind receiving sectional area is decreased. If the wind speed difference is upside down (the upper wind speed is low and the lower wind speed is high), the taper shape of the wind turbine blade is made larger on the lower wind receiving cross section, and the upper wind receiving cross section is increased. Make it smaller.
The Savonius vertical axis wind turbine according to the present invention is structurally configured to perform a movement to obtain energy by the wind and a return movement to rotate against the wind while the blade rotates once.

本発明の第1の観点からは、一対の受風面体1が上下方向にテーパ形状を持つようにし、揚力発生スプリッタ13を有せしめ、ブレード断面厚肉流線形に形成されていることを特徴とするサボニウス垂直軸風車が提供される。
一対の受風面体1が上下方向にテーパ形状を持つため、上下に風速差の有る風に対応でき、高速風と低速風のエネルギーをうまく吸収して出力を上げることができる。すなわち、テーパ形状とすることにより、ブレードの上下方向(縦方向)に断面積の違いを付けることができるのである。
また、揚力発生スプリッタを設けたのは、ブレードの補強のためと、上昇気流による揚力で軸受け負荷の低減を図ると共に、起動時のトルクも低減するためである。
The first aspect of the present invention is characterized in that the pair of wind-receiving face bodies 1 have a taper shape in the vertical direction, have a lift generation splitter 13, and are formed in a blade cross-section thick streamline. A Savonius vertical axis wind turbine is provided.
Since the pair of wind-receiving face bodies 1 have a vertically tapered shape, they can cope with winds having a difference in wind speed between the upper and lower sides, and can absorb the energy of high-speed wind and low-speed wind and increase the output. That is, by making the taper shape, a difference in cross-sectional area can be given in the vertical direction (longitudinal direction) of the blade.
Also, the lift generation splitter is provided to reinforce the blades and to reduce the bearing load by lifting force due to the rising airflow and to reduce the torque at the time of startup.

ここで、好ましくは、本発明の第1の観点に係るサボニウス垂直軸風車は、ブレード上下方向にねじれ、又は、ずれを生ぜしめる構造、若しくは、ずれとねじれを生ぜしめる構造を備える。
ブレード上下方向にねじれやずれを設けることで、あらゆる風向にも対処でき、また、受風面体に向かおうとする流れを発生させることができる。
Here, preferably, the Savonius vertical axis windmill according to the first aspect of the present invention includes a structure that twists or shifts in the vertical direction of the blade, or a structure that generates shift and twist.
By providing twisting and shifting in the vertical direction of the blade, it is possible to cope with any wind direction and to generate a flow toward the wind receiving face body.

また、受風面体1は、カーボン素材のFRPブレードから成ることが好ましい。
カーボン素材のFRPブレードとすることで、ブレードを軽量で頑丈なものにして、突風や強風にも耐えられる利点があると共に、風車自体の軽量化につながり軸受け負荷の低減が図れることになる。
Moreover, it is preferable that the wind-receiving surface body 1 consists of a carbon material FRP blade.
By using a carbon FRP blade, the blade can be made light and sturdy, and can withstand gusts and strong winds. Also, the windmill itself can be reduced in weight and the bearing load can be reduced.

また、本発明の第2の観点からは、ジャイロミル垂直軸風車の風車翼の翼弦長が、回転周長に占める翼の長さの比(ソリディティ)が0.18〜0.20になるように設計されていることを特徴とするジャイロミル垂直軸風車が提供される。ここで、風車翼の厚さは、風車翼の翼厚比が0.2になるように設計されていることが好ましい。風車効率を最大限に高めることが可能となるからである。
また、風車翼の翼の反りは、5%になるように設計されていることが好ましい。低風速地域においても起動力を得ることができ、かつ、低回転域での回転性能を考慮したものである。
From the second aspect of the present invention, the chord length of the wind turbine blade of the gyromill vertical axis wind turbine is designed so that the ratio of the blade length to the rotation circumference (solidity) is 0.18 to 0.20. A gyromill vertical axis wind turbine is provided. Here, the thickness of the wind turbine blade is preferably designed so that the blade thickness ratio of the wind turbine blade is 0.2. This is because the wind turbine efficiency can be maximized.
Moreover, it is preferable that the curvature of the blades of the wind turbine blade is designed to be 5%. The starting force can be obtained even in the low wind speed region, and the rotation performance in the low rotation region is taken into consideration.

また、本発明の第3の観点からは、サボニウス風車が軸機構(クラッチ)を介してジャイロミル垂直軸風車と軸連結され、サボニウス垂直軸風車の出力を用いて、軸連結されたジャイロミル垂直軸風車の起動を補助し、かつ、それぞれの軸回転の方向を逆にして,それぞれの軸回転を発電機に伝えるようにして発電出力を増やすことを特徴とする風力発電装置が提供される。   According to a third aspect of the present invention, a Savonius wind turbine is axially coupled to a gyro mill vertical axis wind turbine via a shaft mechanism (clutch), and is axially coupled using the output of the Savonius vertical axis wind turbine. There is provided a wind turbine generator that assists in starting an axial wind turbine and increases the power generation output by transmitting the shaft rotation to the generator by reversing the direction of the shaft rotation.

サボニウス風車は、面積効力を利用しており、起動性が良く微風でも大きなトルクを発生する反面、風車の出力効率が低いという特質を有する。一方、ジャイロミル垂直軸風車は、翼揚力を利用しており、風車の起動性能は低い反面、揚力を利用できるため風車の出力効率が高いという特質を有する。サボニウス風車とジャイロミル垂直軸風車を軸機構(クラッチ)で連結することにより、ハイブリッドな複合風車として、低風速でも回転でき出力効率の高い風力発電装置とするものである。それぞれの風車の特性を生かし、風力発電装置の発電効率を向上させるものである。
また、稼動効率、発電効率の向上が期待できる本発明に係るテーパ付サボニウス垂直軸風車を用いることで、低風速でも回転でき出力効率の高い風力発電装置を実現することとしたものである。
The Savonius wind turbine uses the area effect and has a characteristic that the start efficiency is good and a large torque is generated even in a light wind, but the output efficiency of the wind turbine is low. On the other hand, the gyromill vertical axis wind turbine uses blade lift, and the start-up performance of the wind turbine is low. However, since the lift can be used, the output efficiency of the wind turbine is high. By connecting the Savonius wind turbine and the gyromill vertical axis wind turbine with a shaft mechanism (clutch), the hybrid wind turbine can be rotated even at a low wind speed and can be a wind power generator with high output efficiency. By utilizing the characteristics of each windmill, the power generation efficiency of the wind turbine generator is improved.
Further, by using the tapered Savonius vertical axis wind turbine according to the present invention, which can be expected to improve operating efficiency and power generation efficiency, a wind power generator capable of rotating at a low wind speed and having high output efficiency is realized.

ここで、サボニウス風車とジャイロミル垂直軸風車を連結する軸機構(クラッチ)は、ジャイロミル垂直軸風車の初期回転を補助し、かつ、回転数が上がるとその回転補助を切断する軸機構を有することが好ましい。ジャイロミル垂直軸風車が定常回転となると、サボニウス風車の軸回転より高速となり、サボニウス風車の軸回転が負荷となることが想定されるため、回転数が上がるとその回転補助を切断する軸機構としたものである。
サボニウス風車の起動力を、中間に置いた軸機構(クラッチ)を介して、ジャイロミル垂直軸風車やダリウス垂直軸風車などの揚力形風車に伝動させ、揚力形風車が一定の回転力を得たところで、サボニウス風車を切り離すのである。
Here, the shaft mechanism (clutch) that connects the Savonius wind turbine and the gyromill vertical axis wind turbine has an axis mechanism that assists the initial rotation of the gyromill vertical axis wind turbine and cuts the rotation assistance when the rotational speed increases. It is preferable. When the gyromill vertical axis wind turbine rotates at a steady speed, it is assumed that the axis rotation of the Savonius wind turbine is faster and the shaft rotation of the Savonius wind turbine becomes a load. It is a thing.
The starting force of the Savonius wind turbine is transmitted to a lift type wind turbine such as a gyromill vertical axis wind turbine or Darius vertical axis wind turbine through a shaft mechanism (clutch) placed in the middle, and the lift type wind turbine has obtained a constant rotational force. By the way, the Savonius windmill is cut off.

本発明に係るサボニウス垂直軸風車では、一対の受風面体1が上下方向にテーパ形状を持ち、揚力発生スプリッタ13を有し、ブレード断面厚肉流線形に形成されているので、上下に風速差の有る風に対応し、高速風と低速風のエネルギーをうまく吸収して出力を上げることができる。つまり、エネルギーの大きい風速の高い風を利用でき、また、風速の小さい領域において、戻り運動時の風による抵抗を少なくできる効果を有する。   In the Savonius vertical axis wind turbine according to the present invention, the pair of wind-receiving face bodies 1 have a vertically tapered shape, have a lift generation splitter 13, and are formed in a blade cross-section thick streamline. In response to wind with wind, the energy of high speed wind and low speed wind can be absorbed well and the output can be increased. In other words, it is possible to use wind with high energy and high wind speed, and in the region where the wind speed is low, there is an effect of reducing resistance caused by wind during the return movement.

また、本発明に係るサボニウス垂直軸風車と出力効率の優れたジャイロミル垂直軸風車を軸機構(クラッチ)で連結することにより、ハイブリッドな複合風車として、低風速でも回転でき出力効率の高い風力発電装置を提供できる。   Further, by connecting the Savonius vertical axis wind turbine according to the present invention and a gyromill vertical axis wind turbine having excellent output efficiency by a shaft mechanism (clutch), a hybrid combined wind turbine can be rotated even at a low wind speed and wind power generation having high output efficiency. Equipment can be provided.

以下、本発明の実施形態について、図面を参照しながら詳細に説明していく。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

以下、本発明に係るサボニウス垂直軸風車の実施の一形態として、図1と図2により詳細に説明する。図1は本発明に係るサボニウス垂直軸風車の正面図である。また、図2は本発明に係るサボニウス垂直軸風車の受風面体の1つについて、その断面図(a)と側面からの外観図(b)を示したものである。特に、図2(a)は、受風面体の断面の様子を、下部端の位置(図2のA)、高さの1/3の位置(図2のB)、高さの2/3の位置(図2のC)、上部端の位置(図2のD)の4箇所について、その断面形状と真上から見た配置を示したものである。   Hereinafter, an embodiment of a Savonius vertical axis wind turbine according to the present invention will be described in detail with reference to FIGS. FIG. 1 is a front view of a Savonius vertical axis wind turbine according to the present invention. FIG. 2 shows a cross-sectional view (a) and an external view (b) from the side of one of the wind receiving face bodies of the Savonius vertical axis wind turbine according to the present invention. In particular, FIG. 2 (a) shows the cross-section of the wind receiving face, with the position of the lower end (A in FIG. 2), the position 1/3 of the height (B in FIG. 2), and 2/3 of the height. 4 (C of FIG. 2) and the position of the upper end (D of FIG. 2), the cross-sectional shape and the arrangement viewed from directly above are shown.

図1の正面図で、1は一対の受風面体であって、上部面は広く、下部面は狭く、全体として逆テ―パ形状となされ、上下方向にずれが生じ螺旋状に180度ねじれている。即ち、受風面体1は風車の旋回中心の回りに1/2回転して設けられている。このことは、図2(a)断面図、(b)側面の外観図からも理解できる。
図2の(a)は、一対の受風面体1の一方に着目して、図2の(b)に示す下部端の位置(A)、高さの1/3の位置(B)、高さの2/3の位置(C)、上部端の位置(D)の4箇所における受風面体の断面形状を示している。A断面が下部端のもので、B断面が高さの1/3の位置のもので、C断面が高さの2/3の位置のもので、D断面が上部端のものである。A断面からD断面と断面形状が相似的に大きくなり、また、下部端から上部端旋にかけて、風車の旋回中心の回りに1/2回転するように配設されているのが理解できる。この受風面体1のねじれは、スムーズな回転と、風切り音など騒音が少ないという効果をもたらす。
In the front view of FIG. 1, reference numeral 1 denotes a pair of wind receiving surfaces, the upper surface is wide, the lower surface is narrow, and the overall shape is an inverted taper shape, which is displaced vertically and twisted 180 degrees spirally. ing. That is, the wind receiving surface body 1 is provided with a half turn around the turning center of the windmill. This can be understood from FIG. 2 (a) sectional view and (b) side view.
FIG. 2 (a) focuses on one of the pair of wind-receiving face bodies 1, and the position (A) of the lower end, the position 1/3 of the height (B), and the height shown in FIG. The cross-sectional shape of the wind receiving face body is shown at four locations, 2/3 position (C) and upper end position (D). The A cross section is at the lower end, the B cross section is at 1/3 of the height, the C cross section is at 2/3 of the height, and the D cross section is at the upper end. It can be understood that the cross-sectional shape from the A cross section to the D cross section is similarly increased, and is arranged so as to make a half turn around the turning center of the windmill from the lower end to the upper end. This twisting of the wind receiving surface body 1 brings about the effect of smooth rotation and less noise such as wind noise.

受風面体1の上下方向の中途には、揚力発生スプリッタ13と揚力発生スプリッタ14の2段が設けられている。2は上部端板、3は下部端版であり、前記一対の受風面体1の上部面11と下部面12とを挟み込み、一体化している。   Two stages of a lift generation splitter 13 and a lift generation splitter 14 are provided midway in the vertical direction of the wind receiving surface body 1. Reference numeral 2 denotes an upper end plate, and 3 denotes a lower end plate. The upper surface 11 and the lower surface 12 of the pair of wind receiving surface bodies 1 are sandwiched and integrated.

4は軸受けであって、サボニウス垂直軸風車の重量を支えて、回転自在としている。前記揚力発生スプリッタ13,14が回転時に揚力を発生して軸受けへの負担を軽くする。   Reference numeral 4 denotes a bearing which supports the weight of the Savonius vertical axis wind turbine and is rotatable. The lift generation splitters 13 and 14 generate lift during rotation to reduce the load on the bearing.

受風面体1は、ブレード断面厚肉流線形に形成されており、前記揚力発生スプリッタ13,14とともに風によるブレード周りの気流状況を良好にしている。カーボン素材のFRP製であって、軽量且つ頑丈に厚肉成形されている。   The wind receiving surface body 1 is formed in a blade cross section thick streamline, and the air flow around the blade is improved by the wind together with the lift generating splitters 13 and 14. It is made of FRP made of carbon material, and is lightweight and sturdy and thick.

次に、図3に本発明に係る風力発電装置の外観図を示す。本実施例では、サボニウス垂直軸風車とジャイロミル垂直軸風車の複合風車の構成としている。   Next, FIG. 3 shows an external view of the wind turbine generator according to the present invention. In the present embodiment, a composite wind turbine of a Savonius vertical axis wind turbine and a gyromill vertical axis wind turbine is used.

5は軸の回転を伝達もしくは遮断するクラッチである。6は両面ツインローター発電機であり、サボニウス垂直軸風車の回転で発電する。7はジャイロミル垂直軸風車である。8は補助太陽電池であり、9は支持フレームである。   Reference numeral 5 denotes a clutch that transmits or cuts off the rotation of the shaft. 6 is a double-sided twin-rotor generator that generates electricity by rotating a Savonius vertical axis wind turbine. Reference numeral 7 denotes a gyromill vertical axis wind turbine. 8 is an auxiliary solar cell, and 9 is a support frame.

上記構造の垂直軸風車装置では、逆テーパ形状のツイスト受風面体1の上半分が上側高速風を受け、下半分が下側低速風を受けるので、風エネルギーの吸収が良い。揚力発生スプリッタ13,14が旋回によって風車自体の重さを軽減し軸受け4への負担を軽くする。微風でも始動しやすいサボニウス垂直軸風車は、クラッチ5および発電機6を介して始動し難いジャイロミル垂直軸風車7を回してやることで、発電効率が良くなる。   In the vertical axis wind turbine device having the above-described structure, the upper half of the inverted tapered twist wind receiving body 1 receives the upper high-speed wind and the lower half receives the lower low-speed wind. The lift generating splitters 13 and 14 reduce the weight of the windmill itself by turning and lighten the load on the bearing 4. The Savonius vertical axis windmill that is easy to start even with a slight wind improves the power generation efficiency by turning the gyromill vertical axis windmill 7 that is difficult to start via the clutch 5 and the generator 6.

ジャイロミル垂直軸風車が高速回転し始めれば、クラッチ5を切ってサボニウス風車の回転をフリーとし、ジャイロミル垂直軸風車のみでの発電とする。   When the gyromill vertical axis wind turbine starts to rotate at a high speed, the clutch 5 is disengaged to make the rotation of the Savonius wind turbine free, and power is generated only by the gyromill vertical axis wind turbine.

ここで、ジャイロミル垂直軸風車の風車翼の翼弦長は、ソリディティσ=0.18になるように翼弦長を設計することが好ましい。ソリディティσは、回転周長に占める翼の長さの比を表すもので、回転半径と翼枚数が決まれば、σ=0.18になるように翼弦長を決めることができるのである。図5は、ジャイロミル垂直軸風車の風車翼のソリディティσをパラメータとして、風車効率と周速比の関係を表したグラフである。なお、図5のグラフは、実際に発明者が行った翼の揚力・効力特性の実験結果に基づいたものである。   Here, the chord length of the wind turbine blade of the gyromill vertical axis wind turbine is preferably designed so that the solidity σ = 0.18. The solidity σ represents the ratio of the blade length to the rotation circumference, and if the rotation radius and the number of blades are determined, the chord length can be determined so that σ = 0.18. FIG. 5 is a graph showing the relationship between the wind turbine efficiency and the peripheral speed ratio, using the solidity σ of the wind turbine blades of the gyromill vertical axis wind turbine as a parameter. The graph of FIG. 5 is based on the experimental results of lift / efficiency characteristics of the wings actually performed by the inventors.

また、ジャイロミル垂直軸風車の風車翼の厚さは、風車翼の翼厚比β=0.2(20%)になるように翼の厚さを設計することが好ましい。風車翼の翼厚比βは、弦長と翼厚みの比を表すので、翼弦長が決まれば、β=0.2になるように翼の厚さを決めることができるのである。図6は、ジャイロミル垂直軸風車の風車翼の翼厚比βをパラメータとして、風車効率と周速比の関係を表したグラフである。なお、図6のグラフは、実際に発明者が行った翼の揚力・効力特性の実験結果に基づいたものであり、該グラフによれば、翼厚比β=0.2(20%)で最高効率を示すことが理解できる。   The thickness of the wind turbine blade of the gyromill vertical axis wind turbine is preferably designed such that the blade thickness ratio β = 0.2 (20%) of the wind turbine blade. Since the blade thickness ratio β of the wind turbine blade represents the ratio of the chord length to the blade thickness, if the chord length is determined, the blade thickness can be determined so that β = 0.2. FIG. 6 is a graph showing the relationship between the wind turbine efficiency and the peripheral speed ratio with the blade thickness ratio β of the wind turbine blade of the gyromill vertical axis wind turbine as a parameter. The graph in FIG. 6 is based on the experimental results of the lift / efficiency characteristics of the blades actually performed by the inventor. According to the graph, the maximum efficiency is obtained at the blade thickness ratio β = 0.2 (20%). Can be understood.

さらに、ジャイロミル垂直軸風車の風車翼の翼の反りは、低回転域での回転性能のよい、反り5%の翼が好ましい。翼反りλ=0(0%)で最高効率を示すのであるが、この反り0%の翼は起動力がほとんど無く、低風速地域には不向きであるため、低風速地域においては最高効率が多少低下するものの、低回転域での回転性能のよい、反り5%の翼のほうが好ましいからである。図7に、ジャイロミル垂直軸風車の風車翼の翼反りλをパラメータに,風車効率と周速比の関係を求めたグラフを示す。図7のグラフから、翼反りλ=0(0%)で最高効率を示すことが分かるが、この反り0%の翼は起動力がほとんど無く、低風速地域には不向きであることが理解できる。   Further, the blade warp of the wind turbine blade of the gyromill vertical axis wind turbine is preferably a blade with a warpage of 5% with good rotational performance in a low rotation region. The blade warp λ = 0 (0%) shows the highest efficiency, but the blade with 0% warp has little starting force and is not suitable for the low wind speed region. This is because a blade with a 5% warpage and good rotation performance in a low rotation range is preferable although it is reduced. FIG. 7 is a graph showing the relationship between the wind turbine efficiency and the peripheral speed ratio, using the blade warp λ of the wind turbine blade of the gyromill vertical axis wind turbine as a parameter. From the graph of FIG. 7, it can be seen that the maximum efficiency is shown at blade warp λ = 0 (0%), but it can be understood that the blade with 0% warp has little starting force and is not suitable for low wind speed regions. .

図4の(a)と(b)は、本発明の実施例2の形状を示し、この実施例2の逆テ―パ形状の受風面体1はねじれておらず直線的である。
上部面11が広く風を受けやすく、下部面12が狭くなされているのは前記実施例と同じであるが、ブレード上下方向にねじれが無いので、わかりやすい形状になっている。
4A and 4B show the shape of the second embodiment of the present invention, and the reverse-tapered wind receiving surface body 1 of the second embodiment is not twisted and is straight.
The upper surface 11 is wide and easy to receive wind, and the lower surface 12 is narrow as in the above embodiment. However, since there is no twist in the vertical direction of the blade, the shape is easy to understand.

図4(b)に示す如く、受風面体1の大きめの上端面110と小さめの下端面120との間には、風車の旋回中心側への、ずれがあり、上部端板2の径は大きく下部端板3の径は小さい。揚力発生スプリッタ13,14は前記実施例と同様に上下に2段設けられており、旋回時に上向きに力を発生して軸受け4への負担を軽減している。揚力発生スプリッタ13,14は風車の旋回方向に対して水平もしくは仰角を持たせるのが良い。   As shown in FIG. 4B, there is a deviation between the larger upper end surface 110 and the smaller lower end surface 120 of the wind receiving surface body 1 toward the turning center side of the windmill, and the diameter of the upper end plate 2 is The diameter of the lower end plate 3 is large and small. The lift generation splitters 13 and 14 are provided in two stages in the vertical direction as in the above-described embodiment, and generate an upward force during turning to reduce the load on the bearing 4. It is preferable that the lift generation splitters 13 and 14 have a horizontal or elevation angle with respect to the turning direction of the windmill.

このような構造のサボニウス垂直軸風車は、上下方向に風速差の有る風のエネルギーをよく吸収し、スムーズな回転を得ることができる。   The Savonius vertical axis wind turbine having such a structure can absorb wind energy having a difference in wind speed in the vertical direction, and can obtain smooth rotation.

本発明に係るサボニウス垂直軸風車は、稼動効率が良く、また小型で騒音が少ないので、低層・高層の建築物における自家発電システムとして利用できる。また、発電効率も良く、外灯などの屋外灯の発電用装置や、高速道路や橋梁等の発電システムとしても有用である。   The Savonius vertical axis windmill according to the present invention has good operating efficiency, is small and has low noise, and can be used as a private power generation system in low-rise and high-rise buildings. In addition, it has high power generation efficiency and is useful as a power generation system for outdoor lights such as outdoor lights and power generation systems for highways and bridges.

本発明の実施例1に係るサボニウス垂直軸風車の正面図。The front view of the Savonius vertical axis windmill which concerns on Example 1 of this invention. 本発明に係る実施例1のサボニウス垂直軸風車の受風面体の1つについて、その断面図(a)と側面からの外観図(b)を示したものである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a cross-sectional view (a) and an external view (b) of a side surface of one wind receiving face body of a Savonius vertical axis wind turbine according to a first embodiment of the present invention. 本発明に係る風力発電装置の外観図である。It is an external view of the wind power generator concerning the present invention. 本発明の実施例2の外観形状を示すもので、(a)は正面図、(b)平面図である。The external appearance shape of Example 2 of this invention is shown, (a) is a front view, (b) It is a top view. ジャイロミル垂直軸風車の風車翼のソリディティσをパラメータとして、風車効率と周速比の関係を表したグラフである。It is a graph showing the relationship between the wind turbine efficiency and the peripheral speed ratio using the solidity σ of the wind turbine blade of the gyromill vertical axis wind turbine as a parameter. ジャイロミル垂直軸風車の風車翼の翼厚比βをパラメータとして、風車効率と周速比の関係を表したグラフである。It is a graph showing the relationship between the wind turbine efficiency and the peripheral speed ratio with the blade thickness ratio β of the wind turbine blade of the gyromill vertical axis wind turbine as a parameter. ジャイロミル垂直軸風車の風車翼の翼反りλをパラメータに,風車効率と周速比の関係を表したグラフである。It is a graph showing the relationship between the wind turbine efficiency and the peripheral speed ratio with the blade warp λ of the wind turbine blade of the gyromill vertical axis wind turbine as a parameter.

符号の説明Explanation of symbols

1 受風面体
2 上部端板
3 下部端板
4 軸受け
5 軸機構(クラッチ)
6 両面ツインローター発電機
7 ジャイロミル垂直軸風車
8 補助太陽電池
9 支持フレーム
11 上部面
12 下部面
13 揚力発生スプリッタ
14 揚力発生スプリッタ
110 上端面
120 下端面


DESCRIPTION OF SYMBOLS 1 Wind receiving surface body 2 Upper end plate 3 Lower end plate 4 Bearing 5 Shaft mechanism (clutch)
6 Double-sided twin rotor generator 7 Gyromill vertical axis windmill 8 Auxiliary solar cell 9 Support frame 11 Upper surface 12 Lower surface 13 Lift generating splitter 14 Lift generating splitter 110 Upper end surface 120 Lower end surface


Claims (10)

一対の受風面体1が上下方向にテ―パ形状を持ち、上昇気流により揚力を発生させ起動時のトルクを低減させ得る揚力発生スプリッタ13を有し、ブレード断面厚肉流線型に形成されていることを特徴とするサボニウス垂直軸風車。   The pair of wind-receiving face bodies 1 have a taper shape in the vertical direction, and have a lift generation splitter 13 that can generate lift by an updraft and reduce torque at startup, and is formed into a blade streamlined streamlined shape. Savonius vertical axis windmill. 一対の受風面体1が上下方向にテーパ形状を持ち、上昇気流により揚力を発生させ起動時のトルクを低減させ得る揚力発生スプリッタ13を有し、ブレード上下方向にねじれを生ぜしめ、ブレード断面厚肉流線型に形成されていることを特徴とするサボニウス垂直軸風車。   The pair of wind-receiving face bodies 1 have a vertically tapered shape, and have a lift generating splitter 13 that can generate lift by an updraft and reduce the torque at the time of startup, causing a twist in the vertical direction of the blade, A Savonius vertical axis windmill characterized by being formed into a meat streamline. 一対の受風面体1が上下方向にテ―パ形状を持ち、上昇気流により揚力を発生させ起動時のトルクを低減させ得る揚力発生スプリッタ13を有し、ブレード上下方向にずれを生ぜしめ、ブレード断面厚肉流線型に形成されていることを特徴とするサボニウス垂直軸風車。   The pair of wind-receiving face bodies 1 have a taper shape in the vertical direction, and have a lift generation splitter 13 that can generate lift by an updraft and reduce the torque at the time of start-up. A Savonius vertical axis wind turbine characterized by being formed into a thick streamlined cross section. 一対の受風面体1が上下方向にテ―パ形状を持ち、上昇気流により揚力を発生させ起動時のトルクを低減させ得る揚力発生スプリッタ13を有し、ブレード上下方向にずれとねじれを生ぜしめ、ブレード断面厚肉流線型に形成されていることを特徴とするサボニウス垂直軸風車。   The pair of wind-receiving face bodies 1 has a taper shape in the vertical direction, and has a lift generation splitter 13 that can generate lift by an updraft and reduce the torque at the time of starting, and causes deviation and twist in the vertical direction of the blade. The Savonius vertical axis windmill is characterized by being formed into a thick streamlined blade cross section. 請求項1乃至4のいずれかに記載の受風面体1がカーボン素材のFRPブレードとなされたことを特徴とするサボニウス垂直軸風車。   5. A Savonius vertical axis wind turbine characterized in that the wind receiving surface body 1 according to any one of claims 1 to 4 is an FRP blade made of a carbon material. 請求項1乃至4のいずれかに記載のサボニウス垂直軸風車が、軸機構(クラッチ)を介して、ジャイロミル垂直軸風車と軸連結され、前記サボニウス垂直軸風車の出力を用いて、軸連結された前記ジャイロミル垂直軸風車の起動を補助し、かつ、それぞれの軸回転の方向を逆にして,それぞれの軸回転を発電機に伝えるようにして発電出力を増やすことを特徴とする前記サボニウス垂直軸風車を利用した風力発電装置。   The Savonius vertical axis wind turbine according to any one of claims 1 to 4 is axially coupled to a gyromill vertical axis wind turbine via a shaft mechanism (clutch), and is axially coupled using an output of the Savonius vertical axis wind turbine. The Savonius vertical is characterized by assisting the start-up of the gyromill vertical axis wind turbine, and by reversing the direction of each shaft rotation so as to transmit each shaft rotation to the generator to increase the power generation output. Wind power generator using an axial windmill. 前記ジャイロミル垂直軸風車の初期回転を補助し、かつ、回転数が上がるとその回転補助を切断する軸機構を有することを特徴とする請求項6に記載の前記サボニウス垂直軸風車を利用した風力発電装置。   The wind power using the Savonius vertical axis windmill according to claim 6, further comprising an axis mechanism that assists the initial rotation of the gyromill vertical axis windmill and cuts the rotation assistance when the rotational speed increases. Power generation device. 前記ジャイロミル垂直軸風車の風車翼の翼弦長が、回転周長に占める翼の長さの比(ソリディティ)が0.18〜0.20になるように設計されていることを特徴とする請求項6に記載の前記サボニウス垂直軸風車を利用した風力発電装置。   The chord length of the wind turbine blade of the gyromill vertical axis wind turbine is designed so that the ratio of the blade length to the rotation circumference (solidity) is 0.18 to 0.20. The wind power generator using the said Savonius vertical axis windmill of description. 前記ジャイロミル垂直軸風車の風車翼の厚さが、風車翼の翼厚比が0.2になるように設計されていることを特徴とする請求項8に記載の前記サボニウス垂直軸風車を利用した風力発電装置。   The wind power using the Savonius vertical axis wind turbine according to claim 8, wherein the thickness of the wind turbine blade of the gyromill vertical axis wind turbine is designed so that the blade thickness ratio of the wind turbine blade is 0.2. Power generation device. 前記ジャイロミル垂直軸風車の風車翼の翼の反りが、5%になるように設計されていることを特徴とする請求項9に記載の前記サボニウス垂直軸風車を利用した風力発電装置。
The wind turbine generator using the Savonius vertical axis wind turbine according to claim 9, wherein a warp of a wind turbine blade of the gyromill vertical axis wind turbine is designed to be 5%.
JP2005174710A 2005-06-15 2005-06-15 Tapered Savonius vertical axis wind turbine, gyromill vertical axis wind turbine and wind power generator using it Expired - Fee Related JP4322845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005174710A JP4322845B2 (en) 2005-06-15 2005-06-15 Tapered Savonius vertical axis wind turbine, gyromill vertical axis wind turbine and wind power generator using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005174710A JP4322845B2 (en) 2005-06-15 2005-06-15 Tapered Savonius vertical axis wind turbine, gyromill vertical axis wind turbine and wind power generator using it

Publications (2)

Publication Number Publication Date
JP2006348810A JP2006348810A (en) 2006-12-28
JP4322845B2 true JP4322845B2 (en) 2009-09-02

Family

ID=37644926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005174710A Expired - Fee Related JP4322845B2 (en) 2005-06-15 2005-06-15 Tapered Savonius vertical axis wind turbine, gyromill vertical axis wind turbine and wind power generator using it

Country Status (1)

Country Link
JP (1) JP4322845B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359062A (en) * 2014-11-11 2015-02-18 中国人民解放军总后勤部建筑工程研究所 Lifting type camping place floodlight

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839995B2 (en) * 2006-07-12 2011-12-21 パナソニック株式会社 Savonius windmill
US7948110B2 (en) 2007-02-13 2011-05-24 Ken Morgan Wind-driven electricity generation device with Savonius rotor
US20090015015A1 (en) * 2007-07-09 2009-01-15 Risto Joutsiniemi Linear power station
US8087897B2 (en) 2008-02-01 2012-01-03 Windside America Fluid rotor
JP4740382B2 (en) * 2009-04-06 2011-08-03 勇 松田 Windmill
KR100961814B1 (en) * 2009-09-17 2010-06-08 안경상 A rotor structure for wind propulsive power generators
US8905704B2 (en) 2010-11-15 2014-12-09 Sauer Energy, Inc. Wind sail turbine
US8864440B2 (en) 2010-11-15 2014-10-21 Sauer Energy, Incc. Wind sail turbine
CN202914240U (en) * 2012-09-17 2013-05-01 江苏六和新能源设备科技有限公司 Vertical axis wind power generation device with basalt blades
WO2016199960A1 (en) * 2015-06-11 2016-12-15 박유진 Wind power generation device and power generation facility comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359062A (en) * 2014-11-11 2015-02-18 中国人民解放军总后勤部建筑工程研究所 Lifting type camping place floodlight
CN104359062B (en) * 2014-11-11 2016-08-24 中国人民解放军总后勤部建筑工程研究所 A kind of lift is camped field lighting lamp

Also Published As

Publication number Publication date
JP2006348810A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4322845B2 (en) Tapered Savonius vertical axis wind turbine, gyromill vertical axis wind turbine and wind power generator using it
Battisti et al. Analysis of different blade architectures on small VAWT performance
Eriksson et al. Evaluation of different turbine concepts for wind power
US8562298B2 (en) Vertical-axis wind turbine
TWI226919B (en) Straight blade type turbine
US7896609B2 (en) Vertical axis wind turbine system
JP4727277B2 (en) Combined lift and drag type vertical axis wind turbine
AU2009286346B2 (en) A turbine and a rotor for a turbine
US20120183407A1 (en) Vertical-axis wind turbine
US9046075B2 (en) Wind turbine generator
Didane et al. Experimental Study on the Performance of a Savonius-Darrius Counter-Rotating Vertical Axis Wind Turbine
JPWO2018194105A1 (en) Vertical axis turbine
US7766602B1 (en) Windmill with pivoting blades
JP2003336572A (en) Wind mill having nacell structure
WO2010053450A2 (en) Tandem tip-joined blades for wind turbines
US10941752B2 (en) Variable-pitch multi-segment rotor blade of wind turbine
JP2007092599A (en) Vertical windmill
CN201858086U (en) Double-wheel driving compound horizontal-axis wind turbine
US20060177303A1 (en) Radial-flow, horizontal-axis fluid turbine
CN101957882A (en) Method for optimizing variable pitch mechanism of wind turbine
JPH07208320A (en) Vertical shaft wind mill to be laminated on multistorey tower
Budea et al. Experimental research on darrieus type H wind turbines with semi-open blades
JP2005054757A (en) Hybrid type wind mill
JP4685379B2 (en) Wind power generator
Ibrahim et al. DESIGN AND CONSTRUCTION OF A 500W WIND GENERATOR USING THIN SHEET METAL TURBINE BLADES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080714

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees