JP5447576B2 - Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5447576B2
JP5447576B2 JP2012099321A JP2012099321A JP5447576B2 JP 5447576 B2 JP5447576 B2 JP 5447576B2 JP 2012099321 A JP2012099321 A JP 2012099321A JP 2012099321 A JP2012099321 A JP 2012099321A JP 5447576 B2 JP5447576 B2 JP 5447576B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012099321A
Other languages
Japanese (ja)
Other versions
JP2012142304A (en
Inventor
毅 小笠原
直希 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012099321A priority Critical patent/JP5447576B2/en
Publication of JP2012142304A publication Critical patent/JP2012142304A/en
Application granted granted Critical
Publication of JP5447576B2 publication Critical patent/JP5447576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池の正極に使用する非水電解質二次電池用正極活物質及びその製造方法、また上記の非水電解質二次電池用正極活物質を用いた非水電解質二次電池用正極及び非水電解質二次電池に関するものである。特に、非水電解質二次電池の正極に用いる正極活物質を改善する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery used for a positive electrode of a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery. The present invention relates to a secondary battery positive electrode and a non-aqueous electrolyte secondary battery. In particular, the positive electrode active material used for the positive electrode of the nonaqueous electrolyte secondary battery is improved.

近年、携帯電話、ノートパソコン、PDAなどの移動情報端末の小型・軽量化が急速に進展しており、その駆動電源として用いる電池の高容量化が要求されている。このような要求に対応するため、高出力,高エネルギー密度の新型二次電池として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行う非水電解質二次電池が広く利用されている。   In recent years, mobile information terminals such as mobile phones, notebook computers, and PDAs have been rapidly reduced in size and weight, and a battery used as a driving power source has been required to have a higher capacity. In order to meet such demands, a non-aqueous electrolyte secondary battery that performs charge / discharge by moving lithium ions between a positive electrode and a negative electrode as a new secondary battery with high output and high energy density is used. Secondary batteries are widely used.

このような非水電解質二次電池では、正極における正極活物質として、コバルト酸リチウムLiCoO2、スピネル型マンガン酸リチウムLiMn24、コバルト−ニッケル−マンガンのリチウム複合酸化物、アルミニウム−ニッケル−マンガンのリチウム複合酸化物、アルミニウム−ニッケル−コバルトのリチウム複合酸化物などが一般に用いられる。また、負極における負極活物質として、黒鉛等の炭素材料や、SiやSn等のリチウムと合金化する材料などが用いられる。 In such a non-aqueous electrolyte secondary battery, as the positive electrode active material in the positive electrode, lithium cobaltate LiCoO 2 , spinel type lithium manganate LiMn 2 O 4 , cobalt-nickel-manganese lithium composite oxide, aluminum-nickel-manganese Lithium composite oxide, aluminum-nickel-cobalt lithium composite oxide, etc. are generally used. In addition, as the negative electrode active material in the negative electrode, a carbon material such as graphite or a material alloyed with lithium such as Si or Sn is used.

しかし、近年では、移動情報端末における動画再生、ゲーム機能といった娯楽機能の充実が進み、消費電力がさらに上昇する傾向にあり、さらなる高容量化及び高性能化が要求されている。そこで、非水電解質二次電池を高容量化させるためには、この非水電解質二次電池を高い電圧まで充電し、この非水電解質二次電池内に充填する正極活物質や負極活物質の充填密度を高くすることが考えられる。   However, in recent years, enhancement of entertainment functions such as video playback and game functions in mobile information terminals has progressed, and power consumption tends to further increase, and further higher capacity and higher performance are required. Therefore, in order to increase the capacity of the nonaqueous electrolyte secondary battery, the nonaqueous electrolyte secondary battery is charged to a high voltage, and the positive electrode active material and the negative electrode active material filled in the nonaqueous electrolyte secondary battery are reduced. It is conceivable to increase the packing density.

非水電解質二次電池を高い電圧まで充電した場合、正極活物質の酸化力が強くなる。また、正極活物質が触媒性を有する遷移金属(例えば、Co,Fe,Ni,Mn等)を有している。このため、正極活物質の表面において非水電解液が反応して分解する。これにより、非水電解質二次電池におけるサイクル特性や保存特性や連続充電後の特性が大きく低下し、電池内部にガスが発生して電池が膨化する。特に、高温環境下において、非水電解質二次電池の劣化がさらに大きくなるという問題があった。   When the nonaqueous electrolyte secondary battery is charged to a high voltage, the positive electrode active material has strong oxidizing power. Further, the positive electrode active material has a catalytic transition metal (for example, Co, Fe, Ni, Mn, etc.). For this reason, the nonaqueous electrolytic solution reacts and decomposes on the surface of the positive electrode active material. As a result, the cycle characteristics, storage characteristics, and characteristics after continuous charging in the non-aqueous electrolyte secondary battery are greatly reduced, and gas is generated inside the battery and the battery expands. In particular, there is a problem that the deterioration of the non-aqueous electrolyte secondary battery is further increased under a high temperature environment.

加えて、非水電解質二次電池内に充填する正極活物質や負極活物質の充填密度を高くした場合には、正極や負極における非水電解液の浸透が悪くなり、充放電反応が適切に行われず、充放電特性が低下する。また、充放電反応が不均一になるため、局所的に高電圧まで充電される部分が生じ、非水電解質二次電池を高い電圧まで充電した場合と同様の問題が生じた。   In addition, when the packing density of the positive electrode active material and the negative electrode active material filled in the non-aqueous electrolyte secondary battery is increased, the penetration of the non-aqueous electrolyte in the positive electrode and the negative electrode is deteriorated, and the charge / discharge reaction is appropriately performed. It is not performed, and charge / discharge characteristics are deteriorated. In addition, since the charge / discharge reaction becomes non-uniform, a portion that is locally charged to a high voltage is generated, and the same problem as in the case where the nonaqueous electrolyte secondary battery is charged to a high voltage occurs.

特許文献1では、過充電時に正極活物質と非水電解液との反応を抑制するために、LiやNi等を含有する複合酸化物にLa23等の希土類酸化物を含有させた正極活物質や、LiやNi等を含有する複合酸化物粒子の表面にLa23等の希土類酸化物粒子を付着させた正極活物質を用いることが提案されている。 In Patent Document 1, in order to suppress the reaction between the positive electrode active material and the non-aqueous electrolyte during overcharge, a positive electrode in which a rare earth oxide such as La 2 O 3 is contained in a composite oxide containing Li or Ni. It has been proposed to use a positive electrode active material in which rare earth oxide particles such as La 2 O 3 are attached to the surface of an active material or composite oxide particles containing Li, Ni, or the like.

しかし、特許文献1に示された正極活物質を用いた場合でも、非水電解質二次電池を高い電圧まで充電して使用すると、依然として、正極活物質と非水電解液とが反応する。特
に、高温環境下においては、非水電解質二次電池におけるサイクル特性や保存特性や連続充電後の特性が大きく低下し、電池内部にガスが発生して電池が膨化するという問題があった。
However, even when the positive electrode active material disclosed in Patent Document 1 is used, when the non-aqueous electrolyte secondary battery is charged to a high voltage and used, the positive electrode active material and the non-aqueous electrolyte still react. In particular, in a high temperature environment, the cycle characteristics, storage characteristics, and characteristics after continuous charging of the nonaqueous electrolyte secondary battery are greatly reduced, and there is a problem that gas is generated inside the battery and the battery expands.

特許文献2では、正極活物質として、LiCoO2とLiNiCo2とを含有し、両者の合計量に対するLiNiCo2の量が10〜45重量%とするものを用いることが提案されている。また、LiNiCo2におけるMとして、B,Mg,Al等に加えてランタノイド元素が含まれる場合が示されている。 In Patent Document 2, as a positive electrode active material, Li x CoO 2 and Li y Ni s Co t M u O 2 contained and the amount of Li y Ni s Co t M u O 2 to the total amount of both 10 It has been proposed to use 45% by weight. Further, as the M in the Li y Ni s Co t M u O 2, B, Mg, there is shown the case where in addition to Al or the like is included lanthanide elements.

この特許文献2では、正極活物質のLiNiCo2におけるMの元素を固溶させている。しかし、このようにした場合において、非水電解質二次電池を高い電圧まで充電すると、非水電解液の酸化分解を十分に抑制することが困難であった。このため、この特許文献2に示されるものにおいても、依然として、非水電解質二次電池を高い電圧まで充電した場合、非水電解質二次電池におけるサイクル特性や保存特性や連続充電後の特性が大きく低下し、電池内部にガスが発生して電池が膨化するという問題があった。 In Patent Document 2, and a solid solution of the element M in the Li y Ni s Co t M u O 2 of the positive electrode active material. However, in such a case, when the nonaqueous electrolyte secondary battery is charged to a high voltage, it is difficult to sufficiently suppress the oxidative decomposition of the nonaqueous electrolyte. For this reason, even when the non-aqueous electrolyte secondary battery is charged to a high voltage even in the one disclosed in Patent Document 2, the cycle characteristics, storage characteristics, and characteristics after continuous charging in the non-aqueous electrolyte secondary battery are still large. There is a problem that gas is generated inside the battery and the battery expands.

特許文献3には、所定の粒度を有するリチウム化合物からなるコアの上に、Mg,Al,Co等の各種のコーティング元素を含む酸化物、水酸化物、オキシ水酸化物、オキシカーボネート、ヒドロキシカーボネート等の表面処理層を設けたものが提案されている。   Patent Document 3 discloses oxides, hydroxides, oxyhydroxides, oxycarbonates, and hydroxycarbonates containing various coating elements such as Mg, Al, and Co on a core made of a lithium compound having a predetermined particle size. Those having a surface treatment layer such as the above have been proposed.

しかし、この特許文献3に示されるものでも、非水電解質二次電池を高い電圧まで充電して使用すると、依然として、正極活物質と非水電解液とが反応する。特に、高温環境下において、非水電解質二次電池におけるサイクル特性や保存特性や連続充電後の特性が大きく低下し、電池内部にガスが発生して電池が膨化するという問題があった。
特開2005−196992号公報 特許第3712251号公報 特開2002−158011号公報
However, even the one disclosed in Patent Document 3 still reacts with the positive electrode active material and the non-aqueous electrolyte when the non-aqueous electrolyte secondary battery is charged to a high voltage and used. In particular, in a high temperature environment, the cycle characteristics, storage characteristics, and characteristics after continuous charging of the nonaqueous electrolyte secondary battery are greatly deteriorated, and there is a problem that gas is generated inside the battery and the battery expands.
JP 2005-196992 A Japanese Patent No. 3712251 JP 2002-158011 A

本発明は、非水電解質二次電池の正極に用いる正極活物質を改善し、充電電圧を高くした場合にも正極活物質と非水電解液との反応を抑制することを課題とする。   An object of the present invention is to improve the positive electrode active material used for the positive electrode of the nonaqueous electrolyte secondary battery and suppress the reaction between the positive electrode active material and the nonaqueous electrolyte even when the charging voltage is increased.

そして、非水電解質二次電池における高電圧での充放電サイクル特性や、高温環境下において充電状態で保存した後の保存特性や充放電特性や、高温環境下において連続充電した後の保存特性や充放電特性を向上させる。また、電池内部のガス発生による電池の膨化を抑制することを課題とする。   And charge / discharge cycle characteristics at high voltage in non-aqueous electrolyte secondary batteries, storage characteristics and charge / discharge characteristics after storage in a charged state in a high temperature environment, storage characteristics after continuous charging in a high temperature environment, Improve charge / discharge characteristics. It is another object of the present invention to suppress expansion of the battery due to gas generation inside the battery.

本発明における非水電解質二次電池用正極活物質では、リチウムを含有する正極活物質粒子の表面に、水酸化エルビウムとオキシ水酸化エルビウムとから選択される少なくとも一種のエルビウム化合物の粒子と、水酸化イッテルビウムとオキシ水酸化イッテルビウムとから選択される少なくとも一種のイッテルビウム化合物の粒子と、水酸化テルビウムとオキシ水酸化テルビウムとから選択される少なくとも一種のテルビウム化合物の粒子と、水酸化ジスプロシウムとオキシ水酸化ジスプロシウムとから選択される少なくとも一種のジスプロシウム化合物の粒子と、水酸化ホルミウムとオキシ水酸化ホルミウムとから選択される少なくとも一種のホルミウム化合物の粒子と、水酸化ツリウムとオキシ水酸化ツリウムとから選択される少なくとも一種のツリウム化合物の粒子と、水酸化ルテチウムとオキシ水酸化ルテチウムから選択される少なくとも一種のルテチウム化合物の粒子とから選択される少なくとも一種の粒径100nm以下の化合物の粒子付着させた。 In the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, particles of at least one erbium compound selected from erbium hydroxide and erbium oxyhydroxide are formed on the surface of the positive electrode active material particles containing lithium, and water. Particles of at least one ytterbium compound selected from ytterbium oxide and ytterbium oxyhydroxide, particles of at least one terbium compound selected from terbium hydroxide and terbium oxyhydroxide, dysprosium hydroxide and oxyhydroxide At least one dysprosium compound particle selected from dysprosium, at least one holmium compound particle selected from holmium hydroxide and holmium oxyhydroxide, and thulium hydroxide and thulium oxyhydroxide At least And particles of one thulium compound was deposited particles of at least one particle size 100nm following compounds selected from the particles of at least one of lutetium compound selected from lutetium hydroxide oxyhydroxide lutetium.

非水電解質二次電池に上記の非水電解質二次電池用正極活物質を用いることにより、充電電圧を高くした場合等において、正極活物質粒子の表面の付着物により正極活物質と非水電解液との反応を抑制できる。   By using the positive electrode active material for a non-aqueous electrolyte secondary battery as described above for a non-aqueous electrolyte secondary battery, the positive electrode active material and the non-aqueous electrolysis are caused by deposits on the surface of the positive electrode active material particles when the charging voltage is increased. Reaction with the liquid can be suppressed.

ここで、リチウムを含有する正極活物質粒子の表面に、エルビウム化合物の粒子を分散させて付着させるには、エルビウム化合物がオキシ水酸化エルビウムであることが好ましい。これにより、正極活物質と非水電解液との反応を一層抑制することができる。   Here, in order to disperse and adhere the erbium compound particles to the surface of the positive electrode active material particles containing lithium, the erbium compound is preferably erbium oxyhydroxide. Thereby, reaction with a positive electrode active material and a nonaqueous electrolyte can be suppressed further.

また、リチウムを含有する正極活物質粒子の表面に、イッテルビウム化合物の粒子を分散させて付着させるには、このイッテルビウム化合物がオキシ水酸化イッテルビウムであることが好ましい。これにより、正極活物質と非水電解液との反応を一層抑制できる。   In order to disperse and adhere the ytterbium compound particles to the surface of the positive electrode active material particles containing lithium, it is preferable that the ytterbium compound is ytterbium oxyhydroxide. Thereby, reaction with a positive electrode active material and a non-aqueous electrolyte can be suppressed further.

ここで、リチウムを含有する正極活物質粒子の表面に、水酸化エルビウムとオキシ水酸化エルビウムとから選択される少なくとも一種のエルビウム化合物の粒子付着された非水電解質二次電池用正極活物質を製造するためには、正極活物質粒子を分散させた溶液にエルビウム塩の溶液を加えて正極活物質粒子の表面に水酸化エルビウムを析出させる工程と、水酸化エルビウムが析出された正極活物質粒子を熱処理する工程とを行う。この場合、正極活物質粒子の表面に水酸化エルビウムを析出させる工程における正極活物質を分散させた溶液のpHを6以上にすることが好ましい。 Here, a positive electrode active material for a non-aqueous electrolyte secondary battery in which particles of at least one erbium compound selected from erbium hydroxide and erbium oxyhydroxide are attached to the surface of lithium-containing positive electrode active material particles. In order to manufacture, a step of adding an erbium salt solution to a solution in which positive electrode active material particles are dispersed to deposit erbium hydroxide on the surface of the positive electrode active material particles, and positive electrode active material particles on which erbium hydroxide is deposited The process of heat-treating is performed. In this case, the pH of the solution in which the positive electrode active material is dispersed in the step of depositing erbium hydroxide on the surface of the positive electrode active material particles is preferably 6 or more.

正極活物質粒子の表面に水酸化エルビウムを析出させる工程における正極活物質を分散させた溶液のpHが6未満になると、エルビウム塩が水酸化エルビウムに変化しないためである。特に、正極活物質粒子の表面に微細な水酸化エルビウムを適切に分散・析出させるためには、好ましくは正極活物質を分散させた溶液のpHを7〜10の範囲にする。   This is because the erbium salt does not change to erbium hydroxide when the pH of the solution in which the positive electrode active material is dispersed in the step of depositing erbium hydroxide on the surface of the positive electrode active material particles is less than 6. In particular, in order to appropriately disperse and deposit fine erbium hydroxide on the surface of the positive electrode active material particles, the pH of the solution in which the positive electrode active material is dispersed is preferably in the range of 7-10.

ここで、水酸化エルビウムが分解されてオキシ水酸化エルビウムに変化する温度が約230℃であり、このオキシ水酸化エルビウムがさらに分解されて酸化エルビウムに変化する温度が約440℃である。そして、水酸化エルビウムが析出された正極活物質粒子を熱処理温度を440℃以上にすると、水酸化エルビウムが酸化エルビウムに変化すると共に、エルビウムが正極活物質粒子の内部に拡散される。この場合、正極活物質と非水電解液との反応を十分に抑制することが困難となると共に、正極活物質の充放電特性が大きく低下する。   Here, the temperature at which erbium hydroxide is decomposed to change to erbium oxyhydroxide is about 230 ° C., and the temperature at which this erbium oxyhydroxide is further decomposed to change to erbium oxide is about 440 ° C. When the heat treatment temperature of the positive electrode active material particles on which erbium hydroxide is deposited is set to 440 ° C. or higher, erbium hydroxide changes to erbium oxide and erbium is diffused into the positive electrode active material particles. In this case, it becomes difficult to sufficiently suppress the reaction between the positive electrode active material and the non-aqueous electrolyte, and the charge / discharge characteristics of the positive electrode active material are greatly deteriorated.

したがって、水酸化エルビウムが析出された正極活物質粒子を熱処理温度を440℃未満にすることが好ましい。さらに、正極活物質粒子の表面に析出された水酸化エルビウムをオキシ水酸化エルビウムに変化させて、正極活物質と非水電解液との反応を一層抑制するため、熱処理温度を230℃以上にすることがより好ましい。   Accordingly, it is preferable that the heat treatment temperature of the positive electrode active material particles on which erbium hydroxide is deposited be less than 440 ° C. Furthermore, in order to further suppress the reaction between the positive electrode active material and the non-aqueous electrolyte by changing erbium hydroxide deposited on the surface of the positive electrode active material particles to erbium oxyhydroxide, the heat treatment temperature is set to 230 ° C. or higher. It is more preferable.

また、リチウムを含有する正極活物質粒子の表面に、水酸化イッテルビウムとオキシ水酸化イッテルビウムとから選択される少なくとも一種のイッテルビウム化合物の粒子付着された非水電解質二次電池用正極活物質を製造するためには、正極活物質粒子を分散させた溶液にイッテルビウム塩の溶液を加えて、正極活物質粒子の表面に水酸化イッテルビウムを析出させる工程と、水酸化イッテルビウムが析出された正極活物質粒子を熱処理する工程とを行う。この場合、正極活物質粒子の表面に水酸化イッテルビウムを析出させる工程における正極活物質を分散させた溶液のpHを6以上にすることが好ましい。 In addition, a positive electrode active material for a non-aqueous electrolyte secondary battery in which particles of at least one ytterbium compound selected from ytterbium hydroxide and ytterbium oxyhydroxide are attached to the surface of lithium-containing positive electrode active material particles is manufactured. In order to achieve this, a step of adding a ytterbium salt solution to a solution in which positive electrode active material particles are dispersed to deposit ytterbium hydroxide on the surface of the positive electrode active material particles; and positive electrode active material particles on which ytterbium hydroxide is deposited The process of heat-treating is performed. In this case, the pH of the solution in which the positive electrode active material is dispersed in the step of depositing ytterbium hydroxide on the surface of the positive electrode active material particles is preferably 6 or more.

正極活物質粒子の表面に水酸化イッテルビウムを析出させる工程における正極活物質を分散させた溶液のpHが6未満になると、イッテルビウム塩が水酸化イッテルビウムに変化しなくなる。特に、正極活物質粒子の表面に微細な水酸化イッテルビウムを適切に分散
させて析出させるためには、好ましくは正極活物質を分散させた溶液のpHを7〜10の範囲にする。
When the pH of the solution in which the positive electrode active material is dispersed in the step of depositing ytterbium hydroxide on the surface of the positive electrode active material particles is less than 6, the ytterbium salt does not change to ytterbium hydroxide. In particular, in order to appropriately disperse and deposit fine ytterbium hydroxide on the surface of the positive electrode active material particles, the pH of the solution in which the positive electrode active material is dispersed is preferably in the range of 7 to 10.

ここで、水酸化イッテルビウムについて、熱処理温度を1分間に5℃上昇させて熱重量分析を行った結果、約230℃と約400℃とにおいて重量変化の変極点が認められ、500℃では重量の変化が小さくなって安定した。これは、約230℃の温度で水酸化イッテルビウムが分解されてオキシ水酸化イッテルビウムに変化し始め、さらに約400℃の温度ではこのオキシ水酸化イッテルビウムがさらに分解されて酸化イッテルビウムに変化し始め、約500℃の温度ではオキシ水酸化イッテルビウムが酸化イッテルビウムに変化したためと考えられる。   Here, with regard to ytterbium hydroxide, the thermogravimetric analysis was performed by increasing the heat treatment temperature by 5 ° C. per minute. As a result, inflection points of weight change were observed at about 230 ° C. and about 400 ° C. The change became smaller and stable. This is because ytterbium hydroxide starts to be decomposed into ytterbium oxyhydroxide at a temperature of about 230 ° C., and further at a temperature of about 400 ° C., the ytterbium oxyhydroxide starts to be further decomposed and converted into ytterbium oxide. This is probably because ytterbium oxyhydroxide was changed to ytterbium oxide at a temperature of 500 ° C.

従って、水酸化イッテルビウムが析出された正極活物質粒子を熱処理温度を400℃以上にすると、水酸化イッテルビウムが酸化イッテルビウムに変化し始め、500℃以上にすると、水酸化イッテルビウムが酸化イッテルビウムに変化すると共に、イッテルビウムが正極活物質粒子の内部に拡散される。この場合、正極活物質と非水電解液との反応を十分に抑制することが困難になると共に、正極活物質の充放電特性が大きく低下する。   Therefore, when the heat treatment temperature of the positive electrode active material particles on which ytterbium hydroxide is deposited is 400 ° C. or higher, ytterbium hydroxide starts to change to ytterbium oxide, and when 500 ° C. or higher, ytterbium hydroxide changes to ytterbium oxide. The ytterbium is diffused inside the positive electrode active material particles. In this case, it becomes difficult to sufficiently suppress the reaction between the positive electrode active material and the non-aqueous electrolyte, and the charge / discharge characteristics of the positive electrode active material are greatly deteriorated.

このため、水酸化イッテルビウムが析出された正極活物質粒子を熱処理する温度を500℃未満、好ましくは400℃未満にする。さらに、正極活物質粒子の表面に析出された水酸化イッテルビウムをオキシ水酸化イッテルビウムに変化させて、正極活物質と非水電解液との反応を一層抑制するためには、熱処理温度を230℃以上にすることがより好ましい。   For this reason, the temperature which heat-processes the positive electrode active material particle in which the ytterbium hydroxide was deposited shall be less than 500 degreeC, Preferably it will be less than 400 degreeC. Furthermore, in order to change the ytterbium hydroxide deposited on the surface of the positive electrode active material particles to ytterbium oxyhydroxide and further suppress the reaction between the positive electrode active material and the non-aqueous electrolyte, the heat treatment temperature is 230 ° C. or higher. More preferably.

また、リチウムを含有する正極活物質粒子の表面に、水酸化テルビウムとオキシ水酸化テルビウムとから選択される少なくとも一種のテルビウム化合物の粒子付着された非水電解質二次電池用正極活物質を製造するためには、正極活物質粒子を分散させた溶液にテルビウム塩の溶液を加えて正極活物質粒子の表面に水酸化テルビウムを析出させる工程と、水酸化テルビウムが析出された正極活物質粒子を熱処理する工程とを行う。この場合、正極活物質粒子の表面に水酸化テルビウムを析出させる工程における正極活物質を分散させた溶液のpHを6以上にすることが好ましい。 In addition, a positive electrode active material for a non-aqueous electrolyte secondary battery in which particles of at least one terbium compound selected from terbium hydroxide and terbium oxyhydroxide are attached to the surface of positive electrode active material particles containing lithium is manufactured. In order to achieve this, a step of adding a terbium salt solution to a solution in which the positive electrode active material particles are dispersed to deposit terbium hydroxide on the surface of the positive electrode active material particles; and a positive electrode active material particle on which terbium hydroxide is precipitated are provided. A heat treatment step. In this case, the pH of the solution in which the positive electrode active material is dispersed in the step of depositing terbium hydroxide on the surface of the positive electrode active material particles is preferably 6 or more.

正極活物質粒子の表面に水酸化テルビウムを析出させる工程における正極活物質を分散させた溶液のpHが6未満になると、テルビウム塩が水酸化テルビウムに変化しなくなる。特に、正極活物質粒子の表面に微細な水酸化テルビウムを適切に分散させて析出するためには、好ましくは正極活物質を分散させた溶液のpHを7〜10の範囲にする。   When the pH of the solution in which the positive electrode active material is dispersed in the step of depositing terbium hydroxide on the surface of the positive electrode active material particles is less than 6, the terbium salt does not change to terbium hydroxide. In particular, in order to appropriately disperse and deposit fine terbium hydroxide on the surface of the positive electrode active material particles, the pH of the solution in which the positive electrode active material is dispersed is preferably in the range of 7 to 10.

ここで、水酸化テルビウムについては、水酸化テルビウムが分解されてオキシ水酸化テルビウムに変化する温度が約295℃であり、このオキシ水酸化テルビウムがさらに分解されて酸化テルビウムに変化する温度が約395℃である。そして、水酸化テルビウムが析出された正極活物質粒子を熱処理温度を395℃以上にすると、水酸化テルビウムが酸化テルビウムに変化すると共に、テルビウムが正極活物質粒子の内部に拡散される。この場合、正極活物質と非水電解液とが反応するのを十分に抑制することが困難となると共に、正極活物質の充放電特性が大きく低下する。このため、水酸化テルビウムが析出された正極活物質粒子を熱処理する温度を395℃未満にすることが好ましい。   Here, as for terbium hydroxide, the temperature at which terbium hydroxide is decomposed to terbium oxyhydroxide is about 295 ° C., and the temperature at which this terbium oxyhydroxide is further decomposed to change to terbium oxide is about 395. ° C. When the heat treatment temperature of the positive electrode active material particles on which terbium hydroxide is deposited is set to 395 ° C. or higher, terbium hydroxide changes to terbium oxide and terbium is diffused into the positive electrode active material particles. In this case, it becomes difficult to sufficiently suppress the reaction between the positive electrode active material and the non-aqueous electrolyte, and the charge / discharge characteristics of the positive electrode active material are greatly reduced. For this reason, it is preferable that the temperature which heat-processes the positive electrode active material particle in which terbium hydroxide was deposited shall be less than 395 degreeC.

また、リチウムを含有する正極活物質粒子の表面に、水酸化ジスプロシウムとオキシ水酸化ジスプロシウムとから選択される少なくとも一種のジスプロシウム化合物の粒子付着された非水電解質二次電池用正極活物質を製造するためには、正極活物質粒子を分散させた溶液にジスプロシウム塩の溶液を加えて正極活物質粒子の表面に水酸化ジスプロシウムを析出させる工程と、水酸化ジスプロシウムが析出された正極活物質粒子を熱処理する
工程とを行う。この場合、正極活物質粒子の表面に水酸化ジスプロシウムを析出させる工程における正極活物質を分散させた溶液のpHを6以上にすることが好ましい。
In addition, a positive electrode active material for a non-aqueous electrolyte secondary battery in which particles of at least one dysprosium compound selected from dysprosium hydroxide and dysprosium oxyhydroxide are attached to the surface of the positive electrode active material particles containing lithium is manufactured. In order to achieve this, a step of adding a dysprosium salt solution to a solution in which positive electrode active material particles are dispersed to deposit dysprosium hydroxide on the surface of the positive electrode active material particles, and positive electrode active material particles on which dysprosium hydroxide is precipitated are provided. A heat treatment step. In this case, it is preferable that the pH of the solution in which the positive electrode active material is dispersed in the step of depositing dysprosium hydroxide on the surface of the positive electrode active material particles is 6 or more.

正極活物質粒子の表面に水酸化ジスプロシウムを析出させる工程における正極活物質を分散させた溶液のpHが6未満になると、ジスプロシウム塩が水酸化ジスプロシウムに変化しなくなる。特に、正極活物質粒子の表面に微細な水酸化ジスプロシウムを適切に分散して析出させるためには、好ましくは正極活物質を分散させた溶液のpHを7〜10の範囲にする。   When the pH of the solution in which the positive electrode active material is dispersed in the step of depositing dysprosium hydroxide on the surface of the positive electrode active material particles is less than 6, the dysprosium salt does not change to dysprosium hydroxide. In particular, in order to appropriately disperse and deposit fine dysprosium hydroxide on the surface of the positive electrode active material particles, the pH of the solution in which the positive electrode active material is dispersed is preferably in the range of 7-10.

ここで、水酸化ジスプロシウムについては、水酸化ジスプロシウムが分解されてオキシ水酸化ジスプロシウムに変化する温度が約275℃であり、オキシ水酸化ジスプロシウムがさらに分解されて酸化ジスプロシウムに変化する温度が約450℃である。そして、水酸化ジスプロシウムが析出された正極活物質粒子を熱処理温度を450℃以上にすると、水酸化ジスプロシウムが酸化ジスプロシウムに変化すると共に、ジスプロシウムが正極活物質粒子の内部に拡散される。この場合、正極活物質と非水電解液との反応を十分に抑制することが困難となると共に、正極活物質の充放電特性が大きく低下する。このため、水酸化ジスプロシウムが析出された正極活物質粒子を熱処理する温度を450℃未満することが好ましい。   Here, as for dysprosium hydroxide, the temperature at which dysprosium hydroxide is decomposed to change to dysprosium oxyhydroxide is about 275 ° C., and the temperature at which dysprosium oxyhydroxide is further decomposed to change to dysprosium oxide is about 450 ° C. It is. When the heat treatment temperature of the positive electrode active material particles on which dysprosium hydroxide is deposited is set to 450 ° C. or higher, dysprosium hydroxide changes to dysprosium oxide and dysprosium is diffused into the positive electrode active material particles. In this case, it becomes difficult to sufficiently suppress the reaction between the positive electrode active material and the non-aqueous electrolyte, and the charge / discharge characteristics of the positive electrode active material are greatly deteriorated. For this reason, it is preferable that the temperature which heat-processes the positive electrode active material particle in which dysprosium hydroxide was deposited is less than 450 degreeC.

また、リチウムを含有する正極活物質粒子の表面に、水酸化ホルミウムとオキシ水酸化ホルミウムとから選択される少なくとも一種のホルミウム化合物の粒子付着された非水電解質二次電池用正極活物質を製造するためには、正極活物質粒子を分散させた溶液にホルミウム塩の溶液を加えて正極活物質粒子の表面に水酸化ホルミウムを析出させる工程と、水酸化ホルミウムが析出された正極活物質粒子を熱処理する工程とを行う。この場合、正極活物質粒子の表面に水酸化ホルミウムを析出させる工程における正極活物質を分散させた溶液のpHを6以上にすることが好ましい。 In addition, a positive electrode active material for a non-aqueous electrolyte secondary battery in which particles of at least one holmium compound selected from holmium hydroxide and holmium oxyhydroxide are attached to the surface of positive electrode active material particles containing lithium is manufactured. In order to achieve this, a step of adding a holmium salt solution to a solution in which the positive electrode active material particles are dispersed to deposit holmium hydroxide on the surface of the positive electrode active material particles, and a positive electrode active material particle on which the holmium hydroxide is precipitated are provided. A heat treatment step. In this case, the pH of the solution in which the positive electrode active material is dispersed in the step of depositing holmium hydroxide on the surface of the positive electrode active material particles is preferably 6 or more.

正極活物質粒子の表面に水酸化ホルミウムを析出させる工程における正極活物質を分散させた溶液のpHが6未満になると、ホルミウム塩が水酸化ホルミウムに変化しなくなる。特に、正極活物質粒子の表面に微細な水酸化ホルミウムを適切に分散して析出させるためには、好ましくは正極活物質を分散させた溶液のpHを7〜10の範囲にする。   When the pH of the solution in which the positive electrode active material is dispersed in the step of depositing holmium hydroxide on the surface of the positive electrode active material particles is less than 6, the holmium salt does not change to holmium hydroxide. In particular, in order to appropriately disperse and deposit fine holmium hydroxide on the surface of the positive electrode active material particles, the pH of the solution in which the positive electrode active material is dispersed is preferably in the range of 7-10.

ここで、水酸化ホルミウムについては、水酸化ホルミウムが分解されてオキシ水酸化ホルミウムに変化する温度が約265℃であり、このオキシ水酸化ホルミウムがさらに分解されて酸化ホルミウムに変化する温度が約445℃である。そして、水酸化ホルミウムが析出された正極活物質粒子を熱処理温度を445℃以上にすると、水酸化ホルミウムが酸化ホルミウムに変化すると共に、ホルミウムが正極活物質粒子の内部に拡散される。この場合、正極活物質と非水電解液との反応を十分に抑制することが困難になると共に、正極活物質の充放電特性が大きく低下する。このため、水酸化ホルミウムが析出された正極活物質粒子を熱処理する温度を445℃未満にすることが好ましい。   Here, as for holmium hydroxide, the temperature at which holmium hydroxide is decomposed to change to holmium oxyhydroxide is about 265 ° C., and the temperature at which this holmium oxyhydroxide is further decomposed to change to holmium oxide is about 445 ° C. ° C. When the heat treatment temperature of the positive electrode active material particles on which holmium hydroxide is deposited is set to 445 ° C. or higher, the holmium hydroxide changes to holmium oxide and holmium is diffused into the positive electrode active material particles. In this case, it becomes difficult to sufficiently suppress the reaction between the positive electrode active material and the non-aqueous electrolyte, and the charge / discharge characteristics of the positive electrode active material are greatly deteriorated. For this reason, it is preferable that the temperature which heat-processes the positive electrode active material particle in which holmium hydroxide was deposited shall be less than 445 degreeC.

また、リチウムを含有する正極活物質粒子の表面に、水酸化ツリウムとオキシ水酸化ツリウムとから選択される少なくとも一種のツリウム化合物の粒子付着された非水電解質二次電池用正極活物質を製造するにあたっては、正極活物質粒子を分散させた溶液にツリウム塩の溶液を加えて正極活物質粒子の表面に水酸化ツリウムを析出させる工程と、水酸化ツリウムが析出された正極活物質粒子を熱処理する工程とを行う。この場合、正極活物質粒子の表面に水酸化ツリウムを析出させる工程における正極活物質を分散させた溶液のpHを6以上にすることが好ましい。 In addition, a positive electrode active material for a non-aqueous electrolyte secondary battery in which at least one type of thulium compound particle selected from thulium hydroxide and thulium oxyhydroxide is attached to the surface of lithium-containing positive electrode active material particles is manufactured. In the process, a step of adding a thulium salt solution to a solution in which the positive electrode active material particles are dispersed to deposit thulium hydroxide on the surface of the positive electrode active material particles, and heat treating the positive electrode active material particles on which the thulium hydroxide is deposited And performing the process. In this case, the pH of the solution in which the positive electrode active material is dispersed in the step of depositing thulium hydroxide on the surface of the positive electrode active material particles is preferably 6 or more.

正極活物質粒子の表面に水酸化ツリウムを析出させる工程における正極活物質を分散さ
せた溶液のpHが6未満になると、ツリウム塩が水酸化ツリウムに変化しなくなる。特に、正極活物質粒子の表面に微細な水酸化ツリウムを適切に分散して析出するためには、好ましくは正極活物質を分散させた溶液のpHを7〜10の範囲にする。
When the pH of the solution in which the positive electrode active material is dispersed in the step of depositing thulium hydroxide on the surface of the positive electrode active material particles is less than 6, the thulium salt is not changed to thulium hydroxide. In particular, in order to appropriately disperse and deposit fine thulium hydroxide on the surface of the positive electrode active material particles, the pH of the solution in which the positive electrode active material is dispersed is preferably in the range of 7 to 10.

ここで、水酸化ツリウムについては、水酸化ツリウムが分解されてオキシ水酸化ツリウムに変化する温度が約250℃であり、このオキシ水酸化ツリウムがさらに分解されて酸化ツリウムに変化する温度が約405℃である。そして、水酸化ツリウムが析出された正極活物質粒子を熱処理温度を405℃以上にすると、水酸化ツリウムが酸化ツリウムに変化すると共に、ツリウムが正極活物質粒子の内部に拡散される。この場合、正極活物質と非水電解液との反応を十分に抑制することが困難になると共に、正極活物質の充放電特性が大きく低下する。このため、水酸化ツリウムが析出された正極活物質粒子を熱処理する温度を405℃未満にすることが好ましい。   Here, regarding thulium hydroxide, the temperature at which thulium hydroxide is decomposed to change to thulium oxyhydroxide is about 250 ° C., and the temperature at which this thulium oxyhydroxide is further decomposed to change to thulium oxide is about 405. ° C. When the heat treatment temperature of the positive electrode active material particles on which thulium hydroxide is deposited is set to 405 ° C. or higher, thulium hydroxide changes to thulium oxide and thulium is diffused into the positive electrode active material particles. In this case, it becomes difficult to sufficiently suppress the reaction between the positive electrode active material and the non-aqueous electrolyte, and the charge / discharge characteristics of the positive electrode active material are greatly deteriorated. For this reason, it is preferable that the temperature which heat-processes the positive electrode active material particle in which thulium hydroxide was deposited shall be less than 405 degreeC.

また、リチウムを含有する正極活物質粒子の表面に、水酸化ルテチウムとオキシ水酸化ルテチウムとから選択される少なくとも一種のルテチウム化合物の粒子付着された非水電解質二次電池用正極活物質を製造するためには、正極活物質粒子を分散させた溶液にルテチウム塩の溶液を加えて正極活物質粒子の表面に水酸化ルテチウムを析出させる工程と、水酸化ルテチウムが析出された正極活物質粒子を熱処理する工程とを行う。この場合、正極活物質粒子の表面に水酸化ルテチウムを析出させる工程における正極活物質を分散させた溶液のpHを6以上にすることが好ましい。 In addition, a positive electrode active material for a non-aqueous electrolyte secondary battery in which particles of at least one lutetium compound selected from lutetium hydroxide and lutetium oxyhydroxide are attached to the surface of lithium-containing positive electrode active material particles is manufactured. In order to achieve this, a step of adding a lutetium salt solution to a solution in which the positive electrode active material particles are dispersed to deposit lutetium hydroxide on the surface of the positive electrode active material particles, and a positive electrode active material particle on which lutetium hydroxide is precipitated are provided. A heat treatment step. In this case, the pH of the solution in which the positive electrode active material is dispersed in the step of depositing lutetium hydroxide on the surface of the positive electrode active material particles is preferably 6 or more.

正極活物質粒子の表面に水酸化ルテチウムを析出させる工程における正極活物質を分散させた溶液のpHが6未満になると、ルテチウム塩が水酸化ルテチウムに変化しなくなる。   When the pH of the solution in which the positive electrode active material is dispersed in the step of depositing lutetium hydroxide on the surface of the positive electrode active material particles is less than 6, the lutetium salt does not change to lutetium hydroxide.

ここで、水酸化ルテチウムについて、熱重量分析を行った結果、水酸化ルテチウムが分解されてオキシ水酸化ルテチウムになる温度が約280℃であり、このオキシ水酸化ルテチウムがさらに分解されて酸化ルテチウムに変化する温度が約405℃であった。そして、水酸化ルテチウムが析出された正極活物質粒子を熱処理温度を405℃以上にすると、水酸化ルテチウムが酸化ルテチウムに変化すると共に、ルテチウムが正極活物質粒子の内部に拡散される。この場合、正極活物質と非水電解液との反応を十分に抑制することが困難になると共に、正極活物質の充放電特性が大きく低下する。このため、水酸化ルテチウムが析出された正極活物質粒子を熱処理する温度を405℃未満にすることが好ましい。   Here, as a result of thermogravimetric analysis of lutetium hydroxide, the temperature at which lutetium hydroxide is decomposed into lutetium oxyhydroxide is about 280 ° C., and this lutetium oxyhydroxide is further decomposed into lutetium oxide. The changing temperature was about 405 ° C. When the heat treatment temperature of the positive electrode active material particles on which lutetium hydroxide is deposited is set to 405 ° C. or higher, lutetium hydroxide changes to lutetium oxide and lutetium is diffused into the positive electrode active material particles. In this case, it becomes difficult to sufficiently suppress the reaction between the positive electrode active material and the non-aqueous electrolyte, and the charge / discharge characteristics of the positive electrode active material are greatly deteriorated. For this reason, it is preferable that the temperature which heat-processes the positive electrode active material particle in which lutetium hydroxide was deposited shall be less than 405 degreeC.

本発明における非水電解質二次電池用正極では、本発明における上記のような非水電解質二次電池用正極活物質を用いる。   The positive electrode for a nonaqueous electrolyte secondary battery in the present invention uses the positive electrode active material for a nonaqueous electrolyte secondary battery as described above in the present invention.

また、本発明における非水電解質二次電池では、その正極に、上記の非水電解質二次電池用正極活物質を用いた非水電解質二次電池用正極を用いる。   In the nonaqueous electrolyte secondary battery according to the present invention, the positive electrode for a nonaqueous electrolyte secondary battery using the positive electrode active material for a nonaqueous electrolyte secondary battery is used as the positive electrode.

ここで、本発明における非水電解質二次電池では、リチウムを含有する正極活物質の種類や、負極における負極活物質の種類や、非水電解液の種類は、特に限定されず、一般に使用されているものを用いることができる。   Here, in the non-aqueous electrolyte secondary battery in the present invention, the type of the positive electrode active material containing lithium, the type of the negative electrode active material in the negative electrode, and the type of the non-aqueous electrolyte are not particularly limited and are generally used. Can be used.

正極活物質としては、例えば、コバルト酸リチウムLiCoO2、スピネル型マンガン酸リチウムLiMn24、コバルト−ニッケル−マンガンのリチウム複合酸化物、アルミニウム−ニッケル−マンガンのリチウム複合酸化物、アルミニウム−ニッケル−コバルトのリチウム複合酸化物等の一般に使用されている各種のリチウム酸化物を用いることができる。 Examples of the positive electrode active material include lithium cobalt oxide LiCoO 2 , spinel type lithium manganate LiMn 2 O 4 , cobalt-nickel-manganese lithium composite oxide, aluminum-nickel-manganese lithium composite oxide, aluminum-nickel- Various lithium oxides generally used such as cobalt lithium composite oxide can be used.

負極における負極活物質としては、例えば、黒鉛等の炭素材料や、SiやSn等のリチウムと合金化する材料などを用いることができる。特に、電池容量を高めるためには、容量の高いSi等のリチウムと合金化する材料を用いることが好ましい。   As the negative electrode active material in the negative electrode, for example, a carbon material such as graphite or a material alloyed with lithium such as Si or Sn can be used. In particular, in order to increase the battery capacity, it is preferable to use a material that is alloyed with lithium such as Si having a high capacity.

非水電解液としては、非水系溶媒に溶質を溶解させたものを用いることができる。非水電解液における非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートなどを用いることができ、特に、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。   As the non-aqueous electrolyte, a solution obtained by dissolving a solute in a non-aqueous solvent can be used. As the non-aqueous solvent in the non-aqueous electrolyte, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate can be used. In particular, it is preferable to use a mixed solvent of a cyclic carbonate and a chain carbonate.

また、溶質としては、例えば、LiPF6,LiBF4,LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,LiAsF6,LiClO4,Li210Cl10,Li212Cl12や、これらの混合物等を用いることができる。また、これらのリチウム塩に加えて、オキサラト錯体をアニオンとするリチウム塩を含ませることが好ましい。そして、このようなオキサラト錯体をアニオンとするリチウム塩としては、リチウム−ビス(オキサラト)ボレートなどを用いることができる。 Examples of the solute include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , mixtures thereof, etc. Can be used. In addition to these lithium salts, it is preferable to include a lithium salt having an oxalato complex as an anion. And lithium-bis (oxalato) borate etc. can be used as a lithium salt which uses such an oxalato complex as an anion.

本発明によれば、非水電解質二次電池を高容量化させるために充電電圧を高め、高温で使用する場合においても、上記の非水電解質二次電池用正極活物質を用いることにより、正極活物質と非水電解液との反応が防止される。   According to the present invention, the positive electrode active material for a non-aqueous electrolyte secondary battery can be used even when the charge voltage is increased to increase the capacity of the non-aqueous electrolyte secondary battery and used at a high temperature. The reaction between the active material and the non-aqueous electrolyte is prevented.

また、本発明における非水電解質二次電池によれば、充電電圧を高くして非水電解質二次電池を高容量化させた場合においても、充放電サイクル特性が低下しない。
また、本発明における非水電解質二次電池によれば非水電解質二次電池を高温環境下において充電状態で保存した後や高温環境下において連続充電した後の保存特性や充放電特性等も向上される。さらに、非水電解質二次電池の内部でのガス発生による電池の膨化が抑制される。
Moreover, according to the nonaqueous electrolyte secondary battery in the present invention, even when the charge voltage is increased to increase the capacity of the nonaqueous electrolyte secondary battery, the charge / discharge cycle characteristics do not deteriorate.
In addition, according to the nonaqueous electrolyte secondary battery of the present invention, the storage characteristics and charge / discharge characteristics after the nonaqueous electrolyte secondary battery is stored in a charged state in a high temperature environment or after being continuously charged in a high temperature environment are improved. Is done. Furthermore, the expansion of the battery due to gas generation inside the nonaqueous electrolyte secondary battery is suppressed.

さらに、正極活物質粒子の表面に付着させるエルビウム化合物をオキシ水酸化エルビウムに、正極活物質粒子の表面に付着させるイッテルビウム化合物をオキシ水酸化イッテルビウムにすると、正極活物質との反応による非水電解液の分解をさらに防止することができ、上記の効果が向上する。   Furthermore, when the erbium compound attached to the surface of the positive electrode active material particles is erbium oxyhydroxide and the ytterbium compound attached to the surface of the positive electrode active material particles is ytterbium oxyhydroxide, a non-aqueous electrolyte solution due to a reaction with the positive electrode active material Can be further prevented, and the above effect is improved.

本発明の実施例及び比較例において作製した扁平電極体の部分断面説明図及び概略斜視図である。It is the partial cross section explanatory drawing and schematic perspective view of the flat electrode body produced in the Example and comparative example of this invention. 実施例及び比較例において作製した非水電解質二次電池の概略平面図である。It is a schematic plan view of the nonaqueous electrolyte secondary battery produced in the Example and the comparative example. 実施例A1及び比較例a1における正極を充電状態にして、示差走査熱量計(DSC)により熱分析した熱量と温度との関係を示した図である。It is the figure which showed the relationship between the calorie | heat amount and temperature which made the positive electrode in Example A1 and comparative example a1 into the charge condition, and was thermally analyzed with the differential scanning calorimeter (DSC).

以下、本発明に係る非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池について実施例を挙げて具体的に説明する。また、本発明の実施例に係る非水電解質二次電池においては、充電電圧を高くして非水電解質二次電池を高容量化させた場合における特性、特に、高温環境下において充電状態で保存した後や高温環境下において連続充電した後における保存特性
や充放電特性等が向上することを、比較例を挙げて明らかにする。なお、本発明の非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池は、下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
Examples of positive electrode active material for nonaqueous electrolyte secondary battery according to the present invention, method for producing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Specific explanation will be given. Further, in the nonaqueous electrolyte secondary battery according to the embodiment of the present invention, the characteristics when the charge voltage is increased to increase the capacity of the nonaqueous electrolyte secondary battery, in particular, stored in a charged state in a high temperature environment. It will be clarified by a comparative example that the storage characteristics, charge / discharge characteristics, etc. are improved after charging or after continuous charging in a high temperature environment. The positive electrode active material for a nonaqueous electrolyte secondary battery, the method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery, the positive electrode for a nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery of the present invention are as follows. It is not limited to what was shown in the example, It can implement by changing suitably in the range which does not change the summary.

(実施例A1)
実施例A1では、下記のようにして作製した正極と負極と非水電解液とを用いた。
(Example A1)
In Example A1, a positive electrode, a negative electrode, and a nonaqueous electrolytic solution prepared as described below were used.

[正極の作製]
正極活物質粒子として、MgとAlとがそれぞれ0.5モル%固溶されたコバルト酸リチウムを用いた。そして、この正極活物質粒子1000gを3リットルの純水中に投入し、これを撹拌しながら、5.79gの硝酸エルビウム5水和物を200mlの純水に溶解させた硝酸エルビウム水溶液を添加した。このとき、この溶液のpHが9になるように10質量%の水酸化ナトリウム水溶液を適宜加えて、正極活物質粒子の表面に水酸化エルビウムを付着させた。そして、これを吸引濾過して処理物を濾取し、この処理物を120℃で乾燥させて、水酸化エルビウムが表面に分散かつ付着された正極活物質粒子を得た。
[Production of positive electrode]
As the positive electrode active material particles, lithium cobalt oxide in which 0.5 mol% of Mg and Al were dissolved was used. Then, 1000 g of the positive electrode active material particles were put into 3 liters of pure water, and while stirring this, an aqueous erbium nitrate solution in which 5.79 g of erbium nitrate pentahydrate was dissolved in 200 ml of pure water was added. . At this time, a 10% by mass sodium hydroxide aqueous solution was appropriately added so that the pH of this solution was 9, and erbium hydroxide was adhered to the surface of the positive electrode active material particles. And this was suction-filtered, the processed material was collected by filtration, and this processed material was dried at 120 degreeC, and the positive electrode active material particle by which erbium hydroxide was disperse | distributed and adhered to the surface was obtained.

次いで、水酸化エルビウムが表面に分散かつ付着された正極活物質粒子を空気雰囲気中において300℃の温度で5時間熱処理した。これにより、正極活物質粒子の表面に、水酸化エルビウムとオキシ水酸化エルビウムとからなるエルビウム化合物の粒子が分散かつ付着された正極活物質を得た。   Next, the positive electrode active material particles having erbium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 300 ° C. for 5 hours. As a result, a positive electrode active material in which particles of an erbium compound composed of erbium hydroxide and erbium oxyhydroxide were dispersed and adhered to the surface of the positive electrode active material particles was obtained.

ここで、この正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたエルビウム化合物におけるエルビウム元素(Er)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着された水酸化エルビウムの多くがオキシ水酸化エルビウムに変化した。   Here, in this positive electrode active material, the ratio of the erbium element (Er) in the erbium compound adhering to the surface with respect to the positive electrode active material particle which consists of lithium cobaltate was 0.22 mass%. Further, most of the erbium hydroxide adhered to the surface of the positive electrode active material particles was changed to erbium oxyhydroxide.

また、実施例A1の正極活物質をSEMにより観察した結果、正極活物質粒子の表面に付着されたエルビウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、エルビウム化合物の粒子が正極活物質粒子の表面に分散かつ付着されていた。   Moreover, as a result of observing the positive electrode active material of Example A1 by SEM, most of the particle diameters of the erbium compound particles attached to the surfaces of the positive electrode active material particles were 100 nm or less. In addition, erbium compound particles were dispersed and adhered to the surface of the positive electrode active material particles.

次に、この正極活物質と、導電剤のアセチレンブラックと、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、混合撹拌装置(特殊機化社製:コンビミックス)により混合攪拌させて正極合剤スラリーを調製した。このとき、正極活物質と導電剤と結着剤とを95:2.5:2.5の質量比にした。そして、この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に均一に塗布した後、これを乾燥させ、圧延ローラにより圧延させて、正極集電体の両面に正極合剤層が形成された正極を得た。なお、この正極における正極活物質の充填密度は3.60g/cm3であった。 Next, this positive electrode active material, a conductive agent acetylene black, and an N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder is dissolved are mixed and stirred by a special stirring device (made by Tokushu Kika Co., Ltd .: Combimix). ) To prepare a positive electrode mixture slurry. At this time, the positive electrode active material, the conductive agent, and the binder were in a mass ratio of 95: 2.5: 2.5. And after apply | coating this positive mix slurry uniformly on both surfaces of the positive electrode collector which consists of aluminum foil, this is dried and rolled with a rolling roller, and a positive mix layer is formed on both surfaces of a positive electrode collector A positive electrode was obtained. In addition, the packing density of the positive electrode active material in this positive electrode was 3.60 g / cm 3 .

[負極の作製]
負極活物質の人造黒鉛と、CMC(カルボキシメチルセルロースナトリウム)と、結着剤のSBR(スチレン−ブタジエンゴム)とを98:1:1の質量比で水溶液中において混合し、負極合剤スラリーを調製した。そして、この負極合剤スラリーを銅箔からなる負極集電体の両面に均一に塗布し、これを乾燥させ、圧延ローラにより圧延させて、負極集電体の両面に負極合剤層が形成された負極を得た。なお、この負極における負極活物質の充填密度は1.75g/cm3であった。
[Production of negative electrode]
Artificial graphite of negative electrode active material, CMC (carboxymethylcellulose sodium) and SBR (styrene-butadiene rubber) of binder are mixed in an aqueous solution at a mass ratio of 98: 1: 1 to prepare a negative electrode mixture slurry. did. Then, the negative electrode mixture slurry is uniformly applied to both surfaces of the negative electrode current collector made of copper foil, dried, and rolled by a rolling roller, so that a negative electrode mixture layer is formed on both surfaces of the negative electrode current collector. A negative electrode was obtained. The packing density of the negative electrode active material in this negative electrode was 1.75 g / cm 3 .

[非水電解液の作製]
非水系溶媒のエチレンカーボネートとジエチルカーボネートとを3:7の体積比で混合した混合溶媒に、溶質のLiPF6を1.0モル/リットルの濃度になるように溶解させ
て、非水電解液を作製した。
[Preparation of non-aqueous electrolyte]
In a mixed solvent in which ethylene carbonate and diethyl carbonate, which are nonaqueous solvents, are mixed at a volume ratio of 3: 7, solute LiPF 6 is dissolved to a concentration of 1.0 mol / liter, and a nonaqueous electrolytic solution is prepared. Produced.

[電池の作製]
図1(A),(B)に示すように、正極11と負極12との間にリチウムイオン透過性のポリエチレン製の微多孔膜からなるセパレータ13を介在させて巻回し、これをプレスして扁平電極体10を作製した。次いで、図2に示すように、扁平電極体10をアルミニウムラミネートフィルムで構成された電池容器20内に収容し、この電池容器20内に非水電解液を加えた。そして、正極11に設けた正極集電タブ11aと負極12に設けた負極集電タブ12aとを外部に取り出し、電池容器20の開口部を封口した。これにより、4.40Vまで充電した場合の設計容量が780mAhである扁平型の非水電解質二次電池を作製した。
[Production of battery]
As shown in FIGS. 1 (A) and 1 (B), a separator 13 made of a polyethylene microporous membrane permeable to lithium ions is interposed between a positive electrode 11 and a negative electrode 12, and this is pressed. A flat electrode body 10 was produced. Next, as shown in FIG. 2, the flat electrode body 10 was accommodated in a battery container 20 made of an aluminum laminate film, and a non-aqueous electrolyte was added to the battery container 20. And the positive electrode current collection tab 11a provided in the positive electrode 11 and the negative electrode current collection tab 12a provided in the negative electrode 12 were taken out outside, and the opening part of the battery container 20 was sealed. As a result, a flat-type nonaqueous electrolyte secondary battery having a design capacity of 780 mAh when charged to 4.40 V was produced.

(実施例A2)
実施例A2では、実施例A1における正極の作製において、水酸化エルビウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中にて200℃で5時間熱処理した。それ以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Example A2)
In Example A2, in the production of the positive electrode in Example A1, the positive electrode active material particles having erbium hydroxide dispersed and adhered to the surface were heat-treated at 200 ° C. for 5 hours in an air atmosphere. Other than that was carried out similarly to the case of Example A1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例A2の正極活物質においては、正極活物質粒子の表面に付着された水酸化エルビウムの多くがオキシ水酸化エルビウムに変化されず、水酸化エルビウムの状態で残っていた。   Here, in the positive electrode active material of Example A2, most of the erbium hydroxide attached to the surface of the positive electrode active material particles was not changed to erbium oxyhydroxide, but remained in the state of erbium hydroxide.

(実施例A3)
実施例A3では、実施例A1における正極の作製において、水酸化エルビウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中にて400℃の温度で5時間熱処理した。それ以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Example A3)
In Example A3, in the production of the positive electrode in Example A1, the positive electrode active material particles having erbium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 400 ° C. for 5 hours. Other than that was carried out similarly to the case of Example A1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例A3の正極活物質では、正極活物質粒子の表面に付着されている殆どの水酸化エルビウムが、オキシ水酸化エルビウムに変化した。   Here, in the positive electrode active material of Example A3, most of the erbium hydroxide attached to the surface of the positive electrode active material particles was changed to erbium oxyhydroxide.

(実施例A4)
実施例A4では、実施例A1における正極の作製において、水酸化エルビウムが表面に分散かつ付着された正極活物質粒子を、120℃で乾燥のみの熱処理で終了した。それ以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Example A4)
In Example A4, in the production of the positive electrode in Example A1, the positive electrode active material particles in which erbium hydroxide was dispersed and adhered to the surface were terminated by a heat treatment only by drying at 120 ° C. Other than that was carried out similarly to the case of Example A1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例A4の正極活物質では、正極活物質粒子の表面に付着された水酸化エルビウムは、オキシ水酸化エルビウムに変化しなかった。   Here, in the positive electrode active material of Example A4, erbium hydroxide attached to the surface of the positive electrode active material particles did not change to erbium oxyhydroxide.

(実施例A5)
実施例A5では、実施例A1における正極の作製において、正極活物質粒子の表面に水酸化エルビウムを付着させるにあたり、硝酸エルビウム5水和物を200mlの純水に溶解させる量を2.76gに変更した。それ以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Example A5)
In Example A5, in the production of the positive electrode in Example A1, the amount of erbium nitrate pentahydrate dissolved in 200 ml of pure water was changed to 2.76 g for attaching erbium hydroxide to the surface of the positive electrode active material particles. did. Other than that was carried out similarly to the case of Example A1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例A5では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたエルビウム化合物におけるエルビウム元素(Er)の割合は、0.11質量%であった。   Here, in Example A5, the ratio of the erbium element (Er) in the erbium compound adhered to the surface of the positive electrode active material particles made of lithium cobaltate was 0.11% by mass.

(実施例A6)
実施例A6では、実施例A1における正極の作製において、正極活物質粒子の表面に水酸化エルビウムを付着させるにあたり、硝酸エルビウム5水和物を200mlの純水に溶
解させる量を1.78gに変更した。それ以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Example A6)
In Example A6, in the production of the positive electrode in Example A1, the amount of erbium nitrate pentahydrate dissolved in 200 ml of pure water was changed to 1.78 g when attaching erbium hydroxide to the surface of the positive electrode active material particles. did. Other than that was carried out similarly to the case of Example A1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例A6では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたエルビウム化合物におけるエルビウム元素(Er)の割合は、0.067質量%であった。   Here, in Example A6, the ratio of the erbium element (Er) in the erbium compound adhering to the surface with respect to the positive electrode active material particle which consists of lithium cobaltate was 0.067 mass%.

(実施例A7)
実施例A7では、実施例A1における正極の作製において、正極活物質粒子の表面に水酸化エルビウムを付着させるにあたり、硝酸エルビウム5水和物を200mlの純水に溶解させる量を0.93gに変更した。それ以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Example A7)
In Example A7, in the production of the positive electrode in Example A1, the amount of erbium nitrate pentahydrate dissolved in 200 ml of pure water was changed to 0.93 g when attaching erbium hydroxide to the surface of the positive electrode active material particles. did. Other than that was carried out similarly to the case of Example A1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例A7では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたエルビウム化合物におけるエルビウム元素(Er)の割合は、0.035質量%であった。   Here, in Example A7, the ratio of the erbium element (Er) in the erbium compound adhered to the surface of the positive electrode active material particles made of lithium cobalt oxide was 0.035% by mass.

(比較例a1)
比較例a1では、実施例A1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子の表面にエルビウム化合物を付着させなかった。それ以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example a1)
In Comparative Example a1, no erbium compound was attached to the surface of the positive electrode active material particles made of lithium cobaltate in the production of the positive electrode in Example A1. Other than that was carried out similarly to the case of Example A1, and produced the nonaqueous electrolyte secondary battery.

(比較例a2)
比較例a2では、実施例A1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子500gと、酸化エルビウム試薬を一次粒子の粒子径が300nmになるまで粉砕した酸化エルビウム1.25gとを、混合処理機(ホソカワミクロン社製:ノビルタ)を用いて混合し、コバルト酸リチウムからなる正極活物質粒子の表面に酸化エルビウムを機械的に付着させて正極活物質を作製した。そして、このように作製した正極活物質を用いる以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example a2)
In Comparative Example a2, in preparation of the positive electrode in Example A1, positive electrode active material particles 500 g made of lithium cobaltate and 1.25 g of erbium oxide obtained by pulverizing an erbium oxide reagent until the primary particle diameter becomes 300 nm, A positive electrode active material was prepared by mixing using a mixing processor (manufactured by Hosokawa Micron Corporation: Nobilta) and mechanically attaching erbium oxide to the surface of the positive electrode active material particles made of lithium cobaltate. And the nonaqueous electrolyte secondary battery was produced like the case of Example A1 except using the positive electrode active material produced in this way.

ここで、比較例a2の正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化エルビウムにおけるエルビウム元素(Er)の割合は、0.22質量%であった。   Here, in the positive electrode active material of Comparative Example a2, the ratio of the erbium element (Er) in the erbium oxide attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.22% by mass. It was.

また、比較例a2の正極活物質をSEMにより観察した結果、酸化エルビウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されていなかった。   Moreover, as a result of observing the positive electrode active material of Comparative Example a2 by SEM, erbium oxide was aggregated and adhered to the recessed portion of the positive electrode active material particles, and was not dispersed and adhered to the surface of the positive electrode active material particles. .

(比較例a3)
比較例a3では、比較例a2における一次粒子の粒子径が300nmの酸化エルビウムの量を5gに変更して正極活物質を作製した。そして、このように作製した正極活物質を用いる以外は、実施例1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example a3)
In Comparative Example a3, a positive electrode active material was produced by changing the amount of erbium oxide having a primary particle diameter of 300 nm in Comparative Example a2 to 5 g. And the nonaqueous electrolyte secondary battery was produced like the case of Example 1 except using the positive electrode active material produced in this way.

ここで、比較例a3の正極活物質においては、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたエルビウム化合物におけるエルビウム元素(Er)の割合は、0.87質量%であった。   Here, in the positive electrode active material of Comparative Example a3, the proportion of the erbium element (Er) in the erbium compound attached to the surface of the positive electrode active material particles made of lithium cobaltate is 0.87% by mass. there were.

また、比較例a3の正極活物質をSEMにより観察した結果、比較例a2の場合と同様に、酸化エルビウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されていなかった。   Further, as a result of observing the positive electrode active material of Comparative Example a3 by SEM, as in Comparative Example a2, erbium oxide is aggregated and attached to the recessed portions of the positive electrode active material particles. It was not dispersed and adhered to the surface.

(比較例a4)
比較例a4では、実施例A1における正極の作製において、水酸化エルビウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中にて500℃の温度で5時間熱処理した。それ以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example a4)
In Comparative Example a4, in the production of the positive electrode in Example A1, the positive electrode active material particles having erbium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 500 ° C. for 5 hours. Other than that was carried out similarly to the case of Example A1, and produced the nonaqueous electrolyte secondary battery.

ここで、比較例a4のように熱処理して得た正極活物質では、正極活物質粒子の表面に付着された水酸化エルビウムが酸化エルビウムに変化すると共に、エルビウムの一部が正極活物質粒子の内部に拡散されていた。   Here, in the positive electrode active material obtained by heat treatment as in Comparative Example a4, erbium hydroxide attached to the surface of the positive electrode active material particles changes to erbium oxide, and part of the erbium is the positive electrode active material particles. It was diffused inside.

(比較例x1)
比較例x1では、実施例A1における正極活物質の作製において、正極活物質粒子1000gを3リットルの純水中に投入し、これを撹拌しながら、硝酸アルミニウム9水和物30.9gを純水に溶解させた硝酸アルミニウム水溶液を添加させた。このとき、この溶液のpHが9になるように10質量%の水酸化ナトリウム水溶液を適宜加えて、正極活物質粒子の表面に水酸化アルミニウムを付着させた。
(Comparative Example x1)
In Comparative Example x1, in the production of the positive electrode active material in Example A1, 1000 g of the positive electrode active material particles were put into 3 liters of pure water, and 30.9 g of aluminum nitrate nonahydrate was added to pure water while stirring this. An aqueous solution of aluminum nitrate dissolved in was added. At this time, a 10 mass% sodium hydroxide aqueous solution was appropriately added so that the pH of this solution was 9, and aluminum hydroxide was adhered to the surface of the positive electrode active material particles.

その後、これを吸引濾過して処理物を濾取し、この処理物を120℃で乾燥させて、正極活物質粒子の表面にアルミニウム化合物が付着された正極活物質を得た。そして、比較例x1の正極活物質を用いる以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。   Then, this was suction-filtered, the processed material was collected by filtration, and this processed material was dried at 120 ° C. to obtain a positive electrode active material in which an aluminum compound was adhered to the surface of the positive electrode active material particles. And the nonaqueous electrolyte secondary battery was produced like the case of Example A1 except using the positive electrode active material of the comparative example x1.

ここで、比較例x1の正極活物質では、正極活物質粒子に対して、その表面に付着されたアルミニウム化合物におけるアルミニウム元素(Al)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着されたアルミニウム化合物は水酸化アルミニウムであった。   Here, in the positive electrode active material of Comparative Example x1, the ratio of the aluminum element (Al) in the aluminum compound attached to the surface of the positive electrode active material particles was 0.22% by mass. The aluminum compound adhered to the surface of the positive electrode active material particles was aluminum hydroxide.

(比較例x2)
比較例x2では、比較例x1に示すようにして得た正極活物質に対して、さらに空気雰囲気中にて500℃の温度で5時間熱処理して正極活物質を得た。そして、比較例x2の正極活物質を用いる以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example x2)
In Comparative Example x2, the positive electrode active material obtained as shown in Comparative Example x1 was further heat-treated in an air atmosphere at a temperature of 500 ° C. for 5 hours to obtain a positive electrode active material. And the nonaqueous electrolyte secondary battery was produced like the case of Example A1 except using the positive electrode active material of the comparative example x2.

ここで、比較例x2における正極活物質では、正極活物質粒子に対して、その表面に付着されたアルミニウム化合物におけるアルミニウム元素(Al)の割合は、0.22質量%であった。また、正極活物質粒子の表面に付着されたアルミニウム化合物は酸化アルミニウムに変化した。   Here, in the positive electrode active material in Comparative Example x2, the ratio of the aluminum element (Al) in the aluminum compound attached to the surface of the positive electrode active material particles was 0.22% by mass. Further, the aluminum compound attached to the surface of the positive electrode active material particles was changed to aluminum oxide.

(比較例x3)
比較例x3では、比較例x1における正極活物質の作製において、硝酸アルミニウム9水和物9.27gを純水に溶解させた硝酸アルミニウム水溶液を添加し、120℃で乾燥のみの熱処理で終了した。それ以外は、比較例x1と同様にして正極活物質を得た。そして、比較例x3の正極活物質を用いる以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example x3)
In Comparative Example x3, in the production of the positive electrode active material in Comparative Example x1, an aqueous aluminum nitrate solution in which 9.27 g of aluminum nitrate nonahydrate was dissolved in pure water was added, and the heat treatment was only dried at 120 ° C. Other than that was carried out similarly to the comparative example x1, and obtained the positive electrode active material. And the nonaqueous electrolyte secondary battery was produced like the case of Example A1 except using the positive electrode active material of the comparative example x3.

ここで、比較例x3の正極活物質では、正極活物質粒子に対して、その表面に付着されたアルミニウム化合物におけるアルミニウム元素(Al)の割合は、0.067質量%であった。また、この正極活物質粒子の表面に付着されたアルミニウム化合物は、比較例x1と同様に水酸化アルミニウムの状態であった。   Here, in the positive electrode active material of Comparative Example x3, the ratio of the aluminum element (Al) in the aluminum compound attached to the surface of the positive electrode active material particles was 0.067% by mass. Moreover, the aluminum compound adhered to the surface of the positive electrode active material particles was in the state of aluminum hydroxide as in Comparative Example x1.

(比較例y1)
比較例y1では、実施例A1における正極活物質の作製において、正極活物質粒子1000gを3リットルの純水中に投入し、これを撹拌しながら、硫酸亜鉛7水和物19.4gを純水に溶解させた硫酸亜鉛水溶液を添加させた。このとき、この溶液のpHが9になるように10質量%の水酸化ナトリウム水溶液を適宜加えて、正極活物質粒子の表面に水酸化亜鉛を付着させた。その後、これを吸引濾過して処理物を濾取し、この処理物を120℃で乾燥させて、正極活物質粒子の表面に亜鉛化合物が付着された正極活物質を得た。そして、比較例y1の正極活物質を用いる以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example y1)
In Comparative Example y1, in the production of the positive electrode active material in Example A1, 1000 g of the positive electrode active material particles were put into 3 liters of pure water, and 19.4 g of zinc sulfate heptahydrate was added to the pure water while stirring this. An aqueous solution of zinc sulfate dissolved in was added. At this time, a 10% by mass sodium hydroxide aqueous solution was appropriately added so that the pH of this solution was 9, and zinc hydroxide was adhered to the surfaces of the positive electrode active material particles. Then, this was suction-filtered, the processed material was collected by filtration, and this processed material was dried at 120 ° C. to obtain a positive electrode active material in which a zinc compound was adhered to the surface of the positive electrode active material particles. And the nonaqueous electrolyte secondary battery was produced like the case of Example A1 except using the positive electrode active material of the comparative example y1.

ここで、比較例y1の正極活物質では、正極活物質粒子に対して、その表面に付着された亜鉛化合物における亜鉛元素(Zn)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着された亜鉛化合物は酸化亜鉛の状態であった。   Here, in the positive electrode active material of Comparative Example y1, the ratio of zinc element (Zn) in the zinc compound attached to the surface of the positive electrode active material particles was 0.22% by mass. Further, the zinc compound attached to the surface of the positive electrode active material particles was in the state of zinc oxide.

(比較例z1)
比較例z1では、実施例A1における正極活物質の作製における5.79gの硝酸エルビウム5水和物に代えて、6.84gの硝酸セリウム6水和物を用い、それ以外は、実施例A1と同様にして正極活物質を作製した。そして、比較例z1の正極活物質を用いる以外は、実施例A1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example z1)
In Comparative Example z1, 6.84 g of cerium nitrate hexahydrate was used in place of 5.79 g of erbium nitrate pentahydrate in the production of the positive electrode active material in Example A1, and otherwise, Example A1 and A positive electrode active material was produced in the same manner. And the nonaqueous electrolyte secondary battery was produced like the case of Example A1 except using the positive electrode active material of the comparative example z1.

ここで、比較例z1における正極活物質では、正極活物質粒子に対して、その表面に付着されたセリウム化合物におけるセリウム元素(Ce)の割合は、0.22質量%であった。   Here, in the positive electrode active material in Comparative Example z1, the ratio of the cerium element (Ce) in the cerium compound attached to the surface of the positive electrode active material particles was 0.22% by mass.

また、水酸化セリウムはCeO・2HOの化学式で示されるが、熱質量分析を5℃/分の昇温速度で測定した結果、110℃以下でCeO・0.5HOにまで分解し、水酸化セリウムとして安定に存在できず、280℃でCeOにまで分解した。このため、上記の正極活物質の表面に分散かつ付着されたセリウム化合物は、水酸化セリウムやオキシ水酸化セリウムの状態ではないと考えられる。 Cerium hydroxide is represented by the chemical formula of CeO 2 · 2H 2 O, and as a result of measuring by thermal mass spectrometry at a heating rate of 5 ° C./min, it is up to 110 ° C. to CeO 2 · 0.5H 2 O. It decomposed and could not exist stably as cerium hydroxide, and decomposed to CeO 2 at 280 ° C. For this reason, it is considered that the cerium compound dispersed and adhered to the surface of the positive electrode active material is not in the state of cerium hydroxide or cerium oxyhydroxide.

次に、実施例A1〜A7及び比較例a1〜a4の各非水電解質二次電池を、4.40Vまで定電流充電した後、4.40Vで定電圧充電させて初期充電した。ここで、定電流充電では、各非水電解質二次電池を、室温において、750mAの定電流で4.40V(リチウム金属基準4.50V)まで充電した。また、定電圧充電では、4.40Vの定電圧で電流値が37.5mAになるまで充電した。   Next, the nonaqueous electrolyte secondary batteries of Examples A1 to A7 and Comparative Examples a1 to a4 were charged at a constant current up to 4.40 V, and then charged at a constant voltage of 4.40 V to be initially charged. Here, in the constant current charging, each nonaqueous electrolyte secondary battery was charged to 4.40 V (lithium metal reference 4.50 V) at a constant current of 750 mA at room temperature. In constant voltage charging, charging was performed at a constant voltage of 4.40 V until the current value reached 37.5 mA.

このように初期充電した各非水電解質二次電池を10分間休止した後、750mAの定電流で2.75Vになるまで初期放電した。このときの放電容量Qoを測定した。   Each nonaqueous electrolyte secondary battery initially charged in this manner was paused for 10 minutes, and then initially discharged at a constant current of 750 mA until it reached 2.75V. The discharge capacity Qo at this time was measured.

そして、実施例A1〜A7及び比較例a4の各非水電解質二次電池については、初期の充放電効率を求めた。この結果、実施例A1〜A7の各非水電解質二次電池では、初期の充放電効率が89%であったのに対して、比較例a4の非水電解質二次電池では、初期の充放電効率が86%であった。これは、比較例a4の非水電解質二次電池の場合、正極活物質粒子の表面に付着された水酸化エルビウムが酸化エルビウムに変化すると共に、エルビウムの一部が正極活物質粒子の内部に拡散されたためと考えられる。   And the initial charging / discharging efficiency was calculated | required about each nonaqueous electrolyte secondary battery of Example A1-A7 and Comparative Example a4. As a result, in each of the nonaqueous electrolyte secondary batteries of Examples A1 to A7, the initial charge / discharge efficiency was 89%, whereas in the nonaqueous electrolyte secondary battery of Comparative Example a4, the initial charge / discharge efficiency was The efficiency was 86%. This is because, in the case of the non-aqueous electrolyte secondary battery of Comparative Example a4, erbium hydroxide attached to the surface of the positive electrode active material particles changes to erbium oxide, and part of erbium diffuses inside the positive electrode active material particles. It is thought that it was because it was done.

次に、初期充放電した実施例A1〜A7及び比較例a1〜a4の各非水電解質二次電池を、室温状態にて、初期充電の場合と同様に、4.40Vまで定電流充電した後、4.40Vで定電圧充電した後、各非水電解質二次電池を60℃の雰囲気中にて5日間保存した。その後、各非水電解質二次電池を室温まで冷却し、初期放電の場合と同様に、750m
Aの定電流で2.75Vになるまで放電し、高温保存後の放電容量Q1を求めた。
Next, after the initial charge / discharge of each of the nonaqueous electrolyte secondary batteries of Examples A1 to A7 and Comparative Examples a1 to a4 was charged at a constant current to 4.40 V in the room temperature state as in the case of the initial charge. After charging at a constant voltage of 4.40 V, each nonaqueous electrolyte secondary battery was stored in an atmosphere of 60 ° C. for 5 days. Thereafter, each non-aqueous electrolyte secondary battery is cooled to room temperature and 750 m as in the case of the initial discharge.
It discharged until it became 2.75V with the constant current of A, and discharge capacity Q1 after high temperature preservation | save was calculated | required.

そして、下記の式(1)により高温保存後の残存容量率(%)を求め、その結果を下記の表1に示した。   Then, the remaining capacity ratio (%) after high-temperature storage was determined by the following formula (1), and the results are shown in Table 1 below.

残存容量率(%)=(Q1/Qo)×100…(1) Remaining capacity ratio (%) = (Q1 / Qo) × 100 (1)

次いで、高温保存後の放電容量Q1を求めた各非水電解質二次電池を、室温状態にて、初期充電の場合と同様に、4.40Vまで定電流充電した後、4.40Vで定電圧充電した。そして、10分間休止した後、750mAの定電流で2.75Vになるまで放電した。この時の充電容量Qaと放電容量Q2とを求めた。そして、下記の式(2)により高温保存後の復帰容量率(%)を求めると共に、下記の式(3)により高温保存後の充放電効率(%)を求め、その結果を下記の表1に示した。   Next, each non-aqueous electrolyte secondary battery for which the discharge capacity Q1 after storage at high temperature was obtained was charged at a constant current to 4.40 V at room temperature in the same manner as in the initial charging, and then at a constant voltage of 4.40 V. Charged. And after resting for 10 minutes, it discharged until it became 2.75V with a 750 mA constant current. The charge capacity Qa and the discharge capacity Q2 at this time were determined. And while calculating | requiring the return capacity rate (%) after high temperature preservation | save by following formula (2), charging / discharging efficiency (%) after high temperature preservation | save is calculated | required by following formula (3), The result is shown in following Table 1 It was shown to.

復帰容量率(%)=(Q2/Qo)×100…(2)
充放電効率(%)=(Q2/Qa)×100…(3)
Return capacity ratio (%) = (Q2 / Qo) × 100 (2)
Charging / discharging efficiency (%) = (Q2 / Qa) × 100 (3)

また、実施例A1〜A7及び比較例a1〜a4の各非水電解質二次電池について、上記のように60℃の雰囲気中において5日間保存した前後における各非水電解質二次電池の厚み増加量を求め、その結果を下記の表1に示した。   Moreover, about each nonaqueous electrolyte secondary battery of Example A1-A7 and Comparative Examples a1-a4, the thickness increase amount of each nonaqueous electrolyte secondary battery before and behind preserve | saving for 5 days in 60 degreeC atmosphere as mentioned above The results are shown in Table 1 below.

表1より、コバルト酸リチウムからなる正極活物質粒子の表面に、水酸化エルビウムとオキシ水酸化エルビウムとからなるエルビウム化合物の粒子が分散かつ付着された正極活物質を用いた実施例A1〜A7の各非水電解質二次電池は、4.40Vの高い電圧まで充電した場合における高温保存後の残存容量率、復帰容量率及び充放電効率が何れも高い値を示した。一方、比較例a1〜a4の非水電解質二次電池は、実施例A1〜A7の各非水電解質二次電池に比べて、4.40Vの高い電圧まで充電した場合における高温保存後の
残存容量率、復帰容量率及び充放電効率は、何れも低下した。
From Table 1, Examples A1 to A7 using positive electrode active materials in which particles of erbium compound composed of erbium hydroxide and erbium oxyhydroxide were dispersed and adhered to the surface of positive electrode active material particles composed of lithium cobaltate. Each non-aqueous electrolyte secondary battery showed a high value for the remaining capacity ratio, the restored capacity ratio, and the charge / discharge efficiency after high-temperature storage when charged to a high voltage of 4.40V. On the other hand, the non-aqueous electrolyte secondary batteries of Comparative Examples a1 to a4 have a remaining capacity after high-temperature storage when charged to a high voltage of 4.40 V compared to the non-aqueous electrolyte secondary batteries of Examples A1 to A7. The rate, the return capacity rate, and the charge / discharge efficiency all decreased.

また、非水電解質二次電池の厚み増加量に関して、比較例a1,a2の非水電解質二次電池は、実施例A1〜A7及び比較例a3,a4の非水電解質二次電池に比較して、厚み増加量が小さかった。これは、比較例a1,a2の非水電解質二次電池の場合、これらの正極における自己放電によって正極の電位が低下し、正極活物質と非水電解液との反応が少なくなったためと考えられる。   Moreover, regarding the thickness increase amount of the nonaqueous electrolyte secondary battery, the nonaqueous electrolyte secondary batteries of Comparative Examples a1 and a2 are compared with the nonaqueous electrolyte secondary batteries of Examples A1 to A7 and Comparative Examples a3 and a4. The increase in thickness was small. This is considered to be because in the case of the nonaqueous electrolyte secondary batteries of Comparative Examples a1 and a2, the potential of the positive electrode decreased due to self-discharge in these positive electrodes, and the reaction between the positive electrode active material and the nonaqueous electrolyte solution decreased. .

次に、実施例A1〜A7及び比較例a1〜a4,x1〜x3,y1,z1の各非水電解質二次電池を、初期充放電して、初期の放電容量Qoを測定した後、各非水電解質二次電池を、それぞれ60℃の恒温槽内に保持した状態で、750mAの定電流で4.40Vになるまで定電流充電した。その後、4.40Vの電圧を維持した状態にて3日間充電する高温連続充電試験を行った。そして、試験前に対する高温連続充電試験後の各非水電解質二次電池の厚み増加量を求め、その結果を下記の表2に示した。   Next, each nonaqueous electrolyte secondary battery of Examples A1 to A7 and Comparative Examples a1 to a4, x1 to x3, y1 and z1 was initially charged and discharged, and the initial discharge capacity Qo was measured. The water electrolyte secondary battery was charged in a constant current until it reached 4.40 V at a constant current of 750 mA while being held in a constant temperature bath at 60 ° C., respectively. Then, the high temperature continuous charge test which charges for 3 days in the state which maintained the voltage of 4.40V was done. And the thickness increase amount of each nonaqueous electrolyte secondary battery after the high temperature continuous charge test with respect to the test was calculated | required, and the result was shown in following Table 2.

また、高温連続充電試験後における各非水電解質二次電池を室温にして、それぞれ750mAの定電流で2.75Vになるまで放電させて、高温連続充電試験後の放電容量Q3を求め、10分間休止させた。そして、下記の式(4)により高温連続充電試験後の残存容量率(%)を求め、その結果を下記の表2に示した。   In addition, each non-aqueous electrolyte secondary battery after the high-temperature continuous charge test is brought to room temperature and discharged at a constant current of 750 mA until it reaches 2.75 V to obtain the discharge capacity Q3 after the high-temperature continuous charge test for 10 minutes. Paused. And the remaining capacity rate (%) after a high-temperature continuous charge test was calculated | required by following formula (4), and the result was shown in following Table 2.

残存容量率(%)=(Q3/Qo)×100…(4) Remaining capacity ratio (%) = (Q3 / Qo) × 100 (4)

さらに、10分間休止した後の各非水電解質二次電池を、室温状態にて、初期充電の場合と同様に、4.40Vまで定電流充電した後、4.40Vで定電圧充電した。そして、10分間休止した後、750mAの定電流で2.75Vになるまで放電した。この時の充電容量Qbと放電容量Q4とを求めた。そして、下記の式(5)により高温連続充電試験後の復帰容量率(%)を求めると共に、下記の式(6)により高温連続充電試験後の充放電効率(%)を求め、その結果を下記の表2に示した。   Furthermore, each non-aqueous electrolyte secondary battery after resting for 10 minutes was charged at a constant current to 4.40 V in the room temperature state as in the case of initial charging, and then charged at a constant voltage at 4.40 V. And after resting for 10 minutes, it discharged until it became 2.75V with a 750 mA constant current. The charge capacity Qb and the discharge capacity Q4 at this time were determined. And while calculating | requiring the return capacity rate (%) after a high-temperature continuous charge test by following formula (5), calculating | requiring the charge / discharge efficiency (%) after a high-temperature continuous charge test by following formula (6), The results are shown in Table 2 below.

復帰容量率(%)=(Q4/Qo)×100…(5)
充放電効率(%)=(Q4/Qb)×100…(6)
Return capacity ratio (%) = (Q4 / Qo) × 100 (5)
Charging / discharging efficiency (%) = (Q4 / Qb) × 100 (6)

表2より、実施例A1〜A7の各非水電解質二次電池は、比較例a1〜a4の非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率が大きく向上した。   From Table 2, each nonaqueous electrolyte secondary battery of Examples A1 to A7 has a small increase in thickness of the battery after the high-temperature continuous charge test as compared with the nonaqueous electrolyte secondary batteries of Comparative Examples a1 to a4. The residual capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the continuous charge test were greatly improved.

また、実施例A1〜A7の各非水電解質二次電池は、比較例x1〜x3,y1,z1の各非水電解質二次電池に比べても、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率が大きく向上した。
これは、充放電に関与しないアルミニウム化合物や亜鉛化合物の粒子を正極活物質粒子の表面に付着させることにより、非水電解液と正極活物質粒子との接触が抑制されるが、正極活物質に含まれる触媒性を有する遷移金属により、正極活物質の表面における非水電解液の分解を十分に抑制できなかったためと考えられる。
Moreover, each non-aqueous electrolyte secondary battery of Examples A1-A7 is the amount of increase in battery thickness after the high-temperature continuous charge test as compared with the non-aqueous electrolyte secondary batteries of Comparative Examples x1-x3, y1, z1. The residual capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the high-temperature continuous charge test were greatly improved.
This is because the contact between the non-aqueous electrolyte and the positive electrode active material particles is suppressed by adhering particles of an aluminum compound or a zinc compound not involved in charge / discharge to the surface of the positive electrode active material particles. It is considered that the decomposition of the non-aqueous electrolyte on the surface of the positive electrode active material could not be sufficiently suppressed by the contained transition metal having catalytic properties.

また、実施例A1及び比較例a1の各非水電解質二次電池を、初期充電の場合と同様に、4.40Vまで定電流充電した後、4.40Vで定電圧充電した。そして、これらの各非水電解質二次電池を解体して、それぞれ正極を取り出した。取り出した各正極をそれぞれ非水電解液と一緒にSUS製の密閉セル内に入れて密閉し、5℃/分の昇温速度で350℃まで昇温させて示差走査熱量計(DSC)により熱分析して熱量と温度との関係を求め、その結果を図3に示した。   In addition, each nonaqueous electrolyte secondary battery of Example A1 and Comparative Example a1 was charged with a constant current up to 4.40 V in the same manner as in the initial charging, and then charged with a constant voltage at 4.40 V. Then, each of these nonaqueous electrolyte secondary batteries was disassembled and the positive electrode was taken out. Each positive electrode taken out is put in a closed cell made of SUS together with a non-aqueous electrolyte, sealed, heated to 350 ° C. at a rate of 5 ° C./min, and heated by a differential scanning calorimeter (DSC). Analysis was performed to determine the relationship between the amount of heat and temperature, and the results are shown in FIG.

図3によると、実施例A1及び比較例a1における正極においては、熱量と温度との関係に殆ど差がなく、特許文献3に示されるような熱的安定性の変化は生じなかった。   According to FIG. 3, in the positive electrode in Example A1 and Comparative Example a1, there was almost no difference in the relationship between the amount of heat and the temperature, and the change in thermal stability as shown in Patent Document 3 did not occur.

(実施例A8)
実施例A8では、実施例A1における正極の作製において、正極活物質粒子として、MgとAlとZrとがそれぞれ0.5モル%固溶されたコバルト酸リチウムを用いた。それ以外は、実施例A1の場合と同様にして、この正極活物質粒子の表面にエルビウム化合物の粒子を付着させて正極を作製すると共に、この正極を用いて非水電解質二次電池を作製した。
(Example A8)
In Example A8, in the production of the positive electrode in Example A1, lithium cobalt oxide in which 0.5 mol% of Mg, Al, and Zr were dissolved as positive electrode active material particles was used. Otherwise, in the same manner as in Example A1, a positive electrode was prepared by attaching erbium compound particles to the surface of the positive electrode active material particles, and a nonaqueous electrolyte secondary battery was prepared using this positive electrode. .

(比較例a5)
比較例a5では、実施例A1における正極の作製において、実施例A8と同じ正極活物質粒子を用い、この正極活物質粒子の表面にエルビウム化合物を付着させなかった。それ以外は、実施例A1の場合と同様にして、非水電解質二次電池を作製した。
(Comparative Example a5)
In Comparative Example a5, in producing the positive electrode in Example A1, the same positive electrode active material particles as in Example A8 were used, and no erbium compound was attached to the surfaces of the positive electrode active material particles. Other than that was carried out similarly to the case of Example A1, and produced the nonaqueous electrolyte secondary battery.

そして、実施例A8及び比較例a5の各非水電解質二次電池についても、実施例A1〜A7及び比較例a1〜a4の場合と同様にして、高温保存後の残存容量率(%)、高温保存後の復帰容量率(%)、高温保存後の充放電効率(%)及び高温保存後における非水電解質二次電池の厚み増加量を求めた。そして、これらの結果を、実施例A1及び比較例a1の非水電解質二次電池の結果と合わせて下記の表3に示した。   And also about each nonaqueous electrolyte secondary battery of Example A8 and Comparative Example a5, it is the same as that of Example A1-A7 and Comparative Examples a1-a4, and the remaining capacity ratio (%) after high temperature storage, high temperature The return capacity ratio after storage (%), the charge / discharge efficiency after high temperature storage (%), and the increase in thickness of the nonaqueous electrolyte secondary battery after high temperature storage were determined. These results are shown in Table 3 below together with the results of the nonaqueous electrolyte secondary batteries of Example A1 and Comparative Example a1.

また、実施例A8及び比較例a5の各非水電解質二次電池についても、実施例A1〜A7及び比較例a1〜a4の場合と同様にして、高温連続充電試験後の残存容量率(%)、高温連続充電試験後の復帰容量率(%)、高温連続充電試験後の充放電効率(%)及び高温連続充電試験後における非水電解質二次電池の厚み増加量を求めた。そして、これらの結果を、実施例A1及び比較例a1の非水電解質二次電池の結果と合わせて下記の表4に示した。   Moreover, also about each nonaqueous electrolyte secondary battery of Example A8 and Comparative Example a5, it is the same as that of Example A1-A7 and Comparative Examples a1-a4, and the remaining capacity rate (%) after a high-temperature continuous charge test Then, the return capacity ratio (%) after the high-temperature continuous charge test, the charge / discharge efficiency (%) after the high-temperature continuous charge test, and the thickness increase amount of the nonaqueous electrolyte secondary battery after the high-temperature continuous charge test were determined. These results are shown in Table 4 below together with the results of the nonaqueous electrolyte secondary batteries of Example A1 and Comparative Example a1.

この結果、実施例A1〜A7の各非水電解質二次電池と同様に、実施例A8の非水電解質二次電池は、比較例a1,a5の非水電解質二次電池に比べて、高温保存後の残存容量率、復帰容量率及び充放電効率が何れも向上した。   As a result, similarly to the nonaqueous electrolyte secondary batteries of Examples A1 to A7, the nonaqueous electrolyte secondary battery of Example A8 is stored at a higher temperature than the nonaqueous electrolyte secondary batteries of Comparative Examples a1 and a5. The remaining capacity rate, the return capacity rate, and the charge / discharge efficiency were all improved.

また、実施例A8の非水電解質二次電池のほうが、比較例a1,a5の非水電解質二次電池よりも高温連続充電試験後における電池の厚み増加量が非常に小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も大きく向上した。   Further, the non-aqueous electrolyte secondary battery of Example A8 has a much smaller increase in battery thickness after the high-temperature continuous charge test than the non-aqueous electrolyte secondary batteries of Comparative Examples a1 and a5. The remaining capacity ratio, the return capacity ratio, and the charge / discharge efficiency were significantly improved.

また、実施例A8の非水電解質二次電池は、実施例A1の非水電解質二次電池に比べても、高温保存後における電池の厚み増加量が小さく、高温保存後の残存容量率、復帰容量率及び充放電効率がさらに向上すると共に、高温連続充電試験後における残存容量率及び復帰容量率もさらに向上しており、特に、高温連続充電試験後における電池の厚み増加量が非常に小さくなった。   Further, the non-aqueous electrolyte secondary battery of Example A8 has a smaller increase in battery thickness after high-temperature storage than the non-aqueous electrolyte secondary battery of Example A1, and the remaining capacity ratio after high-temperature storage and recovery The capacity ratio and charge / discharge efficiency are further improved, and the remaining capacity ratio and the return capacity ratio after the high-temperature continuous charge test are further improved. In particular, the increase in the thickness of the battery after the high-temperature continuous charge test is very small. It was.

これは、実施例A8に示すように、MgとAlとの他にZrが固溶されたコバルト酸リチウムからなる正極活物質粒子の表面に、エルビウム化合物を分散させて付着させた正極活物質を用いた場合、固溶されたZrによって正極活物質の結晶構造が安定する。また、表面に分散かつ付着されたエルビウム化合物によって正極活物質と非水電解液との反応が防止される。そして、これらの相乗効果により、高温連続充電試験後における電池の厚み増加量が大きく減少したと考えられる。   This is because, as shown in Example A8, a positive electrode active material in which an erbium compound is dispersed and adhered to the surface of positive electrode active material particles made of lithium cobaltate in which Zr is dissolved in addition to Mg and Al. When used, the crystal structure of the positive electrode active material is stabilized by the dissolved Zr. Further, the reaction between the positive electrode active material and the non-aqueous electrolyte is prevented by the erbium compound dispersed and adhered to the surface. And it is thought by these synergistic effects that the thickness increase amount of the battery after a high-temperature continuous charge test greatly decreased.

これに対して、比較例a5の非水電解質二次電池は、比較例a1の非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が小さくならなかった。これは、比較例a5に示すように、MgとAlとの他にZrが固溶されたコバルト酸リチウムからなる正極活物質粒子を用いても、この正極活物質粒子の表面にエルビウム化合物が分散かつ付着されないため、正極活物質と非水電解液とが反応して、固溶されたZrによって正極活物質の結晶構造が安定する効果が得られなかったと考えられる。   In contrast, in the nonaqueous electrolyte secondary battery of Comparative Example a5, the increase in thickness of the battery after the high-temperature continuous charge test did not become smaller than that of the nonaqueous electrolyte secondary battery of Comparative Example a1. As shown in Comparative Example a5, even if positive electrode active material particles made of lithium cobaltate in which Zr is dissolved in addition to Mg and Al are used, the erbium compound is dispersed on the surface of the positive electrode active material particles. In addition, since the positive electrode active material and the nonaqueous electrolytic solution react with each other, the effect of stabilizing the crystal structure of the positive electrode active material due to the solid solution of Zr was not obtained.

(実施例B1)
実施例B1では、下記のように作製した正極を用いた。
(Example B1)
In Example B1, a positive electrode produced as follows was used.

[正極の作製]
正極活物質粒子として、MgとAlとがそれぞれ0.5モル%固溶されたコバルト酸リチウムを用いた。そして、この正極活物質粒子1000gを3リットルの純水中に投入し、これを撹拌しながら、5.24gの硝酸イッテルビウム3水和物を200mlの純水に溶解させた硝酸イッテルビウム水溶液を添加した。このとき、この溶液のpHが9になるように10質量%の水酸化ナトリウム水溶液を適宜加えて、正極活物質粒子の表面に水酸化イッテルビウムを付着させた。
[Production of positive electrode]
As the positive electrode active material particles, lithium cobalt oxide in which 0.5 mol% of Mg and Al were dissolved was used. Then, 1000 g of the positive electrode active material particles were put into 3 liters of pure water, and while stirring this, an aqueous ytterbium nitrate solution in which 5.24 g of ytterbium nitrate trihydrate was dissolved in 200 ml of pure water was added. . At this time, a 10% by mass sodium hydroxide aqueous solution was appropriately added so that the pH of this solution was 9, and ytterbium hydroxide was adhered to the surfaces of the positive electrode active material particles.

そして、これを吸引濾過して処理物を濾取し、この処理物を120℃で乾燥させて、水酸化イッテルビウムが表面に分散かつ付着された正極活物質粒子を得た。   And this was suction-filtered, the processed material was collected by filtration, and this processed material was dried at 120 degreeC, and the positive electrode active material particle by which the ytterbium hydroxide was disperse | distributed and adhered to the surface was obtained.

次いで、水酸化イッテルビウムが表面に分散かつ付着された正極活物質粒子を空気雰囲気中において300℃の温度で5時間熱処理した。これにより、正極活物質粒子の表面に、水酸化イッテルビウムとオキシ水酸化イッテルビウムとからなるイッテルビウム化合物の粒子が分散かつ付着された正極活物質を得た。   Next, the positive electrode active material particles having ytterbium hydroxide dispersed and adhered to the surface were heat-treated at a temperature of 300 ° C. for 5 hours in an air atmosphere. As a result, a positive electrode active material in which particles of ytterbium compound composed of ytterbium hydroxide and ytterbium oxyhydroxide were dispersed and adhered to the surface of the positive electrode active material particles was obtained.

ここで、この正極活物質においては、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたイッテルビウム化合物におけるイッテルビウム元素(Yb)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着された水酸化イッテルビウムの多くがオキシ水酸化イッテルビウムに変化した。   Here, in the positive electrode active material, the ratio of the ytterbium element (Yb) in the ytterbium compound attached to the surface of the positive electrode active material particles made of lithium cobalt oxide was 0.22% by mass. Further, most of the ytterbium hydroxide attached to the surface of the positive electrode active material particles was changed to ytterbium oxyhydroxide.

また、実施例B1の正極活物質をSEMにより観察した結果、正極活物質粒子の表面に付着されたイッテルビウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、イッテルビウム化合物の粒子は、正極活物質粒子の表面に分散かつ付着されていた。   Moreover, as a result of observing the positive electrode active material of Example B1 with SEM, most of the ytterbium compound particles adhered to the surface of the positive electrode active material particles had a particle size of 100 nm or less. The ytterbium compound particles were dispersed and attached to the surfaces of the positive electrode active material particles.

次に、正極活物質と、導電剤のアセチレンブラックと、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、混合撹拌装置(特殊機化社製:コンビミックス)により混合攪拌させて正極合剤スラリーを調製した。このとき、正極活物質と導電剤と結着剤とを95:2.5:2.5の質量比にした。そして、この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に均一に塗布した後、これを乾燥させ、圧延ローラにより圧延させて、正極集電体の両面に正極合剤層が形成された正極を得た。なお、この正極における正極活物質の充填密度は3.60g/cm3であった。 Next, a positive electrode active material, a conductive agent acetylene black, and a N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder is dissolved are mixed and agitated by a special stirrer (made by Tokushu Kika Co., Ltd .: Combimix). Were mixed and stirred to prepare a positive electrode mixture slurry. At this time, the positive electrode active material, the conductive agent, and the binder were in a mass ratio of 95: 2.5: 2.5. And after apply | coating this positive mix slurry uniformly on both surfaces of the positive electrode collector which consists of aluminum foil, this is dried and rolled with a rolling roller, and a positive mix layer is formed on both surfaces of a positive electrode collector A positive electrode was obtained. In addition, the packing density of the positive electrode active material in this positive electrode was 3.60 g / cm 3 .

そして、上記の正極を用いる以外は、実施例A1の場合と同様にして、4.40Vまで充電した場合の設計容量が780mAhである扁平型の非水電解質二次電池を作製した。   A flat nonaqueous electrolyte secondary battery having a design capacity of 780 mAh when charged to 4.40 V was produced in the same manner as in Example A1 except that the above positive electrode was used.

(実施例B2)
実施例B2では、実施例B1における正極の作製において、水酸化イッテルビウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中にて200℃の温度で5時間熱処理した。それ以外は、実施例B1の場合と同様にして非水電解質二次電池を作製した。
(Example B2)
In Example B2, in the production of the positive electrode in Example B1, the positive electrode active material particles having ytterbium hydroxide dispersed and adhered to the surface were heat-treated at a temperature of 200 ° C. for 5 hours in an air atmosphere. Other than that was carried out similarly to the case of Example B1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例B1のように熱処理して得た正極活物質では、正極活物質粒子の表面に付着された水酸化イッテルビウムの多くがオキシ水酸化イッテルビウムに変化されず、水酸化イッテルビウムの状態で残っていた。   Here, in the positive electrode active material obtained by heat treatment as in Example B1, most of the ytterbium hydroxide attached to the surface of the positive electrode active material particles was not changed to ytterbium oxyhydroxide, but in the ytterbium hydroxide state. It remained.

(実施例B3)
実施例B3では、実施例B1における正極の作製において、水酸化イッテルビウムが表面に分散かつ付着された正極活物質粒子を、120℃で乾燥のみの熱処理で終了した。それ以外は、実施例B1の場合と同様にして非水電解質二次電池を作製した。
(Example B3)
In Example B3, in the production of the positive electrode in Example B1, the positive electrode active material particles in which ytterbium hydroxide was dispersed and adhered to the surface were finished by a heat treatment only by drying at 120 ° C. Other than that was carried out similarly to the case of Example B1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例B3のように120℃で乾燥のみの熱処理では、正極活物質粒子の表面に付着された水酸化イッテルビウムがオキシ水酸化イッテルビウムに変化しなかった。   Here, in the heat treatment of only drying at 120 ° C. as in Example B3, ytterbium hydroxide attached to the surface of the positive electrode active material particles did not change to ytterbium oxyhydroxide.

(実施例B4)
実施例B4では、実施例B1における正極の作製において、正極活物質粒子の表面に水酸化イッテルビウムを付着させるにあたり、硝酸イッテルビウム3水和物を200mlの純水に溶解させる量を1.59gに変更した。それ以外は、実施例B1の場合と同様にして非水電解質二次電池を作製した。
(Example B4)
In Example B4, in the production of the positive electrode in Example B1, the amount of ytterbium nitrate trihydrate dissolved in 200 ml of pure water was changed to 1.59 g when attaching ytterbium hydroxide to the surface of the positive electrode active material particles. did. Other than that was carried out similarly to the case of Example B1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例B4では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたイッテルビウム化合物におけるイッテルビウム元素(Yb)の割合は、0.067質量%であった。また、正極活物質粒子の表面に付着された水酸化イッテルビウムの多くがオキシ水酸化イッテルビウムに変化した。   Here, in Example B4, the ratio of the ytterbium element (Yb) in the ytterbium compound attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.067% by mass. Further, most of the ytterbium hydroxide attached to the surface of the positive electrode active material particles was changed to ytterbium oxyhydroxide.

(比較例b1)
比較例b1では、実施例B1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子の表面にイッテルビウム化合物を付着させなかった。それ以外は、実施例B1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example b1)
In Comparative Example b1, the ytterbium compound was not adhered to the surface of the positive electrode active material particles made of lithium cobaltate in the production of the positive electrode in Example B1. Other than that was carried out similarly to the case of Example B1, and produced the nonaqueous electrolyte secondary battery.

(比較例b2)
比較例b2では、実施例B1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子500gと、酸化イッテルビウム試薬を一次粒子の粒子径が300nmになるまで粉砕した酸化イッテルビウム1.25gとを、混合処理機(ホソカワミクロン社製:ノビルタ)を用いて混合した。これにより、コバルト酸リチウムからなる正極活物質粒子の表面に酸化イッテルビウムを機械的に付着させて正極活物質を作製した。
(Comparative Example b2)
In Comparative Example b2, in the production of the positive electrode in Example B1, 500 g of positive electrode active material particles made of lithium cobaltate and 1.25 g of ytterbium oxide obtained by pulverizing ytterbium oxide reagent until the particle diameter of primary particles was 300 nm, Mixing was performed using a mixing processor (manufactured by Hosokawa Micron Corporation: Nobilta). In this way, ytterbium oxide was mechanically attached to the surface of the positive electrode active material particles made of lithium cobaltate to produce a positive electrode active material.

そして、このように作製した正極活物質を用いる以外は、実施例B1の場合と同様にして非水電解質二次電池を作製した。   And the nonaqueous electrolyte secondary battery was produced like the case of Example B1 except using the positive electrode active material produced in this way.

ここで、比較例b2の正極活物質においては、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化イッテルビウムにおけるイッテルビウム元素(Yb)の割合は、0.22質量%であった。   Here, in the positive electrode active material of Comparative Example b2, the ratio of the ytterbium element (Yb) in the ytterbium oxide attached to the surface of the positive electrode active material particles made of lithium cobaltate is 0.22% by mass. there were.

また、比較例b2の正極活物質をSEMにより観察した結果、酸化イッテルビウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されなかった。   Moreover, as a result of observing the positive electrode active material of Comparative Example b2 by SEM, ytterbium oxide was aggregated and adhered to the recessed portion of the positive electrode active material particles, and was not dispersed and adhered to the surface of the positive electrode active material particles.

(比較例b3)
比較例b3では、比較例b2における一次粒子の粒子径が300nmの酸化イッテルビウムの量を5gに変更して正極活物質を作製した。そして、このように作製した正極活物質を用いる以外は、実施例B1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example b3)
In Comparative Example b3, a positive electrode active material was prepared by changing the amount of ytterbium oxide having a primary particle diameter of 300 nm in Comparative Example b2 to 5 g. And the nonaqueous electrolyte secondary battery was produced like the case of Example B1 except using the positive electrode active material produced in this way.

ここで、比較例b3の正極活物質においては、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化イッテルビウムにおけるイッテルビウム元素(Yb)の割合は、0.87質量%であった。   Here, in the positive electrode active material of Comparative Example b3, the ratio of the ytterbium element (Yb) in the ytterbium oxide attached to the surface of the positive electrode active material particles made of lithium cobaltate is 0.87% by mass. there were.

また、比較例b3の正極活物質をSEMにより観察した結果、比較例b2の場合と同様に、酸化イッテルビウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されなかった。   Further, as a result of observing the positive electrode active material of Comparative Example b3 by SEM, as in Comparative Example b2, ytterbium oxide is aggregated and attached to the recessed portions of the positive electrode active material particles. It was not dispersed and adhered to the surface.

(比較例b4)
比較例b4では、実施例B1における正極の作製において、水酸化イッテルビウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中にて500℃の温度で5時間熱処理した。それ以外は、実施例B1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example b4)
In Comparative Example b4, in the production of the positive electrode in Example B1, the positive electrode active material particles in which ytterbium hydroxide was dispersed and adhered to the surface were heat-treated at a temperature of 500 ° C. for 5 hours in an air atmosphere. Other than that was carried out similarly to the case of Example B1, and produced the nonaqueous electrolyte secondary battery.

ここで、比較例b4のように熱処理して得た正極活物質においては、正極活物質粒子の表面に付着された水酸化イッテルビウムが酸化イッテルビウムに変化すると共に、イッテルビウムの一部が正極活物質粒子の内部に拡散されていた。   Here, in the positive electrode active material obtained by heat treatment as in Comparative Example b4, ytterbium hydroxide attached to the surface of the positive electrode active material particles is changed to ytterbium oxide, and part of the ytterbium is positive electrode active material particles. Was diffused inside.

次に、実施例B1〜B4及び比較例b1〜b4の各非水電解質二次電池を、実施例A1等の非水電解質二次電池の場合と同様にして、4.40Vまで定電流充電した後、4.40Vで定電圧充電して、初期充電した。その後、初期充電した各非水電解質二次電池を10分間休止した後、750mAの定電流で2.75Vになるまで初期放電した。このときの放電容量Qoを測定した。   Next, the nonaqueous electrolyte secondary batteries of Examples B1 to B4 and Comparative Examples b1 to b4 were charged with a constant current up to 4.40 V in the same manner as in the case of the nonaqueous electrolyte secondary batteries of Example A1 and the like. After that, the battery was charged at a constant voltage of 4.40 V and initially charged. Thereafter, each of the initially charged nonaqueous electrolyte secondary batteries was paused for 10 minutes, and then initially discharged at a constant current of 750 mA until it reached 2.75V. The discharge capacity Qo at this time was measured.

そして、実施例B1〜B4及び比較例b4の各非水電解質二次電池については、初期の充放電効率を求めた。   And the initial charging / discharging efficiency was calculated | required about each nonaqueous electrolyte secondary battery of Examples B1-B4 and Comparative Example b4.

この結果、実施例B1〜B4の各非水電解質二次電池では、初期の充放電効率が89%であったのに対して、比較例b4の非水電解質二次電池では、初期の充放電効率が87%であった。これは、比較例b4の非水電解質二次電池の場合、正極活物質粒子の表面に付着された水酸化イッテルビウムが酸化イッテルビウムに変化すると共に、イッテルビウムの一部が正極活物質粒子の内部に拡散されたためと考えられる。   As a result, in each of the nonaqueous electrolyte secondary batteries of Examples B1 to B4, the initial charge / discharge efficiency was 89%, whereas in the nonaqueous electrolyte secondary battery of Comparative Example b4, the initial charge / discharge efficiency was The efficiency was 87%. This is because, in the case of the non-aqueous electrolyte secondary battery of Comparative Example b4, the ytterbium hydroxide attached to the surface of the positive electrode active material particles changes to ytterbium oxide, and part of the ytterbium diffuses inside the positive electrode active material particles. It is thought that it was because it was done.

次に、初期充放電した後の実施例B1,B2及び比較例b1〜b4の各非水電解質二次電池を、実施例A1等の非水電解質二次電池の場合と同様に、4.40Vまで定電流充電した後、4.40Vで定電圧充電した。そして、各非水電解質二次電池を60℃の雰囲気中において5日間保存した。その後、各非水電解質二次電池を、実施例A1等の非水電解質二次電池の場合と同様にして、室温まで冷却し、750mAの定電流で2.75Vになるまで放電して、高温保存後の放電容量Q1を求めた。そして、式(1)により高温保存後の残存容量率(%)を求め、その結果を下記の表5に示した。   Next, the non-aqueous electrolyte secondary batteries of Examples B1 and B2 and Comparative Examples b1 to b4 after the initial charge / discharge were set to 4.40 V in the same manner as the non-aqueous electrolyte secondary batteries of Example A1 and the like. Then, the battery was charged at a constant current up to 4.40V. Each nonaqueous electrolyte secondary battery was stored in an atmosphere at 60 ° C. for 5 days. Thereafter, each non-aqueous electrolyte secondary battery is cooled to room temperature in the same manner as in the case of the non-aqueous electrolyte secondary battery such as Example A1, and discharged to 2.75 V at a constant current of 750 mA. The discharge capacity Q1 after storage was determined. And the residual capacity ratio (%) after high temperature preservation | save was calculated | required by Formula (1), and the result was shown in following Table 5.

次いで、高温保存後の放電容量Q1を求めた各非水電解質二次電池を、実施例A1等の非水電解質二次電池の場合と同様に、4.40Vまで定電流充電した後、4.40Vで定電圧充電した。そして、10分間休止した後、750mAの定電流で2.75Vになるまで放電し、この時の充電容量Qaと放電容量Q2とを求めた。そして、式(3)により高温保存後の復帰容量率(%)を求めると共に、式(4)により高温保存後の充放電効率(%)を求め、その結果を下記の表5に示した。   Next, each non-aqueous electrolyte secondary battery whose discharge capacity Q1 after storage at high temperature was determined was charged with a constant current to 4.40 V in the same manner as in the case of the non-aqueous electrolyte secondary battery of Example A1, etc. A constant voltage was charged at 40V. Then, after resting for 10 minutes, the battery was discharged at a constant current of 750 mA until it reached 2.75 V, and the charge capacity Qa and the discharge capacity Q2 at this time were determined. And while calculating | requiring the return capacity rate (%) after high temperature preservation | save by Formula (3), charging / discharging efficiency (%) after high temperature preservation | save was calculated | required by Formula (4), The result was shown in following Table 5.

また、実施例B1,B2及び比較例b1〜b4の各非水電解質二次電池を、上記のように60℃の雰囲気中にて5日間保存した前後における各非水電解質二次電池の厚み増加量を求め、その結果を下記の表1に示した。   Moreover, each nonaqueous electrolyte secondary battery of Examples B1, B2 and Comparative Examples b1 to b4 was increased in thickness before and after being stored for 5 days in an atmosphere at 60 ° C. as described above. The amount was determined and the results are shown in Table 1 below.

表5より、コバルト酸リチウムからなる正極活物質粒子の表面に、水酸化イッテルビウムとオキシ水酸化イッテルビウムとからなるイッテルビウム化合物の粒子が分散かつ付着された正極活物質を用いた実施例B1,B2の各非水電解質二次電池は、4.40Vの高い電圧まで充電した場合における高温保存後の残存容量率、復帰容量率及び充放電効率が何れも高い値を示した。一方、比較例b1〜b4の非水電解質二次電池は、実施例B1,B2の各非水電解質二次電池に比べて、4.40Vの高い電圧まで充電した場合における高温保存後の残存容量率、復帰容量率及び充放電効率が何れも低下した。   From Table 5, Examples B1 and B2 using positive electrode active materials in which particles of ytterbium hydroxide and ytterbium oxyhydroxide particles were dispersed and adhered to the surface of the positive electrode active material particles made of lithium cobaltate. Each non-aqueous electrolyte secondary battery showed a high value for the remaining capacity ratio, the restored capacity ratio, and the charge / discharge efficiency after high-temperature storage when charged to a high voltage of 4.40V. On the other hand, the non-aqueous electrolyte secondary batteries of Comparative Examples b1 to b4 have a remaining capacity after high-temperature storage when charged to a high voltage of 4.40 V compared to the non-aqueous electrolyte secondary batteries of Examples B1 and B2. The rate, the return capacity rate, and the charge / discharge efficiency all decreased.

また、非水電解質二次電池の厚み増加量に関して、比較例b1,b2の非水電解質二次電池は、実施例B1,B2及び比較例b3,b4の非水電解質二次電池に比較して、厚み増加量が小さかった。これは、比較例b1,b2の非水電解質二次電池の場合、これらの正極における自己放電によって正極の電位が低下し、正極活物質と非水電解液との反応が少なくなったためと考えられる。   Moreover, regarding the thickness increase amount of the nonaqueous electrolyte secondary battery, the nonaqueous electrolyte secondary batteries of Comparative Examples b1 and b2 are compared with the nonaqueous electrolyte secondary batteries of Examples B1 and B2 and Comparative Examples b3 and b4. The increase in thickness was small. This is considered to be because in the case of the non-aqueous electrolyte secondary batteries of Comparative Examples b1 and b2, the potential of the positive electrode decreased due to self-discharge in these positive electrodes, and the reaction between the positive electrode active material and the non-aqueous electrolyte decreased. .

次に、実施例B1〜B4及び比較例b1〜b4の各非水電解質二次電池を、初期充放電させて、初期の放電容量Qoを測定した。その後、各非水電解質二次電池に対して、実施例A1等の非水電解質二次電池の場合と同様にして、高温連続充電試験を行った。そして、高温連続充電試験前に対する高温連続充電試験後の各非水電解質二次電池における厚み増加量を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表6に示した。   Next, the nonaqueous electrolyte secondary batteries of Examples B1 to B4 and Comparative Examples b1 to b4 were initially charged and discharged, and the initial discharge capacity Qo was measured. Thereafter, a high-temperature continuous charge test was performed on each non-aqueous electrolyte secondary battery in the same manner as in the case of the non-aqueous electrolyte secondary battery such as Example A1. And the thickness increase amount in each nonaqueous electrolyte secondary battery after the high temperature continuous charge test with respect to the high temperature continuous charge test was calculated | required. The results are shown in Table 6 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

また、高温連続充電試験後における各非水電解質二次電池を、室温にしてそれぞれ750mAの定電流で2.75Vになるまで放電し、高温連続充電試験後の放電容量Q3を求め、10分間休止した。そして、式(4)により高温連続充電試験後の残存容量率(%)を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表6に示した。   In addition, each non-aqueous electrolyte secondary battery after the high-temperature continuous charge test is discharged at room temperature to a constant current of 750 mA until it reaches 2.75 V, and the discharge capacity Q3 after the high-temperature continuous charge test is obtained to rest for 10 minutes. did. And the remaining capacity rate (%) after a high-temperature continuous charge test was calculated | required by Formula (4). The results are shown in Table 6 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

さらに、10分間休止した後の各非水電解質二次電池を、室温において、750mAの定電流で4.40Vまで定電流充電した後、4.40Vの定電圧で電流値が37.5mAになるまで定電圧充電して充電容量Qbを求めた。そして、各非水電解質二次電池を10分間休止した。その後、750mAの定電流で2.75Vになるまで放電し、放電容量Q4を求めた。そして、式(5)により高温連続充電試験後の復帰容量率(%)を求めると共に、式(6)により高温連続充電試験後の充放電効率(%)を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表6に示した
Further, after each non-aqueous electrolyte secondary battery after 10 minutes of rest is charged at a constant current of 750 mA to 4.40 V at room temperature, the current value becomes 37.5 mA at a constant voltage of 4.40 V. The charge capacity Qb was obtained by charging at a constant voltage. Then, each nonaqueous electrolyte secondary battery was paused for 10 minutes. Then, it discharged until it became 2.75V with a constant current of 750 mA, and discharge capacity Q4 was calculated | required. And while calculating | requiring the return capacity rate (%) after a high temperature continuous charge test by Formula (5), the charging / discharging efficiency (%) after a high temperature continuous charge test was calculated | required by Formula (6). The results are shown in Table 6 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

表6より、実施例B1〜B4の各非水電解質二次電池は、比較例b1〜b4の非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も大きく向上した。   From Table 6, each nonaqueous electrolyte secondary battery in Examples B1 to B4 has a small increase in battery thickness after the high-temperature continuous charge test, compared with the nonaqueous electrolyte secondary batteries in Comparative Examples b1 to b4. The remaining capacity rate, the return capacity rate, and the charge / discharge efficiency after the continuous charge test were also greatly improved.

また、実施例B1〜B4の各非水電解質二次電池も、実施例A1〜A7の各非水電解質二次電池と同様に、比較例x1〜x3,y1の非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も大きく向上した。   Moreover, each nonaqueous electrolyte secondary battery of Example B1-B4 is also compared with the nonaqueous electrolyte secondary battery of Comparative Examples x1-x3, y1 similarly to each nonaqueous electrolyte secondary battery of Examples A1-A7. Thus, the increase in the thickness of the battery after the high-temperature continuous charge test was small, and the remaining capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the high-temperature continuous charge test were also greatly improved.

(実施例C1)
実施例C1では、下記のようにして作製した正極を用いた。
(Example C1)
In Example C1, a positive electrode produced as follows was used.

[正極の作製]
正極活物質粒子として、MgとAlとがそれぞれ0.5モル%固溶されたコバルト酸リチウムを用いた。そして、この正極活物質粒子1000gを3リットルの純水中に投入し、これを撹拌しながら、6.19gの硝酸テルビウム6水和物を200mlの純水に溶解させた硝酸テルビウム水溶液を添加した。このとき、この溶液のpHが9になるように10質量%の水酸化ナトリウム水溶液を適宜加えて、正極活物質粒子の表面に水酸化テルビウムを付着させた。そして、これを吸引濾過して処理物を濾取し、この処理物を120℃で乾燥させて、水酸化テルビウムが表面に分散かつ付着された正極活物質粒子を得た。
[Production of positive electrode]
As the positive electrode active material particles, lithium cobalt oxide in which 0.5 mol% of Mg and Al were dissolved was used. Then, 1000 g of the positive electrode active material particles were put into 3 liters of pure water, and an aqueous terbium nitrate solution in which 6.19 g of terbium nitrate hexahydrate was dissolved in 200 ml of pure water was added while stirring the particles. . At this time, a 10% by mass sodium hydroxide aqueous solution was appropriately added so that the pH of this solution was 9, and terbium hydroxide was adhered to the surfaces of the positive electrode active material particles. And this was suction-filtered, the processed material was collected by filtration, and this processed material was dried at 120 degreeC, and the positive electrode active material particle by which terbium hydroxide was disperse | distributed and adhered to the surface was obtained.

次いで、水酸化テルビウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において300℃の温度で5時間熱処理した。これにより、正極活物質粒子の表面にテ
ルビウム化合物の粒子が分散かつ付着された正極活物質を得た。
Next, the positive electrode active material particles having terbium hydroxide dispersed and adhered to the surface thereof were heat-treated in an air atmosphere at a temperature of 300 ° C. for 5 hours. As a result, a positive electrode active material in which terbium compound particles were dispersed and adhered to the surface of the positive electrode active material particles was obtained.

実施例C1の正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたテルビウム化合物におけるテルビウム元素(Tb)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着されたテルビウム化合物は、水酸化テルビウムの多くがオキシ水酸化テルビウムに変化した。   In the positive electrode active material of Example C1, the ratio of the terbium element (Tb) in the terbium compound attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.22% by mass. In the terbium compound attached to the surface of the positive electrode active material particles, most of the terbium hydroxide was changed to terbium oxyhydroxide.

また、実施例C1の正極活物質をSEMにより観察した結果、正極活物質粒子の表面に付着されたテルビウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、このテルビウム化合物の粒子が、正極活物質粒子の表面に分散かつ付着されていた。   Moreover, as a result of observing the positive electrode active material of Example C1 by SEM, most of the particle diameters of the terbium compound particles attached to the surfaces of the positive electrode active material particles were 100 nm or less. Further, the particles of the terbium compound were dispersed and attached to the surfaces of the positive electrode active material particles.

次に、正極活物質と、導電剤のアセチレンブラックと、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、混合撹拌装置(特殊機化社製:コンビミックス)により混合攪拌させて正極合剤スラリーを調製した。このとき、正極活物質と導電剤と結着剤とを95:2.5:2.5の質量比にした。そして、この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に均一に塗布した後、これを乾燥させ、圧延ローラにより圧延させて、正極集電体の両面に正極合剤層が形成された正極を得た。なお、この正極における正極活物質の充填密度は3.60g/cm3であった。 Next, a positive electrode active material, a conductive agent acetylene black, and a N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder is dissolved are mixed and agitated by a special stirrer (made by Tokushu Kika Co., Ltd .: Combimix). Were mixed and stirred to prepare a positive electrode mixture slurry. At this time, the positive electrode active material, the conductive agent, and the binder were in a mass ratio of 95: 2.5: 2.5. And after apply | coating this positive mix slurry uniformly on both surfaces of the positive electrode collector which consists of aluminum foil, this is dried and rolled with a rolling roller, and a positive mix layer is formed on both surfaces of a positive electrode collector A positive electrode was obtained. In addition, the packing density of the positive electrode active material in this positive electrode was 3.60 g / cm 3 .

そして、上記の正極を用いる以外は、実施例A1の場合と同様にして、4.40Vまで充電した場合の設計容量が780mAhである扁平型の非水電解質二次電池を作製した。   A flat nonaqueous electrolyte secondary battery having a design capacity of 780 mAh when charged to 4.40 V was produced in the same manner as in Example A1 except that the above positive electrode was used.

(実施例C2)
実施例C2では、実施例C1における正極の作製において、水酸化テルビウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において200℃の温度で5時間熱処理した。それ以外は、実施例C1の場合と同様にして非水電解質二次電池を作製した。
(Example C2)
In Example C2, in the production of the positive electrode in Example C1, the positive electrode active material particles having terbium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 200 ° C. for 5 hours. Other than that was carried out similarly to the case of Example C1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例C2のように熱処理して得た正極活物質では、正極活物質粒子の表面に付着された水酸化テルビウムの多くがオキシ水酸化テルビウムに変化されず、水酸化テルビウムの状態で残っていた。   Here, in the positive electrode active material obtained by heat treatment as in Example C2, most of the terbium hydroxide attached to the surface of the positive electrode active material particles was not changed to terbium oxyhydroxide, but in the terbium hydroxide state. It remained.

(実施例C3)
実施例C3では、実施例C1における正極の作製において、水酸化エルビウムが表面に分散かつ付着された正極活物質粒子を、120℃で乾燥のみの熱処理で終了した。それ以外は、実施例C1の場合と同様にして非水電解質二次電池を作製した。
(Example C3)
In Example C3, in the production of the positive electrode in Example C1, the positive electrode active material particles in which erbium hydroxide was dispersed and adhered to the surface were terminated by a heat treatment only by drying at 120 ° C. Other than that was carried out similarly to the case of Example C1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例C3のように120℃で乾燥のみの熱処理では、正極活物質粒子の表面に付着された水酸化テルビウムがオキシ水酸化テルビウムに変化しなかった。   Here, in the heat treatment of only drying at 120 ° C. as in Example C3, the terbium hydroxide attached to the surface of the positive electrode active material particles did not change to terbium oxyhydroxide.

(実施例C4)
実施例C4では、実施例C1における正極の作製において、正極活物質粒子の表面に水酸化テルビウムを付着させるにあたり、硝酸テルビウム6水和物を200mlの純水に溶解させる量を1.91gに変更した。それ以外は、実施例C1の場合と同様にして非水電解質二次電池を作製した。
(Example C4)
In Example C4, in making the positive electrode in Example C1, the amount of terbium nitrate hexahydrate dissolved in 200 ml of pure water was changed to 1.91 g for attaching terbium hydroxide to the surface of the positive electrode active material particles. did. Other than that was carried out similarly to the case of Example C1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例C4では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたテルビウム化合物におけるテルビウム元素(Tb)の割合は、0.067質量%であった。また、正極活物質粒子の表面に付着された水酸化テルビウムの多くがオキシ水酸化テルビウムに変化した。   Here, in Example C4, the ratio of the terbium element (Tb) in the terbium compound attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.067% by mass. Further, most of the terbium hydroxide attached to the surface of the positive electrode active material particles was changed to terbium oxyhydroxide.

(比較例c1)
比較例c1では、実施例C1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子の表面にテルビウム化合物を付着させなかった。それ以外は、実施例C1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example c1)
In Comparative Example c1, the terbium compound was not attached to the surface of the positive electrode active material particles made of lithium cobaltate in the production of the positive electrode in Example C1. Other than that was carried out similarly to the case of Example C1, and produced the nonaqueous electrolyte secondary battery.

(比較例c2)
比較例c2では、実施例C1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子500gと、酸化テルビウム試薬を一次粒子の粒子径が300nmになるまで粉砕した酸化テルビウム1.25gとを、混合処理機(ホソカワミクロン社製:ノビルタ)を用いて混合した。これにより、コバルト酸リチウムからなる正極活物質粒子の表面に酸化テルビウムを機械的に付着させて正極活物質を作製した。
(Comparative Example c2)
In Comparative Example c2, in the production of the positive electrode in Example C1, 500 g of positive electrode active material particles made of lithium cobaltate and 1.25 g of terbium oxide obtained by pulverizing a terbium oxide reagent until the particle diameter of the primary particles becomes 300 nm, Mixing was performed using a mixing processor (manufactured by Hosokawa Micron Corporation: Nobilta). Thus, terbium oxide was mechanically attached to the surface of the positive electrode active material particles made of lithium cobalt oxide to produce a positive electrode active material.

そして、このように作製した正極活物質を用いる以外は、実施例C1の場合と同様にして非水電解質二次電池を作製した。   And the nonaqueous electrolyte secondary battery was produced like the case of Example C1 except using the positive electrode active material produced in this way.

ここで、比較例c2の正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化テルビウムにおけるテルビウム元素(Tb)の割合は、0.22質量%であった。   Here, in the positive electrode active material of Comparative Example c2, the ratio of the terbium element (Tb) in the terbium oxide attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.22% by mass. It was.

また、比較例c2の正極活物質をSEMにより観察した結果、酸化テルビウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されなかった。   In addition, as a result of observing the positive electrode active material of Comparative Example c2 by SEM, terbium oxide was aggregated and adhered to the recessed portions of the positive electrode active material particles, and was not dispersed and adhered to the surface of the positive electrode active material particles.

(比較例c3)
比較例c3では、比較例c2における一次粒子の粒子径が300nmの酸化テルビウムの量を5gに変更して正極活物質を作製した。そして、このように作製した正極活物質を用いる以外は、実施例C1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example c3)
In Comparative Example c3, a positive electrode active material was prepared by changing the amount of terbium oxide having a primary particle diameter of 300 nm in Comparative Example c2 to 5 g. And the nonaqueous electrolyte secondary battery was produced like the case of Example C1 except using the positive electrode active material produced in this way.

ここで、比較例c3の正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化テルビウムにおけるテルビウム元素(Tb)の割合は、0.87質量%であった。   Here, in the positive electrode active material of Comparative Example c3, the ratio of the terbium element (Tb) in the terbium oxide attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.87% by mass. It was.

また、比較例c3の正極活物質をSEMにより観察した結果、比較例c2の場合と同様に、酸化テルビウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されなかった。   Further, as a result of observing the positive electrode active material of Comparative Example c3 by SEM, as in Comparative Example c2, terbium oxide was aggregated and adhered to the dents of the positive electrode active material particles. It was not dispersed and adhered to the surface.

(比較例c4)
比較例c4では、実施例C1における正極の作製において、水酸化テルビウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において500℃の温度で5時間熱処理した。それ以外は、実施例C1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example c4)
In Comparative Example c4, in the production of the positive electrode in Example C1, the positive electrode active material particles having terbium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 500 ° C. for 5 hours. Other than that was carried out similarly to the case of Example C1, and produced the nonaqueous electrolyte secondary battery.

ここで、比較例c4のように熱処理して得た正極活物質では、正極活物質粒子の表面に付着された水酸化テルビウムが酸化テルビウムに変化すると共に、テルビウムの一部が正極活物質粒子の内部に拡散されていた。   Here, in the positive electrode active material obtained by heat treatment as in Comparative Example c4, terbium hydroxide attached to the surface of the positive electrode active material particles is changed to terbium oxide, and part of the terbium is the positive electrode active material particles. It was diffused inside.

次に、実施例C1〜C4及び比較例c1〜c4の各非水電解質二次電池を、実施例A1等の非水電解質二次電池の場合と同様に、4.40Vまで定電流充電した後、4.40Vで定電圧充電して、初期充電した。その後、初期充電した各非水電解質二次電池を10分間休止した後、750mAの定電流で2.75Vになるまで初期放電した。このときの放電容量Qoを測定した。そして、実施例C1〜C4及び比較例c4の各非水電解質二次電
池については、初期の充放電効率を求めた。
Next, after each of the nonaqueous electrolyte secondary batteries of Examples C1 to C4 and Comparative Examples c1 to c4 was charged with a constant current to 4.40 V as in the case of the nonaqueous electrolyte secondary batteries of Example A1 and the like. The battery was charged at a constant voltage of 4.40 V and initially charged. Thereafter, each of the initially charged nonaqueous electrolyte secondary batteries was paused for 10 minutes, and then initially discharged at a constant current of 750 mA until it reached 2.75V. The discharge capacity Qo at this time was measured. And the initial charge-discharge efficiency was calculated | required about each nonaqueous electrolyte secondary battery of Examples C1-C4 and Comparative Example c4.

この結果、実施例C1〜C4の各非水電解質二次電池では、初期の充放電効率が89%であったのに対して、比較例c4の非水電解質二次電池では、初期の充放電効率が86%に低下していた。これは、比較例c4の非水電解質二次電池の場合、正極活物質粒子の表面に付着された水酸化テルビウムが酸化テルビウムに変化すると共に、テルビウムの一部が正極活物質粒子の内部に拡散されたためと考えられる。   As a result, in each of the nonaqueous electrolyte secondary batteries of Examples C1 to C4, the initial charge / discharge efficiency was 89%, whereas in the nonaqueous electrolyte secondary battery of Comparative Example c4, the initial charge / discharge efficiency was The efficiency was reduced to 86%. This is because, in the case of the nonaqueous electrolyte secondary battery of Comparative Example c4, terbium hydroxide attached to the surface of the positive electrode active material particles changes to terbium oxide, and part of terbium diffuses into the positive electrode active material particles. It is thought that it was because it was done.

また、初期充放電させた後、各非水電解質二次電池に対して、実施例A1等の非水電解質二次電池の場合と同様にして、高温連続充電試験を行った。そして、高温連続充電試験前に対する高温連続充電試験後の各非水電解質二次電池における厚み増加量を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表7に示した。   In addition, after the initial charge / discharge, a high-temperature continuous charge test was performed on each non-aqueous electrolyte secondary battery in the same manner as in the case of the non-aqueous electrolyte secondary battery such as Example A1. And the thickness increase amount in each nonaqueous electrolyte secondary battery after the high temperature continuous charge test with respect to the high temperature continuous charge test was calculated | required. The results are shown in Table 7 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

また、高温連続充電試験後における各非水電解質二次電池を、室温にしてそれぞれ750mAの定電流で2.75Vになるまで放電し、高温連続充電試験後の放電容量Q3を求め、10分間休止した。そして、式(4)により高温連続充電試験後の残存容量率(%)を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表7に示した。   In addition, each non-aqueous electrolyte secondary battery after the high-temperature continuous charge test is discharged at room temperature to a constant current of 750 mA until it reaches 2.75 V, and the discharge capacity Q3 after the high-temperature continuous charge test is obtained to rest for 10 minutes. did. And the remaining capacity rate (%) after a high-temperature continuous charge test was calculated | required by Formula (4). The results are shown in Table 7 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

さらに、10分間休止した後の各非水電解質二次電池を、室温において、750mAの定電流で4.40Vまで定電流充電した後、4.40Vの定電圧で電流値が37.5mAになるまで定電圧充電して充電容量Qbを求めた。そして、各非水電解質二次電池を10分間休止した。その後、750mAの定電流で2.75Vになるまで放電し、放電容量Q4を求めた。そして、式(5)により高温連続充電試験後の復帰容量率(%)を求めると共に、式(6)により高温連続充電試験後の充放電効率(%)を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表7に示した。   Further, after each non-aqueous electrolyte secondary battery after 10 minutes of rest is charged at a constant current of 750 mA to 4.40 V at room temperature, the current value becomes 37.5 mA at a constant voltage of 4.40 V. The charge capacity Qb was obtained by charging at a constant voltage. Then, each nonaqueous electrolyte secondary battery was paused for 10 minutes. Then, it discharged until it became 2.75V with a constant current of 750 mA, and discharge capacity Q4 was calculated | required. And while calculating | requiring the return capacity rate (%) after a high temperature continuous charge test by Formula (5), the charging / discharging efficiency (%) after a high temperature continuous charge test was calculated | required by Formula (6). The results are shown in Table 7 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

表7より、コバルト酸リチウムからなる正極活物質粒子の表面に、水酸化テルビウムとオキシ水酸化テルビウムとからなるテルビウム化合物の粒子が分散かつ付着された正極活物質を用いた実施例C1〜C4の各非水電解質二次電池は、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も高い値を示した。一方、比較例c1〜c4の非水電解質二次電池は、実施例C1〜C4の各非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が大きく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も低下した。   From Table 7, Examples C1 to C4 using positive electrode active materials in which particles of a terbium compound composed of terbium hydroxide and terbium oxyhydroxide were dispersed and adhered to the surface of the positive electrode active material particles composed of lithium cobaltate. Each non-aqueous electrolyte secondary battery had a small increase in battery thickness after the high-temperature continuous charge test, and also exhibited high values for the remaining capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the high-temperature continuous charge test. On the other hand, the non-aqueous electrolyte secondary batteries of Comparative Examples c1 to c4 have a large increase in battery thickness after the high-temperature continuous charge test, compared to the non-aqueous electrolyte secondary batteries of Examples C1 to C4. The residual capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the test also decreased.

また、実施例C1〜C4の各非水電解質二次電池も、実施例A1〜A7の各非水電解質二次電池と同様に、比較例x1〜x3,y1,z1の非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も大きく向上した。   In addition, the nonaqueous electrolyte secondary batteries of Examples C1 to C4 are also nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1, and z1, similarly to the nonaqueous electrolyte secondary batteries of Examples A1 to A7. In comparison with, the increase in the thickness of the battery after the high-temperature continuous charge test was small, and the remaining capacity ratio, the return capacity ratio and the charge / discharge efficiency after the high-temperature continuous charge test were also greatly improved.

(実施例D1)
実施例D1では、下記のようにして作製した正極を用いた。
(Example D1)
In Example D1, a positive electrode produced as follows was used.

[正極の作製]
正極活物質粒子として、MgとAlとがそれぞれ0.5モル%固溶されたコバルト酸リチウムを用いた。そして、この正極活物質粒子1000gを3リットルの純水中に投入し、これを撹拌しながら、5.89gの硝酸ジスプロシウム5水和物を200mlの純水に溶解させた硝酸ジスプロシウム水溶液を添加した。このとき、この溶液のpHが9になるように10質量%の水酸化ナトリウム水溶液を適宜加えて、正極活物質粒子の表面に水酸化ジスプロシウムを付着させた。そして、これを吸引濾過して処理物を濾取し、この処理物を120℃で乾燥させて、水酸化ジスプロシウムが表面に分散かつ付着された正極活物
質粒子を得た。
[Production of positive electrode]
As the positive electrode active material particles, lithium cobalt oxide in which 0.5 mol% of Mg and Al were dissolved was used. Then, 1000 g of the positive electrode active material particles were put into 3 liters of pure water, and an aqueous dysprosium nitrate solution in which 5.89 g of dysprosium nitrate pentahydrate was dissolved in 200 ml of pure water was added while stirring the particles. . At this time, a 10% by mass sodium hydroxide aqueous solution was appropriately added so that the pH of this solution was 9, and dysprosium hydroxide was adhered to the surface of the positive electrode active material particles. And this was suction-filtered, the processed material was collected by filtration, and this processed material was dried at 120 degreeC, and the positive electrode active material particle by which the dysprosium hydroxide was disperse | distributed and adhered to the surface was obtained.

次いで、水酸化ジスプロシウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において300℃の温度で5時間熱処理した。これにより、正極活物質粒子の表面にジスプロシウム化合物の粒子が分散かつ付着された正極活物質を得た。   Next, the positive electrode active material particles having dysprosium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 300 ° C. for 5 hours. As a result, a positive electrode active material in which dysprosium compound particles were dispersed and adhered to the surface of the positive electrode active material particles was obtained.

ここで、この正極活物質においては、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたジスプロシウム化合物におけるジスプロシウム元素(Dy)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着されたジスプロシウム化合物は、水酸化ジスプロシウムの多くがオキシ水酸化ジスプロシウムに変化した。   Here, in this positive electrode active material, the ratio of the dysprosium element (Dy) in the dysprosium compound adhering to the surface with respect to the positive electrode active material particle which consists of lithium cobaltate was 0.22 mass%. Further, in the dysprosium compound attached to the surface of the positive electrode active material particles, most of the dysprosium hydroxide was changed to dysprosium oxyhydroxide.

また、実施例D1の正極活物質をSEMにより観察した結果、正極活物質粒子の表面に付着されたジスプロシウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、このジスプロシウム化合物の粒子が正極活物質粒子の表面に分散かつ付着されていた。   Moreover, as a result of observing the positive electrode active material of Example D1 by SEM, most of the particle diameters of the dysprosium compound particles attached to the surfaces of the positive electrode active material particles were 100 nm or less. Further, the dysprosium compound particles were dispersed and adhered to the surface of the positive electrode active material particles.

次に、正極活物質と、導電剤のアセチレンブラックと、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、混合撹拌装置(特殊機化社製:コンビミックス)により混合攪拌させて正極合剤スラリーを調製した。このとき、正極活物質と導電剤と結着剤とを95:2.5:2.5の質量比にした。そして、この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に均一に塗布した後、これを乾燥させ、圧延ローラにより圧延させて、正極集電体の両面に正極合剤層が形成された正極を得た。なお、この正極における正極活物質の充填密度は3.60g/cm3であった。 Next, a positive electrode active material, a conductive agent acetylene black, and a N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder is dissolved are mixed and agitated by a special stirrer (made by Tokushu Kika Co., Ltd .: Combimix). Were mixed and stirred to prepare a positive electrode mixture slurry. At this time, the positive electrode active material, the conductive agent, and the binder were in a mass ratio of 95: 2.5: 2.5. And after apply | coating this positive mix slurry uniformly on both surfaces of the positive electrode collector which consists of aluminum foil, this is dried and rolled with a rolling roller, and a positive mix layer is formed on both surfaces of a positive electrode collector A positive electrode was obtained. In addition, the packing density of the positive electrode active material in this positive electrode was 3.60 g / cm 3 .

そして、上記の正極を用いる以外は、実施例A1の場合と同様にして、4.40Vまで充電した場合の設計容量が780mAhである扁平型の非水電解質二次電池を作製した。   A flat nonaqueous electrolyte secondary battery having a design capacity of 780 mAh when charged to 4.40 V was produced in the same manner as in Example A1 except that the above positive electrode was used.

(実施例D2)
実施例D2では、実施例D1における正極の作製において、水酸化ジスプロシウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において200℃の温度で5時間熱処理した。それ以外は、実施例D1の場合と同様にして非水電解質二次電池を作製した。
(Example D2)
In Example D2, in the production of the positive electrode in Example D1, the positive electrode active material particles having dysprosium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 200 ° C. for 5 hours. Other than that was carried out similarly to the case of Example D1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例D2のように熱処理して得た正極活物質では、正極活物質粒子の表面に付着された水酸化ジスプロシウムの多くがオキシ水酸化ジスプロシウムに変化されず、水酸化ジスプロシウムの状態で残っていた。   Here, in the positive electrode active material obtained by heat treatment as in Example D2, most of the dysprosium hydroxide attached to the surface of the positive electrode active material particles was not changed to dysprosium oxyhydroxide, but in the state of dysprosium hydroxide. It remained.

(実施例D3)
実施例D3では、実施例D1における正極の作製において、水酸化エルビウムが表面に分散かつ付着された正極活物質粒子を、120℃で乾燥のみの熱処理で終了した。それ以外は、実施例D1の場合と同様にして非水電解質二次電池を作製した。
(Example D3)
In Example D3, in the production of the positive electrode in Example D1, the positive electrode active material particles in which erbium hydroxide was dispersed and adhered to the surface were terminated by a heat treatment only by drying at 120 ° C. Other than that was carried out similarly to the case of Example D1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例D3のように120℃で乾燥のみの熱処理では、正極活物質粒子の表面に付着された水酸化ジスプロシウムがオキシ水酸化ジスプロシウムに変化しなかった。   Here, in the heat treatment of only drying at 120 ° C. as in Example D3, dysprosium hydroxide attached to the surface of the positive electrode active material particles did not change to dysprosium oxyhydroxide.

(実施例D4)
実施例D4では、実施例D1における正極の作製において、正極活物質粒子の表面に水酸化ジスプロシウムを付着させるにあたり、硝酸ジスプロシウム5水和物を200mlの純水に溶解させる量を1.81gに変更した。それ以外は、実施例D1の場合と同様にし
て非水電解質二次電池を作製した。
(Example D4)
In Example D4, in the production of the positive electrode in Example D1, the amount of dysprosium nitrate pentahydrate dissolved in 200 ml of pure water was changed to 1.81 g when adhering dysprosium hydroxide to the surface of the positive electrode active material particles. did. Other than that was carried out similarly to the case of Example D1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例D4では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたジスプロシウム化合物におけるジスプロシウム元素(Dy)の割合は、0.067質量%であった。また、この正極活物質粒子の表面に付着された水酸化ジスプロシウムの多くがオキシ水酸化ジスプロシウムに変化した。   Here, in Example D4, the proportion of the dysprosium element (Dy) in the dysprosium compound attached to the surface of the positive electrode active material particles made of lithium cobalt oxide was 0.067% by mass. Moreover, most of the dysprosium hydroxide adhered to the surface of the positive electrode active material particles was changed to dysprosium oxyhydroxide.

(比較例d1)
比較例d1では、実施例D1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子の表面にジスプロシウム化合物を付着させなかった。それ以外は、実施例D1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example d1)
In Comparative Example d1, the dysprosium compound was not attached to the surface of the positive electrode active material particles made of lithium cobaltate in the production of the positive electrode in Example D1. Other than that was carried out similarly to the case of Example D1, and produced the nonaqueous electrolyte secondary battery.

(比較例d2)
比較例d2では、実施例D1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子500gと、酸化ジスプロシウム試薬を一次粒子の粒子径が300nmになるまで粉砕した酸化ジスプロシウム1.25gとを、混合処理機(ホソカワミクロン社製:ノビルタ)を用いて混合した。これにより、コバルト酸リチウムからなる正極活物質粒子の表面に酸化ジスプロシウムを機械的に付着させて正極活物質を作製した。
(Comparative Example d2)
In Comparative Example d2, in preparation of the positive electrode in Example D1, 500 g of positive electrode active material particles made of lithium cobaltate and 1.25 g of dysprosium oxide obtained by pulverizing a dysprosium oxide reagent until the particle diameter of primary particles becomes 300 nm, Mixing was performed using a mixing processor (manufactured by Hosokawa Micron Corporation: Nobilta). Thereby, the positive electrode active material was produced by mechanically attaching dysprosium oxide to the surface of the positive electrode active material particles made of lithium cobalt oxide.

そして、このように作製した正極活物質を用いる以外は、実施例D1の場合と同様にして非水電解質二次電池を作製した。   And the nonaqueous electrolyte secondary battery was produced like the case of Example D1 except using the positive electrode active material produced in this way.

ここで、比較例d2の正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化ジスプロシウムにおけるジスプロシウム元素(Dy)の割合は、0.22質量%であった。   Here, in the positive electrode active material of Comparative Example d2, the ratio of the dysprosium element (Dy) in the dysprosium oxide attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.22% by mass. It was.

また、比較例d2の正極活物質をSEMにより観察した結果、酸化ジスプロシウムは、正極活物質粒子の凹み部分に凝集して付着ており、正極活物質粒子の表面に分散かつ付着されていなかった。   Moreover, as a result of observing the positive electrode active material of Comparative Example d2 by SEM, dysprosium oxide was aggregated and adhered to the dents of the positive electrode active material particles, and was not dispersed and adhered to the surface of the positive electrode active material particles.

(比較例d3)
比較例d3では、比較例d2における一次粒子の粒子径が300nmの酸化ジスプロシウムの量を5gに変更して正極活物質を作製した。そして、このように作製した正極活物質を用いる以外は、実施例D1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example d3)
In Comparative Example d3, a positive electrode active material was prepared by changing the amount of dysprosium oxide having a primary particle diameter of 300 nm in Comparative Example d2 to 5 g. And the nonaqueous electrolyte secondary battery was produced like the case of Example D1 except using the positive electrode active material produced in this way.

ここで、比較例d3の正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化ジスプロシウムにおけるジスプロシウム元素(Dy)の割合は、0.87質量%であった。   Here, in the positive electrode active material of Comparative Example d3, the ratio of the dysprosium element (Dy) in the dysprosium oxide attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.87% by mass. It was.

また、比較例d3の正極活物質をSEMにより観察した結果、比較例d2の場合と同様に、酸化ジスプロシウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されなかった。   Further, as a result of observing the positive electrode active material of Comparative Example d3 by SEM, as in Comparative Example d2, dysprosium oxide is aggregated and attached to the recessed portions of the positive electrode active material particles. It was not dispersed and adhered to the surface.

(比較例d4)
比較例d4では、実施例D1における正極の作製において、水酸化ジスプロシウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において500℃の温度で5時間熱処理した。それ以外は、実施例D1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example d4)
In Comparative Example d4, in the production of the positive electrode in Example D1, the positive electrode active material particles having dysprosium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 500 ° C. for 5 hours. Other than that was carried out similarly to the case of Example D1, and produced the nonaqueous electrolyte secondary battery.

ここで、比較例d4のように熱処理して得た正極活物質では、正極活物質粒子の表面に
付着された水酸化ジスプロシウムが酸化ジスプロシウムに変化すると共に、ジスプロシウムの一部が正極活物質粒子の内部に拡散されていた。
Here, in the positive electrode active material obtained by heat treatment as in Comparative Example d4, dysprosium hydroxide attached to the surface of the positive electrode active material particles is changed to dysprosium oxide, and part of the dysprosium is the positive electrode active material particles. It was diffused inside.

次に、実施例D1〜D4及び比較例d1〜d4の各非水電解質二次電池を、実施例A1等の非水電解質二次電池の場合と同様に、4.40Vまで定電流充電した後、4.40Vで定電圧充電して、初期充電した。その後、初期充電した各非水電解質二次電池を10分間休止した後、750mAの定電流で2.75Vになるまで初期放電した。このときの放電容量Qoを測定した。そして、実施例D1〜D4及び比較例d4の各非水電解質二次電池については、初期の充放電効率を求めた。   Next, after each nonaqueous electrolyte secondary battery of Examples D1 to D4 and Comparative Examples d1 to d4 was charged with a constant current to 4.40 V, as in the case of the nonaqueous electrolyte secondary battery of Example A1, etc. The battery was charged at a constant voltage of 4.40 V and initially charged. Thereafter, each of the initially charged nonaqueous electrolyte secondary batteries was paused for 10 minutes, and then initially discharged at a constant current of 750 mA until it reached 2.75V. The discharge capacity Qo at this time was measured. And the initial charging / discharging efficiency was calculated | required about each nonaqueous electrolyte secondary battery of Examples D1-D4 and Comparative Example d4.

この結果、実施例D1〜D4の各非水電解質二次電池では、初期の充放電効率が89%であったのに対して、比較例d4の非水電解質二次電池では、初期の充放電効率が86%に低下した。これは、比較例d4の非水電解質二次電池の場合、正極活物質粒子の表面に付着された水酸化ジスプロシウムが酸化ジスプロシウムに変化すると共に、ジスプロシウムの一部が正極活物質粒子の内部に拡散されたためと考えられる。   As a result, in each of the nonaqueous electrolyte secondary batteries of Examples D1 to D4, the initial charge / discharge efficiency was 89%, whereas in the nonaqueous electrolyte secondary battery of Comparative Example d4, the initial charge / discharge efficiency was Efficiency dropped to 86%. This is because, in the case of the nonaqueous electrolyte secondary battery of Comparative Example d4, dysprosium hydroxide attached to the surface of the positive electrode active material particles changes to dysprosium oxide, and part of the dysprosium diffuses inside the positive electrode active material particles. It is thought that it was because it was done.

また、初期充放電させた後、各非水電解質二次電池に対して、実施例A1等の非水電解質二次電池の場合と同様にして、高温連続充電試験を行った。そして、高温連続充電試験前に対する高温連続充電試験後の各非水電解質二次電池における厚み増加量を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表8に示した。   In addition, after the initial charge / discharge, a high-temperature continuous charge test was performed on each non-aqueous electrolyte secondary battery in the same manner as in the case of the non-aqueous electrolyte secondary battery such as Example A1. And the thickness increase amount in each nonaqueous electrolyte secondary battery after the high temperature continuous charge test with respect to the high temperature continuous charge test was calculated | required. The results are shown in Table 8 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

また、高温連続充電試験後における各非水電解質二次電池を、室温にしてそれぞれ750mAの定電流で2.75Vになるまで放電し、高温連続充電試験後の放電容量Q3を求め、10分間休止した。そして、式(4)により高温連続充電試験後の残存容量率(%)を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表8に示した。   In addition, each non-aqueous electrolyte secondary battery after the high-temperature continuous charge test is discharged at room temperature to a constant current of 750 mA until it reaches 2.75 V, and the discharge capacity Q3 after the high-temperature continuous charge test is obtained to rest for 10 minutes. did. And the remaining capacity rate (%) after a high-temperature continuous charge test was calculated | required by Formula (4). The results are shown in Table 8 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

さらに、10分間休止した後の各非水電解質二次電池を、室温において、750mAの定電流で4.40Vまで定電流充電した後、4.40Vの定電圧で電流値が37.5mAになるまで定電圧充電して充電容量Qbを求めた。そして、各非水電解質二次電池を10分間休止した。その後、750mAの定電流で2.75Vになるまで放電し、放電容量Q4を求めた。そして、式(5)により高温連続充電試験後の復帰容量率(%)を求めると共に、式(6)により高温連続充電試験後の充放電効率(%)を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表8に示した。   Further, after each non-aqueous electrolyte secondary battery after 10 minutes of rest is charged at a constant current of 750 mA to 4.40 V at room temperature, the current value becomes 37.5 mA at a constant voltage of 4.40 V. The charge capacity Qb was obtained by charging at a constant voltage. Then, each nonaqueous electrolyte secondary battery was paused for 10 minutes. Then, it discharged until it became 2.75V with a constant current of 750 mA, and discharge capacity Q4 was calculated | required. And while calculating | requiring the return capacity rate (%) after a high temperature continuous charge test by Formula (5), the charging / discharging efficiency (%) after a high temperature continuous charge test was calculated | required by Formula (6). The results are shown in Table 8 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

表8より、水酸化ジスプロシウムとオキシ水酸化ジスプロシウムとからなるジスプロシウム化合物の粒子が分散かつ付着された正極活物質を用いた実施例D1〜D4の各非水電解質二次電池は、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も高い値を示した。一方、比較例d1〜d4の非水電解質二次電池は、実施例D1〜D4の各非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が大きく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も低下した。   From Table 8, each nonaqueous electrolyte secondary battery of Examples D1 to D4 using a positive electrode active material in which particles of dysprosium compound composed of dysprosium hydroxide and dysprosium oxyhydroxide are dispersed and adhered is a high-temperature continuous charge test. The amount of increase in the thickness of the battery later was small, and the remaining capacity ratio, return capacity ratio, and charge / discharge efficiency after the high-temperature continuous charge test also showed high values. On the other hand, the non-aqueous electrolyte secondary batteries of Comparative Examples d1 to d4 have a larger battery thickness increase amount after the high-temperature continuous charge test than the non-aqueous electrolyte secondary batteries of Examples D1 to D4, and the high-temperature continuous charge. The residual capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the test also decreased.

また、実施例D1〜D4の各非水電解質二次電池も、実施例A1〜A7の各非水電解質二次電池と同様に、比較例x1〜x3,y1,z1の非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率は大きく向上した。   Further, the nonaqueous electrolyte secondary batteries of Examples D1 to D4 are also nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1, and z1, similarly to the nonaqueous electrolyte secondary batteries of Examples A1 to A7. In comparison with, the increase in the thickness of the battery after the high-temperature continuous charge test was small, and the remaining capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the high-temperature continuous charge test were greatly improved.

(実施例E1)
実施例E1では、下記のようにして作製した正極を用いた。
(Example E1)
In Example E1, the positive electrode produced as follows was used.

[正極の作製]
正極活物質粒子として、MgとAlとがそれぞれ0.5モル%固溶されたコバルト酸リチウムを用いた。そして、この正極活物質粒子1000gを3リットルの純水中に投入し、これを撹拌しながら、5.84gの硝酸ホルミウム5水和物を200mlの純水に溶解させた硝酸ホルミウム水溶液を添加した。このとき、この溶液のpHが9になるように10質量%の水酸化ナトリウム水溶液を適宜加えて、正極活物質粒子の表面に水酸化ホルミウムを付着さた。そして、これを吸引濾過して処理物を濾取し、この処理物を120℃で乾燥させて、水酸化ホルミウムが表面に分散かつ付着された正極活物質粒子を得た。
[Production of positive electrode]
As the positive electrode active material particles, lithium cobalt oxide in which 0.5 mol% of Mg and Al were dissolved was used. Then, 1000 g of the positive electrode active material particles were put into 3 liters of pure water, and an aqueous holmium nitrate solution in which 5.84 g of holmium nitrate pentahydrate was dissolved in 200 ml of pure water was added while stirring the particles. . At this time, a 10% by mass sodium hydroxide aqueous solution was appropriately added so that the pH of this solution was 9, and holmium hydroxide was adhered to the surface of the positive electrode active material particles. And this was suction-filtered, the processed material was filtered, and this processed material was dried at 120 degreeC, and the positive electrode active material particle by which holmium hydroxide was disperse | distributed and adhered to the surface was obtained.

次いで、水酸化ホルミウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において300℃の温度で5時間熱処理した。これにより、正極活物質粒子の表面にホルミウム化合物の粒子が分散かつ付着された正極活物質を得た。   Next, the positive electrode active material particles on which holmium hydroxide was dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 300 ° C. for 5 hours. As a result, a positive electrode active material was obtained in which holmium compound particles were dispersed and adhered to the surface of the positive electrode active material particles.

ここで、実施例E1の正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたホルミウム化合物におけるホルミウム元素(Ho)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着されたホルミウム化合物は、水酸化ホルミウムの多くがオキシ水酸化ホルミウムに変化した。   Here, in the positive electrode active material of Example E1, the ratio of the holmium element (Ho) in the holmium compound attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.22% by mass. It was. Further, most of the holmium compound attached to the surface of the positive electrode active material particles was changed to holmium oxyhydroxide.

また、実施例E1の正極活物質をSEMにより観察した結果、正極活物質粒子の表面に付着されたホルミウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、このホルミウム化合物の粒子は、正極活物質粒子の表面に分散かつ付着されていた。   Moreover, as a result of observing the positive electrode active material of Example E1 by SEM, most of the particle diameters of the holmium compound particles adhered to the surface of the positive electrode active material particles were 100 nm or less. The holmium compound particles were dispersed and adhered to the surfaces of the positive electrode active material particles.

次に、正極活物質と、導電剤のアセチレンブラックと、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、混合撹拌装置(特殊機化社製:コンビミックス)により混合攪拌させて正極合剤スラリーを調製した。このとき、正極活物質と導電剤と結着剤とを95:2.5:2.5の質量比にした。そして、この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に均一に塗布した後、これを乾燥させ、圧延ローラにより圧延させて、正極集電体の両面に正極合剤層が形成された正極を得た。なお、この正極における正極活物質の充填密度は3.60g/cm3であった。 Next, a positive electrode active material, a conductive agent acetylene black, and a N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder is dissolved are mixed and agitated by a special stirrer (made by Tokushu Kika Co., Ltd .: Combimix). Were mixed and stirred to prepare a positive electrode mixture slurry. At this time, the positive electrode active material, the conductive agent, and the binder were in a mass ratio of 95: 2.5: 2.5. And after apply | coating this positive mix slurry uniformly on both surfaces of the positive electrode collector which consists of aluminum foil, this is dried and rolled with a rolling roller, and a positive mix layer is formed on both surfaces of a positive electrode collector A positive electrode was obtained. In addition, the packing density of the positive electrode active material in this positive electrode was 3.60 g / cm 3 .

そして、上記の正極を用いる以外は、実施例A1の場合と同様にして、4.40Vまで充電した場合の設計容量が780mAhである扁平型の非水電解質二次電池を作製した。   A flat nonaqueous electrolyte secondary battery having a design capacity of 780 mAh when charged to 4.40 V was produced in the same manner as in Example A1 except that the above positive electrode was used.

(実施例E2)
実施例E2では、実施例E1における正極の作製において、水酸化ホルミウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において200℃の温度で5時間熱処理した。それ以外は、実施例E1の場合と同様にして非水電解質二次電池を作製した。
(Example E2)
In Example E2, in the production of the positive electrode in Example E1, the positive electrode active material particles having holmium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 200 ° C. for 5 hours. Other than that was carried out similarly to the case of Example E1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例E2のように熱処理して得た正極活物質では、正極活物質粒子の表面に付着された水酸化ホルミウムの多くがオキシ水酸化ホルミウムに変化されず、水酸化ホルミウムの状態で残っていた。   Here, in the positive electrode active material obtained by heat treatment as in Example E2, most of the holmium hydroxide adhering to the surface of the positive electrode active material particles was not changed to holmium oxyhydroxide, but in the state of holmium hydroxide. It remained.

(実施例E3)
実施例E3では、実施例E1における正極の作製において、水酸化エルビウムが表面に分散かつ付着された正極活物質粒子を、前記のように120℃で乾燥のみの熱処理で終了した。それ以外は、実施例E1の場合と同様にして非水電解質二次電池を作製した。
(Example E3)
In Example E3, in the production of the positive electrode in Example E1, the positive electrode active material particles in which erbium hydroxide was dispersed and adhered to the surface were terminated by heat treatment only by drying at 120 ° C. as described above. Other than that was carried out similarly to the case of Example E1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例E3のように120℃で乾燥のみの熱処理では、正極活物質粒子の表面に付着された水酸化ホルミウムがオキシ水酸化ホルミウムに変化しなかった。   Here, in the heat treatment of only drying at 120 ° C. as in Example E3, holmium hydroxide attached to the surface of the positive electrode active material particles did not change to holmium oxyhydroxide.

(実施例E4)
実施例E4では、実施例E1における正極の作製において、正極活物質粒子の表面に水酸化ホルミウムを付着させるにあたり、硝酸ホルミウム5水和物を200mlの純水に溶解させる量を1.80gに変更した。それ以外は、実施例E1の場合と同様にして非水電解質二次電池を作製した。
(Example E4)
In Example E4, in the production of the positive electrode in Example E1, the amount of holmium nitrate pentahydrate dissolved in 200 ml of pure water was changed to 1.80 g when adhering holmium hydroxide to the surface of the positive electrode active material particles. did. Other than that was carried out similarly to the case of Example E1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例E4では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたホルミウム化合物におけるホルミウム元素(Ho)の割合は、0.067質量%であった。また、この正極活物質粒子の表面に付着された水酸化ホルミウムの多
くがオキシ水酸化ホルミウムに変化した。
Here, in Example E4, the ratio of the holmium element (Ho) in the holmium compound attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.067% by mass. Further, most of the holmium hydroxide adhered to the surface of the positive electrode active material particles was changed to holmium oxyhydroxide.

(比較例e1)
比較例e1では、実施例E1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子の表面にホルミウム化合物を付着させなかった。それ以外は、実施例E1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example e1)
In Comparative Example e1, in the production of the positive electrode in Example E1, the holmium compound was not attached to the surface of the positive electrode active material particles made of lithium cobaltate. Other than that was carried out similarly to the case of Example E1, and produced the nonaqueous electrolyte secondary battery.

(比較例e2)
比較例e2では、実施例E1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子500gと、酸化ホルミウム試薬を一次粒子の粒子径が300nmになるまで粉砕した酸化ホルミウム1.25gとを、混合処理機(ホソカワミクロン社製:ノビルタ)を用いて混合した。これにより、コバルト酸リチウムからなる正極活物質粒子の表面に酸化ホルミウムを機械的に付着させて正極活物質を作製した。
(Comparative Example e2)
In Comparative Example e2, in preparation of the positive electrode in Example E1, 500 g of positive electrode active material particles made of lithium cobaltate and 1.25 g of holmium oxide obtained by pulverizing a holmium oxide reagent until the particle diameter of primary particles becomes 300 nm, Mixing was performed using a mixing processor (manufactured by Hosokawa Micron Corporation: Nobilta). Thus, holmium oxide was mechanically attached to the surface of the positive electrode active material particles made of lithium cobaltate to produce a positive electrode active material.

そして、このように作製した正極活物質を用いる以外は、実施例E1の場合と同様にして非水電解質二次電池を作製した。   And the nonaqueous electrolyte secondary battery was produced like the case of Example E1 except using the positive electrode active material produced in this way.

ここで、比較例e2の正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化ホルミウムにおけるホルミウム元素(Ho)の割合は、0.22質量%であった。   Here, in the positive electrode active material of Comparative Example e2, the ratio of the holmium element (Ho) in the holmium oxide attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.22% by mass. It was.

また、比較例e2の正極活物質をSEMにより観察した結果、酸化ホルミウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されなかった。   Moreover, as a result of observing the positive electrode active material of Comparative Example e2 by SEM, holmium oxide was aggregated and adhered to the recessed portion of the positive electrode active material particles, and was not dispersed and adhered to the surface of the positive electrode active material particles.

(比較例e3)
比較例e3では、比較例e2における一次粒子の粒子径が300nmの酸化ホルミウムの量を5gに変更して正極活物質を作製した。そして、このように作製した正極活物質を用いる以外は、実施例E1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example e3)
In Comparative Example e3, a positive electrode active material was produced by changing the amount of holmium oxide having a primary particle diameter of 300 nm in Comparative Example e2 to 5 g. And the nonaqueous electrolyte secondary battery was produced like the case of Example E1 except using the positive electrode active material produced in this way.

ここで、比較例e3の正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化ホルミウムにおけるホルミウム元素(Ho)の割合は、0.87質量%であった。   Here, in the positive electrode active material of Comparative Example e3, the ratio of the holmium element (Ho) in the holmium oxide attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.87% by mass. It was.

また、比較例e3の正極活物質をSEMにより観察した結果、比較例e2の場合と同様に、酸化ホルミウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されなかった。   Further, as a result of observing the positive electrode active material of Comparative Example e3 by SEM, as in Comparative Example e2, the holmium oxide is aggregated and attached to the recessed portions of the positive electrode active material particles. It was not dispersed and adhered to the surface.

(比較例e4)
比較例e4では、実施例E1における正極の作製において、水酸化ホルミウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において500℃の温度で5時間熱処理した。それ以外は、実施例E1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example e4)
In Comparative Example e4, in the production of the positive electrode in Example E1, the positive electrode active material particles in which holmium hydroxide was dispersed and attached to the surface were heat-treated in an air atmosphere at a temperature of 500 ° C. for 5 hours. Other than that was carried out similarly to the case of Example E1, and produced the nonaqueous electrolyte secondary battery.

ここで、比較例e4のように熱処理して得た正極活物質では、正極活物質粒子の表面に付着された水酸化ホルミウムが酸化ホルミウムに変化すると共に、ホルミウムの一部が正極活物質粒子の内部に拡散されていた。   Here, in the positive electrode active material obtained by heat treatment as in Comparative Example e4, holmium hydroxide attached to the surface of the positive electrode active material particles is changed to holmium oxide, and a part of the holmium is made up of the positive electrode active material particles. It was diffused inside.

次に、実施例E1〜E4及び比較例e1〜e4の各非水電解質二次電池を、実施例A1等の非水電解質二次電池の場合と同様に、4.40Vまで定電流充電した後、4.40Vで定電圧充電して、初期充電した。その後、初期充電した各非水電解質二次電池を10分間
休止した後、750mAの定電流で2.75Vになるまで初期放電した。このときの放電容量Qoを測定した。そして、実施例E1〜E4及び比較例e4の各非水電解質二次電池については、初期の充放電効率を求めた。
Next, after the nonaqueous electrolyte secondary batteries of Examples E1 to E4 and Comparative Examples e1 to e4 were charged with a constant current to 4.40 V, as in the case of the nonaqueous electrolyte secondary batteries of Example A1 and the like. The battery was charged at a constant voltage of 4.40 V and initially charged. Thereafter, each of the initially charged nonaqueous electrolyte secondary batteries was paused for 10 minutes, and then initially discharged at a constant current of 750 mA until it reached 2.75V. The discharge capacity Qo at this time was measured. And the initial charging / discharging efficiency was calculated | required about each nonaqueous electrolyte secondary battery of Examples E1-E4 and Comparative Example e4.

この結果、実施例E1〜E4の各非水電解質二次電池では、初期の充放電効率が89%であったのに対して、比較例e4の非水電解質二次電池では、初期の充放電効率が86%に低下した。これは、比較例e4の非水電解質二次電池の場合、正極活物質粒子の表面に付着された水酸化ホルミウムが酸化ホルミウムに変化すると共に、ホルミウムの一部が正極活物質粒子の内部に拡散されたためと考えられる。   As a result, in each of the nonaqueous electrolyte secondary batteries of Examples E1 to E4, the initial charge / discharge efficiency was 89%, whereas in the nonaqueous electrolyte secondary battery of Comparative Example e4, the initial charge / discharge efficiency was Efficiency dropped to 86%. This is because, in the case of the non-aqueous electrolyte secondary battery of Comparative Example e4, holmium hydroxide attached to the surface of the positive electrode active material particles is changed to holmium oxide, and part of the holmium is diffused inside the positive electrode active material particles. It is thought that it was because it was done.

また、初期充放電させた後、各非水電解質二次電池に対して、実施例A1等の非水電解質二次電池の場合と同様にして、高温連続充電試験を行った。そして、高温連続充電試験前に対する高温連続充電試験後の各非水電解質二次電池における厚み増加量を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表9に示した。   In addition, after the initial charge / discharge, a high-temperature continuous charge test was performed on each non-aqueous electrolyte secondary battery in the same manner as in the case of the non-aqueous electrolyte secondary battery such as Example A1. And the thickness increase amount in each nonaqueous electrolyte secondary battery after the high temperature continuous charge test with respect to the high temperature continuous charge test was calculated | required. The results are shown in Table 9 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

また、の高温連続充電試験後における各非水電解質二次電池を、室温にしてそれぞれ750mAの定電流で2.75Vになるまで放電し、高温連続充電試験後の放電容量Q3を求め、10分間休止した。そして、式(4)により高温連続充電試験後の残存容量率(%)を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表9に示した。   In addition, each nonaqueous electrolyte secondary battery after the high-temperature continuous charge test was discharged at room temperature to 2.75 V at a constant current of 750 mA, and the discharge capacity Q3 after the high-temperature continuous charge test was obtained for 10 minutes. Paused. And the remaining capacity rate (%) after a high-temperature continuous charge test was calculated | required by Formula (4). The results are shown in Table 9 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

さらに、10分間休止した後の各非水電解質二次電池を、室温において、750mAの定電流で4.40Vまで定電流充電した後、4.40Vの定電圧で電流値が37.5mAになるまで定電圧充電して充電容量Qbを求めた。そして、各非水電解質二次電池を10分間休止した。その後、750mAの定電流で2.75Vになるまで放電し、放電容量Q4を求めた。そして、式(5)により高温連続充電試験後の復帰容量率(%)を求めると共に、式(6)により高温連続充電試験後の充放電効率(%)を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表9に示した。   Further, after each non-aqueous electrolyte secondary battery after 10 minutes of rest is charged at a constant current of 750 mA to 4.40 V at room temperature, the current value becomes 37.5 mA at a constant voltage of 4.40 V. The charge capacity Qb was obtained by charging at a constant voltage. Then, each nonaqueous electrolyte secondary battery was paused for 10 minutes. Then, it discharged until it became 2.75V with a constant current of 750 mA, and discharge capacity Q4 was calculated | required. And while calculating | requiring the return capacity rate (%) after a high temperature continuous charge test by Formula (5), the charging / discharging efficiency (%) after a high temperature continuous charge test was calculated | required by Formula (6). The results are shown in Table 9 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

表9より、コバルト酸リチウムからなる正極活物質粒子の表面に、水酸化ホルミウムとオキシ水酸化ホルミウムとからなるホルミウム化合物の粒子が分散かつ付着された正極活物質を用いた実施例E1〜E4の各非水電解質二次電池は、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も高い値を示した。一方、比較例e1〜e4の非水電解質二次電池は、実施例E1〜E4の各非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が大きく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も低下した。   From Table 9, Examples E1 to E4 using positive electrode active materials in which particles of holmium compound composed of holmium hydroxide and holmium oxyhydroxide were dispersed and adhered to the surface of the positive electrode active material particles composed of lithium cobaltate. Each non-aqueous electrolyte secondary battery had a small increase in battery thickness after the high-temperature continuous charge test, and also exhibited high values for the remaining capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the high-temperature continuous charge test. On the other hand, the nonaqueous electrolyte secondary batteries of Comparative Examples e1 to e4 have a large increase in the thickness of the battery after the high temperature continuous charge test, compared with the nonaqueous electrolyte secondary batteries of Examples E1 to E4, and the high temperature continuous charge. The residual capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the test also decreased.

また、実施例E1〜E4の各非水電解質二次電池も、実施例A1〜A7の各非水電解質二次電池と同様に、比較例x1〜x3,y1,z1の非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率が大きく向上した。   In addition, the nonaqueous electrolyte secondary batteries of Examples E1 to E4 are also nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1, similarly to the nonaqueous electrolyte secondary batteries of Examples A1 to A7. In comparison with, the increase in the thickness of the battery after the high-temperature continuous charge test was small, and the remaining capacity ratio, the return capacity ratio and the charge / discharge efficiency after the high-temperature continuous charge test were greatly improved.

(実施例F1)
実施例F1では、下記のようにして作製した正極を用いた。
(Example F1)
In Example F1, a positive electrode produced as follows was used.

[正極の作製]
正極活物質粒子として、MgとAlとがそれぞれ0.5モル%固溶されたコバルト酸リチウムを用いた。そして、この正極活物質粒子1000gを3リットルの純水中に投入し、これを撹拌しながら、5.53gの硝酸ツリウム4水和物を200mlの純水に溶解させた硝酸ツリウム水溶液を添加した。このとき、この溶液のpHが9になるように10質量%の水酸化ナトリウム水溶液を適宜加えて、正極活物質粒子の表面に水酸化ツリウムを付着させた。そして、これを吸引濾過して処理物を濾取し、この処理物を120℃で乾燥させて、水酸化ツリウムが表面に分散かつ付着された正極活物質粒子を得た。
[Production of positive electrode]
As the positive electrode active material particles, lithium cobalt oxide in which 0.5 mol% of Mg and Al were dissolved was used. Then, 1000 g of this positive electrode active material particle was put into 3 liters of pure water, and while stirring this, an aqueous solution of thulium nitrate in which 5.53 g of thulium nitrate tetrahydrate was dissolved in 200 ml of pure water was added. . At this time, a 10 mass% sodium hydroxide aqueous solution was appropriately added so that the pH of this solution was 9, and thulium hydroxide was adhered to the surface of the positive electrode active material particles. And this was suction-filtered, the processed material was filtered, and this processed material was dried at 120 degreeC, and the positive electrode active material particle by which thulium hydroxide was disperse | distributed and adhered to the surface was obtained.

次いで、水酸化ツリウムが表面に分散かつ付着された正極活物質粒子を空気雰囲気中において300℃の温度で5時間熱処理した。これにより、正極活物質粒子の表面にツリウム化合物の粒子が分散かつ付着された正極活物質を得た。   Next, the positive electrode active material particles having thulium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 300 ° C. for 5 hours. Thus, a positive electrode active material in which thulium compound particles were dispersed and adhered to the surface of the positive electrode active material particles was obtained.

ここで、この正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたツリウム化合物におけるツリウム元素(Tm)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着されたツリウム化合物は、水酸化ツリウムの多くがオキシ水酸化ツリウムに変化した。   Here, in this positive electrode active material, the ratio of thulium element (Tm) in the thulium compound attached to the surface of the positive electrode active material particles made of lithium cobalt oxide was 0.22% by mass. Further, in the thulium compound attached to the surface of the positive electrode active material particles, most of thulium hydroxide was changed to thulium oxyhydroxide.

また、実施例F1の正極活物質をSEMにより観察した結果、正極活物質粒子の表面に付着されたツリウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、このツリウム化合物の粒子が正極活物質粒子の表面に分散かつ付着されていた。   Moreover, as a result of observing the positive electrode active material of Example F1 with SEM, most of the particle diameters of the thulium compound particles attached to the surfaces of the positive electrode active material particles were 100 nm or less. Further, the thulium compound particles were dispersed and adhered to the surface of the positive electrode active material particles.

次に、正極活物質と、導電剤のアセチレンブラックと、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、混合撹拌装置(特殊機化社製:コンビミックス)により混合攪拌させて正極合剤スラリーを調製した。このとき、正極活物質と導電剤と結着剤とを95:2.5:2.5の質量比にした。そして、この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に均一に塗布した後、これを乾燥させ、圧延ローラにより圧延させて、正極集電体の両面に正極合剤層が形成された正極を得た。なお、この正極における正極活物質の充填密度は3.60g/cm3であった。そして、上記の正極を用いる以外は、実施例A1の場合と同様にして、4.40Vまで充電した場合の設計容量が780mAhである扁平型の非水電解質二次電池を作製した。 Next, a positive electrode active material, a conductive agent acetylene black, and a N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder is dissolved are mixed and agitated by a special stirrer (made by Tokushu Kika Co., Ltd .: Combimix). Were mixed and stirred to prepare a positive electrode mixture slurry. At this time, the positive electrode active material, the conductive agent, and the binder were in a mass ratio of 95: 2.5: 2.5. And after apply | coating this positive mix slurry uniformly on both surfaces of the positive electrode collector which consists of aluminum foil, this is dried and rolled with a rolling roller, and a positive mix layer is formed on both surfaces of a positive electrode collector A positive electrode was obtained. In addition, the packing density of the positive electrode active material in this positive electrode was 3.60 g / cm 3 . A flat nonaqueous electrolyte secondary battery having a design capacity of 780 mAh when charged to 4.40 V was produced in the same manner as in Example A1 except that the above positive electrode was used.

(実施例F2)
実施例F2では、実施例F1における正極の作製において、水酸化ツリウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において200℃の温度で5時間熱処理した。それ以外は、実施例F1の場合と同様にして非水電解質二次電池を作製した。
(Example F2)
In Example F2, in the production of the positive electrode in Example F1, the positive electrode active material particles in which thulium hydroxide was dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 200 ° C. for 5 hours. Other than that was carried out similarly to the case of Example F1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例F2のように熱処理して得た正極活物質では、正極活物質粒子の表面に付着された水酸化ツリウムの多くがオキシ水酸化ツリウムに変化されず、水酸化ツリウムの状態で残っていた。   Here, in the positive electrode active material obtained by heat treatment as in Example F2, most of the thulium hydroxide attached to the surface of the positive electrode active material particles was not changed to thulium oxyhydroxide, and in the thulium hydroxide state. It remained.

(実施例F3)
実施例F3では、実施例F1における正極の作製において、水酸化エルビウムが表面に分散かつ付着された正極活物質粒子を、120℃で乾燥のみの熱処理で終了した。それ以外は、実施例F1の場合と同様にして非水電解質二次電池を作製した。
(Example F3)
In Example F3, in the production of the positive electrode in Example F1, the positive electrode active material particles in which erbium hydroxide was dispersed and adhered to the surface were terminated by a heat treatment only by drying at 120 ° C. Other than that was carried out similarly to the case of Example F1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例F3のように120℃で乾燥のみの熱処理では、正極活物質粒子の表面に付着された水酸化ツリウムがオキシ水酸化ツリウムに変化しなかった。   Here, in the heat treatment of only drying at 120 ° C. as in Example F3, thulium hydroxide attached to the surface of the positive electrode active material particles did not change to thulium oxyhydroxide.

(実施例F4)
実施例F4では、実施例F1における正極の作製において、正極活物質粒子の表面に水酸化ツリウムを付着させるにあたり、硝酸ツリウム4水和物を200mlの純水に溶解させる量を1.70gに変更した。それ以外は、実施例F1の場合と同様にして非水電解質二次電池を作製した。
(Example F4)
In Example F4, in the production of the positive electrode in Example F1, the amount of thulium nitrate tetrahydrate dissolved in 200 ml of pure water was changed to 1.70 g when attaching thulium hydroxide to the surface of the positive electrode active material particles. did. Other than that was carried out similarly to the case of Example F1, and produced the nonaqueous electrolyte secondary battery.

ここで、実施例F4では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたツリウム化合物におけるツリウム元素(Tm)の割合は、0.067質量%であった。また、この正極活物質粒子の表面に付着された水酸化ツリウムの多くがオ
キシ水酸化ツリウムに変化した。
Here, in Example F4, the ratio of the thulium element (Tm) in the thulium compound attached to the surface of the positive electrode active material particles made of lithium cobaltate was 0.067% by mass. In addition, most of the thulium hydroxide adhered to the surface of the positive electrode active material particles was changed to thulium oxyhydroxide.

(比較例f1)
比較例f1では、実施例F1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子の表面にツリウム化合物を付着させなかった。それ以外は、実施例F1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example f1)
In Comparative Example f1, in the production of the positive electrode in Example F1, no thulium compound was attached to the surface of the positive electrode active material particles made of lithium cobaltate. Other than that was carried out similarly to the case of Example F1, and produced the nonaqueous electrolyte secondary battery.

(比較例f2)
比較例f2では、実施例F1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子500gと、酸化ツリウム試薬を一次粒子の粒子径が300nmになるまで粉砕した酸化ツリウム1.25gとを、混合処理機(ホソカワミクロン社製:ノビルタ)を用いて混合した。これにより、コバルト酸リチウムからなる正極活物質粒子の表面に酸化ツリウムを機械的に付着させて正極活物質を作製した。そして、このように作製した正極活物質を用いる以外は、実施例F1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example f2)
In Comparative Example f2, in preparation of the positive electrode in Example F1, 500 g of positive electrode active material particles made of lithium cobaltate and 1.25 g of thulium oxide obtained by pulverizing a thulium oxide reagent until the particle diameter of the primary particles was 300 nm, Mixing was performed using a mixing processor (manufactured by Hosokawa Micron Corporation: Nobilta). Thereby, the positive electrode active material was produced by mechanically attaching thulium oxide to the surface of the positive electrode active material particles made of lithium cobalt oxide. And the nonaqueous electrolyte secondary battery was produced like the case of Example F1 except using the positive electrode active material produced in this way.

ここで、比較例f2の正極活物質においては、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化ツリウムにおけるツリウム元素(Tm)の割合は、0.22質量%であった。   Here, in the positive electrode active material of Comparative Example f2, the ratio of thulium element (Tm) in thulium oxide attached to the surface of the positive electrode active material particles made of lithium cobaltate is 0.22% by mass. there were.

また、比較例f2の正極活物質をSEMにより観察した結果、酸化ツリウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されなかった。   In addition, as a result of observing the positive electrode active material of Comparative Example f2 by SEM, thulium oxide was aggregated and adhered to the recessed portions of the positive electrode active material particles, and was not dispersed and adhered to the surface of the positive electrode active material particles.

(比較例f3)
比較例f3では、比較例f2における一次粒子の粒子径が300nmの酸化ツリウムの量を4.97gに変更して正極活物質を作製した。そして、このように作製した正極活物質を用いる以外は、実施例F1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example f3)
In Comparative Example f3, a positive electrode active material was produced by changing the amount of thulium oxide having a primary particle diameter of 300 nm in Comparative Example f2 to 4.97 g. And the nonaqueous electrolyte secondary battery was produced like the case of Example F1 except using the positive electrode active material produced in this way.

ここで、比較例f3の正極活物質においては、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化ツリウムにおけるツリウム元素(Tm)の割合は、0.87質量%であった。   Here, in the positive electrode active material of Comparative Example f3, the ratio of thulium element (Tm) in thulium oxide attached to the surface of the positive electrode active material particles made of lithium cobaltate is 0.87% by mass. there were.

また、比較例f3の正極活物質をSEMにより観察した結果、比較例f2の場合と同様に、酸化ツリウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されなかった。   Further, as a result of observing the positive electrode active material of Comparative Example f3 by SEM, as in Comparative Example f2, thulium oxide is aggregated and attached to the dents of the positive electrode active material particles. It was not dispersed and adhered to the surface.

(比較例f4)
比較例f4では、実施例F1における正極の作製において、水酸化ツリウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において500℃の温度で5時間熱処理した。それ以外は、実施例F1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example f4)
In Comparative Example f4, in producing the positive electrode in Example F1, the positive electrode active material particles having thulium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 500 ° C. for 5 hours. Other than that was carried out similarly to the case of Example F1, and produced the nonaqueous electrolyte secondary battery.

ここで、比較例f4のように熱処理して得た正極活物質では、正極活物質粒子の表面に付着された水酸化ツリウムが酸化ツリウムに変化すると共に、ツリウムの一部が正極活物質粒子の内部に拡散されていた。   Here, in the positive electrode active material obtained by heat treatment as in Comparative Example f4, thulium hydroxide attached to the surface of the positive electrode active material particles is changed to thulium oxide, and a part of thulium is made up of the positive electrode active material particles. It was diffused inside.

次に、実施例F1〜F4及び比較例f1〜f4の各非水電解質二次電池を、実施例A1等の非水電解質二次電池の場合と同様に、4.40Vまで定電流充電した後、4.40Vで定電圧充電して、初期充電した。その後、初期充電した各非水電解質二次電池を10分間休止した後、750mAの定電流で2.75Vになるまで初期放電した。このときの放
電容量Qoを測定した。そして、実施例F1〜F4及び比較例f4の各非水電解質二次電池については、初期の充放電効率を求めた。
Next, after the nonaqueous electrolyte secondary batteries of Examples F1 to F4 and Comparative Examples f1 to f4 were charged with a constant current up to 4.40 V as in the case of the nonaqueous electrolyte secondary batteries of Example A1 and the like. The battery was charged at a constant voltage of 4.40 V and initially charged. Thereafter, each of the initially charged nonaqueous electrolyte secondary batteries was paused for 10 minutes, and then initially discharged at a constant current of 750 mA until it reached 2.75V. The discharge capacity Qo at this time was measured. And the initial charging / discharging efficiency was calculated | required about each nonaqueous electrolyte secondary battery of Examples F1-F4 and Comparative Example f4.

この結果、実施例F1〜F4の各非水電解質二次電池では、初期の充放電効率が89%であったのに対して、比較例f4の非水電解質二次電池では、初期の充放電効率が86%に低下した。これは、比較例f4の非水電解質二次電池の場合、正極活物質粒子の表面に付着された水酸化ツリウムが酸化ツリウムに変化すると共に、ツリウムの一部が正極活物質粒子の内部に拡散されたためと考えられる。   As a result, in each of the nonaqueous electrolyte secondary batteries of Examples F1 to F4, the initial charge / discharge efficiency was 89%, whereas in the nonaqueous electrolyte secondary battery of Comparative Example f4, the initial charge / discharge efficiency was Efficiency dropped to 86%. This is because, in the case of the non-aqueous electrolyte secondary battery of Comparative Example f4, thulium hydroxide attached to the surface of the positive electrode active material particles changes to thulium oxide, and part of thulium diffuses inside the positive electrode active material particles. It is thought that it was because it was done.

また、初期充放電した後、各非水電解質二次電池に対して、実施例A1等の非水電解質二次電池の場合と同様にして、高温連続充電試験を行った。そして、高温連続充電試験前に対する高温連続充電試験後の各非水電解質二次電池における厚み増加量を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表10に示した。   In addition, after the initial charge / discharge, a high-temperature continuous charge test was performed on each non-aqueous electrolyte secondary battery in the same manner as in the case of the non-aqueous electrolyte secondary battery such as Example A1. And the thickness increase amount in each nonaqueous electrolyte secondary battery after the high temperature continuous charge test with respect to the high temperature continuous charge test was calculated | required. The results are shown in Table 10 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

また、高温連続充電試験後における各非水電解質二次電池を、室温にしてそれぞれ750mAの定電流で2.75Vになるまで放電し、高温連続充電試験後の放電容量Q3を求め、10分間休止した。そして、式(4)により高温連続充電試験後の残存容量率(%)を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表10に示した。   In addition, each non-aqueous electrolyte secondary battery after the high-temperature continuous charge test is discharged at room temperature to a constant current of 750 mA until it reaches 2.75 V, and the discharge capacity Q3 after the high-temperature continuous charge test is obtained to rest for 10 minutes. did. And the remaining capacity rate (%) after a high-temperature continuous charge test was calculated | required by Formula (4). The results are shown in Table 10 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

さらに、10分間休止した後の各非水電解質二次電池を、室温において、750mAの定電流で4.40Vまで定電流充電した後、4.40Vの定電圧で電流値が37.5mAになるまで定電圧充電して充電容量Qbを求めた。そして、各非水電解質二次電池を10分間休止した。その後、750mAの定電流で2.75Vになるまで放電し、放電容量Q4を求めた。そして、式(5)により高温連続充電試験後の復帰容量率(%)を求めると共に、式(6)により高温連続充電試験後の充放電効率(%)を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表10に示した。   Further, after each non-aqueous electrolyte secondary battery after 10 minutes of rest is charged at a constant current of 750 mA to 4.40 V at room temperature, the current value becomes 37.5 mA at a constant voltage of 4.40 V. The charge capacity Qb was obtained by charging at a constant voltage. Then, each nonaqueous electrolyte secondary battery was paused for 10 minutes. Then, it discharged until it became 2.75V with a constant current of 750 mA, and discharge capacity Q4 was calculated | required. And while calculating | requiring the return capacity rate (%) after a high temperature continuous charge test by Formula (5), the charging / discharging efficiency (%) after a high temperature continuous charge test was calculated | required by Formula (6). The results are shown in Table 10 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

表10より、コバルト酸リチウムからなる正極活物質粒子の表面に、水酸化ツリウムとオキシ水酸化ツリウムとからなるツリウム化合物の粒子が分散かつ付着された正極活物質を用いた実施例F1〜F4の各非水電解質二次電池は、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も高い値を示した。一方、比較例f1〜f4の非水電解質二次電池は、実施例F1〜F4の各非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が大きく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も低下した。   From Table 10, Examples F1 to F4 using positive electrode active materials in which particles of thulium compound composed of thulium hydroxide and thulium oxyhydroxide were dispersed and adhered to the surface of the positive electrode active material particles composed of lithium cobaltate. Each non-aqueous electrolyte secondary battery had a small increase in battery thickness after the high-temperature continuous charge test, and also exhibited high values for the remaining capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the high-temperature continuous charge test. On the other hand, the non-aqueous electrolyte secondary batteries of Comparative Examples f1 to f4 have a larger amount of increase in battery thickness after the high-temperature continuous charge test than the non-aqueous electrolyte secondary batteries of Examples F1 to F4. The residual capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the test also decreased.

また、実施例F1〜F4の各非水電解質二次電池も、実施例A1〜A7の各非水電解質二次電池と同様に、比較例x1〜x3,y1,z1の非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も大きく向上した。   In addition, the nonaqueous electrolyte secondary batteries of Examples F1 to F4 are also nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1, and z1, similarly to the nonaqueous electrolyte secondary batteries of Examples A1 to A7. In comparison with, the increase in the thickness of the battery after the high-temperature continuous charge test was small, and the remaining capacity ratio, the return capacity ratio and the charge / discharge efficiency after the high-temperature continuous charge test were also greatly improved.

(実施例G1)
実施例G1では、下記のようにして作製した正極を用いた。
(Example G1)
In Example G1, a positive electrode produced as follows was used.

[正極の作製]
正極活物質粒子として、MgとAlとがそれぞれ0.5モル%固溶されたコバルト酸リチウムを用いた。そして、この正極活物質粒子1000gを3リットルの純水中に投入し、これを撹拌しながら、5.21gの硝酸ルテチウム3水和物を200mlの純水に溶解させた硝酸ルテチウム水溶液を添加した。このとき、この溶液のpHが9になるように10質量%の水酸化ナトリウム水溶液を適宜加えて、正極活物質粒子の表面に水酸化ルテチウムを付着させた。そして、これを吸引濾過して処理物を濾取し、この処理物を120℃で乾燥させて、水酸化ルテチウムが表面に分散かつ付着された正極活物質粒子を得た。
[Production of positive electrode]
As the positive electrode active material particles, lithium cobalt oxide in which 0.5 mol% of Mg and Al were dissolved was used. Then, 1000 g of the positive electrode active material particles were put into 3 liters of pure water, and while stirring this, an aqueous solution of lutetium nitrate in which 5.21 g of lutetium nitrate trihydrate was dissolved in 200 ml of pure water was added. . At this time, a 10% by mass sodium hydroxide aqueous solution was appropriately added so that the pH of this solution was 9, and lutetium hydroxide was adhered to the surfaces of the positive electrode active material particles. And this was suction-filtered, the processed material was filtered, and this processed material was dried at 120 degreeC, and the positive electrode active material particle by which the lutetium hydroxide was disperse | distributed and adhered to the surface was obtained.

次いで、水酸化ルテチウムが表面に分散かつ付着された正極活物質粒子を空気雰囲気中において300℃の温度で5時間熱処理した。これにより、正極活物質粒子の表面にルテチウム化合物の粒子が分散かつ付着された正極活物質を得た。   Next, the positive electrode active material particles having lutetium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 300 ° C. for 5 hours. As a result, a positive electrode active material in which lutetium compound particles were dispersed and adhered to the surface of the positive electrode active material particles was obtained.

ここで、この正極活物質においては、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたルテチウム化合物におけるルテチウム元素(Lu)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着されたルテチウム化合物は、水酸化ルテチウムの多くがオキシ水酸化ルテチウムに変化した。   Here, in this positive electrode active material, the ratio of the lutetium element (Lu) in the lutetium compound adhered to the surface of the positive electrode active material particles made of lithium cobaltate was 0.22% by mass. Further, in the lutetium compound attached to the surface of the positive electrode active material particles, most of the lutetium hydroxide was changed to lutetium oxyhydroxide.

また、実施例G1の正極活物質をSEMにより観察した結果、正極活物質粒子の表面に付着されたルテチウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、このルテチウム化合物の粒子が正極活物質粒子の表面に分散かつ付着されていた。   Moreover, as a result of observing the positive electrode active material of Example G1 with SEM, most of the particle diameters of the particles of the lutetium compound attached to the surfaces of the positive electrode active material particles were 100 nm or less. Further, the lutetium compound particles were dispersed and adhered to the surface of the positive electrode active material particles.

次に、正極活物質と、導電剤のアセチレンブラックと、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、混合撹拌装置(特殊機化社製:コンビミックス)により混合攪拌させて正極合剤スラリーを調製した。このとき、正極活物質と導電剤と結着剤とを95:2.5:2.5の質量比にした。そして、この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に均一に塗布した後、これを乾燥させ、圧延ローラにより圧延させて、正極集電体の両面に正極合剤層が形成された正極を得た。なお、この正極における正極活物質の充填密度は3.60g/cm3であった。 Next, a positive electrode active material, a conductive agent acetylene black, and a N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder is dissolved are mixed and agitated by a special stirrer (made by Tokushu Kika Co., Ltd .: Combimix). Were mixed and stirred to prepare a positive electrode mixture slurry. At this time, the positive electrode active material, the conductive agent, and the binder were in a mass ratio of 95: 2.5: 2.5. And after apply | coating this positive mix slurry uniformly on both surfaces of the positive electrode collector which consists of aluminum foil, this is dried and rolled with a rolling roller, and a positive mix layer is formed on both surfaces of a positive electrode collector A positive electrode was obtained. In addition, the packing density of the positive electrode active material in this positive electrode was 3.60 g / cm 3 .

そして、上記の正極を用いる以外は、実施例A1の場合と同様にして、4.40Vまで充電した場合の設計容量が780mAhである扁平型の非水電解質二次電池を作製した。   A flat nonaqueous electrolyte secondary battery having a design capacity of 780 mAh when charged to 4.40 V was produced in the same manner as in Example A1 except that the above positive electrode was used.

(実施例G2)
実施例G2では、実施例G1における正極の作製において、水酸化ルテチウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において200℃の温度で5時間熱処理した。それ以外は、実施例G1の場合と同様にして非水電解質二次電池を作製した。
(Example G2)
In Example G2, in the production of the positive electrode in Example G1, the positive electrode active material particles having lutetium hydroxide dispersed and adhered to the surface were heat-treated in an air atmosphere at a temperature of 200 ° C. for 5 hours. Otherwise, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example G1.

ここで、実施例G2のように熱処理して得た正極活物質では、正極活物質粒子の表面に付着された水酸化ルテチウムの多くがオキシ水酸化ルテチウムに変化されず、水酸化ルテチウムの状態で残っていた。   Here, in the positive electrode active material obtained by heat treatment as in Example G2, most of the lutetium hydroxide attached to the surface of the positive electrode active material particles was not changed to lutetium oxyhydroxide, but in the state of lutetium hydroxide. It remained.

(実施例G3)
実施例G3では、実施例G1における正極の作製において、水酸化ルテチウムが表面に分散かつ付着された正極活物質粒子を、120℃で乾燥のみの熱処理で終了した。それ以外は、実施例G1の場合と同様にして非水電解質二次電池を作製した。
(Example G3)
In Example G3, in the production of the positive electrode in Example G1, the positive electrode active material particles having lutetium hydroxide dispersed and adhered to the surface were finished by a heat treatment only by drying at 120 ° C. Otherwise, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example G1.

ここで、実施例G3のように120℃で乾燥のみの熱処理では、正極活物質粒子の表面に付着された水酸化ルテチウムがオキシ水酸化ルテチウムに変化しなかった。   Here, in the heat treatment of only drying at 120 ° C. as in Example G3, lutetium hydroxide attached to the surface of the positive electrode active material particles did not change to lutetium oxyhydroxide.

(実施例G4)
実施例G4では、実施例G1における正極の作製において、正極活物質粒子の表面に水酸化ルテチウムを付着させるにあたり、硝酸ルテチウム3水和物を200mlの純水に溶解させる量を1.59gに変更した。それ以外は、実施例G1の場合と同様にして非水電解質二次電池を作製した。
(Example G4)
In Example G4, the amount of lutetium nitrate trihydrate dissolved in 200 ml of pure water was changed to 1.59 g when attaching lutetium hydroxide to the surface of the positive electrode active material particles in the production of the positive electrode in Example G1. did. Otherwise, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example G1.

ここで、実施例G4では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着されたルテチウム化合物におけるルテチウム元素(Lu)の割合は、0.06
7質量%であった。また、この正極活物質粒子の表面に付着された水酸化ルテチウムの多くがオキシ水酸化ルテチウムに変化した。
Here, in Example G4, the ratio of the lutetium element (Lu) in the lutetium compound attached to the surface of the positive electrode active material particles made of lithium cobaltate is 0.06.
It was 7 mass%. Further, most of the lutetium hydroxide adhered to the surface of the positive electrode active material particles was changed to lutetium oxyhydroxide.

(比較例g1)
比較例g1では、実施例G1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子の表面にルテチウム化合物を付着させなかった。それ以外は、実施例G1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example g1)
In Comparative Example g1, the lutetium compound was not attached to the surface of the positive electrode active material particles made of lithium cobaltate in the production of the positive electrode in Example G1. Otherwise, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example G1.

(比較例g2)
比較例g2では、実施例G1における正極の作製において、コバルト酸リチウムからなる正極活物質粒子500gと、酸化ルテチウム試薬を一次粒子の粒子径が300nmになるまで粉砕した酸化ルテチウム1.25gとを、混合処理機(ホソカワミクロン社製:ノビルタ)を用いて混合した。これにより、コバルト酸リチウムからなる正極活物質粒子の表面に酸化ルテチウムを機械的に付着させて正極活物質を作製した。そして、このように作製した正極活物質を用いる以外は、実施例G1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example g2)
In Comparative Example g2, in preparation of the positive electrode in Example G1, 500 g of positive electrode active material particles made of lithium cobaltate and 1.25 g of lutetium oxide obtained by pulverizing a lutetium oxide reagent until the particle diameter of primary particles is 300 nm, Mixing was performed using a mixing processor (manufactured by Hosokawa Micron Corporation: Nobilta). Thereby, the positive electrode active material was produced by mechanically attaching lutetium oxide to the surface of the positive electrode active material particles made of lithium cobalt oxide. And the nonaqueous electrolyte secondary battery was produced like the case of Example G1 except using the positive electrode active material produced in this way.

ここで、比較例g2の正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化ルテチウムにおけるルテチウム元素(Lu)の割合は、0.22質量%であった。   Here, in the positive electrode active material of Comparative Example g2, the ratio of the lutetium element (Lu) in the lutetium oxide adhered to the surface of the positive electrode active material particles made of lithium cobaltate was 0.22% by mass. It was.

また、比較例g2の正極活物質をSEMにより観察した結果、酸化ルテチウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されなかった。   In addition, as a result of observing the positive electrode active material of Comparative Example g2 by SEM, lutetium oxide was aggregated and adhered to the recessed portions of the positive electrode active material particles, and was not dispersed and adhered to the surface of the positive electrode active material particles.

(比較例g3)
比較例g3では、比較例g2における一次粒子の粒子径が300nmの酸化ルテチウムの量を4.97gに変更して正極活物質を作製した。そして、このように作製した正極活物質を用いる以外は、実施例G1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example g3)
In Comparative Example g3, a positive electrode active material was produced by changing the amount of lutetium oxide having a primary particle diameter of 300 nm in Comparative Example g2 to 4.97 g. And the nonaqueous electrolyte secondary battery was produced like the case of Example G1 except using the positive electrode active material produced in this way.

ここで、比較例g3の正極活物質では、コバルト酸リチウムからなる正極活物質粒子に対して、その表面に付着された酸化ルテチウムにおけるルテチウム元素(Lu)の割合は、0.87質量%であった。   Here, in the positive electrode active material of Comparative Example g3, the ratio of the lutetium element (Lu) in the lutetium oxide adhered to the surface of the positive electrode active material particles made of lithium cobaltate was 0.87% by mass. It was.

また、比較例g3の正極活物質をSEMにより観察した結果、比較例g2の場合と同様に、酸化ルテチウムは、正極活物質粒子の凹み部分に凝集して付着しており、正極活物質粒子の表面に分散かつ付着されなかった。   Further, as a result of observing the positive electrode active material of Comparative Example g3 by SEM, as in Comparative Example g2, the lutetium oxide was aggregated and adhered to the recessed portions of the positive electrode active material particles. It was not dispersed and adhered to the surface.

(比較例g4)
比較例g4では、実施例G1における正極の作製において、水酸化ルテチウムが表面に分散かつ付着された正極活物質粒子を、空気雰囲気中において500℃の温度で5時間熱処理した。それ以外は、実施例G1の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example g4)
In Comparative Example g4, in the production of the positive electrode in Example G1, the positive electrode active material particles having lutetium hydroxide dispersed and adhered to the surface were heat-treated at a temperature of 500 ° C. for 5 hours in an air atmosphere. Otherwise, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example G1.

ここで、比較例g4のように熱処理して得た正極活物質では、正極活物質粒子の表面に付着された水酸化ルテチウムが酸化ルテチウムに変化すると共に、ルテチウムの一部が正極活物質粒子の内部に拡散されていた。   Here, in the positive electrode active material obtained by heat treatment as in Comparative Example g4, lutetium hydroxide attached to the surface of the positive electrode active material particles changes to lutetium oxide, and part of the lutetium is the positive electrode active material particles. It was diffused inside.

次に、実施例G1〜G4及び比較例g1〜g4の各非水電解質二次電池を、実施例A1等の非水電解質二次電池の場合と同様に、4.40Vまで定電流充電した後、4.40Vで定電圧充電して、初期充電した。その後、初期充電した各非水電解質二次電池を10分
間休止させた後、750mAの定電流で2.75Vになるまで初期放電した。このときの放電容量Qoを測定した。そして、実施例G1〜G4及び比較例g4の各非水電解質二次電池については、初期の充放電効率を求めた。
Next, after each of the nonaqueous electrolyte secondary batteries of Examples G1 to G4 and Comparative Examples g1 to g4 was charged with a constant current to 4.40 V in the same manner as the nonaqueous electrolyte secondary batteries of Example A1 and the like. The battery was charged at a constant voltage of 4.40 V and initially charged. Thereafter, each of the initially charged nonaqueous electrolyte secondary batteries was paused for 10 minutes, and then initially discharged at a constant current of 750 mA until it reached 2.75V. The discharge capacity Qo at this time was measured. And the initial charging / discharging efficiency was calculated | required about each nonaqueous electrolyte secondary battery of Examples G1-G4 and Comparative Example g4.

この結果、実施例G1〜G4の各非水電解質二次電池では、初期の充放電効率が89%であったのに対して、比較例g4の非水電解質二次電池では、初期の充放電効率が86%に低下した。これは、比較例g4の非水電解質二次電池の場合、正極活物質粒子の表面に付着された水酸化ルテチウムが酸化ルテチウムに変化すると共に、ルテチウムの一部が正極活物質粒子の内部に拡散されたためと考えられる。   As a result, in each of the nonaqueous electrolyte secondary batteries of Examples G1 to G4, the initial charge / discharge efficiency was 89%, whereas in the nonaqueous electrolyte secondary battery of Comparative Example g4, the initial charge / discharge efficiency was Efficiency dropped to 86%. This is because, in the case of the nonaqueous electrolyte secondary battery of Comparative Example g4, lutetium hydroxide attached to the surface of the positive electrode active material particles changes to lutetium oxide, and part of the lutetium diffuses into the positive electrode active material particles. It is thought that it was because it was done.

また、初期充放電した後、各非水電解質二次電池に対して、実施例A1等の非水電解質二次電池の場合と同様にして、高温連続充電試験を行った。そして、高温連続充電試験前に対する高温連続充電試験後の各非水電解質二次電池における厚み増加量を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表11に示した。   In addition, after the initial charge / discharge, a high-temperature continuous charge test was performed on each non-aqueous electrolyte secondary battery in the same manner as in the case of the non-aqueous electrolyte secondary battery such as Example A1. And the thickness increase amount in each nonaqueous electrolyte secondary battery after the high temperature continuous charge test with respect to the high temperature continuous charge test was calculated | required. The results are shown in Table 11 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

また、高温連続充電試験後における各非水電解質二次電池を、室温にしてそれぞれ750mAの定電流で2.75Vになるまで放電し、高温連続充電試験後の放電容量Q3を求め、10分間休止した。そして、式(4)により高温連続充電試験後の残存容量率(%)を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表10に示した。   In addition, each non-aqueous electrolyte secondary battery after the high-temperature continuous charge test is discharged at room temperature to a constant current of 750 mA until it reaches 2.75 V, and the discharge capacity Q3 after the high-temperature continuous charge test is obtained to rest for 10 minutes. did. And the remaining capacity rate (%) after a high-temperature continuous charge test was calculated | required by Formula (4). The results are shown in Table 10 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

さらに、10分間休止した後の各非水電解質二次電池を、室温において、750mAの定電流で4.40Vまで定電流充電した後、4.40Vの定電圧で電流値が37.5mAになるまで定電圧充電して充電容量Qbを求めた。そして、各非水電解質二次電池を10分間休止した。その後、750mAの定電流で2.75Vになるまで放電し、放電容量Q4を求めた。そして、式(5)により高温連続充電試験後の復帰容量率(%)を求めると共に、式(6)により高温連続充電試験後の充放電効率(%)を求めた。その結果を、比較例x1〜x3,y1,z1の非水電解質二次電池の結果と合わせて下記の表11に示した。   Further, after each non-aqueous electrolyte secondary battery after 10 minutes of rest is charged at a constant current of 750 mA to 4.40 V at room temperature, the current value becomes 37.5 mA at a constant voltage of 4.40 V. The charge capacity Qb was obtained by charging at a constant voltage. Then, each nonaqueous electrolyte secondary battery was paused for 10 minutes. Then, it discharged until it became 2.75V with a constant current of 750 mA, and discharge capacity Q4 was calculated | required. And while calculating | requiring the return capacity rate (%) after a high temperature continuous charge test by Formula (5), the charging / discharging efficiency (%) after a high temperature continuous charge test was calculated | required by Formula (6). The results are shown in Table 11 below together with the results of the nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1 and z1.

表11より、コバルト酸リチウムからなる正極活物質粒子の表面に、水酸化ルテチウムとオキシ水酸化ルテチウムとからなるルテチウム化合物の粒子が分散かつ付着された正極活物質を用いた実施例G1〜G4の各非水電解質二次電池は、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も高い値を示した。一方、比較例g1〜g4の非水電解質二次電池は、実施例G1〜G4の各非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が大きく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も低下した。   From Table 11, Examples G1 to G4 using positive electrode active materials in which particles of lutetium hydroxide and lutetium oxyhydroxide particles were dispersed and adhered to the surfaces of the positive electrode active material particles made of lithium cobaltate. Each non-aqueous electrolyte secondary battery had a small increase in battery thickness after the high-temperature continuous charge test, and also exhibited high values for the remaining capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the high-temperature continuous charge test. On the other hand, the non-aqueous electrolyte secondary batteries of Comparative Examples g1 to g4 have a large increase in battery thickness after the high-temperature continuous charge test compared to the non-aqueous electrolyte secondary batteries of Examples G1 to G4, and the high-temperature continuous charge. The residual capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the test also decreased.

また、実施例G1〜G4の各非水電解質二次電池も、実施例A1〜A7の各非水電解質二次電池と同様に、比較例x1〜x3,y1,z1の非水電解質二次電池に比べて、高温連続充電試験後における電池の厚み増加量が小さく、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率も大きく向上した。   In addition, the nonaqueous electrolyte secondary batteries of Examples G1 to G4 are also nonaqueous electrolyte secondary batteries of Comparative Examples x1 to x3, y1, and z1, similarly to the nonaqueous electrolyte secondary batteries of Examples A1 to A7. In comparison with, the increase in the thickness of the battery after the high-temperature continuous charge test was small, and the remaining capacity ratio, the return capacity ratio and the charge / discharge efficiency after the high-temperature continuous charge test were also greatly improved.

(実施例H1)
実施例H1では、正極を作製するにあたり、CoやNiが含まれない正極活物質粒子として、MgとAlとがそれぞれ1モル%固溶されたスピネル型マンガン酸リチウムLiMn24を用いた。そして、この正極活物質粒子を用いる以外は、実施例A1の場合と同様にして、この正極活物質粒子の表面に、エルビウム化合物の粒子が分散かつ付着された正極活物質を得た。
(Example H1)
In Example H1, spinel-type lithium manganate LiMn 2 O 4 in which 1 mol% of Mg and Al were each dissolved as a positive electrode active material particle not containing Co or Ni was used in producing the positive electrode. A positive electrode active material in which erbium compound particles were dispersed and adhered to the surface of the positive electrode active material particles was obtained in the same manner as in Example A1 except that the positive electrode active material particles were used.

ここで、実施例H1の正極活物質では、正極活物質粒子の表面に付着されたエルビウム化合物におけるエルビウム元素(Er)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着された水酸化エルビウムの多くがオキシ水酸化エルビウムに変化した。   Here, in the positive electrode active material of Example H1, the ratio of the erbium element (Er) in the erbium compound adhered to the surface of the positive electrode active material particles was 0.22% by mass. Further, most of the erbium hydroxide adhered to the surface of the positive electrode active material particles was changed to erbium oxyhydroxide.

また、正極活物質粒子の表面に付着されたエルビウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、エルビウム化合物の粒子は、正極活物質粒子の表面に分散かつ付着されていた。   In addition, most of the particles of the erbium compound particles adhered to the surfaces of the positive electrode active material particles were 100 nm or less. The erbium compound particles were dispersed and adhered to the surface of the positive electrode active material particles.

そして、スピネル型マンガン酸リチウムからなる正極活物質粒子の表面にエルビウム化合物の粒子が分散かつ付着された正極活物質を用い、実施例A1の場合と同様にして非水電解質二次電池を作製した。   A non-aqueous electrolyte secondary battery was produced in the same manner as in Example A1, using a positive electrode active material in which erbium compound particles were dispersed and adhered to the surface of positive electrode active material particles made of spinel type lithium manganate. .

(実施例H2)
実施例H2も、実施例H1と同様に、正極活物質粒子として、MgとAlとがそれぞれ1モル%固溶されたスピネル型マンガン酸リチウムLiMn24を用いた。そして、この正極活物質粒子を用いる以外は、実施例B1の場合と同様にして、この正極活物質粒子の表面に、イッテルビウム化合物の粒子が分散かつ付着された正極活物質を得た。
(Example H2)
In Example H2, similarly to Example H1, spinel type lithium manganate LiMn 2 O 4 in which 1 mol% of Mg and Al were dissolved as positive electrode active material particles was used. Then, a positive electrode active material in which ytterbium compound particles were dispersed and adhered to the surface of the positive electrode active material particles was obtained in the same manner as in Example B1 except that the positive electrode active material particles were used.

ここで、実施例H2の正極活物質では、正極活物質粒子に対して、その表面に付着されたイッテルビウム化合物におけるイッテルビウム元素(Yb)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着された水酸化イッテルビウムの多くがオキシ水酸化イッテルビウムに変化した。また、正極活物質粒子の表面に付着されたイッテルビウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、イッテルビウム化合物の粒子は、正極活物質粒子の表面に分散かつ付着されていた。   Here, in the positive electrode active material of Example H2, the ratio of the ytterbium element (Yb) in the ytterbium compound attached to the surface of the positive electrode active material particles was 0.22% by mass. Further, most of the ytterbium hydroxide attached to the surface of the positive electrode active material particles was changed to ytterbium oxyhydroxide. Moreover, most of the ytterbium compound particles adhered to the surfaces of the positive electrode active material particles had a particle size of 100 nm or less. The ytterbium compound particles were dispersed and attached to the surfaces of the positive electrode active material particles.

そして、このようにスピネル型マンガン酸リチウムからなる正極活物質粒子の表面にイッテルビウム化合物の粒子が分散かつ付着された正極活物質を用い、実施例A1の場合と同様にして非水電解質二次電池を作製した。   Then, using the positive electrode active material in which the particles of the ytterbium compound are dispersed and adhered to the surface of the positive electrode active material particles made of spinel type lithium manganate as described above, a nonaqueous electrolyte secondary battery is obtained in the same manner as in Example A1. Was made.

(実施例H3)
実施例H3においても、実施例H1と同様に、正極活物質粒子として、MgとAlとがそれぞれ1モル%固溶されたスピネル型マンガン酸リチウムLiMn24を用いた。
(Example H3)
Also in Example H3, similarly to Example H1, spinel type lithium manganate LiMn 2 O 4 in which 1 mol% of Mg and Al were dissolved as positive electrode active material particles was used.

そして、この正極活物質粒子を用いる以外は、実施例C1の場合と同様にして、この正極活物質粒子の表面に、テルビウム化合物の粒子が分散かつ付着された正極活物質を得た。   Then, a positive electrode active material in which terbium compound particles were dispersed and adhered to the surface of the positive electrode active material particles was obtained in the same manner as in Example C1 except that the positive electrode active material particles were used.

ここで、実施例H3の正極活物質では、正極活物質粒子に対して、その表面に付着されたテルビウム化合物におけるテルビウム元素(Tb)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着された水酸化テルビウムの多くがオキシ水酸化テルビウムに変化した。また、正極活物質粒子の表面に付着されたテルビウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、テルビウム化合物の粒子は、正極活物質粒子の表面に分散かつ付着されていた。   Here, in the positive electrode active material of Example H3, the ratio of the terbium element (Tb) in the terbium compound attached to the surface of the positive electrode active material particles was 0.22% by mass. Further, most of the terbium hydroxide adhered to the surface of the positive electrode active material particles was changed to terbium oxyhydroxide. Further, most of the particles of the terbium compound particles adhered to the surfaces of the positive electrode active material particles were 100 nm or less. The terbium compound particles were dispersed and attached to the surfaces of the positive electrode active material particles.

そして、スピネル型マンガン酸リチウムからなる正極活物質粒子の表面にテルビウム化合物の粒子が分散かつ付着された正極活物質を用い、実施例A1の場合と同様にして非水電解質二次電池を作製した。   A non-aqueous electrolyte secondary battery was produced in the same manner as in Example A1, using a positive electrode active material in which particles of a terbium compound were dispersed and adhered to the surface of positive electrode active material particles made of spinel type lithium manganate. .

(実施例H4)
実施例H4においても、実施例H1と同様に、正極活物質粒子として、MgとAlとがそれぞれ1モル%固溶されたスピネル型マンガン酸リチウムLiMn24を用いた。
(Example H4)
Also in Example H4, similarly to Example H1, spinel type lithium manganate LiMn 2 O 4 in which 1 mol% of Mg and Al were dissolved as positive electrode active material particles was used.

そして、この正極活物質粒子を用いる以外は、実施例D1の場合と同様にして、この正
極活物質粒子の表面に、ジスプロシウム化合物の粒子が分散かつ付着された正極活物質を得た。
A positive electrode active material in which particles of a dysprosium compound were dispersed and adhered to the surface of the positive electrode active material particles was obtained in the same manner as in Example D1 except that the positive electrode active material particles were used.

ここで、実施例H4の正極活物質では、正極活物質粒子に対して、その表面に付着されたジスプロシウム化合物におけるジスプロシウム元素(Dy)の割合は、0.22質量%であった。また、正極活物質粒子の表面に付着された水酸化ジスプロシウムの多くがオキシ水酸化ジスプロシウムに変化した。また、正極活物質粒子の表面に付着されたジスプロシウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、ジスプロシウム化合物の粒子が正極活物質粒子の表面に分散かつ付着されていた。   Here, in the positive electrode active material of Example H4, the ratio of the dysprosium element (Dy) in the dysprosium compound adhered to the surface of the positive electrode active material particles was 0.22% by mass. Further, most of the dysprosium hydroxide attached to the surface of the positive electrode active material particles was changed to dysprosium oxyhydroxide. Moreover, most of the particle diameters of the dysprosium compound particles attached to the surfaces of the positive electrode active material particles were 100 nm or less. Further, dysprosium compound particles were dispersed and adhered to the surface of the positive electrode active material particles.

そして、スピネル型マンガン酸リチウムからなる正極活物質粒子の表面にジスプロシウム化合物の粒子が分散かつ付着された正極活物質を用い、実施例A1の場合と同様にして非水電解質二次電池を作製した。   A nonaqueous electrolyte secondary battery was produced in the same manner as in Example A1, using a positive electrode active material in which particles of a dysprosium compound were dispersed and adhered to the surface of positive electrode active material particles made of spinel type lithium manganate. .

(実施例H5)
実施例H5においても、実施例H1と同様に、正極活物質粒子として、MgとAlとがそれぞれ1モル%固溶されたスピネル型マンガン酸リチウムLiMn24を用いた。
(Example H5)
Also in Example H5, similarly to Example H1, spinel type lithium manganate LiMn 2 O 4 in which 1 mol% of Mg and Al were dissolved as positive electrode active material particles was used.

そして、この正極活物質粒子を用いる以外は、実施例E1の場合と同様にして、この正極活物質粒子の表面に、ホルミウム化合物の粒子が分散かつ付着された正極活物質を得た。   Then, a positive electrode active material in which holmium compound particles were dispersed and adhered to the surface of the positive electrode active material particles was obtained in the same manner as in Example E1 except that the positive electrode active material particles were used.

ここで、実施例H5の正極活物質では、正極活物質粒子に対して、その表面に付着されたホルミウム化合物におけるホルミウム元素(Ho)の割合は、0.22質量%であった。また、この正極活物質粒子の表面に付着された水酸化ホルミウムの多くがオキシ水酸化ホルミウムに変化した。また、正極活物質粒子の表面に付着されたホルミウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、ホルミウム化合物の粒子は、正極活物質粒子の表面に分散かつ付着されていた。   Here, in the positive electrode active material of Example H5, the ratio of the holmium element (Ho) in the holmium compound attached to the surface of the positive electrode active material particles was 0.22% by mass. Further, most of the holmium hydroxide adhered to the surface of the positive electrode active material particles was changed to holmium oxyhydroxide. Moreover, most of the particle diameters of the holmium compound particles adhered to the surfaces of the positive electrode active material particles were 100 nm or less. The holmium compound particles were dispersed and adhered to the surface of the positive electrode active material particles.

そして、スピネル型マンガン酸リチウムからなる正極活物質粒子の表面にホルミウム化合物の粒子が分散かつ付着された正極活物質を用い、実施例A1の場合と同様にして非水電解質二次電池を作製した。   A non-aqueous electrolyte secondary battery was produced in the same manner as in Example A1, using a positive electrode active material in which holmium compound particles were dispersed and adhered to the surface of positive electrode active material particles made of spinel type lithium manganate. .

(実施例H6)
実施例H6においても、実施例H1と同様に、正極活物質粒子として、MgとAlとがそれぞれ1モル%固溶されたスピネル型マンガン酸リチウムLiMn24を用いた。
(Example H6)
Also in Example H6, as in Example H1, spinel type lithium manganate LiMn 2 O 4 in which 1 mol% of Mg and Al were dissolved as positive electrode active material particles was used.

そして、この正極活物質粒子を用いる以外は、実施例F1の場合と同様にして、この正極活物質粒子の表面に、ツリウム化合物の粒子が分散かつ付着された正極活物質を得た。   A positive electrode active material in which thulium compound particles were dispersed and adhered to the surface of the positive electrode active material particles was obtained in the same manner as in Example F1 except that the positive electrode active material particles were used.

ここで、実施例H6の正極活物質では、正極活物質粒子に対して、その表面に付着されたツリウム化合物におけるツリウム元素(Tm)の割合は、0.22質量%であった。また、正極活物質粒子の表面に付着された水酸化ツリウムの多くがオキシ水酸化ツリウムに変化した。また、正極活物質粒子の表面に付着されたツリウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、ツリウム化合物の粒子は、正極活物質粒子の表面に分散かつ付着されていた。   Here, in the positive electrode active material of Example H6, the ratio of thulium element (Tm) in the thulium compound attached to the surface of the positive electrode active material particles was 0.22% by mass. Further, most of the thulium hydroxide attached to the surface of the positive electrode active material particles was changed to thulium oxyhydroxide. Most of the thulium compound particles adhered to the surface of the positive electrode active material particles had a particle size of 100 nm or less. The thulium compound particles were dispersed and attached to the surfaces of the positive electrode active material particles.

そして、スピネル型マンガン酸リチウムからなる正極活物質粒子の表面にツリウム化合物の粒子が分散かつ付着された正極活物質を用い、実施例A1の場合と同様にして非水電解質二次電池を作製した。   A non-aqueous electrolyte secondary battery was produced in the same manner as in Example A1, using a positive electrode active material in which thulium compound particles were dispersed and adhered to the surface of positive electrode active material particles made of spinel type lithium manganate. .

(実施例H7)
実施例H7においても、実施例H1と同様に、正極活物質粒子として、MgとAlとがそれぞれ1モル%固溶されたスピネル型マンガン酸リチウムLiMn24を用いた。
(Example H7)
In Example H7, similarly to Example H1, spinel type lithium manganate LiMn 2 O 4 in which 1 mol% of Mg and Al were dissolved as positive electrode active material particles was used.

そして、この正極活物質粒子を用いる以外は、実施例G1の場合と同様にして、この正極活物質粒子の表面に、ルテチウム化合物の粒子が分散かつ付着された正極活物質を得た。   Then, a positive electrode active material in which lutetium compound particles were dispersed and adhered to the surface of the positive electrode active material particles was obtained in the same manner as in Example G1, except that the positive electrode active material particles were used.

ここで、実施例H7の正極活物質では、正極活物質粒子に対して、その表面に付着されたルテチウム化合物におけるルテチウム元素(Lu)の割合は、0.22質量%であった。また、正極活物質粒子の表面に付着された水酸化ルテチウムの多くがオキシ水酸化ルテチウムに変化した。また、正極活物質粒子の表面に付着されたルテチウム化合物の粒子の粒径は、その殆どが100nm以下であった。また、ルテチウム化合物の粒子は、正極活物質粒子の表面に分散かつ付着されていた。   Here, in the positive electrode active material of Example H7, the ratio of the lutetium element (Lu) in the lutetium compound attached to the surface of the positive electrode active material particles was 0.22% by mass. Further, most of the lutetium hydroxide adhered to the surface of the positive electrode active material particles was changed to lutetium oxyhydroxide. Moreover, most of the particles of the lutetium compound particles adhered to the surfaces of the positive electrode active material particles were 100 nm or less. Moreover, the particles of the lutetium compound were dispersed and adhered to the surfaces of the positive electrode active material particles.

そして、スピネル型マンガン酸リチウムからなる正極活物質粒子の表面にルテチウム化合物の粒子が分散かつ付着された正極活物質を用い、実施例A1の場合と同様にして非水電解質二次電池を作製した。   Then, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example A1, using a positive electrode active material in which particles of a lutetium compound were dispersed and adhered on the surface of positive electrode active material particles made of spinel type lithium manganate. .

(比較例h)
比較例hでは、正極活物質粒子として、実施例H1と同じMgとAlとがそれぞれ1モル%固溶されたスピネル型マンガン酸リチウムLiMn24を用い、この正極活物質粒子の表面に何も付着させなかった。
(Comparative Example h)
In Comparative Example h, as the positive electrode active material particles, spinel type lithium manganate LiMn 2 O 4 in which 1 mol% each of Mg and Al as in Example H1 was solid-dissolved was used. Also did not adhere.

そして、この正極活物質粒子を用い、実施例A1の場合と同様にして非水電解質二次電池を作製した。   And using this positive electrode active material particle, it carried out similarly to the case of Example A1, and produced the nonaqueous electrolyte secondary battery.

次に、実施例H1〜H7及び比較例hの各非水電解質二次電池を、それぞれ室温において、750mAの定電流で4.20Vまで充電し、さらに4.20Vの定電圧で電流値が37.5mAになるまで定電圧充電し、10分間休止した後、750mAの定電流で2.75Vになるまで放電する初期充放電を行い、このときの放電容量Qoを測定した。   Next, each of the nonaqueous electrolyte secondary batteries of Examples H1 to H7 and Comparative Example h was charged to 4.20 V at a constant current of 750 mA at room temperature, and the current value was 37 at a constant voltage of 4.20 V. The battery was charged at a constant voltage until it reached 0.5 mA, paused for 10 minutes, and then charged and discharged at a constant current of 750 mA until it reached 2.75 V. The discharge capacity Qo at this time was measured.

次に、初期充放電した各非水電解質二次電池を、それぞれ60℃の恒温槽内に1時間放した後、60℃の恒温槽内において、750mAの定電流で4.20Vになるまで充電し、さらに4.20Vの電圧を維持した状態にて3日間充電する高温連続充電試験を行い、試験前に対する高温連続充電試験後の各非水電解質二次電池における厚み増加量を求め、その結果を下記の表12に示した。   Next, each non-aqueous electrolyte secondary battery that was initially charged / discharged was released into a thermostat at 60 ° C. for 1 hour, and then charged to 4.20 V at a constant current of 750 mA in the thermostat at 60 ° C. In addition, a high temperature continuous charge test is performed in which the battery is charged for 3 days while maintaining a voltage of 4.20 V, and the increase in thickness in each nonaqueous electrolyte secondary battery after the high temperature continuous charge test before the test is obtained. Is shown in Table 12 below.

また、高温連続充電試験後における各非水電解質二次電池を、室温にしてそれぞれ750mAの定電流で2.75Vになるまで放電し、高温連続充電試験後の放電容量Q3を求め、10分間休止した。そして、式(4)により高温連続充電試験後の残存容量率(%)を求め、その結果を、下記の表12に示した。   In addition, each non-aqueous electrolyte secondary battery after the high-temperature continuous charge test is discharged at room temperature to a constant current of 750 mA until it reaches 2.75 V, and the discharge capacity Q3 after the high-temperature continuous charge test is obtained to rest for 10 minutes. did. And the residual capacity rate (%) after a high-temperature continuous charge test was calculated | required by Formula (4), and the result was shown in following Table 12.

さらに、10分間休止した後の各非水電解質二次電池を、室温において、750mAの定電流で4.40Vまで定電流充電した後、4.40Vの定電圧で電流値が37.5mAになるまで定電圧充電して充電容量Qbを求めた。そして、各非水電解質二次電池を10分間休止した。その後、750mAの定電流で2.75Vになるまで放電し、放電容量Q4を求めた。そして、式(5)により高温連続充電試験後の復帰容量率(%)を求めると共に、式(6)により高温連続充電試験後の充放電効率(%)を求め、その結果を、下記
の表12に示した。
Further, after each non-aqueous electrolyte secondary battery after 10 minutes of rest is charged at a constant current of 750 mA to 4.40 V at room temperature, the current value becomes 37.5 mA at a constant voltage of 4.40 V. The charge capacity Qb was obtained by charging at a constant voltage. Then, each nonaqueous electrolyte secondary battery was paused for 10 minutes. Then, it discharged until it became 2.75V with a constant current of 750 mA, and discharge capacity Q4 was calculated | required. And while calculating | requiring the return capacity rate (%) after a high-temperature continuous charge test by Formula (5), calculating | requiring the charge / discharge efficiency (%) after a high-temperature continuous charge test by Formula (6), the result is shown in the following table | surface. This is shown in FIG.

表12の結果より、正極活物質粒子にCoやNiが含まれていないスピネル型マンガン酸リチウムを用いた場合でも、この正極活物質粒子の表面に、エルビウム化合物やイッテルビウム化合物やテルビウム化合物やジスプロシウム化合物やホルミウム化合物やツリウム化合物やルテチウム化合物の粒子を分散させて付着させた正極活物質を用いた実施例H1〜H7の各非水電解質二次電池は、これらの化合物の粒子を分散させて付着させていない正極活物質を用いた比較例hの非水電解質二次電池に比べて、高温連続充電試験後における残存容量率、復帰容量率及び充放電効率が向上した。   From the results of Table 12, even when spinel-type lithium manganate containing no Co or Ni is used for the positive electrode active material particles, the surface of the positive electrode active material particles is erbium compound, ytterbium compound, terbium compound or dysprosium compound. Each of the nonaqueous electrolyte secondary batteries of Examples H1 to H7 using the positive electrode active material in which particles of holmium compound, thulium compound, thulium compound, and lutetium compound are dispersed and adhered is dispersed and adhered. Compared with the nonaqueous electrolyte secondary battery of Comparative Example h using a positive electrode active material that was not, the remaining capacity ratio, the return capacity ratio, and the charge / discharge efficiency after the high-temperature continuous charge test were improved.

しかし、高温連続充電試験後における電池の厚み増加量に関しては、実施例H1〜H7の各非水電解質二次電池と比較例hの非水電解質二次電池との差は、殆どなかった。これは、CoやNiが含まれていないスピネル型マンガン酸リチウムは、コバルト酸リチウムのような正極活物質に比べて触媒性が低いため、高温連続充電時においても、非水電解液の分解反応が加速されにくくなるためと考えられる。このため、高温連続充電試験後における電池の厚み増加を抑制するという観点からは、特に、CoやNiが含まれている正極活物質粒子に対して、エルビウム化合物やイッテルビウム化合物やテルビウム化合物やジスプロシウム化合物やホルミウム化合物やツリウム化合物やルテチウム化合物の粒子を分散させて付着させた場合に有効であることが分かった。   However, regarding the increase in thickness of the battery after the high-temperature continuous charge test, there was almost no difference between the nonaqueous electrolyte secondary batteries of Examples H1 to H7 and the nonaqueous electrolyte secondary battery of Comparative Example h. This is because spinel type lithium manganate that does not contain Co or Ni has a lower catalytic property than a positive electrode active material such as lithium cobaltate, so the decomposition reaction of the non-aqueous electrolyte even during high-temperature continuous charging This is thought to be because it is difficult to accelerate. For this reason, from the viewpoint of suppressing the increase in the thickness of the battery after the high-temperature continuous charge test, particularly for positive electrode active material particles containing Co and Ni, erbium compound, ytterbium compound, terbium compound and dysprosium compound It was found effective when particles of holmium compound, thulium compound or lutetium compound were dispersed and adhered.

10 扁平電極体
11 正極
11a 正極集電タブ
12 負極
12a 負極集電タブ
13 セパレータ
20 電池容器
DESCRIPTION OF SYMBOLS 10 Flat electrode body 11 Positive electrode 11a Positive electrode current collection tab 12 Negative electrode 12a Negative electrode current collection tab 13 Separator 20 Battery container

Claims (21)

リチウムを含有する正極活物質粒子の表面に、水酸化エルビウムとオキシ水酸化エルビウムとから選択される少なくとも一種のエルビウム化合物の粒子と、水酸化イッテルビウムとオキシ水酸化イッテルビウムとから選択される少なくとも一種のイッテルビウム化合物の粒子と、水酸化テルビウムとオキシ水酸化テルビウムとから選択される少なくとも一種のテルビウム化合物の粒子と、水酸化ジスプロシウムとオキシ水酸化ジスプロシウムとから選択される少なくとも一種のジスプロシウム化合物の粒子と、水酸化ホルミウムとオキシ水酸化ホルミウムとから選択される少なくとも一種のホルミウム化合物の粒子と、水酸化ツリウムとオキシ水酸化ツリウムとから選択される少なくとも一種のツリウム化合物の粒子と、水酸化ルテチウムとオキシ水酸化ルテチウムから選択される少なくとも一種のルテチウム化合物の粒子から選択される少なくとも一種の粒径100nm以下の化合物の粒子付着されていることを特徴とする非水電解質二次電池用正極活物質。 At least one kind of erbium compound particles selected from erbium hydroxide and erbium oxyhydroxide and at least one kind selected from ytterbium hydroxide and ytterbium oxyhydroxide on the surface of the positive electrode active material particles containing lithium Particles of ytterbium compound, particles of at least one terbium compound selected from terbium hydroxide and terbium oxyhydroxide, particles of at least one dysprosium compound selected from dysprosium hydroxide and dysprosium oxyhydroxide, and particles of at least one of holmium compound selected from the holmium hydroxide oxyhydroxide holmium, and particles of at least one thulium compound selected from hydroxide thulium oxyhydroxide, thulium and lutetium hydroxide Alkoxy at least one of at least one of the positive electrode active material for a nonaqueous electrolyte secondary battery, wherein the particles having a particle diameter of 100nm or less of the compounds are attached are selected from particles of lutetium compound selected from lutetium hydroxide . 請求項1に記載の非水電解質二次電池用正極活物質において、リチウムを含有する正極活物質粒子の表面付着される化合物の粒子が、オキシ水酸化エルビウムであることを特徴とする非水電解質二次電池用正極活物質。 2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the compound particles attached to the surface of the positive electrode active material particles containing lithium are erbium oxyhydroxide. Positive electrode active material for electrolyte secondary battery. 請求項1に記載の非水電解質二次電池用正極活物質において、リチウムを含有する正極活物質粒子の表面付着される化合物の粒子が、オキシ水酸化イッテルビウムであることを特徴とする非水電解質二次電池用正極活物質。 2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the compound particles attached to the surface of the positive electrode active material particles containing lithium are ytterbium oxyhydroxide. Positive electrode active material for electrolyte secondary battery. 請求項1〜請求項3の何れか1項に記載の非水電解質二次電池用正極活物質において、上記のリチウムを含有する正極活物質粒子が、ニッケル及び/又はコバルトを含有していることを特徴とする非水電解質二次電池用正極活物質。   The positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the positive electrode active material particles containing lithium contain nickel and / or cobalt. A positive electrode active material for a non-aqueous electrolyte secondary battery. 請求項1〜請求項4の何れか1項に記載の非水電解質二次電池用正極活物質において、上記のリチウムを含有する正極活物質粒子にジルコニウムが固溶されていることを特徴とする非水電解質二次電池用正極活物質。   The positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein zirconium is solid-solved in the positive electrode active material particles containing lithium. Positive electrode active material for non-aqueous electrolyte secondary battery. 請求項1又は請求項2に記載の非水電解質二次電池用正極活物質を製造するにあたり、上記の正極活物質粒子を分散させた溶液にエルビウム塩の溶液を加えて上記の正極活物質粒子の表面に水酸化エルビウムを析出させる工程と、水酸化エルビウムが析出された正極活物質粒子を熱処理する工程とを有し、正極活物質粒子の表面に水酸化エルビウムを析出させる工程における上記の正極活物質粒子を分散させた溶液のpHを6以上にしたことを特徴とする非水電解質二次電池用正極活物質の製造方法。   In manufacturing the positive electrode active material for non-aqueous electrolyte secondary batteries according to claim 1 or 2, the positive electrode active material particles are obtained by adding an erbium salt solution to a solution in which the positive electrode active material particles are dispersed. The positive electrode in the step of depositing erbium hydroxide on the surface of the positive electrode active material particles, and the step of heat treating the positive electrode active material particles on which the erbium hydroxide is deposited. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the pH of the solution in which the active material particles are dispersed is set to 6 or more. 請求項6に記載の非水電解質二次電池用正極活物質の製造方法において、水酸化エルビウムが析出された正極活物質粒子を熱処理温度が440℃未満であることを特徴とする非水電解質二次電池用正極活物質の製造方法。   7. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 6, wherein the heat treatment temperature of the positive electrode active material particles on which erbium hydroxide is deposited is less than 440 ° C. A method for producing a positive electrode active material for a secondary battery. 請求項1又は請求項3に記載の非水電解質二次電池用正極活物質を製造するにあたり、上記の正極活物質粒子を分散させた溶液にイッテルビウム塩の溶液を加えて上記の正極活物質粒子の表面に水酸化イッテルビウムを析出させる工程と、水酸化イッテルビウムが析出された正極活物質粒子を熱処理する工程とを有し、正極活物質粒子の表面に水酸化イッテルビウムを析出させる工程における上記の正極活物質粒子を分散させた溶液のpHを6以上にしたことを特徴とする非水電解質二次電池用正極活物質の製造方法。   In manufacturing the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1 or 3, the positive electrode active material particles are obtained by adding a solution of ytterbium salt to a solution in which the positive electrode active material particles are dispersed. The positive electrode in the step of depositing ytterbium hydroxide on the surface of the positive electrode active material particles, and the step of heat treating the positive electrode active material particles on which the ytterbium hydroxide is deposited. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the pH of the solution in which the active material particles are dispersed is set to 6 or more. 請求項8に記載の非水電解質二次電池用正極活物質の製造方法において、水酸化イッテルビウムが析出された正極活物質粒子を熱処理温度が400℃未満であることを特徴とす
る非水電解質二次電池用正極活物質の製造方法。
9. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 8, wherein the heat treatment temperature of the positive electrode active material particles on which ytterbium hydroxide is deposited is less than 400 ° C. A method for producing a positive electrode active material for a secondary battery.
請求項1に記載の非水電解質二次電池用正極活物質を製造するにあたり、上記の正極活物質粒子を分散させた溶液にテルビウム塩の溶液を加えて上記の正極活物質粒子の表面に水酸化テルビウムを析出させる工程と、水酸化テルビウムが析出された正極活物質粒子を熱処理する工程とを有し、正極活物質粒子の表面に水酸化テルビウムを析出させる工程における上記の正極活物質粒子を分散させた溶液のpHを6以上にしたことを特徴とする非水電解質二次電池用正極活物質の製造方法。   In manufacturing the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, a terbium salt solution is added to a solution in which the positive electrode active material particles are dispersed, and water is added to the surface of the positive electrode active material particles. A step of precipitating terbium oxide; and a step of heat-treating the positive electrode active material particles on which terbium hydroxide is precipitated, and the positive electrode active material particles in the step of precipitating terbium hydroxide on the surface of the positive electrode active material particles. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the pH of the dispersed solution is 6 or more. 請求項10に記載の非水電解質二次電池用正極活物質の製造方法において、水酸化テルビウムが析出された正極活物質粒子を熱処理温度が395℃未満であることを特徴とする非水電解質二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 10, wherein the heat treatment temperature of the positive electrode active material particles on which terbium hydroxide is deposited is less than 395 ° C. A method for producing a positive electrode active material for a secondary battery. 請求項1に記載の非水電解質二次電池用正極活物質を製造するにあたり、上記の正極活物質粒子を分散させた溶液にジスプロシウム塩の溶液を加えて上記の正極活物質粒子の表面に水酸化ジスプロシウムを析出させる工程と、水酸化ジスプロシウムが析出された正極活物質粒子を熱処理する工程とを有し、正極活物質粒子の表面に水酸化ジスプロシウムを析出させる工程における上記の正極活物質粒子を分散させた溶液のpHを6以上にしたことを特徴とする非水電解質二次電池用正極活物質の製造方法。   In manufacturing the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, a dysprosium salt solution is added to a solution in which the positive electrode active material particles are dispersed, and water is added to the surface of the positive electrode active material particles. The positive electrode active material particles in the step of depositing dysprosium hydroxide on the surface of the positive electrode active material particles, comprising the step of precipitating dysprosium oxide and the step of heat treating the positive electrode active material particles on which the dysprosium hydroxide is deposited. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the pH of the dispersed solution is 6 or more. 請求項12に記載の非水電解質二次電池用正極活物質の製造方法において、水酸化ジスプロシウムが析出された正極活物質粒子を熱処理温度が450℃未満であることを特徴とする非水電解質二次電池用正極活物質の製造方法。   13. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 12, wherein the heat treatment temperature of the positive electrode active material particles on which dysprosium hydroxide is deposited is less than 450 ° C. A method for producing a positive electrode active material for a secondary battery. 請求項1に記載の非水電解質二次電池用正極活物質を製造するにあたり、上記の正極活物質粒子を分散させた溶液にホルミウム塩の溶液を加えて上記の正極活物質粒子の表面に水酸化ホルミウムを析出させる工程と、水酸化ホルミウムが析出された正極活物質粒子を熱処理する工程とを有し、正極活物質粒子の表面に水酸化ホルミウムを析出させる工程における上記の正極活物質粒子を分散させた溶液のpHを6以上にしたことを特徴とする非水電解質二次電池用正極活物質の製造方法。   In manufacturing the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, a holmium salt solution is added to a solution in which the positive electrode active material particles are dispersed, and water is added to the surface of the positive electrode active material particles. The positive electrode active material particles in the step of depositing holmium hydroxide on the surface of the positive electrode active material particles, comprising a step of precipitating holmium oxide and a step of heat treating the positive electrode active material particles on which the holmium hydroxide is precipitated. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the pH of the dispersed solution is 6 or more. 請求項14に記載の非水電解質二次電池用正極活物質の製造方法において、水酸化ホルミウムが析出された正極活物質粒子を熱処理温度が445℃未満であることを特徴とする非水電解質二次電池用正極活物質の製造方法。   15. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 14, wherein the heat treatment temperature of the positive electrode active material particles on which holmium hydroxide is deposited is less than 445 ° C. A method for producing a positive electrode active material for a secondary battery. 請求項1に記載の非水電解質二次電池用正極活物質を製造するにあたり、上記の正極活物質粒子を分散させた溶液にツリウム塩の溶液を加えて上記の正極活物質粒子の表面に水酸化ツリウムを析出させる工程と、水酸化ツリウムが析出された正極活物質粒子を熱処理する工程とを有し、正極活物質粒子の表面に水酸化ツリウムを析出させる工程における上記の正極活物質粒子を分散させた溶液のpHを6以上にしたことを特徴とする非水電解質二次電池用正極活物質の製造方法。   In manufacturing the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, a thulium salt solution is added to a solution in which the positive electrode active material particles are dispersed, and water is added to the surface of the positive electrode active material particles. The positive electrode active material particles in the step of depositing thulium hydroxide on the surface of the positive electrode active material particles, the method comprising the step of precipitating thulium oxide and the step of heat treating the positive electrode active material particles on which the thulium hydroxide is deposited. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the pH of the dispersed solution is 6 or more. 請求項16に記載の非水電解質二次電池用正極活物質の製造方法において、水酸化ツリウムが析出された正極活物質粒子を熱処理温度が405℃未満であることを特徴とする非水電解質二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 16, wherein the heat treatment temperature of the positive electrode active material particles on which thulium hydroxide is deposited is less than 405 ° C. A method for producing a positive electrode active material for a secondary battery. 請求項1に記載の非水電解質二次電池用正極活物質を製造するにあたり、上記の正極活物質粒子を分散せた溶液にルテチウム塩の溶液を加えて上記の正極活物質の表面に水酸化ルテチウムを析出させる工程と、水酸化ルテチウムが析出された正極活物質とを熱処理する工程を有し、正極活物質の表面に水酸化ルテチウムを析出させる工程におけるpHを
6以上にしたことを特徴とする非水電解質二次電池用正極活物質の製造方法。
In producing a positive electrode active material for a non-aqueous electrolyte secondary battery of claim 1, water was added a solution of lutetium salt to a solution dispersing the positive electrode active material particles of the above on the surface of the positive electrode active material of the It has a step of precipitating lutetium oxide and a step of heat-treating the positive electrode active material on which lutetium hydroxide is deposited, and the pH in the step of precipitating lutetium hydroxide on the surface of the positive electrode active material is 6 or more. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
請求項18に記載の非水電解質二次電池用正極活物質の製造方法において、水酸化ルテチウムが析出された正極活物質粒子を熱処理温度が405℃未満であることを特徴とする非水電解質二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 18, wherein the heat treatment temperature of the positive electrode active material particles on which lutetium hydroxide is deposited is less than 405 ° C. A method for producing a positive electrode active material for a secondary battery. 請求項1〜請求項5の何れか1項に記載の非水電解質二次電池用正極活物質を用いたことを特徴とする非水電解質二次電池用正極。   A positive electrode for a nonaqueous electrolyte secondary battery, wherein the positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 5 is used. 正極と、負極と、非水電解液とを備えた非水電解質二次電池において、上記の正極に請求項20に記載の非水電解質二次電池用正極を用いたことを特徴とする非水電解質二次電池。   A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode for a non-aqueous electrolyte secondary battery according to claim 20 is used as the positive electrode. Electrolyte secondary battery.
JP2012099321A 2008-07-09 2012-04-25 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery Active JP5447576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012099321A JP5447576B2 (en) 2008-07-09 2012-04-25 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2008178527 2008-07-09
JP2008178527 2008-07-09
JP2008227700 2008-09-05
JP2008227700 2008-09-05
JP2008320790 2008-12-17
JP2008320790 2008-12-17
JP2012099321A JP5447576B2 (en) 2008-07-09 2012-04-25 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009137785A Division JP4989683B2 (en) 2008-07-09 2009-06-09 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2012142304A JP2012142304A (en) 2012-07-26
JP5447576B2 true JP5447576B2 (en) 2014-03-19

Family

ID=42581662

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009137785A Active JP4989683B2 (en) 2008-07-09 2009-06-09 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP2012099321A Active JP5447576B2 (en) 2008-07-09 2012-04-25 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009137785A Active JP4989683B2 (en) 2008-07-09 2009-06-09 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (2) JP4989683B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270627B (en) * 2010-12-20 2016-02-17 三洋电机株式会社 Positive electrode for nonaqueous electrolyte secondary battery and use the rechargeable nonaqueous electrolytic battery of this positive pole
CN103339769A (en) * 2011-01-28 2013-10-02 三洋电机株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, production method for same, positive electrode for non-aqueous electrolyte secondary battery using said positive electrode active material, and non-aqueous electrolyte
WO2012115263A1 (en) * 2011-02-25 2012-08-30 三洋電機株式会社 Non-aqueous electrolyte secondary cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3110738B2 (en) * 1989-08-07 2000-11-20 富士電気化学株式会社 Non-aqueous electrolyte secondary battery
JP3197763B2 (en) * 1993-11-18 2001-08-13 三洋電機株式会社 Non-aqueous battery
JP2001283845A (en) * 2000-03-29 2001-10-12 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2004071232A (en) * 2002-08-02 2004-03-04 Sony Corp Nonaqueous primary battery and manufacturing method for active material
JP2004227869A (en) * 2003-01-21 2004-08-12 Tokan Material Technology Co Ltd Cathode active material for lithium secondary battery
JP2005032693A (en) * 2003-07-10 2005-02-03 Mitsuru Sano Lithium-ion secondary battery
JP4656097B2 (en) * 2007-06-25 2011-03-23 ソニー株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2010165657A (en) 2010-07-29
JP2012142304A (en) 2012-07-26
JP4989683B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
WO2010004973A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for production of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4713051B2 (en) Battery active material and method for producing the same
JP4794866B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
EP2555287B1 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP4354170B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
CN107112533B (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
JP4739769B2 (en) Nonaqueous electrolyte secondary battery
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP5447577B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
WO2015125444A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
US8293406B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, process for preparing the same, and positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5675113B2 (en) Nonaqueous electrolyte secondary battery and positive electrode for nonaqueous electrolyte secondary battery
JP7260573B2 (en) Composite positive electrode active material for lithium ion battery, manufacturing method thereof, and lithium ion battery including positive electrode containing the same
CN102044670A (en) Negative active material and method of preparing the same, and rechargeable lithium battery
JP2002358953A (en) Positive electrode for lithium secondary battery and its manufacturing method
JP2006127932A (en) Nonaqueous electrolyte secondary battery, and its manufacturing method
JP5556844B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JP2010055778A (en) Method for manufacturing positive active material and positive active material
JP2010055777A (en) Method for manufacturing positive active material and positive active material
JP2008159560A (en) Method of manufacturing positive electrode active material
JP2004281158A (en) Nonaqueous electrolyte secondary battery
JP5447576B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP2000149925A (en) Positive active material for lithium secondary battery, its manufacture, and its use
JP2009266791A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120425

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R151 Written notification of patent or utility model registration

Ref document number: 5447576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350