JP5451438B2 - Film production method - Google Patents

Film production method Download PDF

Info

Publication number
JP5451438B2
JP5451438B2 JP2010026536A JP2010026536A JP5451438B2 JP 5451438 B2 JP5451438 B2 JP 5451438B2 JP 2010026536 A JP2010026536 A JP 2010026536A JP 2010026536 A JP2010026536 A JP 2010026536A JP 5451438 B2 JP5451438 B2 JP 5451438B2
Authority
JP
Japan
Prior art keywords
film
filter
weight
reaction
surface defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010026536A
Other languages
Japanese (ja)
Other versions
JP2011165267A (en
Inventor
伸次 室
家康 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2010026536A priority Critical patent/JP5451438B2/en
Publication of JP2011165267A publication Critical patent/JP2011165267A/en
Application granted granted Critical
Publication of JP5451438B2 publication Critical patent/JP5451438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、フィルムの製造方法に関し、特に高密度磁気記録媒体のベースフィルムに用いるフィルムの製造方法に関する。   The present invention relates to a film manufacturing method, and more particularly to a film manufacturing method used for a base film of a high-density magnetic recording medium.

ポリエステルに代表されるような熱可塑性樹脂は、成形性に優れることからフィルムなどの原料として用いられている。このフィルムにしたときに、要求される特性はそれぞれの用途によって異なるが、磁気記録媒体のベースフィルムなど平坦性が求められる用途では、表面欠点がないことが要求される。   Thermoplastic resins such as polyester are used as raw materials for films and the like because of their excellent moldability. When this film is used, the required properties differ depending on the application, but in applications where flatness is required such as a base film of a magnetic recording medium, it is required that there are no surface defects.

そのような要求に対して、特許文献1〜4では、フィルムの表面にアルミニウムを0.1μmの厚みで蒸着し、その表面を倍率200倍にて光学顕微鏡で1cm×5cmの範囲を観察し、長径が15μm以上の大きさの突起をマーキングし、そのマーキングした突起を非接触三次元粗さ計を用いて、測定倍率40倍、測定面積242μm×239μm(0.058mm)の条件にて測定し、高さ100nm以上の突起の数を数えている。また、特許文献5では、波長580nmの光線を照射し、その干渉縞によって表面欠点を測定している。 In response to such a requirement, in Patent Documents 1 to 4, aluminum is vapor-deposited on the surface of the film with a thickness of 0.1 μm, and the surface is observed at a magnification of 200 times with an optical microscope in a 1 cm × 5 cm range, A projection having a major axis of 15 μm or more is marked, and the marked projection is measured using a non-contact three-dimensional roughness meter under a measurement magnification of 40 times and a measurement area of 242 μm × 239 μm (0.058 mm 2 ). The number of protrusions having a height of 100 nm or more is counted. In Patent Document 5, light with a wavelength of 580 nm is irradiated, and surface defects are measured by the interference fringes.

しかしながら、特許文献1〜4に記載された方法では、測定面積が非常に狭く、また突起も長径が15μm以上のものしか見ることができず、これらに記載の方法を工業的なフィルムの製造方法に用いることは、生産性および信憑性の点から不可能であった。一方、特許文献5に記載の方法は、測定波長が580nmということから高さが145nm以上の表面欠点であれば比較的広範囲にある表面欠点を簡便に確認することはできた。一方、近年の市場の要求はますます高くなっており、高さが145nmに満たない突起も表面欠点として問題となることが出てきた。   However, in the methods described in Patent Documents 1 to 4, the measurement area is very narrow, and the projections can only be seen having a major axis of 15 μm or more. It was not possible to use it in terms of productivity and credibility. On the other hand, since the method described in Patent Document 5 has a measurement wavelength of 580 nm, a surface defect having a relatively wide range can be easily confirmed as long as the surface defect has a height of 145 nm or more. On the other hand, the demands of the market in recent years have become increasingly higher, and protrusions whose height is less than 145 nm have become a problem as surface defects.

特開2004−114492号公報JP 2004-114492 A 特開2003−291288号公報JP 2003-291288 A 特開2002−363311号公報JP 2002-36311 A 特開2002−363310号公報JP 2002-363310 A 特開2002−59520号公報JP 2002-59520 A

本発明の目的は、近年の非常に高さの低い表面欠点をも低減するという市場の要求に応えられる表面欠点が少ないフィルムを効率的に製造することができるフィルムの製造方法を提供することにある。   An object of the present invention is to provide a film production method capable of efficiently producing a film having few surface defects that can meet the market demand for reducing surface defects of very low height in recent years. is there.

本発明者らは上記課題を解決しようと鋭意研究するにあたって、測定方法として特許文献5に記載の方法と同じ原理を採用し、かつ測定波長として従来用いられなかった極めて短波長の光による干渉縞を用いることで、これまで問題とならなかった比較的高さの低い表面欠点をも効率的に把握することができ、結果として表面欠点の少ない、特に高密度磁気記録媒体のベースフィルムに適したフィルムを効率的に製造できることを見出し、本発明に到達した。   When the present inventors diligently research to solve the above-mentioned problem, the same principle as the method described in Patent Document 5 is adopted as a measurement method, and interference fringes due to extremely short wavelength light that has not been conventionally used as a measurement wavelength. Can be used to efficiently grasp surface defects with relatively low height, which has not been a problem until now, and as a result, it is suitable for base films of high-density magnetic recording media with few surface defects. The present inventors have found that a film can be produced efficiently and have reached the present invention.

かくして本発明によれば、溶融状態の熱可塑性樹脂をシート状に押し出す溶融押出工程と、それを巻き取る工程および巻き取られたフィルムを良品と不良品とに選別して良品を製品とする工程とからなるフィルムの製造方法であって、少なくとも巻き取られたフィルムの一方の表面を透明基材に貼り付けて、透明基材側から波長100〜400nmの光を照射することで、透明基材と空隙の境界と空隙とフィルム表面の境界とで反射される反射光の干渉の縞によって測定される表面欠点数を測定し、測定された表面欠点数が基準値以下のフィルムを良品とするフィルムの製造方法が提供される。 Thus, according to the present invention, a melt extrusion process for extruding a molten thermoplastic resin into a sheet shape, a process for winding it, and a process for selecting a good product as a good product by sorting the wound film into a good product and a defective product A method for producing a film comprising the steps of: affixing at least one surface of a wound film to a transparent substrate, and irradiating light having a wavelength of 100 to 400 nm from the transparent substrate side; A film that measures the number of surface defects measured by interference fringes of reflected light reflected at the boundary between the gap and the gap and the boundary between the film surface, and a film having a measured number of surface defects equal to or less than a reference value A manufacturing method is provided.

さらにまた、本発明の好ましい態様として、フィルムの少なくとも一方の表面粗さが1〜10nmの範囲にあること、溶融押出工程において、フィルターによって溶融状態の熱可塑性樹脂をろ過し、そして表面欠点数の測定値に基づいて、当該フィルターを交換すること、シート状に押し出してから、それを巻き取る工程において、表面欠点数の測定値に基づいて、使用するロールの清掃を行うすること、フィルムがポリエステルフィルムであること、および、フィルムが、高密度磁気記録媒体のベースフィルムに用いられることの少なくともいずれか一つを具備するフィルムの製造方法も提供される。   Furthermore, as a preferred embodiment of the present invention, the surface roughness of at least one of the films is in the range of 1 to 10 nm, the molten thermoplastic resin is filtered by a filter in the melt extrusion process, and the number of surface defects is increased. Based on the measured value, the filter is replaced. In the process of extruding the sheet and then winding it, the roll to be used is cleaned based on the measured value of the number of surface defects, and the film is polyester. There is also provided a method for producing a film comprising at least one of being a film and being used as a base film of a high-density magnetic recording medium.

本発明のフィルムの製造方法によれば、フィルムの中で、例えば記憶容量が1TB以上であるデータストレージといった高密度磁気記録媒体のベースフィルムに用いたときに、ドロップアウトなどの欠点が発生しにくいフィルムを効率的に製造することができ、その工業的価値はきわめて高い。   According to the method for producing a film of the present invention, when used in a base film of a high-density magnetic recording medium such as a data storage having a storage capacity of 1 TB or more in the film, defects such as dropout hardly occur. The film can be produced efficiently and its industrial value is extremely high.

以下、本発明について、詳述する。
本発明のフィルムの製造方法は、溶融状態の熱可塑性樹脂をシート状に押し出す工程と、それを巻き取る工程および巻き取られたフィルムを良品と不良品とに選別して良品を製品とする工程とからなる。溶融状態の熱可塑性樹脂をシート状に押し出す工程と、それを巻き取る工程とは、それ自体公知の方法を採用できる。
Hereinafter, the present invention will be described in detail.
The method for producing a film according to the present invention includes a step of extruding a molten thermoplastic resin into a sheet, a step of winding it, and a step of selecting the non-defective product from the wound film as a non-defective product It consists of. For the step of extruding the molten thermoplastic resin into a sheet and the step of winding it, a method known per se can be adopted.

まず、本発明の特徴は、巻き取られたフィルムの少なくとも一方の表面について、波長100〜400nmの光の干渉によって測定される表面欠点数を測定し、測定された表面欠点数が基準値以下のフィルムを良品とすることにある。測定波長が下限未満では、観察される突起が非常に小さく、本発明の製造方法でもその個数を正確に把握することが困難になりやすい。他方測定波長が上限を超えると、前述の特許文献5で測定されるような大きな表面欠点しか確認することができず、良品として判断しても不十分な場合が出てくる。好ましい光の波長は、150〜350nm、さらに200〜300nmの範囲である。   First, the feature of the present invention is that the number of surface defects measured by interference of light having a wavelength of 100 to 400 nm is measured on at least one surface of the wound film, and the measured number of surface defects is below a reference value. It is to make the film a good product. When the measurement wavelength is less than the lower limit, the observed protrusions are very small, and it is difficult to accurately grasp the number of protrusions even in the manufacturing method of the present invention. On the other hand, when the measurement wavelength exceeds the upper limit, only a large surface defect as measured in the above-mentioned Patent Document 5 can be confirmed, and there are cases where it is insufficient even if judged as a non-defective product. A preferable wavelength of light is in the range of 150 to 350 nm, and further 200 to 300 nm.

この干渉縞による表面欠点の測定原理について説明する。まず、フィルムを平坦な面に重ね合わせると、フィルムの表面に突起があることから両者の間に空間ができる。そして、そこに光が当たると、光の波長(λ:nm)に対してλ/4になる間隔の部分は反射光が打ち消しあう。この打ち消しあいによって、突起を中心に黒い点もしくは黒いリング状の模様が発現し、それらを確認することで表面欠点を把握することができる。   The measurement principle of the surface defect due to the interference fringes will be described. First, when the film is overlapped on a flat surface, there is a protrusion between the two because there is a protrusion on the surface of the film. When the light hits the reflected light, the reflected light cancels out at an interval of λ / 4 with respect to the wavelength of light (λ: nm). By this cancellation, a black dot or a black ring-shaped pattern appears around the protrusion, and the surface defect can be grasped by confirming them.

本発明において重要なことは、照射する光に波長が上記範囲の光を用いたことにある。なお、このような波長領域の光は肉眼では確認できないので、実際に測定する場合は、測定波長の光に対して感度を有する受光部と、該受光部で観察した光の干渉縞を肉眼で確認できるように変換する演算装置と該変換された干渉縞を映し出す画像表示装置や印刷する印刷装置が必要である。また、照射する光は上記波長の光を含んで入れさえすればよく、他の波長の光を含んでいても良い。これは、フィルムに照射する前またはフィルムに照射した後、特定の波長だけを通すフィルターを通過させたり、前記受光部として目的とする特定の波長だけを確認できるような受光部を採用することで、目的とする波長の光による干渉縞を確認できるからである。   What is important in the present invention is that light having a wavelength in the above-mentioned range is used as light to be irradiated. Since light in such a wavelength region cannot be confirmed with the naked eye, when actually measuring, the light receiving unit having sensitivity to the light with the measurement wavelength and the interference fringes of the light observed with the light receiving unit with the naked eye. An arithmetic device that performs conversion so that it can be confirmed, an image display device that displays the converted interference fringes, and a printing device that performs printing are required. Moreover, the light to irradiate should just contain the light of the said wavelength, and may contain the light of another wavelength. This can be done by passing a filter that passes only a specific wavelength before or after irradiating the film, or by adopting a light receiving part that can confirm only the specific wavelength as the light receiving part. This is because interference fringes due to light of the target wavelength can be confirmed.

ところで、特許文献5では、測定するフィルム同士を重ね合わせて測定するが、波長が短くなるとフィルムを構成する熱可塑性樹脂自体が光を吸収し、干渉縞が判断しにくくなることがある。そのような場合は、測定波長の光に対する吸収が少ない例えばガラスプレートなどの透明基材を用い、該透明基材にフィルムを貼り付けて、透明基材側から光を照射すればよい。こうすることで、透明基材と空隙の境界と空隙とフィルム表面の境界とで反射される反射光(フィルムを通過しない光)による干渉の縞を観察でき、フィルムによる測定光の吸収の問題を回避して測定することができる。   By the way, in Patent Document 5, measurement is performed by superimposing films to be measured. However, when the wavelength is shortened, the thermoplastic resin itself constituting the film absorbs light, and interference fringes may be difficult to judge. In such a case, a transparent base material such as a glass plate that absorbs light at the measurement wavelength is small, a film is attached to the transparent base material, and light is irradiated from the transparent base material side. By doing this, interference fringes caused by reflected light (light that does not pass through the film) reflected at the boundary between the transparent substrate and the gap and between the gap and the film surface can be observed, and the problem of absorption of the measurement light by the film can be observed. Measurements can be avoided.

このような干渉縞による表面欠点の測定は、フィルムを巻き取った後、製品として使用されるまでの間なら、任意の段階で測定すれば良い。ただ、フィルムを製膜している間に、何らかの要因で表面欠点が増加した場合、本測定をしないと不良品ばかりを生産することになるため、フィルムにできた後、できる限り速やかに測定することが好ましく、特に8時間以内、さらに4時間以内に測定することが好ましい。   The surface defect due to such interference fringes may be measured at an arbitrary stage as long as the film is wound up and used as a product. However, if surface defects increase for some reason while the film is being formed, only defective products will be produced unless this measurement is made. It is particularly preferable to measure within 8 hours, more preferably within 4 hours.

つぎに、熱可塑性樹脂をシート状に押し出す工程について、詳述する。
まず、本発明における熱可塑性樹脂は、フィルムへの製膜が可能なものであれば、それ自体公知のものを採用でき、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリビニル系樹脂、ポリオレフィン系樹脂を用いることができ、特にポリエステル系樹脂(以下、単にポリエステルという)が好ましい。ポリエステルの中でも、力学的特性と表面欠点の低減の観点から、ジオール成分と芳香族ジカルボン酸成分との重縮合によって得られる芳香族ポリエステルが好ましく、かかる芳香族ジカルボン酸成分として、例えばテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸などの6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸が挙げられ、またジオール成分として、例えばエチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオールが挙げられる。これらの中でも、高温での加工時の寸法安定性の点からは、エチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするものが好ましく、特にエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするものが好ましい。また、より環境変化に対する寸法安定性を向上させる観点から、国際公開2008/096612号パンフレットに記載された6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、6,6’−(トリメチレンジオキシ)ジ−2−ナフトエ酸成分および6,6’−(ブチレンジオキシ)ジ−2−ナフトエ酸成分などを共重合したものも好ましく挙げられる。
Next, the step of extruding the thermoplastic resin into a sheet will be described in detail.
First, as long as the thermoplastic resin in the present invention can be formed into a film, a known one can be adopted, such as polyester resin, polycarbonate resin, polyamide resin, polyimide resin, polyvinyl resin. Resin and polyolefin resin can be used, and polyester resin (hereinafter simply referred to as polyester) is particularly preferable. Among polyesters, an aromatic polyester obtained by polycondensation of a diol component and an aromatic dicarboxylic acid component is preferable from the viewpoint of reducing mechanical properties and surface defects. Examples of the aromatic dicarboxylic acid component include terephthalic acid and isophthalic acid. 6,6 ′-(alkylenedioxy) di-2 such as acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid -Naphthoic acid is mentioned, and examples of the diol component include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and 1,6-hexanediol. Among these, ethylene terephthalate or ethylene-2,6-naphthalenedicarboxylate is the main repeating unit from the viewpoint of dimensional stability during processing at high temperature, and ethylene-2,6-naphthalene is particularly preferable. Those having carboxylate as the main repeating unit are preferred. Further, from the viewpoint of further improving the dimensional stability against environmental changes, the 6,6 ′-(ethylenedioxy) di-2-naphthoic acid component described in International Publication No. 2008/096612 pamphlet, 6,6 ′-( A copolymer obtained by copolymerizing a trimethylenedioxy) di-2-naphthoic acid component and a 6,6 ′-(butylenedioxy) di-2-naphthoic acid component is also preferred.

ところで、本発明のフィルムの製造方法で用いる熱可塑性樹脂は、表面欠点の原因となる異物をできる限り少なくしたものであることが好ましい。このような表面欠点の原因となる異物としては、熱可塑性樹脂の原料自体に含まれる異物、熱可塑性樹脂の製造過程やフィルムに製膜する過程で入ってくる異物、また熱可塑性樹脂の製造過程で生じる異物などがあり、それぞれそれ自体公知の方法を採用して、できる限り異物を低減するのが好ましい。   By the way, it is preferable that the thermoplastic resin used in the method for producing a film of the present invention has as few foreign substances as possible that cause surface defects. The foreign substances that cause such surface defects include foreign substances contained in the raw material of the thermoplastic resin itself, foreign substances that enter during the process of manufacturing the thermoplastic resin and film, and the process of manufacturing the thermoplastic resin. It is preferable to reduce foreign substances as much as possible by adopting a method known per se.

そのような異物を低減する上で、比較的簡便でかつ種々の異物に対応できる方法として、熱可塑性樹脂をシート状に押し出す際、すなわち熱可塑性樹脂を溶融状態にしてから押し出すまでの間に、フィルターによってろ過することが挙げられる。このろ過に用いるフィルターは、目的とする表面欠点のレベルに応じて適宜それ自体公知のフィルターを採用すればよい。一般的には、95%ろ過精度(ガラスビーズを通過させたとき、95%以上のガラスビーズが通過できずにフィルター上に残るガラスビーズの粒径)が小さいフィルターほど、より小さな異物を除去することができる。そのため、本発明で問題とする微小な表面欠点を作る異物を低減する観点から、用いるフィルターの95%ろ過精度は、1.5μm以下、さらに1.3μm以下、特に1.0μm以下であることが好ましい。一方、95%ろ過精度を小さくすればするほど異物が除去できるということは、フィルターを通過できずにトラップされた異物がより早くに溜まることになる。そして、このようなフィルターを通過できない異物が溜まると、熱可塑性樹脂をろ過するにもフィルターを通過できる熱可塑性樹脂の量が少なくなってシート状に押し出す際の量が不安定化したり、フィルターが熱可塑性樹脂を押し出そうとする圧力に負けて、トラップされた異物がフィルターから漏れ出したりする。そのため、フィルターの95%ろ過精度の下限は、0.2μm以上、さらに0.3μm以上、特に0.4μm以上であることが好ましい。なお、このように溜まった異物が漏れ出した場合、それ以降の製品は不良品となるが、本発明の製造方法によれば、そのような不良品の発生をいち早く把握することができ、例えばフィルターを交換することなどによって、それ以降の不良品の発生を抑えることができ、しかも、過剰にフィルター交換をすることにもならないので、生産性の観点から極めて有益である。   In reducing such foreign matter, as a method that is relatively simple and can cope with various foreign matters, when extruding the thermoplastic resin into a sheet, that is, between the molten state and the extrusion of the thermoplastic resin, Filtering with a filter can be mentioned. The filter used for the filtration may be a known filter as appropriate depending on the target level of surface defects. In general, a filter with a smaller 95% filtration accuracy (the particle size of glass beads that remain on the filter without passing glass beads of 95% or more when glass beads are passed) removes smaller foreign matters. be able to. Therefore, from the viewpoint of reducing foreign matters that cause minute surface defects, which is a problem in the present invention, the 95% filtration accuracy of the filter used is 1.5 μm or less, further 1.3 μm or less, particularly 1.0 μm or less. preferable. On the other hand, the smaller the 95% filtration accuracy is, the more foreign substances can be removed, which means that foreign substances trapped without passing through the filter are collected earlier. If foreign matter that cannot pass through such a filter accumulates, the amount of the thermoplastic resin that can pass through the filter is reduced even when the thermoplastic resin is filtered, and the amount when extruded into a sheet becomes unstable. The trapped foreign matter leaks from the filter under the pressure of pushing out the thermoplastic resin. Therefore, the lower limit of 95% filtration accuracy of the filter is preferably 0.2 μm or more, more preferably 0.3 μm or more, and particularly preferably 0.4 μm or more. In addition, when the accumulated foreign matter leaks out, the subsequent products become defective products, but according to the manufacturing method of the present invention, it is possible to quickly grasp the occurrence of such defective products, for example, By exchanging the filter or the like, it is possible to suppress the occurrence of defective products thereafter, and the filter is not excessively replaced, which is extremely beneficial from the viewpoint of productivity.

ところで、本発明の製造方法で製造するフィルムは、微小な表面欠点数の低減を図る観点から、少なくとも一方の表面は、表面粗さ(RaA)が1〜10nmの範囲にあることが好ましい。好ましいRaAは、1〜9nm、さらに2〜9nmの範囲である。また、例えばデータストレージにしたときの電磁変換特性を高度に維持させる観点からは、RaAは、1〜4nm、さらに2〜4nmの範囲であることが好ましい。RaAが下限未満では、搬送性や巻取り性が悪くシワができたりする。他方上限を超えると、表面が粗くなりすぎて、本発明の製造方法で良品と不良品の判別が難しくなったり、そもそも本発明で問題とするような高さの低い表面欠点が大量に発生し、本発明の製造方法を用いても、不良品の発生が押えにくくなる。   By the way, from the viewpoint of reducing the number of minute surface defects, the film produced by the production method of the present invention preferably has a surface roughness (RaA) in the range of 1 to 10 nm. Preferred RaA is in the range of 1-9 nm, more preferably 2-9 nm. For example, from the viewpoint of maintaining high electromagnetic conversion characteristics when data storage is used, RaA is preferably in the range of 1 to 4 nm, and more preferably 2 to 4 nm. If RaA is less than the lower limit, the transportability and winding property are poor and wrinkles may be formed. On the other hand, when the upper limit is exceeded, the surface becomes too rough, and it becomes difficult to discriminate between non-defective products and defective products by the manufacturing method of the present invention. Even if the manufacturing method of the present invention is used, generation of defective products becomes difficult to hold down.

また、本発明の製造方法で製造されるフィルムは、上述の表面粗さ(RaA)を具備させる観点から、その表面を形成する熱可塑性樹脂は、不活性粒子を含有しないか、含有するとしても、平均粒径0.05〜0.5μm、さらに0.07〜0.4μmの不活性粒子を、該表面を形成するポリエステルの重量を基準として、0.005〜0.2重量%、さらに0.007〜0.2重量%の範囲で含有することが好ましい。また、例えばデータストレージにしたときの電磁変換特性を高度に維持させる観点からはその表面を形成する熱可塑性樹脂は、不活性粒子を含有しないか、含有するとしても、平均粒径0.05〜0.15μm、さらに0.07〜0.14μmの不活性粒子を、該表面を形成するポリエステルの重量を基準として、0.005〜0.2重量%、さらに0.007〜0.18重量%の範囲で含有することが好ましい。なお、ここでいう不活性粒子を含有しないとは、平均粒径0.05μm以上の不活性粒子の含有量が0.005重量%未満であることを意味する。   Moreover, even if the film manufactured with the manufacturing method of this invention comprises the above-mentioned surface roughness (RaA), the thermoplastic resin which forms the surface does not contain or contains an inert particle. Inert particles having an average particle size of 0.05 to 0.5 μm, further 0.07 to 0.4 μm, based on the weight of the polyester forming the surface, 0.005 to 0.2 wt%, and further 0 It is preferably contained in the range of 0.007 to 0.2% by weight. In addition, for example, from the viewpoint of maintaining high electromagnetic conversion characteristics when data storage is performed, the thermoplastic resin forming the surface does not contain or contain inert particles, but has an average particle size of 0.05 to 0.15 μm, further 0.07 to 0.14 μm of inert particles, based on the weight of the polyester forming the surface, 0.005 to 0.2% by weight, further 0.007 to 0.18% by weight It is preferable to contain in the range. The term “not containing inert particles” as used herein means that the content of inert particles having an average particle size of 0.05 μm or more is less than 0.005% by weight.

含有させる不活性粒子は、もともと粗大粒子を含まないか含有するとしても極めて少ない粒度分布がシャープで、また一次粒子の大半がポリマー中に凝集することなく分散している不活性粒子が好ましい。このような不活性粒子としては、シリコーン樹脂、架橋アクリル樹脂、架橋ポリエステル、架橋ポリスチレンなどの有機高分子粒子および球状シリカからなる群から選ばれる少なくとも1種の粒子であることが好ましく、特にシリコーン樹脂、架橋ポリスチレンおよび球状シリカからなる群から選ばれる少なくとも1種の粒子であることが好ましい。もちろん、これらの不活性粒子を含有させる場合は、さらに粗大粒子をなくすため、フィルターでのろ過を行ったり、分散剤で不活性粒子の表面を処理したり、押出機での混練を強化することが好ましい。   The inert particles to be contained are preferably inert particles which have no coarse particles or have a very small particle size distribution even if they are contained, and in which most of the primary particles are dispersed without agglomerating in the polymer. Such inert particles are preferably at least one particle selected from the group consisting of organic polymer particles such as silicone resin, crosslinked acrylic resin, crosslinked polyester, crosslinked polystyrene, and spherical silica, and particularly silicone resin. Preferably, the particles are at least one particle selected from the group consisting of crosslinked polystyrene and spherical silica. Of course, when these inert particles are contained, in order to further eliminate coarse particles, filtration with a filter, treatment of the surface of the inert particles with a dispersant, and strengthening of kneading with an extruder are performed. Is preferred.

本発明の製造方法で製造されるフィルムは、前述の表面粗さを有するものであれば特に制限されず、単層フィルムでも2層以上のポリエステル層からなる積層フィルムであっても良い。積層フィルムの場合、少なくとも本発明の製造方法で表面欠点を測定する側の表面が、前述の表面粗さや不活性粒子を満足していれば、他方の表面はそれに限定されないが、表面欠点を低減する観点からは、両表面が満足することが好ましい。   The film produced by the production method of the present invention is not particularly limited as long as it has the aforementioned surface roughness, and may be a single layer film or a laminated film composed of two or more polyester layers. In the case of a laminated film, if at least the surface on which the surface defect is measured by the production method of the present invention satisfies the above-mentioned surface roughness and inert particles, the other surface is not limited thereto, but the surface defect is reduced. From this point of view, it is preferable that both surfaces are satisfied.

つぎに、本発明のフィルムの製造方法について、さらに好ましい態様を説明する。まず、ポリエステルを例として説明すると、例えば芳香族ジカルボン酸もしくはそのエステル形成性誘導体とアルキレングリコールとをエステル化反応もしくはエステル交換反応させてポリエステルの前駆体を合成する第一反応と、該前駆体を重縮合反応させる第二反応とからなり、それ自体公知の方法を採用できる。前述のとおり、原料由来の異物を低減するために、芳香族ジカルボン酸もしくはそのエステル形成性誘導体とアルキレングリコールなどの原料は、精製を繰り返して、異物を低減しておくのが好ましい。ここでの異物が多いと、前述のろ過によっても異物が取りきれず、表面欠点が増えてしまうことがある。   Next, a more preferable aspect of the film production method of the present invention will be described. First, polyester will be described as an example. For example, a first reaction in which an aromatic dicarboxylic acid or an ester-forming derivative thereof and an alkylene glycol are esterified or transesterified to synthesize a polyester precursor, It consists of a second reaction for polycondensation reaction, and a method known per se can be adopted. As described above, in order to reduce foreign substances derived from raw materials, it is preferable to repeat purification of the raw materials such as aromatic dicarboxylic acid or its ester-forming derivative and alkylene glycol to reduce foreign substances. If there are many foreign substances here, foreign substances may not be removed even by the filtration described above, and surface defects may increase.

このように精製された原料は、前述の第一反応によってポリエステル前駆体となる。このポリエステル前駆体を、第二反応を開始する前に、95%濾過精度が10μm以下の第1フィルターでろ過を行ない、得られるポリエステルをテトラエチレングリコールによって溶解したときに、孔径8μmの直孔性フィルターを通過できない不溶性粗大異物量を減らすことにある。好ましくは、得られるポリエステルの重量を基準として、孔径8μmの直孔性フィルターを通過できない不溶性粗大異物量を200個/mg以下、さらに150個/mg以下、特に磁性層を形成する側の表面に用いるポリエステルは、40個/mg以下、最も好ましくは30個/mg以下となるように第1フィルターで濾過するのが好ましい。このようにして不溶性粗大異物量を減らすことで、後述の第二反応後の濾過で、さらに不溶性粗大異物量を減らしやすくなる。なお、第1フィルターでの濾過は一度に限定されず、必要であればさらに濾過を繰り返したり、フィルターを多重に使用しても良い。したがって、第一反応と第二反応の間で行なう第1フィルターの濾過精度は、不溶性粗大異物の低減の観点からは小さいほど好ましく、95%濾過精度がさらに8μm以下、さらに5μm以下であることが好ましい。一方、第1フィルターの95%濾過精度の下限は特に制限されないが、小さくしていくとそれだけ詰まりやすく交換周期が短くなるので、生産性などの観点から3μm以上、さらに4μm以上であることが好ましい。また、第1フィルターは、金属繊維の不織布を積層した構造のもので、積層された金属不織布の空隙率は通常40〜80%の範囲にあることが、濾過速度を維持しつつ、濾過圧力に耐えられるので好ましい。なお、このような不溶性粗大異物量は、原料段階から極力減らすことが好ましいが、それだけで取り除くことは難しく、第一反応後のフィルター濾過によって取り除くことが、簡便で且つ極めて有効である。   The raw material thus purified becomes a polyester precursor by the first reaction described above. This polyester precursor is filtered through a first filter having a 95% filtration accuracy of 10 μm or less before the second reaction is started, and when the resulting polyester is dissolved with tetraethylene glycol, the pore size is 8 μm. The purpose is to reduce the amount of insoluble coarse particles that cannot pass through the filter. Preferably, based on the weight of the polyester obtained, the amount of insoluble coarse particles that cannot pass through a straight filter having a pore diameter of 8 μm is 200 / mg or less, more preferably 150 / mg or less, particularly on the surface on the side where the magnetic layer is formed. The polyester used is preferably filtered through the first filter so that it is 40 pieces / mg or less, most preferably 30 pieces / mg or less. By reducing the amount of insoluble coarse foreign matter in this way, it becomes easier to further reduce the amount of insoluble coarse foreign matter by filtration after the second reaction described later. The filtration with the first filter is not limited to one time. If necessary, the filtration may be repeated further, or the filters may be used in multiple layers. Accordingly, the filtration accuracy of the first filter performed between the first reaction and the second reaction is preferably as small as possible from the viewpoint of reducing insoluble coarse foreign matter, and the 95% filtration accuracy is further 8 μm or less, further 5 μm or less. preferable. On the other hand, the lower limit of the 95% filtration accuracy of the first filter is not particularly limited. However, since the replacement cycle becomes shorter as the filter becomes smaller, it is preferably 3 μm or more, and more preferably 4 μm or more from the viewpoint of productivity. . In addition, the first filter has a structure in which metal fiber nonwoven fabrics are laminated, and the porosity of the laminated metal nonwoven fabrics is usually in the range of 40 to 80%. It is preferable because it can withstand. Although it is preferable to reduce the amount of such insoluble coarse foreign matter as much as possible from the raw material stage, it is difficult to remove it alone, and it is simple and extremely effective to remove it by filter filtration after the first reaction.

さらに好ましい第一反応の条件について説明する。第一反応は、常圧下で行ってもよいが、0.05MPa〜0.5MPaの加圧下で行うことが反応速度をより速めやすいことから好ましい。また、第一反応の温度は、210℃〜270℃の範囲で行なうことが好ましい。反応圧力を上記範囲内とすることで反応の進行を進みやすくしつつ、ジアルキレングリコールに代表される副生物の発生を抑制できる。このとき、アルキレングリコール成分は、第一反応を行う反応系に存在する酸成分に対し1.1〜6モル倍用いることが、反応速度及び樹脂の物性維持の点から好ましい。より好ましくは2〜5モル倍、さらに好ましくは3〜5モル倍である。   Further preferable conditions for the first reaction will be described. The first reaction may be performed under normal pressure, but is preferably performed under a pressure of 0.05 MPa to 0.5 MPa because the reaction rate can be easily increased. Moreover, it is preferable to perform the temperature of a 1st reaction in the range of 210 to 270 degreeC. By making the reaction pressure within the above range, it is possible to suppress the generation of by-products typified by dialkylene glycol while facilitating the progress of the reaction. At this time, the alkylene glycol component is preferably used in an amount of 1.1 to 6 moles relative to the acid component present in the reaction system in which the first reaction is carried out from the viewpoint of maintaining the reaction rate and the physical properties of the resin. More preferably, it is 2-5 mol times, More preferably, it is 3-5 mol times.

また、第一反応の反応速度をより早くするには、それ自体公知の触媒を用いることが好ましく、たとえばLi,Na,K,Mg,Ca,Mn、Co、Tiなどの金属成分を有する金属化合物が好ましく挙げられ、これらの中でも加圧下で行う場合は、反応の進みやすさの点からMnやTi化合物が好ましい。特にTi化合物は、さらに重縮合反応触媒としても使用でき、かつ触媒残渣の析出も少ないことから好ましい。本発明で用いるチタン化合物としては、触媒残渣の析出による不溶性粗大異物の発生を抑制する観点からポリエステル中に可溶な有機チタン化合物が好ましい。特に好ましいチタン化合物としては、チタンテトライソプロポキシド、チタンテトラプロポキシド、チタンテトラブトキシド、チタンテトラエトキシド、チタンテトラフェノキシド、トリメリット酸チタンなどを好ましく例示できる。   Further, in order to increase the reaction rate of the first reaction, it is preferable to use a catalyst known per se, for example, a metal compound having a metal component such as Li, Na, K, Mg, Ca, Mn, Co, and Ti. Among these, when performing under pressure, Mn and Ti compounds are preferable from the viewpoint of easy progress of the reaction. In particular, a Ti compound is preferable because it can be used as a polycondensation reaction catalyst, and the catalyst residue is less precipitated. The titanium compound used in the present invention is preferably an organic titanium compound that is soluble in polyester from the viewpoint of suppressing the generation of insoluble coarse particles due to precipitation of catalyst residues. Particularly preferable examples of the titanium compound include titanium tetraisopropoxide, titanium tetrapropoxide, titanium tetrabutoxide, titanium tetraethoxide, titanium tetraphenoxide, and trimellitic acid titanium.

添加する触媒量は、第一反応中に存在する全酸成分のモル数を基準として、金属元素換算で、10〜150ミリモル%の範囲にあることが好ましく、さらに20〜100ミリモル%、特に30〜70ミリモル%の範囲にあることが反応速度を促進しつつ、触媒起因の粗大不溶性異物の生成を抑制でき、さらに得られる共重合芳香族ポリエステルの耐熱性を高度に維持できることから好ましい。なお、チタン化合物を添加する場合の添加時期は、第一反応のエステル化反応開始時から存在するように添加し、前述のとおり、引き続き重縮合反応触媒として使用することが好ましい。もちろん、重縮合反応速度をコントロールする目的で2回以上に分けて添加してもよい。   The amount of catalyst to be added is preferably in the range of 10 to 150 mmol%, more preferably 20 to 100 mmol%, especially 30, in terms of metal elements, based on the number of moles of all acid components present in the first reaction. It is preferable to be in the range of ˜70 mmol% because the reaction rate can be promoted, the formation of coarse insoluble foreign matters due to the catalyst can be suppressed, and the heat resistance of the resulting copolymerized aromatic polyester can be maintained at a high level. In addition, when adding a titanium compound, it is preferable to add so that it may exist from the time of the esterification reaction start of a 1st reaction, and as above-mentioned, it uses continuously as a polycondensation reaction catalyst. Of course, it may be added in two or more times for the purpose of controlling the polycondensation reaction rate.

つぎに、第一反応で得られた前駆体を重縮合反応させる第二反応について説明する。
本発明では、得られるポリエステルに、高度の熱安定性を付与させる目的で、第二反応における重縮合反応の開始以前に、反応系にリン化合物からなる熱安定剤を添加することが好ましい。具体的なリン化合物としては、化合物中にリン元素を有するものであれば特に限定されず、例えば、リン酸、亜リン酸、リン酸トリメチルエステル、リン酸トリブチルエステル、リン酸トリフェニルエステル、リン酸モノメチルエステル、リン酸ジメチルエステル、フェニルホスホン酸、フェニルホスホン酸ジメチルエステル、フェニルホスホン酸ジエチルエステル、リン酸アンモニウム、トリエチルホスホノアセテート、メチルジエチルホスホノアセテートなどを挙げることができ、これらのリン化合物は二種以上を併用してもよい。なお、リン化合物の添加時期は、第一反応が実質的に終了してから第二反応である重縮合反応初期の間に行なうことが好ましく、添加は一度に行ってもよいし、2回以上に分割して行ってもよい。
Next, the second reaction in which the precursor obtained in the first reaction is polycondensed will be described.
In the present invention, for the purpose of imparting a high degree of thermal stability to the obtained polyester, it is preferable to add a thermal stabilizer composed of a phosphorus compound to the reaction system before the start of the polycondensation reaction in the second reaction. The specific phosphorus compound is not particularly limited as long as it has a phosphorus element in the compound. For example, phosphoric acid, phosphorous acid, phosphoric acid trimethyl ester, phosphoric acid tributyl ester, phosphoric acid triphenyl ester, phosphorus Examples include acid monomethyl ester, phosphoric acid dimethyl ester, phenylphosphonic acid, phenylphosphonic acid dimethyl ester, phenylphosphonic acid diethyl ester, ammonium phosphate, triethylphosphonoacetate, methyldiethylphosphonoacetate, and these phosphorus compounds May use 2 or more types together. The phosphorus compound is preferably added during the initial stage of the polycondensation reaction, which is the second reaction, after the first reaction is substantially completed. The addition may be performed at one time or two or more times. You may divide into.

ところで、重縮合反応の温度は270℃〜300℃の範囲で行い、重縮合反応中の圧力は50Pa以下の減圧下で行うのが好ましい。重縮合反応中の圧力が上限より高いと重縮合反応に要する時間が長くなり且つ重合度の高い共重合芳香族ポリエステルを得ることが困難になる。重縮合触媒としては、それ自体公知のTi,Al,Sb,Geなどの金属化合物を好適に使用でき、それらの中でもエステル化反応時に添加されたチタン化合物を引き続き使用することが触媒残渣による不溶性粗大異物の発生を抑制できることから好ましい。   By the way, the polycondensation reaction is preferably performed at a temperature in the range of 270 ° C. to 300 ° C., and the pressure during the polycondensation reaction is preferably performed under a reduced pressure of 50 Pa or less. If the pressure during the polycondensation reaction is higher than the upper limit, the time required for the polycondensation reaction becomes long and it becomes difficult to obtain a copolymerized aromatic polyester having a high degree of polymerization. As the polycondensation catalyst, metal compounds such as Ti, Al, Sb and Ge known per se can be preferably used. Among them, the titanium compound added during the esterification reaction can be used continuously so that insoluble coarse particles due to catalyst residues can be used. It is preferable because the generation of foreign matter can be suppressed.

ところで、前述のとおり、さらに表面欠点を低減する観点から、重縮合反応によって得られる所望の分子量を有するポリエステルを、溶融状態で95%濾過精度がさらに1.5μm以下の第2フィルターで濾過することが好ましい。このようにろ過されたポリエステルは、テトラエチレングリコールによって溶解したときに、孔径8μmの直孔性フィルターを通過できない不溶性粗大異物量を40個/mg以下、さらに30個/mg以下、特に磁性層を形成する側の表面は25個/mg以下、さらに20個/mg以下となるように第2フィルターで濾過するのが好ましい。このようなフィルターは、金属不織布メディアを積層した構造のもので、積層された金属不織布の空隙率は通常40〜80%の範囲にあることが、濾過速度を維持しつつ、濾過圧力に耐えられるので好ましい。   By the way, as described above, from the viewpoint of further reducing surface defects, a polyester having a desired molecular weight obtained by polycondensation reaction is filtered with a second filter having a 95% filtration accuracy of 1.5 μm or less in a molten state. Is preferred. The polyester thus filtered, when dissolved with tetraethylene glycol, has an amount of insoluble coarse particles that cannot pass through a straight pore filter having a pore diameter of 8 μm, 40 / mg or less, and further 30 / mg or less, particularly a magnetic layer. It is preferable to filter with a second filter so that the surface on the side to be formed is 25 pieces / mg or less, and further 20 pieces / mg or less. Such a filter has a structure in which metal nonwoven fabric media is laminated, and the porosity of the laminated metal nonwoven fabric is usually in the range of 40 to 80%, and can withstand the filtration pressure while maintaining the filtration speed. Therefore, it is preferable.

また、不活性粒子を含有させる方法については、前述のような粗大粒子の低減を行ったものを選択し、それをアルキレングリコールのスラリー状態として、さらにフィルターなどによって粗大粒子を低減し、それを重合工程で添加して粒子含有量が0.02〜1.0重量%の粒子含有マスターポリエステルを作成し、該マスターポリエステルを粒子を含有しないポリエステルで希釈するのが、不活性粒子の凝集による表面欠点を低減する上で好ましい。   In addition, for the method of containing inert particles, select the one that has reduced the coarse particles as described above, make it an alkylene glycol slurry, further reduce the coarse particles with a filter, etc., and polymerize it. It is a surface defect due to agglomeration of inert particles that is added in the process to prepare a particle-containing master polyester having a particle content of 0.02 to 1.0% by weight, and the master polyester is diluted with a polyester not containing particles. It is preferable in reducing the amount.

また、表面欠点は、溶融状態の熱可塑性樹脂をシート状に押し出す工程から、それを巻き取る工程の間で、フィルムを搬送するためのロールによって発生するものがある。そのような表面欠点をも低減する観点から、シート状に押し出す工程から、それを巻き取る工程の間に介在するロールの表面を清掃することが好ましい。この際、清掃に用いる清掃具としては、それ自体が表面欠点の原因となるような糸くずなどの異物を発生しにくいものが好ましく、またロール表面に付着した異物を効率的に除去できるものが好ましい。そのような観点から、繊維径が細い合成繊維からなる布帛が好ましく、帝人ファイバー株式会社製、商品名:あっちこっちふきんなどが好ましく挙げられる。   In addition, some surface defects are generated by a roll for conveying a film between a step of extruding a molten thermoplastic resin into a sheet shape and a step of winding it. From the viewpoint of reducing such surface defects, it is preferable to clean the surface of the roll interposed between the step of extruding the sheet and the step of winding it. At this time, the cleaning tool used for cleaning is preferably one that is less likely to generate foreign matter such as lint that itself causes surface defects, and one that can efficiently remove foreign matter adhering to the roll surface. preferable. From such a viewpoint, a fabric made of a synthetic fiber having a small fiber diameter is preferable, and a product name manufactured by Teijin Fibers Ltd., trade name: Achukuchi Fukkin is preferable.

以上のとおり、ポリエステルを例に挙げて説明してきたが、他の熱可塑性樹脂についても、同様な考えで行なえばよいことは容易に理解されるであろう。このようにして得られる熱可塑性樹脂は、本発明の効果を阻害しない範囲で、紫外線吸収剤等の安定剤、酸化防止剤、可塑剤、滑剤、難燃剤、離型剤、核剤、を必要に応じて配合しても良いが、少なくとも表面欠点数を測定する側の表面に用いるポリエステルは、表面欠点を形成しやすい他の熱可塑性樹脂、顔料、充填剤あるいはガラス繊維、炭素繊維、層状ケイ酸塩などは含有させないことが好ましい。   As described above, polyester has been described as an example, but it will be easily understood that other thermoplastic resins may be made in the same way. The thermoplastic resin thus obtained requires a stabilizer such as an ultraviolet absorber, an antioxidant, a plasticizer, a lubricant, a flame retardant, a release agent, and a nucleating agent as long as the effects of the present invention are not impaired. However, the polyester used on at least the surface on which the number of surface defects is to be measured is not limited to other thermoplastic resins, pigments, fillers or glass fibers, carbon fibers, layered silicas that are liable to form surface defects. It is preferable not to contain acid salts.

本発明の製造方法で製造されるフィルムは、データストレージのベースフィルムなどに用いる場合、二軸配向フィルムであることが好ましい。二軸配向フィルムは、上述の熱可塑性樹脂を溶融状態で押出し、二軸方向に延伸することで製造でき、製膜方法などはそれ自体公知のものを採用することができる。なお、前述の第2フィルターの濾過は、製膜直前であるほど、再凝集などによって後から生成される不溶性粗大異物の影響を低減できることから、製膜する際の溶融押出工程で用いるのが好ましい。   The film produced by the production method of the present invention is preferably a biaxially oriented film when used as a data storage base film or the like. The biaxially oriented film can be produced by extruding the above-mentioned thermoplastic resin in a molten state and stretching in the biaxial direction, and a film forming method or the like can be employed. The filtration of the second filter described above is preferably used in the melt extrusion step during film formation because the effect of insoluble coarse particles generated later by reaggregation or the like can be reduced as the film is immediately before film formation. .

例えば、二軸配向積層フィルムで説明すると、押出し口金内または口金以前(一般に、前者はマルチマニホールド方式、後者はフィードブロック方式と呼ぶ)で、不活性粒子を含有させた熱可塑性樹脂Bと、必要に応じて不活性粒子を含有させた熱可塑性樹脂Aとを、それぞれさらに前述のような高精度のフィルターでろ過したのち、溶融状態にて積層複合し、上記好適な厚み比の積層構造となし、次いで口金より熱可塑性樹脂の融点(Tm)〜(Tm+70)℃の温度でフィルム状に共押出ししたのち、30〜70℃の冷却ロールで急冷固化し、未延伸積層フィルムを得る。その後、上記未延伸積層フィルムを常法に従い、一軸方向(縦方向または横方向)に(熱可塑性樹脂のガラス転移温度(Tg)−10)〜(Tg+70)℃の温度で2.5〜8.0倍の倍率で、好ましくは3.0〜7.5倍の倍率で延伸し、次いで上記延伸方向とは直角方向(一段目延伸が縦方向の場合には、二段目延伸は横方向となる)に(Tg)〜(Tg+70)℃の温度で2.5〜8.0倍の倍率で、好ましくは3.0〜7.5倍の倍率で延伸する。さらに、必要に応じて、縦方向および/または横方向に再度延伸してもよい。すなわち、2段、3段、4段あるいは多段の延伸を行うとよい。全延伸倍率としては、通常9倍以上、好ましくは10〜35倍、さらに好ましくは12〜30倍である。   For example, in the case of a biaxially oriented laminated film, a thermoplastic resin B containing inert particles in the extrusion die or before the die (generally, the former is called a multi-manifold method and the latter is called a feed block method) and necessary According to the above, the thermoplastic resin A containing inert particles is further filtered with a high-precision filter as described above, and then laminated and composited in a molten state to obtain a laminated structure with the above preferred thickness ratio. Then, after coextruding into a film form at a temperature of the melting point (Tm) to (Tm + 70) ° C. of the thermoplastic resin from the die, it is rapidly cooled and solidified with a cooling roll at 30 to 70 ° C. to obtain an unstretched laminated film. Thereafter, the unstretched laminated film is uniaxially (longitudinal or transverse) according to a conventional method at a temperature of (glass transition temperature (Tg) -10) to (Tg + 70) ° C. of 2.5 to 8. The film is stretched at a magnification of 0 times, preferably at a magnification of 3.0 to 7.5, and then perpendicular to the above stretching direction (if the first stage stretching is the longitudinal direction, the second stage stretching is the transverse direction). The film is stretched at a temperature of (Tg) to (Tg + 70) ° C. at a magnification of 2.5 to 8.0 times, preferably at a magnification of 3.0 to 7.5 times. Furthermore, you may extend | stretch again in the vertical direction and / or a horizontal direction as needed. That is, it is good to perform 2 steps | paragraphs, 3 steps | paragraphs, 4 steps | paragraphs, or multistage extending | stretching. The total draw ratio is usually 9 times or more, preferably 10 to 35 times, and more preferably 12 to 30 times.

さらに、前記二軸配向フィルムは(Tg+70)〜(Tm−10)℃の温度、例えば、ポリエチレンテレフタレートフィルムの場合、180〜250℃で熱固定結晶化することによって、優れた寸法安定性が付与される。その際、熱固定時間は1〜60秒が好ましい。   Further, the biaxially oriented film is imparted with excellent dimensional stability by heat-set crystallization at a temperature of (Tg + 70) to (Tm-10) ° C., for example, 180 to 250 ° C. in the case of a polyethylene terephthalate film. The At that time, the heat setting time is preferably 1 to 60 seconds.

このようにして得られた熱可塑性樹脂フィルムは、つぎに円筒状のコアなどに巻きつけて巻き取られ、必要に応じて、目的とする製品幅や長さに裁断される。そして、前述のとおり、製品として使用するまでの間に、波長100〜400nmの光の干渉によって測定される表面欠点の数を測定し、ある基準値以下を良品、その基準値を超えるものを不良品として選別する。また、必要に応じて、目的とする基準値以下になるように各段階でのフィルターを交換したり、フィルターのろ過精度を調整したりする。   The thermoplastic resin film thus obtained is then wound around a cylindrical core or the like, and is cut into the desired product width or length as necessary. As described above, before use as a product, the number of surface defects measured by interference of light having a wavelength of 100 to 400 nm is measured. Sort as good. In addition, if necessary, the filter at each stage is changed or the filtration accuracy of the filter is adjusted so as to be equal to or less than the target reference value.

このように、本発明のフィルムの製造方法によれば、波長100〜400nmの光の干渉によって測定される表面欠点の数が少ないフィルムを効率的に製造することができ、記憶容量が例えば1TB以上であるデータストレージのベースフィルムに用いたときのエラーが非常に低減されるフィルムを効率的に製造することができる。   Thus, according to the method for producing a film of the present invention, a film having a small number of surface defects measured by interference of light having a wavelength of 100 to 400 nm can be efficiently produced, and the storage capacity is, for example, 1 TB or more. Thus, it is possible to efficiently produce a film in which errors when used for a data storage base film are greatly reduced.

以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。なお、本発明におけるポリエステル、ポリエステルフィルムおよびデータストレージの特性は、下記の方法で測定および評価した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, the characteristic of the polyester in this invention, the polyester film, and data storage was measured and evaluated by the following method.

(1)固有粘度
得られた熱可塑性樹脂の固有粘度は、前述のとおり、o−クロロフェノール、35℃で測定し、o−クロロフェノールでは均一に溶解するのが困難な場合は、P−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒を用いて35℃で測定して求めた。
(1) Intrinsic viscosity As described above, the intrinsic viscosity of the obtained thermoplastic resin is measured at o-chlorophenol at 35 ° C. If it is difficult to dissolve uniformly with o-chlorophenol, P-chloro It was determined by measuring at 35 ° C. using a mixed solvent of phenol / 1,1,2,2-tetrachloroethane (40/60 weight ratio).

(2)不溶性粗大異物の含有量
(2−1)粗大異物量1
粗大異物量1は、熱可塑性樹脂の重合工程における前述の第1反応が終了後、第2反応に移行する間に、フィルター(第1フィルター)で熱可塑性樹脂に重合する前の前駆体をろ過し、そのろ過したものをテトラエチレングリコールによって200℃に加熱して分解・溶解し、溶解液とした。そして、その溶解液を、孔径8μmの直孔性メンブレンフィルターによってろ過し、フィルター上に残った不溶性粗大異物の数をカウントし、溶解させた重合前の前駆体から得られる熱可塑性樹脂の重量を基準として、含有量を個/mgとして算出した。
なお、この値は、後述の参考例1〜10で作成した樹脂1〜10の値として算出されるので、それぞれ各実施例および比較例の値は、これら樹脂1〜10のそれぞれの結果を元に、用いたそれぞれの樹脂の割合に基づいて、算出した。具体的には、実施例XのA層が樹脂YとZを2:1で用いたものである場合、粗大異物量1は樹脂Yの(粗大異物量1×2/3)と樹脂Zの(粗大異物量1×1/3)との和である。
(2) Content of insoluble coarse foreign matter (2-1) Coarse foreign matter amount 1
The amount of coarse foreign matter 1 is obtained by filtering the precursor before polymerization into a thermoplastic resin with a filter (first filter) during the transition to the second reaction after the completion of the first reaction in the thermoplastic resin polymerization step. Then, the filtered product was heated to 200 ° C. with tetraethylene glycol to be decomposed and dissolved to obtain a solution. Then, the solution is filtered through a straight membrane filter having a pore diameter of 8 μm, the number of insoluble coarse particles remaining on the filter is counted, and the weight of the thermoplastic resin obtained from the dissolved pre-polymerization precursor is calculated. As a reference, the content was calculated as number / mg.
In addition, since this value is calculated as the value of the resins 1 to 10 created in Reference Examples 1 to 10 described later, the values of the examples and comparative examples are based on the results of the resins 1 to 10, respectively. Based on the proportion of each resin used. Specifically, when the A layer of Example X is one using resins Y and Z at a ratio of 2: 1, the coarse foreign matter amount 1 is that of the resin Y (coarse foreign matter amount 1 × 2/3) and that of the resin Z. (The amount of coarse foreign matter 1 × 1/3).

(2−2)粗大異物量2
粗大異物量2は、後述の参考例1〜10で得られた樹脂1〜10を、それぞれ所望の割合で用い、乾燥させた後、溶融状態でダイから押し出すが、その溶融押出工程で後述の実施例・比較例の説明にあるように、フィルター(第2フィルター)でろ過を行う。この第2フィルター通過後のポリエステルを、テトラエチレングリコールによって200℃に加熱して分解・溶解し、溶解液とした。そして、その溶解液を、孔径8μmの直孔性メンブレンフィルターによってろ過し、フィルター上に残った不溶性粗大異物の数をカウントし、溶解させたポリエステルの重量を基準として、各ポリエステル層の含有量を個/mgとして算出した。
(2-2) Coarse foreign matter amount 2
The amount of coarse foreign matter 2 is the resin 1-10 obtained in Reference Examples 1 to 10 described later at a desired ratio, dried, and then extruded from a die in a molten state. As described in Examples and Comparative Examples, filtration is performed with a filter (second filter). The polyester after passing through the second filter was decomposed and dissolved by heating to 200 ° C. with tetraethylene glycol to obtain a solution. Then, the solution is filtered through a straight membrane filter having a pore diameter of 8 μm, the number of insoluble coarse particles remaining on the filter is counted, and the content of each polyester layer is determined based on the weight of the dissolved polyester. Calculated as pieces / mg.

(3)第1および第2フィルターの濾過精度
試験粉体のガラスビーズ(JIS−Z8901:2006記載)を蒸留水中に分散させ、フィルター濾過前後の粒度分布の変化を測定し、95%カット値を持って濾過精度とする。
(3) Filtration accuracy of first and second filters Disperse glass beads of test powder (described in JIS-Z8901: 2006) in distilled water, measure the change in particle size distribution before and after filter filtration, and determine the 95% cut value. Hold it for filtration accuracy.

(4)表面欠点の数
フィルムサンプルをゴミなどが入らないように注意しつつ石英オプティカルフラットに重ね、オプティカルフラット側から260nmに最短波長ピークを有する水銀ランプを中心波長260nmのバンドパスフィルター通して照射した。そして、UV−CCDカメラで干渉縞から観測される高さ65nm以上の表面欠点の数を確認した。測定は、測定面積25cmで、10箇所の測定行い、それらの平均値を100cm当りの個数に換算した。このとき、小数点以下1桁目を四捨五入した。なお、本発明における表面欠点とは、粗大突起およびフィルム表面付着異物、フィルム表面傷を意味する。
また、バンドパスフィルターを中心波長200nmのものに変更する以外は同様な操作を繰り返して、波長200nmによる高さ50nm以上の表面欠点数を測定した。さらにまた、バンドパスフィルターを中心波長360nmのものに変更する以外は同様な操作を繰り返して、波長360nmによる高さ90nm以上の表面欠点数を測定した。
一方、比較として、特許文献5(特開2002−59520号公報)に記載の方法に基づき、波長580nmによる高さ145nm以上の表面欠点数を同様に測定した。
(4) Number of surface defects The film sample is superimposed on a quartz optical flat while being careful not to enter dust, and a mercury lamp having the shortest wavelength peak at 260 nm from the optical flat side is irradiated through a bandpass filter with a central wavelength of 260 nm. did. Then, the number of surface defects having a height of 65 nm or more observed from the interference fringes with a UV-CCD camera was confirmed. The measurement was performed at 10 locations with a measurement area of 25 cm 2 , and the average value was converted to the number per 100 cm 2 . At this time, the first decimal place was rounded off. In addition, the surface defect in this invention means a coarse protrusion, a film surface adhesion foreign material, and a film surface flaw.
Further, the same operation was repeated except that the bandpass filter was changed to one having a center wavelength of 200 nm, and the number of surface defects having a height of 50 nm or more at a wavelength of 200 nm was measured. Furthermore, the same operation was repeated except that the bandpass filter was changed to one having a center wavelength of 360 nm, and the number of surface defects having a height of 90 nm or more due to the wavelength of 360 nm was measured.
On the other hand, as a comparison, the number of surface defects having a height of 145 nm or more at a wavelength of 580 nm was similarly measured based on the method described in Patent Document 5 (Japanese Patent Laid-Open No. 2002-59520).

(5)中心面平均粗さ(Ra)
非接触式三次元表面粗さ計(ZYGO社製:New View5022)を用いて測定倍率25倍、測定面積283μm×213μm(=0.0603mm)の条件にて測定し、該粗さ計に内蔵された表面解析ソフトMetro Proにより中心面平均粗さ(Ra)を求めた。
(5) Center plane average roughness (Ra)
Measured using a non-contact type three-dimensional surface roughness meter (manufactured by ZYGO: New View 5022) at a measurement magnification of 25 times and a measurement area of 283 μm × 213 μm (= 0.0603 mm 2 ), and incorporated in the roughness meter The center surface average roughness (Ra) was determined by the surface analysis software Metro Pro.

(6)不活性粒子の平均粒径
島津製作所製CP−50型セントリフューグル パーティクルサイズ アナライザー(Centrifugal Particle Size Analyzer)を用いて測定する。得られる遠心沈降曲線を基に算出した各粒径の粒子とその存在量との積算曲線から、50マスパーセントに相当する粒径「等価球直径」を読み取り、この値を上記平均粒径とする(Book「粒度測定技術」日刊工業新聞発行、1975年、頁242〜247参照)。
(6) Average particle diameter of inert particles Measured using CP-50 Centrifuggle Particle Size Analyzer manufactured by Shimadzu Corp. (Centrifical Particle Size Analyzer). The particle size “equivalent sphere diameter” corresponding to 50 mass percent is read from the integrated curve of the particles of each particle size calculated based on the obtained centrifugal sedimentation curve and the abundance thereof, and this value is used as the average particle size. (See Book “Particle Size Measurement Technology” published by Nikkan Kogyo Shimbun, 1975, pages 242-247).

(7)ガラス転移点および融点
ガラス転移点、融点はDSC(TAインスツルメンツ株式会社製、商品名:Thermal lyst2920)により昇温速度20℃/minで測定した。
(7) Glass transition point and melting point The glass transition point and the melting point were measured by DSC (TA Instruments Co., Ltd., trade name: Thermal list 2920) at a heating rate of 20 ° C / min.

(8)ヤング率
得られたフィルムを試料巾10mm、長さ15cmで切り取り、チャック間100mm、引張速度10mm/分、チャート速度500mm/分の条件で万能引張試験装置(東洋ボールドウィン製、商品名:テンシロン)にて引っ張る。得られた荷重―伸び曲線の立ち上がり部の接線よりヤング率を計算する。
(8) Young's modulus The obtained film was cut out with a sample width of 10 mm and a length of 15 cm, and a universal tensile testing device (manufactured by Toyo Baldwin, trade name: 100 mm between chucks, tensile speed of 10 mm / min, chart speed of 500 mm / min). Pull with Tensilon). The Young's modulus is calculated from the tangent of the rising portion of the obtained load-elongation curve.

(9)データストレージ(磁気テープ)の作成
1m幅にスリットした熱可塑性樹脂フィルムを、張力20kg/mで搬送させ、フィルムの平坦な側の表面に下記組成の磁性塗料および非磁性塗料をエクストルージョンコーターにより重層塗布(上層は磁性塗料で、塗布厚0.1μm、非磁性下層の厚みは1.0μmとした。)し、磁気配向させ、乾燥温度100℃で乾燥させる。次いで反対面に下記組成のバックコートを固形分の厚みが0.5μmとなるように塗布した後、小型テストカレンダー装置(スチール/ナイロンロール、5段)で、温度85℃、線圧200kg/cmでカレンダー処理し、巻き取る。上記テープ原反を1/2インチ幅にスリットし、それをLTO用のケースに組み込み、長さが850mで磁気記録容量が0.8TBのデータストレージカートリッジを作成した。
(9) Creation of data storage (magnetic tape)
A thermoplastic resin film slit to a width of 1 m is conveyed at a tension of 20 kg / m, and a magnetic coating and a nonmagnetic coating having the following composition are applied to the surface of the flat side of the film by an extrusion coater (the upper layer is a magnetic coating, The coating thickness was 0.1 μm, and the thickness of the nonmagnetic lower layer was 1.0 μm.), Magnetically oriented, and dried at a drying temperature of 100 ° C. Next, a back coat having the following composition was applied to the opposite surface so that the solid content had a thickness of 0.5 μm, and then a small test calender (steel / nylon roll, 5 steps) at a temperature of 85 ° C. and a linear pressure of 200 kg / cm. Calendar and roll up. The original tape was slit into a 1/2 inch width and incorporated into an LTO case to produce a data storage cartridge having a length of 850 m and a magnetic recording capacity of 0.8 TB.

(非磁性塗料の組成)
・非磁性無機質粉末(α−酸化鉄:平均長軸長:0.15μm,平均針状比:7,BET比表面積:52m/g):100重量部
・エスレックA(積水化学製塩化ビニル/酢酸ビニル共重合体:10重量部
・ニッポラン2304(日本ポリウレタン製ポリウレタンエラストマ):10重量部
・コロネートL(日本ポリウレタン製ポリイソシアネート):5重量部
・レシチン:1重量部
・メチルエチルケトン:75重量部
・メチルイソブチルケトン:75重量部
・トルエン:75重量部
・カーボンブラック(平均粒子径:20nm):2重量部
・ラウリン酸:1.5重量部
(磁性塗料の組成)
・磁性粉(戸田工業株式会社製、商品名:NF30x):100重量部
・エスレックA(積水化学製塩化ビニル/酢酸ビニル共重合体):10重量部
・ニッポラン2304(日本ポリウレタン製ポリウレタンエラストマ):10重量部
・コロネートL(日本ポリウレタン製ポリイソシアネート):5重量部
・レシチン: 1重量部
・メチルエチルケトン:75重量部
・メチルイソブチルケトン:75重量部
・トルエン:75重量部
・カーボンブラック(平均粒子径:20nm):2重量部
・ラウリン酸:1.5重量部
(バックコートの組成)
・カーボンブラック(平均粒径20nm):95重量部
・カーボンブラック(平均粒径280nm):10重量部
・αアルミナ:0.1重量部
・変成ポリウレタン:20重量部
・変成塩化ビニル共重合体:30重量部
・シクロヘキサノン:200重量部
・メチルエチルケトン:300重量部
・トルエン:100重量部
(Composition of non-magnetic paint)
Nonmagnetic inorganic powder (α-iron oxide: average major axis length: 0.15 μm, average needle ratio: 7, BET specific surface area: 52 m 2 / g): 100 parts by weight Vinyl acetate copolymer: 10 parts by weight-Nipporan 2304 (polyurethane elastomer made by Nippon Polyurethane): 10 parts by weight-Coronate L (polyisocyanate made by Japanese polyurethane): 5 parts by weight-Lecithin: 1 part by weight-Methyl ethyl ketone: 75 parts by weight- Methyl isobutyl ketone: 75 parts by weight Toluene: 75 parts by weight Carbon black (average particle size: 20 nm): 2 parts by weight Lauric acid: 1.5 parts by weight (composition of magnetic paint)
Magnetic powder (Toda Kogyo Co., Ltd., trade name: NF30x): 100 parts by weight Eslek A (Sekisui Chemical vinyl chloride / vinyl acetate copolymer): 10 parts by weight Nipponran 2304 (Nippon Polyurethane Polyurethane Elastomer): 10 parts by weight Coronate L (polyisocyanate made from Japanese polyurethane): 5 parts by weight Lecithin: 1 part by weight Methyl ethyl ketone: 75 parts by weight Methyl isobutyl ketone: 75 parts by weight Toluene: 75 parts by weight Carbon black (average particle size : 20 nm): 2 parts by weight Lauric acid: 1.5 parts by weight (backcoat composition)
Carbon black (average particle size 20 nm): 95 parts by weight
Carbon black (average particle size 280 nm): 10 parts by weight
・ Α alumina: 0.1 parts by weight
・ Modified polyurethane: 20 parts by weight
・ Modified vinyl chloride copolymer: 30 parts by weight
・ Cyclohexanone: 200 parts by weight
・ Methyl ethyl ketone: 300 parts by weight
-Toluene: 100 parts by weight

(10)ドロップアウト(DO)
上記(9)で作成されたデータストレージカートリッジを、IBM社製LTO4ドライブ(記録ヘッドはインダクティブヘッド、再生ヘッドはMRヘッドを搭載)に装填してデータ信号を14GB記録し、それを再生した。平均信号振幅に対して50%以下の振幅(P−P値)の信号をミッシングパルスとし、4個以上連続したミッシングパルスをドロップアウトとして検出した。なお、ドロップアウトは850m長1巻を評価し、1m当たりの個数に換算して、下記の基準で判定する。
◎:ドロップアウト 3個/m未満
○:ドロップアウト 3個/m以上、9個/m未満
×:ドロップアウト 9個/m以上
(10) Dropout (DO)
The data storage cartridge created in (9) above was loaded into an IBM LTO4 drive (recording head equipped with an inductive head and playback head equipped with an MR head) to record a data signal of 14 GB and reproduce it. A signal having an amplitude (PP value) of 50% or less with respect to the average signal amplitude was detected as a missing pulse, and four or more consecutive missing pulses were detected as dropouts. In addition, dropout evaluates 1 volume of 850m, converts into the number per 1m, and determines by the following references | standards.
◎: Dropout less than 3 pieces / m ○: Dropout of 3 pieces / m or more, less than 9 pieces / m ×: Dropout of 9 pieces / m or more

[参考例1]樹脂1の作成
蒸留による精製を繰り返した2,6−ナフタレンジカルボン酸ジメチルエステルとエチレングリコールとをそれぞれ100部と70部用意し、それらを攪拌機、精留塔、冷却器を供えた反応槽に仕込み、150℃まで昇温した。その後、トリメリット酸チタンをTi元素量として、全ジカルボン酸成分のモル数に対して7mmol%となるように添加し、反応槽全体を窒素により0.25MPaの圧力下で加熱して、反応槽内部温度を240℃に昇温した。反応の進行に従い、圧力一定のまま内温を250℃まで上げた。その後、反応槽内の圧力を常圧にゆっくりと戻し、トリメチルホスフェートをリン元素量で、全ジカルボン酸成分のモル数に対して12mmol%となるように添加し、余剰のエチレングリコールを追い出して、エステル交換反応を終了させた。
得られた反応生成物を重合反応槽へと移送した。このとき、移送途中で95%濾過精度5μmの金属繊維製のフィルターを通して濾過した。重合反応槽では250℃からゆっくりと昇温しながら、また減圧させながら重縮合反応を行い、最終的に290℃、30Paで所定の重合度になるまで重縮合を行い、実質的に不活性粒子を含有しない、固有粘度0.6dl/gのポリエチレン−2,6−ナフタレートを得た。
[Reference Example 1] Preparation of Resin 1 100 parts and 70 parts of 2,6-naphthalenedicarboxylic acid dimethyl ester and ethylene glycol, each of which was repeatedly purified by distillation, were prepared and provided with a stirrer, a rectifying column, and a cooler. The reaction vessel was charged and heated to 150 ° C. Thereafter, titanium trimellitic acid as Ti element amount was added so as to be 7 mmol% with respect to the number of moles of all dicarboxylic acid components, and the whole reaction vessel was heated with nitrogen under a pressure of 0.25 MPa, The internal temperature was raised to 240 ° C. As the reaction progressed, the internal temperature was increased to 250 ° C. with the pressure kept constant. Thereafter, the pressure in the reaction vessel is slowly returned to normal pressure, trimethyl phosphate is added in an amount of phosphorus element so as to be 12 mmol% with respect to the number of moles of the total dicarboxylic acid component, and excess ethylene glycol is driven out. The transesterification reaction was terminated.
The obtained reaction product was transferred to a polymerization reaction tank. At this time, it was filtered through a metal fiber filter with 95% filtration accuracy of 5 μm during transfer. In the polymerization reaction tank, the polycondensation reaction is carried out while slowly raising the temperature from 250 ° C. while reducing the pressure, and finally the polycondensation is carried out at 290 ° C. and 30 Pa until a predetermined polymerization degree is obtained. Thus, polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.6 dl / g was obtained.

[参考例2]樹脂2の作成
蒸留による精製を繰り返した2,6−ナフタレンジカルボン酸ジメチルエステルとエチレングリコールとをそれぞれ100部と70部用意し、それらを攪拌機、精留塔、冷却器を供えた反応槽に仕込み、150℃まで昇温した。その後、トリメリット酸チタンをTi元素量として、全ジカルボン酸成分のモル数に対して3mmol%となるように添加し、反応槽全体を窒素により0.25MPaの圧力下で加熱して、反応槽内部温度を240℃に昇温した。反応の進行に従い、圧力一定のまま内温を250℃まで上げた。その後、反応槽内の圧力を常圧にゆっくりと戻し、トリメチルホスフェートをリン元素量で、全ジカルボン酸成分のモル数に対して7mmol%となるように添加し、余剰のエチレングリコールを追い出して、エステル交換反応を終了させた。
得られた反応生成物を重合反応槽へと移送した。このとき、移送途中で95%濾過精度5μmの金属繊維製のフィルターを通して濾過した。重合反応槽では250℃からゆっくりと昇温しながら、また減圧させながら重縮合反応を行い、最終的に290℃、30Paで所定の重合度になるまで重縮合を行い、実質的に不活性粒子を含有しない、固有粘度0.6dl/gのポリエチレンテレフタレートを得た。
[Reference Example 2] Preparation of Resin 2 100 parts and 70 parts of 2,6-naphthalenedicarboxylic acid dimethyl ester and ethylene glycol, each of which was repeatedly purified by distillation, were prepared and provided with a stirrer, a rectifying column, and a cooler. The reaction vessel was charged and heated to 150 ° C. Thereafter, titanium trimellitic acid as Ti element amount was added so as to be 3 mmol% with respect to the number of moles of all dicarboxylic acid components, and the whole reaction vessel was heated with nitrogen at a pressure of 0.25 MPa, The internal temperature was raised to 240 ° C. As the reaction progressed, the internal temperature was increased to 250 ° C. with the pressure kept constant. Thereafter, the pressure in the reaction vessel is slowly returned to normal pressure, trimethyl phosphate is added in an amount of phosphorus element so as to be 7 mmol% with respect to the number of moles of all dicarboxylic acid components, and excess ethylene glycol is expelled, The transesterification reaction was terminated.
The obtained reaction product was transferred to a polymerization reaction tank. At this time, it was filtered through a metal fiber filter with 95% filtration accuracy of 5 μm during transfer. In the polymerization reaction tank, the polycondensation reaction is carried out while slowly raising the temperature from 250 ° C. while reducing the pressure, and finally the polycondensation is carried out at 290 ° C. and 30 Pa until a predetermined polymerization degree is obtained. Thus, polyethylene terephthalate having an intrinsic viscosity of 0.6 dl / g was obtained.

[参考例3]樹脂3の作成
平均粒径が0.1μmで相対標準偏差が0.13のアルコキシド法で作成した真球状シリカ粒子を、エチレングリコールに10重量%となるように添加して、100℃で20分間過熱したのち、95%濾過精度5μmの金属繊維製のフィルターを通過するように循環させて、真球状シリカ粒子の含有量が10重量%のエチレングリコールスラリーを作成した。そして、このエチレングリコールスラリーを、エステル交換反応の段階で、真球状シリカ粒子の含有量が、得られるポリエステルの重量に対して、0.5重量%となるように添加したほかは、参考例1と同様な操作を繰り返して、樹脂3を作成した。
[Reference Example 3] Preparation of Resin 3 True spherical silica particles prepared by an alkoxide method having an average particle diameter of 0.1 μm and a relative standard deviation of 0.13 were added to ethylene glycol so as to be 10% by weight, After heating at 100 ° C. for 20 minutes, the mixture was circulated through a metal fiber filter having a 95% filtration accuracy of 5 μm to prepare an ethylene glycol slurry having a true spherical silica particle content of 10% by weight. Reference Example 1 was made except that this ethylene glycol slurry was added so that the content of the spherical silica particles was 0.5% by weight with respect to the weight of the polyester obtained at the stage of the transesterification reaction. The same operation was repeated to prepare Resin 3.

[参考例4]樹脂4の作成
平均粒径が0.1μmで相対標準偏差が0.13のアルコキシド法で作成した真球状シリカ粒子を、エチレングリコールに10重量%となるように添加して、100℃で20分間過熱したのち、95%濾過精度5μmの金属繊維製のフィルターを通過するように循環させて、真球状シリカ粒子の含有量が10重量%のエチレングリコールスラリーを作成した。そして、このエチレングリコールスラリーを、エステル交換反応の段階で、真球状シリカ粒子の含有量が、得られるポリエステルの重量に対して、0.5重量%となるように添加したほかは、参考例2と同様な操作を繰り返して、樹脂4を作成した。
[Reference Example 4] Preparation of Resin 4 True spherical silica particles prepared by an alkoxide method having an average particle size of 0.1 μm and a relative standard deviation of 0.13 were added to ethylene glycol so as to be 10% by weight, After heating at 100 ° C. for 20 minutes, the mixture was circulated through a metal fiber filter having a 95% filtration accuracy of 5 μm to prepare an ethylene glycol slurry having a true spherical silica particle content of 10% by weight. Reference Example 2 was added except that this ethylene glycol slurry was added so that the content of the spherical silica particles was 0.5% by weight based on the weight of the polyester obtained at the stage of the transesterification reaction. The same operation was repeated to prepare Resin 4.

[参考例5]
真球状シリカ粒子を、平均粒径が0.3μmで相対標準偏差が0.12の真球状シリカ粒子に変更したほかは、参考例3と同様な操作を繰り返して、樹脂5を作成した。
[Reference Example 5]
Resin 5 was prepared by repeating the same operation as in Reference Example 3 except that the true spherical silica particles were changed to true spherical silica particles having an average particle size of 0.3 μm and a relative standard deviation of 0.12.

[参考例6]
真球状シリカ粒子を、平均粒径が0.3μmで相対標準偏差が0.12の真球状シリカ粒子に変更したほかは、参考例4と同様な操作を繰り返して、樹脂6を作成した。
[Reference Example 6]
Resin 6 was prepared by repeating the same operation as in Reference Example 4 except that the true spherical silica particles were changed to true spherical silica particles having an average particle size of 0.3 μm and a relative standard deviation of 0.12.

[参考例7]
真球状シリカ粒子の変わりに、平均粒径が0.1μmで相対標準偏差が0.19のシリコーン粒子を用いたほかは、参考例3と同様な操作を繰り返して、樹脂7を作成した。
[Reference Example 7]
Resin 7 was prepared in the same manner as in Reference Example 3 except that silicone particles having an average particle size of 0.1 μm and a relative standard deviation of 0.19 were used instead of the spherical silica particles.

[参考例8]
参考例1において、金属繊維製のフィルターを95%濾過精度10μmのものに変更したほかは、同様な操作を繰り返して、樹脂8を作成した。
[Reference Example 8]
Resin 8 was produced in the same manner as in Reference Example 1 except that the metal fiber filter was changed to a filter with 95% filtration accuracy of 10 μm.

[実施例1]
A層用ポリマーとして樹脂1と3とを平均粒径0.1μmの真球状シリカ粒子の含有量が0.1重量%となるように用意し、また、B層用のポリマーとして、樹脂1、3、5を平均粒径0.1μmの真球状シリカ粒子の含有量が0.1重量%、平均粒径0.3μmの真球状シリカ粒子の含有量が0.2重量%となるように用意し、それぞれ、170℃で6時間乾燥させた。こうして、乾燥させたチップを、それぞれ2台の押出機ホッパーに供給し、溶融温度310℃で溶融し、マルチマニホールド型共押出ダイを用いてA層の片側にB層を積層させて積層未延伸フィルムを得た。なお、A層用のポリマーとB層用のポリマーは、溶融状態にした後、ダイに供給する前に、それぞれ95%ろ過精度が1μmのフィルター(第2フィルター)でろ過した。また、A層用樹脂の粗大異物量1は31個/mgおよび粗大異物量2は9個/mgで、B層用樹脂の粗大異物量1は108個/mgおよび粗大異物量2は17個/mgであった。
このようにして得られた積層未延伸フィルムを、布帛(帝人ファイバー株式会社製、商品名:あっちこっちふきん)で清掃した金属ロール上で120℃に予熱し、さらに同様に前記布帛で清掃した低速、高速のロール間でフィルムを130℃に加熱して4.8倍に延伸し後、急冷し、縦延伸フィルムを得た。
続いてステンターに供給し、150℃にて横方向に5.1倍に延伸した。得られた二軸延伸フィルムを200℃の熱風で3秒間熱固定しつつ横方向に10%延伸を行い、厚み4.7μm(A層の厚み1.7μm、B層の厚み3.0μm)の積層二軸配向ポリエステルフィルムを1000時間生産した。なお、表面欠点数の増加が確認されたので、途中600時間で第2フィルターを交換し、巻き取り工程予熱ロールおよび延伸ロールを前記布帛で清掃した。得られた積層二軸配向ポリエステルフィルムおよびそれを磁気記録テープとしたときの特性を表1に示す。
[Example 1]
Resins 1 and 3 were prepared as the polymer for the A layer so that the content of the true spherical silica particles having an average particle size of 0.1 μm was 0.1% by weight. 3 and 5 are prepared so that the content of true spherical silica particles having an average particle diameter of 0.1 μm is 0.1% by weight and the content of true spherical silica particles having an average particle diameter of 0.3 μm is 0.2% by weight. Each was dried at 170 ° C. for 6 hours. The chips thus dried are supplied to two extruder hoppers, melted at a melting temperature of 310 ° C., and the layer B is laminated on one side of the layer A using a multi-manifold coextrusion die, and the layers are not stretched. A film was obtained. The polymer for the A layer and the polymer for the B layer were each filtered through a filter (second filter) having a 95% filtration accuracy of 1 μm before being fed to the die. Further, the amount of coarse foreign matter 1 in the A layer resin is 31 / mg and the amount of coarse foreign matter 2 is 9 / mg, and the amount of coarse foreign matter 1 in the B layer resin is 108 pieces / mg and the amount of coarse foreign matter 2 is 17 / Mg.
The laminated unstretched film thus obtained was preheated to 120 ° C. on a metal roll cleaned with a fabric (manufactured by Teijin Fibers Ltd., trade name: Achi Kocchi Fukin), and further similarly cleaned with the fabric. The film was heated to 130 ° C. between high-speed rolls and stretched 4.8 times, and then rapidly cooled to obtain a longitudinally stretched film.
Then, it supplied to the stenter and extended | stretched 5.1 times in the horizontal direction at 150 degreeC. The obtained biaxially stretched film was stretched by 10% in the transverse direction while being heat-fixed with hot air at 200 ° C. for 3 seconds, and the thickness was 4.7 μm (A layer thickness 1.7 μm, B layer thickness 3.0 μm). A laminated biaxially oriented polyester film was produced for 1000 hours. In addition, since the increase in the number of surface defects was confirmed, the second filter was replaced in the middle of 600 hours, and the winding process preheating roll and the drawing roll were cleaned with the fabric. Table 1 shows the properties of the obtained laminated biaxially oriented polyester film and the magnetic recording tape.

[比較例1]
途中で第2フィルターの交換を行わずに、1000時間連続生産した以外は、実施例1と同様な操作を繰り返した。得られた積層二軸配向ポリエステルフィルムおよびそれを磁気記録テープとしたときの特性を表1に示す。
[Comparative Example 1]
The same operation as in Example 1 was repeated except that the second filter was not changed in the middle and the production was continued for 1000 hours. Table 1 shows the properties of the obtained laminated biaxially oriented polyester film and the magnetic recording tape.

Figure 0005451438
Figure 0005451438

[実施例2]
A層用ポリマーとして樹脂2と4とを平均粒径0.1μmの真球状シリカ粒子の含有量が0.07重量%となるように用意し、また、B層用のポリマーとして樹脂2、4、6を平均粒径0.1μmの真球状シリカ粒子の含有量が0.1重量%、平均粒径0.3μmの真球状シリカ粒子の含有量が0.15重量%となるように用意し、それぞれ、170℃で6時間乾燥させた。こうして、乾燥させたチップを、それぞれ2台の押出機ホッパーに供給し、溶融温度310℃で溶融し、マルチマニホールド型共押出ダイを用いてA層の片側にB層を積層させて積層未延伸フィルムを得た。なお、A層用のポリマーとB層用のポリマーは、溶融状態にした後、ダイに供給する前に、それぞれ95%ろ過精度が1μmのフィルター(第2フィルター)でろ過した。また、A層用樹脂の粗大異物量1は30個/mgおよび粗大異物量2は10個/mgで、B層用樹脂の粗大異物量1は106個/mgおよび粗大異物量2は18個/mgであった。
このようにして得られた積層未延伸フィルムを、前記布帛で清掃した金属ロール上で100℃に予熱し、さらに同様に前記布帛で清掃した低速、高速のロール間でフィルムを110℃に加熱して3.5倍に延伸し後、急冷し、縦延伸フィルムを得た。
続いてステンターに供給し、105℃にて横方向に4.6倍に延伸した。得られた二軸延伸フィルムを210℃の熱風で3秒間熱固定しつつ横方向に5%延伸を行い、厚み4.7μm(A層の厚み4.2μm、B層の厚み0.5μm)の積層二軸配向ポリエステルフィルムを1000時間生産した。なお、表面欠点数の増加が確認されたので、途中600時間で第2フィルターを交換し、巻き取り工程予熱ロールおよび延伸ロールを前記布帛で清掃した。得られた積層二軸配向ポリエステルフィルムおよびそれを磁気記録テープとしたときの特性を表2に示す。
[Example 2]
Resins 2 and 4 are prepared as the polymer for the A layer so that the content of the true spherical silica particles having an average particle size of 0.1 μm is 0.07% by weight, and the resins 2, 4 are used as the polymer for the B layer. 6 are prepared so that the content of true spherical silica particles having an average particle size of 0.1 μm is 0.1% by weight and the content of true spherical silica particles having an average particle size of 0.3 μm is 0.15% by weight. Each was dried at 170 ° C. for 6 hours. The chips thus dried are supplied to two extruder hoppers, melted at a melting temperature of 310 ° C., and the layer B is laminated on one side of the layer A using a multi-manifold coextrusion die, and the layers are not stretched. A film was obtained. The polymer for the A layer and the polymer for the B layer were each filtered through a filter (second filter) having a 95% filtration accuracy of 1 μm before being fed to the die. Further, the amount of coarse foreign matter 1 in the A layer resin is 30 pieces / mg and the amount of coarse foreign matter 2 is 10 pieces / mg, and the amount of coarse foreign matter 1 in the layer B resin is 106 pieces / mg and the amount of coarse foreign matter 2 is 18 pieces. / Mg.
The laminated unstretched film thus obtained was preheated to 100 ° C. on a metal roll cleaned with the fabric, and the film was heated to 110 ° C. between low-speed and high-speed rolls cleaned with the fabric as well. The film was stretched 3.5 times and then rapidly cooled to obtain a longitudinally stretched film.
Then, it supplied to the stenter and extended | stretched 4.6 times in the horizontal direction at 105 degreeC. The obtained biaxially stretched film was stretched 5% in the transverse direction while being heat-fixed with hot air at 210 ° C. for 3 seconds, and the thickness was 4.7 μm (A layer thickness 4.2 μm, B layer thickness 0.5 μm). A laminated biaxially oriented polyester film was produced for 1000 hours. In addition, since the increase in the number of surface defects was confirmed, the second filter was replaced in the middle of 600 hours, and the winding process preheating roll and the drawing roll were cleaned with the fabric. Table 2 shows the properties of the obtained laminated biaxially oriented polyester film and the magnetic recording tape.

[比較例2]
途中で第2フィルターの交換を行わずに、1000時間連続生産した以外は、実施例1と同様な操作を繰り返した。得られた積層二軸配向ポリエステルフィルムおよびそれを磁気記録テープとしたときの特性を表2に示す。
[Comparative Example 2]
The same operation as in Example 1 was repeated except that the second filter was not changed in the middle and the production was continued for 1000 hours. Table 2 shows the properties of the obtained laminated biaxially oriented polyester film and the magnetic recording tape.

Figure 0005451438
Figure 0005451438

[実施例3]
A層用ポリマーとして樹脂3と8とを平均粒径0.1μmの真球状シリカ粒子の含有量が0.1重量%となるように用意し、また、B層用のポリマーとして、樹脂3、5、7を平均粒径0.1μmの真球状シリカ粒子の含有量が0.1重量%、平均粒径0.3μmの真球状シリカ粒子の含有量が0.2重量%となるように用意した以外は、実施例1と同様な操作を繰り返して、積層二軸配向ポリエステルフィルムを1000時間生産した。なお、なお、A層用のポリマーとB層用のポリマーは、溶融状態にした後、ダイに供給する前に、それぞれ95%ろ過精度が1μmのフィルター(第2フィルター)でろ過した。なお、A層用樹脂の粗大異物量1は267個/mgおよび粗大異物量2は23個/mgで、B層用樹脂の粗大異物量1は487個/mgおよび粗大異物量2は26個/mgであった。また、表面欠点数の増加が確認されたので、途中600時間で第2フィルターを交換し、巻き取り工程予熱ロールおよび延伸ロールを前記布帛で清掃した。得られた積層二軸配向ポリエステルフィルムおよびそれを磁気記録テープとしたときの特性を表3に示す。
[Example 3]
Resins 3 and 8 are prepared as the polymer for the A layer so that the content of true spherical silica particles having an average particle size of 0.1 μm is 0.1% by weight. Also, as the polymer for the B layer, the resin 3, 5 and 7 are prepared so that the content of true spherical silica particles having an average particle size of 0.1 μm is 0.1% by weight and the content of true spherical silica particles having an average particle size of 0.3 μm is 0.2% by weight. A laminated biaxially oriented polyester film was produced for 1000 hours by repeating the same operation as in Example 1 except that the above procedure was repeated. It should be noted that the polymer for the A layer and the polymer for the B layer were each filtered through a filter (second filter) having a 95% filtration accuracy of 1 μm before being fed to the die. The coarse foreign matter amount 1 of the A layer resin is 267 pieces / mg and the coarse foreign matter amount 2 is 23 pieces / mg, and the coarse foreign matter amount 1 of the B layer resin is 487 pieces / mg and the coarse foreign matter amount 2 is 26 pieces. / Mg. Moreover, since the increase in the number of surface defects was confirmed, the second filter was replaced in the middle of 600 hours, and the winding process preheating roll and the drawing roll were cleaned with the fabric. Table 3 shows the properties of the obtained laminated biaxially oriented polyester film and the magnetic recording tape.

[比較例3]
途中で第2フィルターの交換を行わずに、1000時間連続生産した以外は、実施例3と同様な操作を繰り返した。得られた積層二軸配向ポリエステルフィルムおよびそれを磁気記録テープとしたときの特性を表3に示す。
[Comparative Example 3]
The same operation as in Example 3 was repeated except that the production was continuously performed for 1000 hours without replacing the second filter. Table 3 shows the properties of the obtained laminated biaxially oriented polyester film and the magnetic recording tape.

Figure 0005451438
Figure 0005451438

[実施例4]
A層用ポリマーとして樹脂2を用意し、また、B層用のポリマーとして、樹脂2、4、6を平均粒径0.1μmの真球状シリカ粒子の含有量が0.1重量%、平均粒径0.3μmの真球状シリカ粒子の含有量が0.15重量%となるように用意し、A層の厚みが1.7μm、B層の厚み3.0μmとなるように変更した以外は、実施例2と同様な操作を繰り返して、積層二軸配向ポリエステルフィルムを1000時間生産した。なお、A層用のポリマーとB層用のポリマーは、溶融状態にした後、ダイに供給する前に、それぞれ95%ろ過精度が1μmのフィルター(第2フィルター)でろ過した。なお、A層用樹脂の粗大異物量1は11個/mgおよび粗大異物量2は4個/mgで、B層用樹脂の粗大異物量1は106個/mgおよび粗大異物量2は18個/mgであった。また、表面欠点数の増加が確認されたので、途中600時間で第2フィルターを交換し、巻き取り工程予熱ロールおよび延伸ロールを前記布帛で清掃した。得られた積層二軸配向ポリエステルフィルムおよびそれを磁気記録テープとしたときの特性を表4に示す。
[Example 4]
Resin 2 is prepared as the polymer for the A layer, and as the polymer for the B layer, the resins 2, 4, 6 are 0.1% by weight of the spherical silica particles having an average particle diameter of 0.1 μm, the average particle Except for preparing the content of true spherical silica particles having a diameter of 0.3 μm to be 0.15 wt%, and changing the thickness of the A layer to 1.7 μm and the thickness of the B layer to 3.0 μm, The same operation as in Example 2 was repeated to produce a laminated biaxially oriented polyester film for 1000 hours. The polymer for the A layer and the polymer for the B layer were each filtered through a filter (second filter) having a 95% filtration accuracy of 1 μm before being fed to the die. In addition, the coarse particle amount 1 of the A layer resin is 11 particles / mg and the coarse particle amount 2 is 4 particles / mg, and the coarse particle amount 1 of the B layer resin is 106 particles / mg and the coarse particle amount 2 is 18 particles. / Mg. Moreover, since the increase in the number of surface defects was confirmed, the second filter was replaced in the middle of 600 hours, and the winding process preheating roll and the drawing roll were cleaned with the fabric. Table 4 shows the properties of the obtained laminated biaxially oriented polyester film and the magnetic recording tape.

[比較例4]
途中で第2フィルターの交換を行わずに、1000時間連続生産した以外は、実施例4と同様な操作を繰り返した。得られた積層二軸配向ポリエステルフィルムおよびそれを磁気記録テープとしたときの特性を表4に示す。
[Comparative Example 4]
The same operation as in Example 4 was repeated except that the production was continuously performed for 1000 hours without replacing the second filter. Table 4 shows the properties of the obtained laminated biaxially oriented polyester film and the magnetic recording tape.

Figure 0005451438
Figure 0005451438

[実施例5]
A層用ポリマーとして樹脂1と3とを平均粒径0.1μmの真球状シリカ粒子の含有量が0.1重量%となるように用意し、また、B層用のポリマーとして、樹脂1、3、5を平均粒径0.1μmの真球状シリカ粒子の含有量が0.1重量%、平均粒径0.3μmの真球状シリカ粒子の含有量が0.2重量%となるように用意し、それぞれ、170℃で6時間乾燥させた。こうして、乾燥させたチップを、それぞれ2台の押出機ホッパーに供給し、溶融温度310℃で溶融し、マルチマニホールド型共押出ダイを用いてA層の片側にB層を積層させて積層未延伸フィルムを得た。なお、A層用のポリマーとB層用のポリマーは、溶融状態にした後、ダイに供給する前に、それぞれ95%ろ過精度が1μmのフィルター(第2フィルター)でろ過した。また、A層用樹脂の粗大異物量1は31個/mgおよび粗大異物量2は9個/mgで、B層用樹脂の粗大異物量1は108個/mgおよび粗大異物量2は17個/mgであった。
このようにして得られた積層未延伸フィルムを、前記布帛で清掃した金属ロール上で120℃に予熱し、さらに同様に前記布帛で清掃した低速、高速のロール間でフィルムを130℃に加熱して4.8倍に延伸し後、急冷し、縦延伸フィルムを得た。
続いてステンターに供給し、150℃にて横方向に5.1倍に延伸した。得られた二軸延伸フィルムを200℃の熱風で3秒間熱固定しつつ横方向に10%延伸を行い、厚み4.7μm(A層の厚み1.7μm、B層の厚み3.0μm)の積層二軸配向ポリエステルフィルムを1000時間生産した。なお、表面欠点数の増加が確認されたので、途中600時間で第2フィルターを交換し、巻き取り工程予熱ロールおよび延伸ロールを前記布帛で清掃した。得られた積層二軸配向ポリエステルフィルムおよびそれを磁気記録テープとしたときの特性を表5に示す。
[Example 5]
Resins 1 and 3 were prepared as the polymer for the A layer so that the content of the true spherical silica particles having an average particle size of 0.1 μm was 0.1% by weight. 3 and 5 are prepared so that the content of true spherical silica particles having an average particle diameter of 0.1 μm is 0.1% by weight and the content of true spherical silica particles having an average particle diameter of 0.3 μm is 0.2% by weight. Each was dried at 170 ° C. for 6 hours. The chips thus dried are supplied to two extruder hoppers, melted at a melting temperature of 310 ° C., and the layer B is laminated on one side of the layer A using a multi-manifold coextrusion die, and the layers are not stretched. A film was obtained. The polymer for the A layer and the polymer for the B layer were each filtered through a filter (second filter) having a 95% filtration accuracy of 1 μm before being fed to the die. Further, the amount of coarse foreign matter 1 in the A layer resin is 31 / mg and the amount of coarse foreign matter 2 is 9 / mg, and the amount of coarse foreign matter 1 in the B layer resin is 108 pieces / mg and the amount of coarse foreign matter 2 is 17 / Mg.
The laminated unstretched film thus obtained was preheated to 120 ° C. on a metal roll cleaned with the cloth, and the film was heated to 130 ° C. between low-speed and high-speed rolls similarly cleaned with the cloth. The film was stretched 4.8 times and then rapidly cooled to obtain a longitudinally stretched film.
Then, it supplied to the stenter and extended | stretched 5.1 times in the horizontal direction at 150 degreeC. The obtained biaxially stretched film was stretched by 10% in the transverse direction while being heat-fixed with hot air at 200 ° C. for 3 seconds, and the thickness was 4.7 μm (A layer thickness 1.7 μm, B layer thickness 3.0 μm). A laminated biaxially oriented polyester film was produced for 1000 hours. In addition, since the increase in the number of surface defects was confirmed, the second filter was replaced in the middle of 600 hours, and the winding process preheating roll and the drawing roll were cleaned with the fabric. Table 5 shows the properties of the obtained laminated biaxially oriented polyester film and the magnetic recording tape.

[比較例5]
途中で第2フィルターの交換を行わずに、1000時間連続生産した以外は、実施例5と同様な操作を繰り返した。得られた積層二軸配向ポリエステルフィルムおよびそれを磁気記録テープとしたときの特性を表5に示す。
[Comparative Example 5]
The same operation as in Example 5 was repeated except that the production was continuously performed for 1000 hours without changing the second filter in the middle. Table 5 shows the properties of the obtained laminated biaxially oriented polyester film and the magnetic recording tape.

Figure 0005451438
Figure 0005451438

本発明は、熱可塑性樹脂フィルムの製造方法として好適に用いることができ、特に磁気記録媒体のベースフィルムの製造方法に好適に用いることができる。   The present invention can be suitably used as a method for producing a thermoplastic resin film, and can be particularly suitably used for a method for producing a base film of a magnetic recording medium.

Claims (6)

溶融状態の熱可塑性樹脂をシート状に押し出す溶融押出工程と、それを巻き取る工程および巻き取られたフィルムを良品と不良品とに選別して良品を製品とする工程とからなるフィルムの製造方法であって、少なくとも巻き取られたフィルムの一方の表面を透明基材に貼り付けて、透明基材側から波長100〜400nmの光を照射することで、透明基材と空隙の境界と空隙とフィルム表面の境界とで反射される反射光の干渉の縞によって測定される粗大表面欠点数を測定し、測定された粗大表面欠点数が基準値以下のフィルムを良品とすることを特徴とするフィルムの製造方法。 A method for producing a film comprising a melt extrusion process for extruding a molten thermoplastic resin into a sheet, a process for winding it, and a process for sorting the wound film into a non-defective product and a defective product to make the good product as a product And by sticking at least one surface of the wound film to a transparent substrate and irradiating light with a wavelength of 100 to 400 nm from the transparent substrate side , the boundary between the transparent substrate and the void and the void A film characterized by measuring the number of coarse surface defects measured by interference fringes of reflected light reflected from the boundary of the film surface, and making a film having a measured number of coarse surface defects below a reference value as a non-defective product Manufacturing method. フィルムの少なくとも一方の表面粗さが1〜10nmの範囲にある請求項1記載のフィルムの製造方法。   The method for producing a film according to claim 1, wherein the surface roughness of at least one of the films is in the range of 1 to 10 nm. 溶融押出工程において、フィルターによって溶融状態の熱可塑性樹脂をろ過すること、そして表面欠点数の測定値に基づいて、当該フィルターを交換する請求項1記載のフィルムの製造方法。   The method for producing a film according to claim 1, wherein, in the melt extrusion step, the molten thermoplastic resin is filtered by a filter, and the filter is replaced based on a measured value of the number of surface defects. シート状に押し出してからそれを巻き取る工程において、表面欠点数の測定値に基づいて、当該工程で使用するロールの清掃を行う請求項1記載のフィルムの製造方法。   The method for producing a film according to claim 1, wherein, in the step of extruding the sheet into a sheet and then winding it, the roll used in the step is cleaned based on the measured value of the number of surface defects. フィルムがポリエステルフィルムである請求項1記載のフィルムの製造方法。   The method for producing a film according to claim 1, wherein the film is a polyester film. フィルムが、高密度磁気記録媒体のベースフィルムに用いられる請求項1記載のフィルムの製造方法。   The method for producing a film according to claim 1, wherein the film is used as a base film of a high-density magnetic recording medium.
JP2010026536A 2010-02-09 2010-02-09 Film production method Active JP5451438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026536A JP5451438B2 (en) 2010-02-09 2010-02-09 Film production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026536A JP5451438B2 (en) 2010-02-09 2010-02-09 Film production method

Publications (2)

Publication Number Publication Date
JP2011165267A JP2011165267A (en) 2011-08-25
JP5451438B2 true JP5451438B2 (en) 2014-03-26

Family

ID=44595772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026536A Active JP5451438B2 (en) 2010-02-09 2010-02-09 Film production method

Country Status (1)

Country Link
JP (1) JP5451438B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059520A (en) * 2000-08-16 2002-02-26 Teijin Ltd Film roll
JP2002083414A (en) * 2000-09-06 2002-03-22 Toray Ind Inc Polyester film for magnetic recording medium
JP2006038728A (en) * 2004-07-29 2006-02-09 Toppan Printing Co Ltd Method for inspecting antireflection transparent film
JP4576962B2 (en) * 2004-09-28 2010-11-10 凸版印刷株式会社 Defect inspection method and defect inspection apparatus

Also Published As

Publication number Publication date
JP2011165267A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP6158640B2 (en) Laminated polyester film and coated magnetic recording tape using the same
EP0609060B1 (en) Biaxially oriented laminated polyester film and magnetic recording medium having the same as base film
KR100223621B1 (en) Laminated polyester film for magnetic recording medium
JP5074108B2 (en) Biaxially oriented laminated polyester film
JP2010205321A (en) Polyester film and data storage using the same
JP5592196B2 (en) Film production method
JP2010250910A (en) Support for magnetic recording medium and data storage using the same
JP5451438B2 (en) Film production method
JP2014022027A (en) Biaxially-oriented polyester film and coating type magnetic recording tape using the same
JP2000275860A (en) Biaxially oriented polyester film for photoresist
JP2003191423A (en) Laminated film
KR100244069B1 (en) Biaxially oriented polyester film for a magnetic recording medium
JP5739146B2 (en) Copolymerized aromatic polyester, biaxially oriented polyester film and magnetic recording medium
JP5271124B2 (en) Biaxially oriented multilayer laminated polyester film
JP5587630B2 (en) Polyester film for data storage and magnetic recording medium support
JP6087529B2 (en) Biaxially oriented laminated polyester film and coating type magnetic recording tape using the same
JP6049337B2 (en) Biaxially oriented polyester film and coated magnetic recording tape using the same
JP5815217B2 (en) Polyester film for data storage and magnetic recording medium support
JP5676127B2 (en) Polyester film and data storage using it
JP2010201692A (en) Method for forming film
JP5749504B2 (en) Laminated polyester film and coated magnetic recording tape using the same
JP5981185B2 (en) Laminated polyester film and coated magnetic recording tape using the same
JP5596445B2 (en) Laminated biaxially oriented polyester film for coated magnetic recording tape
JP5749505B2 (en) Laminated polyester film and coated magnetic recording tape using the same
JP2014004788A (en) Laminated polyester film and coating type magnetic recording tape using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R150 Certificate of patent or registration of utility model

Ref document number: 5451438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250