JP5447517B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5447517B2
JP5447517B2 JP2011519786A JP2011519786A JP5447517B2 JP 5447517 B2 JP5447517 B2 JP 5447517B2 JP 2011519786 A JP2011519786 A JP 2011519786A JP 2011519786 A JP2011519786 A JP 2011519786A JP 5447517 B2 JP5447517 B2 JP 5447517B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
negative electrode
secondary battery
electrolyte secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011519786A
Other languages
Japanese (ja)
Other versions
JPWO2010150679A1 (en
Inventor
昌治 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2011519786A priority Critical patent/JP5447517B2/en
Publication of JPWO2010150679A1 publication Critical patent/JPWO2010150679A1/en
Application granted granted Critical
Publication of JP5447517B2 publication Critical patent/JP5447517B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、一般的には非水電解液二次電池に関し、特定的には高温環境下における特性を改善した非水電解液二次電池に関するものである。   The present invention generally relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having improved characteristics in a high temperature environment.

従来から、非水電解液二次電池では、一般的に、たとえば、エチレンカーボネート、ジメチルカーボネート等の非水系溶媒に、電解質として六フッ化リン酸リチウム等のリチウム塩を溶解させた非水系電解液を用い、正極活物質としてリチウム遷移金属複合酸化物と、負極活物質として炭素材料が用いられている。このような非水電解液二次電池において、サイクル特性を改善するために、負極活物質としてスピネル型のリチウムチタン複合酸化物を用いることが提案されている。   Conventionally, in a non-aqueous electrolyte secondary battery, generally, for example, a non-aqueous electrolyte obtained by dissolving a lithium salt such as lithium hexafluorophosphate as an electrolyte in a non-aqueous solvent such as ethylene carbonate or dimethyl carbonate. , A lithium transition metal composite oxide as a positive electrode active material, and a carbon material as a negative electrode active material. In such a non-aqueous electrolyte secondary battery, in order to improve cycle characteristics, it has been proposed to use a spinel type lithium titanium composite oxide as a negative electrode active material.

たとえば、特開2007−273154号公報(以下、特許文献1という)には、60℃のような高温でのサイクル特性が改善された非水電解液二次電池が提案されている。この非水電解液二次電池では、正極活物質として層状結晶構造のリチウム遷移金属酸化物、負極活物質としてスピネル型のリチウムチタン複合酸化物を用いて、非水系電解液としては、エチレンカーボネート、ジメチルカーボネート等の非水系溶媒に、電解質として六フッ化リン酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩を溶解させたものが用いられている。なお、非水電解液として、リチウムイオンを含有した常温溶融塩(イオン液体)を用いてもよいことが特許文献1に記載されている。   For example, Japanese Patent Application Laid-Open No. 2007-273154 (hereinafter referred to as Patent Document 1) proposes a non-aqueous electrolyte secondary battery with improved cycle characteristics at a high temperature such as 60 ° C. In this non-aqueous electrolyte secondary battery, a lithium transition metal oxide having a layered crystal structure as a positive electrode active material, a spinel-type lithium titanium composite oxide as a negative electrode active material, ethylene carbonate, A solution obtained by dissolving a lithium salt such as lithium hexafluorophosphate or lithium tetrafluoroborate as an electrolyte in a non-aqueous solvent such as dimethyl carbonate is used. Patent Document 1 describes that a non-aqueous electrolyte may be a room temperature molten salt (ionic liquid) containing lithium ions.

特開2007−273154号公報JP 2007-273154 A

しかしながら、特許文献1では、正極活物質として、リチウムコバルト複合酸化物、リチウムニッケルコバルトアルミニウム複合酸化物、または、リチウムニッケルコバルト複合酸化物を用い、負極活物質としてスピネル型のリチウムチタン複合酸化物を用い、非水系電解液としては、エチレンカーボネートとγ−ブチロラクトンの混合溶媒に、電解質として四フッ化ホウ酸リチウムを溶解させたものを用いた非水電解液二次電池について、60℃の環境下において充放電サイクル試験を行い、容量維持率が評価されているだけである。60℃を超える高温の環境下に耐え得る非水電解液二次電池の構成については、何ら開示も示唆もなされていない。   However, in Patent Document 1, a lithium cobalt composite oxide, a lithium nickel cobalt aluminum composite oxide, or a lithium nickel cobalt composite oxide is used as a positive electrode active material, and a spinel-type lithium titanium composite oxide is used as a negative electrode active material. As a non-aqueous electrolyte solution, a non-aqueous electrolyte secondary battery using a mixed solvent of ethylene carbonate and γ-butyrolactone in which lithium tetrafluoroborate is dissolved as an electrolyte is used in an environment of 60 ° C. Only the charge / discharge cycle test was conducted and the capacity retention rate was evaluated. There is no disclosure or suggestion about the configuration of the non-aqueous electrolyte secondary battery that can withstand a high temperature environment exceeding 60 ° C.

また、特許文献1で提案された非水電解液二次電池の正極と負極には、導電剤としてアセチレンブラック、カーボンブラック、黒鉛等の炭素材料が用いられている。   In addition, carbon materials such as acetylene black, carbon black, and graphite are used as a conductive agent for the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery proposed in Patent Document 1.

なお、特許文献1においては、非水系電解液としてイオン液体を用いた非水電解液二次電池の実施例は、具体的に開示されておらず、高温の環境下における特性についても何ら評価されていない。   In Patent Document 1, an example of a non-aqueous electrolyte secondary battery using an ionic liquid as a non-aqueous electrolyte is not specifically disclosed, and the characteristics under a high temperature environment are not evaluated at all. Not.

そこで、本発明の目的は、60℃を超える高温の環境下における耐熱性を向上させることが可能な非水電解液二次電池の構成を提供することである。   Then, the objective of this invention is providing the structure of the nonaqueous electrolyte secondary battery which can improve the heat resistance in the high temperature environment over 60 degreeC.

本発明に従った非水電解液二次電池は、正極、負極、非水系電解液およびセパレータを備えた非水電解液二次電池であって、非水系電解液がイオン液体を含み、負極は、リチウム吸蔵・放出電位が1.0V(vs Li/Li+)以上貴な負極活物質を含み、かつ、実質的に導電剤を含まない。 A non-aqueous electrolyte secondary battery according to the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte and a separator, the non-aqueous electrolyte containing an ionic liquid, In addition, a negative electrode active material having a lithium occlusion / release potential of 1.0 V (vs Li / Li + ) or more is included, and substantially no conductive agent is included.

本発明の非水電解液二次電池は、非水系電解液がイオン液体を含み、負極は、リチウム吸蔵・放出電位が1.0V(vs Li/Li+)以上貴な負極活物質を含み、かつ、実質的に導電剤を含まないことにより、60℃を超える高温に加熱しても電池電圧がほとんど低下せず、高温の環境下において電池電圧をほぼ維持することができる。これにより、非水電解液二次電池の耐熱性を向上させることができる。 In the non-aqueous electrolyte secondary battery of the present invention, the non-aqueous electrolyte includes an ionic liquid, and the negative electrode includes a negative electrode active material having a lithium storage / release potential of 1.0 V (vs Li / Li + ) or more, And by not containing a electrically conductive agent substantially, even if it heats to the high temperature over 60 degreeC, a battery voltage hardly falls, and a battery voltage can be substantially maintained in a high temperature environment. Thereby, the heat resistance of a nonaqueous electrolyte secondary battery can be improved.

本発明の非水電解液二次電池において、セパレータが、ポリエチレンテレフタレート、セルロース、ポリアミドイミド、ポリイミドおよび無機フィラーからなる群より選ばれた少なくとも一種を含む。 In the non-aqueous electrolyte secondary battery of the present invention, a separator, a polyethylene terephthalate, cellulose, polyamide-imide, at least one of including selected from the group consisting of polyimide and an inorganic filler.

このようにセパレータとして耐熱性の高い材料を採用することにより、非水電解液二次電池の耐熱性をさらに向上させることができる。
Thus, by adopting a material having high heat resistance as the separator, the heat resistance of the non-aqueous electrolyte secondary battery can be further improved.

また、本発明の非水電解液二次電池において、正極と負極を形成するために使用される結着剤が、ポリフッ化ビニリデンおよびポリアミドイミドからなる群より選ばれた少なくとも一種を含むことが好ましい。   In the non-aqueous electrolyte secondary battery of the present invention, the binder used for forming the positive electrode and the negative electrode preferably contains at least one selected from the group consisting of polyvinylidene fluoride and polyamideimide. .

さらに、本発明の非水電解液二次電池において、負極活物質が、スピネル型のリチウムチタン複合酸化物であることが好ましい。   Furthermore, in the nonaqueous electrolyte secondary battery of the present invention, the negative electrode active material is preferably a spinel type lithium titanium composite oxide.

以上のように本発明によれば、60℃を超える高温の環境下における非水電解液二次電池の耐熱性を向上させることができるので、リフロー方式のはんだ付けで基板上に表面実装可能な非水電解液二次電池を得ることができる。   As described above, according to the present invention, since the heat resistance of the nonaqueous electrolyte secondary battery in a high temperature environment exceeding 60 ° C. can be improved, it can be surface-mounted on a substrate by reflow soldering. A nonaqueous electrolyte secondary battery can be obtained.

本発明の一つの実施例で作製された非水電解液二次電池の内部構成を分解して概略的に示す正面図である。It is a front view which decomposes | disassembles and shows schematically the internal structure of the nonaqueous electrolyte secondary battery produced in one Example of this invention. 本発明の一つの実施例で作製された非水電解液二次電池の外観を概略的に示す正面図である。It is a front view which shows roughly the external appearance of the nonaqueous electrolyte secondary battery produced in one Example of this invention. 本発明の実施例1で作製された非水電解液二次電池において電池温度と電池電圧の変化を示す図である。It is a figure which shows the change of battery temperature and battery voltage in the non-aqueous-electrolyte secondary battery produced in Example 1 of this invention. 本発明の比較例1で作製された非水電解液二次電池において電池温度と電池電圧の変化を示す図である。It is a figure which shows the change of battery temperature and battery voltage in the nonaqueous electrolyte secondary battery produced by the comparative example 1 of this invention.

本願発明者は、60℃を超える高温の環境下における耐熱性を向上させるための非水電解液二次電池の構成について種々検討を重ねた。その結果、非水系電解液がイオン液体を含み、負極は、リチウム吸蔵・放出電位が1.0V(vs Li/Li+)以上貴な負極活物質を含み、かつ、実質的に導電剤を含まないようにすれば、60℃を超える高温に加熱しても電池電圧がほとんど低下せず、高温の環境下において電池電圧をほぼ維持することができることを見出した。このような本願発明者の知見に基づいて本発明はなされたものである。 The inventor of the present application has made various studies on the configuration of the nonaqueous electrolyte secondary battery for improving the heat resistance in a high temperature environment exceeding 60 ° C. As a result, the non-aqueous electrolyte contains an ionic liquid, the negative electrode contains a noble negative electrode active material having a lithium storage / release potential of 1.0 V (vs Li / Li + ) or more, and substantially contains a conductive agent . In other words, the present inventors have found that even when heated to a high temperature exceeding 60 ° C., the battery voltage hardly decreases and the battery voltage can be substantially maintained in a high temperature environment. The present invention has been made based on such knowledge of the present inventor.

すなわち、本発明の非水電解液二次電池は、正極、負極、非水系電解液およびセパレータを備えた非水電解液二次電池であって、非水系電解液がイオン液体を含み、負極は、リチウム吸蔵・放出電位が1.0V(vs Li/Li+)以上貴な負極活物質を含み、かつ、実質的に導電剤を含まない。

That is, the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte and a separator, the non-aqueous electrolyte containing an ionic liquid, In addition, a negative electrode active material having a lithium occlusion / release potential of 1.0 V (vs Li / Li + ) or more is included, and substantially no conductive agent is included.

また、好ましくは、セパレータが、ポリエチレンテレフタレート(PET)、セルロース、ポリアミドイミド(PAI)、ポリイミド(PI)および無機フィラーからなる群より選ばれた少なくとも一種を含むようにして、セパレータとして耐熱性の高い材料を採用することにより、非水電解液二次電池の耐熱性をさらに向上させることができる。   Preferably, the separator includes at least one selected from the group consisting of polyethylene terephthalate (PET), cellulose, polyamideimide (PAI), polyimide (PI), and inorganic filler, and a material having high heat resistance as the separator. By adopting, the heat resistance of the non-aqueous electrolyte secondary battery can be further improved.

さらに、本発明の非水電解液二次電池において、正極と負極を形成するために使用される結着剤が、ポリフッ化ビニリデン(PVDF)およびポリアミドイミド(PAI)からなる群より選ばれた少なくとも一種を含むことが好ましい。   Furthermore, in the nonaqueous electrolyte secondary battery of the present invention, the binder used to form the positive electrode and the negative electrode is at least selected from the group consisting of polyvinylidene fluoride (PVDF) and polyamideimide (PAI). It is preferable to include one kind.

本発明の一つの実施の形態では、非水電解液二次電池の非水系電解液を構成するイオン液体として、たとえば、1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメタンスルホニル)イミド(EMITFSI)が用いられる。   In one embodiment of the present invention, as the ionic liquid constituting the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery, for example, 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMITFSI) Is used.

上記のイオン液体を構成するカチオンとしては、以下の5種類を挙げることができる。なお、R1〜R4は、アルキル基またはH(水素)である。また、R1〜R4は、同じ基でもよく、互いに異なる基でもよい。   Examples of cations constituting the ionic liquid include the following five types. R1 to R4 are alkyl groups or H (hydrogen). R1 to R4 may be the same group or different from each other.

Figure 0005447517
Figure 0005447517

Figure 0005447517
Figure 0005447517

Figure 0005447517
Figure 0005447517

Figure 0005447517
Figure 0005447517

Figure 0005447517
Figure 0005447517

上記のイオン液体を構成するアニオンとしては、以下の3種類を挙げることができる。   Examples of the anion that constitutes the ionic liquid include the following three types.

Figure 0005447517
Figure 0005447517

BF4 - BF 4 -

PF6 - PF 6 -

本発明の非水電解液二次電池の非水系電解液を構成する、最適なカチオンとアニオンの組み合わせからなるイオン液体は、次のとおりである。   The ionic liquid which comprises the optimal combination of a cation and an anion which comprises the nonaqueous electrolyte solution of the nonaqueous electrolyte secondary battery of this invention is as follows.

1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメタンスルホニル)イミド(EMITFSI)、または、1−エチル−3−メチルイミダゾリウム テトラフルオロボレイト(EMIBF4)である。   1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMITFSI) or 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4).

さらに、本発明の一つの実施の形態では、非水電解液二次電池の正極と負極とは、セパレータを介して交互に積層されて配置されている。電池要素の構造は、複数の短冊状の正極、複数の短冊状のセパレータおよび複数の短冊状の負極の積層体、いわゆる枚葉構造の積層体から構成されてもよく、長尺状のセパレータを九十九折りして、短冊状の正極と短冊状の負極とを交互に介在させることによって構成してもよい。また、電池要素の構造として、長尺状の正極、長尺状のセパレータおよび長尺状の負極を巻回してなる巻回型構造を採用してもよい。以下の実施例では、電池要素の構造として枚葉構造の積層体を採用している。   Furthermore, in one embodiment of the present invention, the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery are alternately stacked via a separator. The structure of the battery element may be composed of a laminate of a plurality of strip-shaped positive electrodes, a plurality of strip-shaped separators and a plurality of strip-shaped negative electrodes, a laminate of so-called single-wafer structures. It may be configured by folding and interposing a strip-shaped positive electrode and a strip-shaped negative electrode alternately. Moreover, as a structure of the battery element, a winding type structure in which a long positive electrode, a long separator, and a long negative electrode are wound may be employed. In the following examples, a single-wafer structure laminate is adopted as the structure of the battery element.

正極は、正極集電体の両面に正極活物質と導電剤と結着剤とを含む正極合材層が形成されている。一例として、正極集電体はアルミニウムからなる。正極活物質は、コバルト酸リチウム複合酸化物(LCO)、マンガン酸リチウム複合酸化物(LMO)、ニッケル酸リチウム複合酸化物(LNO)、リチウム−ニッケル−マンガン−コバルト複合酸化物(LNMCO)、リチウム−マンガン−ニッケル複合酸化物(LMNO)、リチウム−マンガン−コバルト複合酸化物(LMCO)、リチウム−ニッケル−コバルト複合酸化物(LNCO)等を用いることができる。さらに、正極活物質は、上記の材料を混合したものでもよい。正極活物質は、LiFePO4といったオリビン系材料でもよい。正極の導電剤としては、カーボン等が用いられる。正極活物質と導電剤を結着させるための結着剤としては、ポリフッ化ビニリデン(PVDF)またはポリアミドイミド(PAI)が用いられる。In the positive electrode, a positive electrode mixture layer including a positive electrode active material, a conductive agent, and a binder is formed on both surfaces of the positive electrode current collector. As an example, the positive electrode current collector is made of aluminum. The positive electrode active material is lithium cobalt oxide composite oxide (LCO), lithium manganate composite oxide (LMO), lithium nickelate composite oxide (LNO), lithium-nickel-manganese-cobalt composite oxide (LNMCO), lithium -Manganese-nickel composite oxide (LMNO), lithium-manganese-cobalt composite oxide (LMCO), lithium-nickel-cobalt composite oxide (LNCO), or the like can be used. Furthermore, the positive electrode active material may be a mixture of the above materials. The positive electrode active material may be an olivine-based material such as LiFePO 4 . Carbon or the like is used as a conductive agent for the positive electrode. Polyvinylidene fluoride (PVDF) or polyamideimide (PAI) is used as the binder for binding the positive electrode active material and the conductive agent.

一方、負極は、負極集電体の両面に負極活物質と結着剤とを含む負極合材層が形成されている。一例として、負極集電体はアルミニウムからなり、負極活物質は、リチウム吸蔵・放出電位が1.0V(vs Li/Li+)以上貴な材料であるスピネル型のリチウムチタン複合酸化物からなる。負極は、導電剤として作用する炭素を実質的に含まない。負極活物質を結着させるための結着剤としては、ポリフッ化ビニリデン(PVDF)またはポリアミドイミド(PAI)が用いられる。On the other hand, in the negative electrode, a negative electrode mixture layer including a negative electrode active material and a binder is formed on both surfaces of a negative electrode current collector. As an example, the negative electrode current collector is made of aluminum, and the negative electrode active material is made of a spinel-type lithium titanium composite oxide which is a noble material having a lithium occlusion / release potential of 1.0 V (vs Li / Li + ) or more. The negative electrode is substantially free of carbon that acts as a conductive agent. Polyvinylidene fluoride (PVDF) or polyamideimide (PAI) is used as a binder for binding the negative electrode active material.

セパレータは、ポリエチレンテレフタレート(PET)、セルロース、ポリアミドイミド(PAI)、ポリイミド(PI)、または、無機フィラーからなる。   The separator is made of polyethylene terephthalate (PET), cellulose, polyamideimide (PAI), polyimide (PI), or an inorganic filler.

以下のようにして作製した正極と負極と非水系電解液とを用いて、負極を形成するために用いられる導電剤の有無、正極と負極を形成するための結着剤の材料、セパレータの材料、非水系電解液の組成を以下の表1と表2に示すように異ならせることにより、実施例1〜4と比較例1〜7の非水電解液二次電池を作製した。   Presence / absence of a conductive agent used to form a negative electrode using a positive electrode, a negative electrode and a non-aqueous electrolyte prepared as follows, a binder material for forming the positive electrode and the negative electrode, and a separator material The non-aqueous electrolyte secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 7 were produced by making the composition of the non-aqueous electrolyte different as shown in Table 1 and Table 2 below.

(正極の作製)
正極活物質として組成式LiNi1/3Mn1/3Co1/32で表されるリチウム−ニッケル−マンガン−コバルト複合酸化物(LNMCO)と、導電剤としてのカーボンと、結着剤としてのポリフッ化ビニリデン(PVDF)とを重量比率で94:3:3になるように配合して、N−メチル2−ピロリドン(NMP)と混錬することにより、スラリーを作製した。このスラリーを、集電体としてのアルミニウム箔の両面に塗布し、乾燥させた後、ロールプレスにて圧延することによって正極を作製した。
(Preparation of positive electrode)
Lithium-nickel-manganese-cobalt composite oxide (LNMCO) represented by the composition formula LiNi 1/3 Mn 1/3 Co 1/3 O 2 as a positive electrode active material, carbon as a conductive agent, and as a binder The slurry was prepared by blending with polyvinylidene fluoride (PVDF) in a weight ratio of 94: 3: 3 and kneading with N-methyl 2-pyrrolidone (NMP). This slurry was applied to both surfaces of an aluminum foil as a current collector, dried, and then rolled with a roll press to produce a positive electrode.

(負極の作製)
実施例1、2と比較例1、2、5、6では、負極活物質としてのLi4Ti512で表されるスピネル型のリチウムチタン複合酸化物と、結着剤としてのPVDFとを重量比率で97:3になるように配合して、NMPと混錬することにより、スラリーを作製した。このスラリーを、集電体としてのアルミニウム箔の両面に塗布し、乾燥させた後、ロールプレスにて圧延することによって負極を作製した。
(Preparation of negative electrode)
In Examples 1 and 2 and Comparative Examples 1, 2, 5, and 6, a spinel type lithium titanium composite oxide represented by Li 4 Ti 5 O 12 as a negative electrode active material and PVDF as a binder A slurry was prepared by blending in a weight ratio of 97: 3 and kneading with NMP. This slurry was applied to both surfaces of an aluminum foil as a current collector, dried, and then rolled with a roll press to produce a negative electrode.

実施例3、4と比較例3、4では、負極活物質としてのLi4Ti512で表されるスピネル型のリチウムチタン複合酸化物と、結着剤としてのポリアミドイミド(PAI)とを重量比率で97:3になるように配合して、NMPと混錬することにより、スラリーを作製した。このスラリーを、集電体としてのアルミニウム箔の両面に塗布し、乾燥させた後、ロールプレスにて圧延することによって負極を作製した。In Examples 3 and 4 and Comparative Examples 3 and 4, a spinel type lithium titanium composite oxide represented by Li 4 Ti 5 O 12 as a negative electrode active material and polyamideimide (PAI) as a binder were used. A slurry was prepared by blending in a weight ratio of 97: 3 and kneading with NMP. This slurry was applied to both surfaces of an aluminum foil as a current collector, dried, and then rolled with a roll press to produce a negative electrode.

比較例7では、負極活物質としてのLi4Ti512で表されるスピネル型のリチウムチタン複合酸化物と、導電剤としてのカーボンと、結着剤としてのPVDFとを重量比率で94:3:3になるように配合して、NMPと混錬することにより、スラリーを作製した。このスラリーを、集電体としてのアルミニウム箔の両面に塗布し、乾燥させた後、ロールプレスにて圧延することによって負極を作製した。In Comparative Example 7, a spinel type lithium titanium composite oxide represented by Li 4 Ti 5 O 12 as a negative electrode active material, carbon as a conductive agent, and PVDF as a binder in a weight ratio of 94: The slurry was prepared by blending to 3: 3 and kneading with NMP. This slurry was applied to both surfaces of an aluminum foil as a current collector, dried, and then rolled with a roll press to produce a negative electrode.

(非水系電解液の作製)
実施例1〜4と比較例6、7では、イオン液体として1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメタンスルホニル)イミド(EMITFSI)を用いて、このイオン液体に、リチウムビス(トリフルオロメチルスルホニル)イミドを1.0mol/Lの割合で溶解させることにより、非水系電解液を作製した。
(Preparation of non-aqueous electrolyte)
In Examples 1 to 4 and Comparative Examples 6 and 7, 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMITFSI) was used as the ionic liquid, and lithium bis (trifluoromethyl) was added to the ionic liquid. A non-aqueous electrolyte solution was prepared by dissolving sulfonyl) imide at a rate of 1.0 mol / L.

比較例1〜5では、溶媒は、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)とを体積比率で1:2になるように調製することにより準備した。この溶媒に、電解質としての四フッ化ホウ酸リチウム(LiBF4)を1.5mol/Lの割合で溶解させることにより、非水系電解液を作製した。In Comparative Examples 1 to 5, the solvent was prepared by preparing ethylene carbonate (EC) and γ-butyrolactone (GBL) at a volume ratio of 1: 2. A non-aqueous electrolyte was prepared by dissolving lithium tetrafluoroborate (LiBF 4 ) as an electrolyte in this solvent at a rate of 1.5 mol / L.

(電池の作製)
図1に示すように、上記で作製した正極11と負極12にリードタブ14、15を設けた。この正極11と負極12の間に、実施例1、3と比較例1、3ではポリエチレンテレフタレート(PET)、実施例2、4と比較例2、4ではセルロース、比較例5、6ではポリプロピレン(PP)からなる多孔性のセパレータ13を介在させて積層した。このようにして電池要素10を作製した。リードタブ14、15にはシーラント16、17を取り付けて、図2に示すように、上記の積層体を、アルミニウムを中間層として含むラミネートフィルム20からなる外包材の内部に収納した。その後、上記で作製した非水系電解液を外包材の内部に注入した後、外包材の開口部を封止することにより、非水電解液二次電池1を作製した。
(Production of battery)
As shown in FIG. 1, lead tabs 14 and 15 were provided on the positive electrode 11 and the negative electrode 12 produced as described above. Between the positive electrode 11 and the negative electrode 12, polyethylene terephthalate (PET) was used in Examples 1 and 3 and Comparative Examples 1 and 3, cellulose was used in Examples 2 and 4 and Comparative Examples 2 and 4, and polypropylene ( Laminated with a porous separator 13 made of PP). Thus, the battery element 10 was produced. Sealants 16 and 17 were attached to the lead tabs 14 and 15, and as shown in FIG. 2, the above laminate was accommodated in an outer packaging material made of a laminate film 20 containing aluminum as an intermediate layer. Then, after injecting the non-aqueous electrolyte solution produced above into the outer packaging material, the non-aqueous electrolyte secondary battery 1 was produced by sealing the opening of the outer packaging material.

以上のようにして得られた実施例1〜4と比較例1〜7の非水電解液二次電池を用いて、加熱試験を行った。その試験結果を表1と表2に示す。   A heating test was performed using the non-aqueous electrolyte secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 7 obtained as described above. The test results are shown in Tables 1 and 2.

(加熱試験)
温度25℃の雰囲気下で電流を4mAとして各電池にて定電流充電を行った後、電圧を2.75Vとして充電電流が0.1mAになるまで定電圧充電を行った。その後、電流を4mAとして電圧がほぼ2.0Vになるまで定電流放電を行った。このときに電池電圧を測定し、加熱試験前の電圧(表1と表2)とした。そして、4℃/minの昇温速度で電池温度(電池の周囲の雰囲気の温度)を200℃まで昇温させた。そのときの電池電圧を測定し、200℃到達時の電圧(表1と表2)とした。また、加熱試験時の電池温度と電池電圧の変化を測定した。実施例1と比較例1における電池温度と電池電圧の変化を図3と図4に示す。
(Heating test)
After performing constant current charging with each battery at an electric current of 4 mA in an atmosphere at a temperature of 25 ° C., constant voltage charging was performed with a voltage of 2.75 V and a charging current of 0.1 mA. Thereafter, constant current discharge was performed until the voltage became approximately 2.0 V at a current of 4 mA. At this time, the battery voltage was measured and used as the voltage before the heating test (Tables 1 and 2). The battery temperature (temperature of the atmosphere around the battery) was raised to 200 ° C. at a rate of temperature increase of 4 ° C./min. The battery voltage at that time was measured and used as the voltage when reaching 200 ° C. (Tables 1 and 2). In addition, changes in battery temperature and battery voltage during the heating test were measured. Changes in battery temperature and battery voltage in Example 1 and Comparative Example 1 are shown in FIGS.

Figure 0005447517
Figure 0005447517

Figure 0005447517
Figure 0005447517

表1に示す結果から、実施例1〜4では、電池の周囲の雰囲気の温度を200℃に加熱しても、電池電圧の低下は0.1V未満であった。これに対して、表2に示す結果から、比較例1〜7では、電池の周囲の雰囲気の温度を200℃に加熱すると、電池電圧の低下は0.1V以上であった。したがって、実施例1〜4の非水電解液二次電池では、耐熱性を向上させることができることがわかる。   From the results shown in Table 1, in Examples 1 to 4, even when the temperature of the atmosphere around the battery was heated to 200 ° C., the decrease in the battery voltage was less than 0.1V. On the other hand, from the results shown in Table 2, in Comparative Examples 1 to 7, when the temperature of the atmosphere around the battery was heated to 200 ° C., the decrease in the battery voltage was 0.1 V or more. Therefore, it can be seen that the non-aqueous electrolyte secondary batteries of Examples 1 to 4 can improve the heat resistance.

今回開示された実施の形態や実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態や実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものであることが意図される。   It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments or examples but by the scope of claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the scope of claims.

1:非水電解液二次電池、10:電池要素、11:正極、12:負極、13:セパレータ。
1: non-aqueous electrolyte secondary battery, 10: battery element, 11: positive electrode, 12: negative electrode, 13: separator.

Claims (3)

正極、負極、非水系電解液およびセパレータを備えた非水電解液二次電池であって、
前記非水系電解液がイオン液体を含み、
前記負極は、リチウム吸蔵・放出電位が1.0V(vs Li/Li+)以上貴な負極活物質を含み、かつ、実質的に導電剤を含まず、
前記セパレータが、ポリエチレンテレフタレート、セルロース、ポリアミドイミド、ポリイミドおよび無機フィラーからなる群より選ばれた少なくとも一種を含む、非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte and a separator,
The non-aqueous electrolyte contains an ionic liquid;
The negative electrode includes a noble negative electrode active material having a lithium occlusion / release potential of 1.0 V (vs Li / Li + ) or more and substantially free of a conductive agent ,
A non-aqueous electrolyte secondary battery , wherein the separator includes at least one selected from the group consisting of polyethylene terephthalate, cellulose, polyamideimide, polyimide, and inorganic filler .
前記正極と前記負極を形成するために使用される結着剤が、ポリフッ化ビニリデンおよびポリアミドイミドからなる群より選ばれた少なくとも一種を含む、請求項1に記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the binder used to form the positive electrode and the negative electrode includes at least one selected from the group consisting of polyvinylidene fluoride and polyamideimide. 前記負極活物質が、スピネル型のリチウムチタン複合酸化物である、請求項1または請求項2に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is a spinel type lithium titanium composite oxide.
JP2011519786A 2009-06-23 2010-06-15 Non-aqueous electrolyte secondary battery Expired - Fee Related JP5447517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519786A JP5447517B2 (en) 2009-06-23 2010-06-15 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009148330 2009-06-23
JP2009148330 2009-06-23
JP2011519786A JP5447517B2 (en) 2009-06-23 2010-06-15 Non-aqueous electrolyte secondary battery
PCT/JP2010/060090 WO2010150679A1 (en) 2009-06-23 2010-06-15 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPWO2010150679A1 JPWO2010150679A1 (en) 2012-12-10
JP5447517B2 true JP5447517B2 (en) 2014-03-19

Family

ID=43386449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011519786A Expired - Fee Related JP5447517B2 (en) 2009-06-23 2010-06-15 Non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP5447517B2 (en)
WO (1) WO2010150679A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3067967A1 (en) 2013-11-07 2016-09-14 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte secondary cell, and electric storage circuit using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140893A (en) * 2015-09-29 2018-06-08 株式会社村田制作所 Non-aqueous electrolyte secondary battery, electric energy storage device, its manufacturing method and battery circuit
US10784540B2 (en) 2016-03-31 2020-09-22 Imprint Energy, Inc. Ionic liquid gel for electrolyte, method of and ink for making the same, and printed batteries including such ionic liquid gels and/or electrolytes
JP6980256B2 (en) * 2017-09-06 2021-12-15 学校法人 関西大学 Electrolyte and storage device using the electrolytic solution
EP3876309A4 (en) * 2018-10-30 2023-04-12 NGK Insulators, Ltd. Coin-shaped secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324579A (en) * 2001-04-25 2002-11-08 Yuasa Corp Nonaqueous electrolyte battery
JP2005142047A (en) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2005332684A (en) * 2004-05-20 2005-12-02 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2007534123A (en) * 2004-04-20 2007-11-22 デグサ ゲーエムベーハー Use of ceramic separators in lithium ion batteries with ionic liquid containing electrolytes
WO2010137582A1 (en) * 2009-05-26 2010-12-02 石原産業株式会社 Lithium titanate, process for production of same, and electrode active material and electricity storage device each comprising same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195499A (en) * 1998-12-25 2000-07-14 Kyocera Corp Lithium battery
JP4707426B2 (en) * 2005-03-23 2011-06-22 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324579A (en) * 2001-04-25 2002-11-08 Yuasa Corp Nonaqueous electrolyte battery
JP2005142047A (en) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007534123A (en) * 2004-04-20 2007-11-22 デグサ ゲーエムベーハー Use of ceramic separators in lithium ion batteries with ionic liquid containing electrolytes
JP2005332684A (en) * 2004-05-20 2005-12-02 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2010137582A1 (en) * 2009-05-26 2010-12-02 石原産業株式会社 Lithium titanate, process for production of same, and electrode active material and electricity storage device each comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3067967A1 (en) 2013-11-07 2016-09-14 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte secondary cell, and electric storage circuit using same
US10381644B2 (en) 2013-11-07 2019-08-13 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte secondary battery and storage circuit using the same

Also Published As

Publication number Publication date
JPWO2010150679A1 (en) 2012-12-10
WO2010150679A1 (en) 2010-12-29

Similar Documents

Publication Publication Date Title
JP5278442B2 (en) Non-aqueous electrolyte secondary battery
JP5516418B2 (en) Non-aqueous electrolyte secondary battery
US8597837B2 (en) Method for producing nonaqueous electrolyte lithium-ion secondary battery
JP6113496B2 (en) Lithium secondary battery
US10062925B2 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery
JP2007188703A (en) Nonaqueous electrolyte secondary battery
WO2014010526A1 (en) Non-aqueous electrolyte secondary battery
US8431267B2 (en) Nonaqueous secondary battery
JP6483943B2 (en) Lithium secondary battery
US20150017536A1 (en) Non-aqueous electrolyte secondary battery
JP2014120381A (en) Mixed electrode for nonaqueous electrolyte battery and method for producing the same
JP2012174416A (en) Nonaqueous electrolyte secondary battery
JP5447517B2 (en) Non-aqueous electrolyte secondary battery
JP2014049294A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP6056955B2 (en) Lithium secondary battery
JPWO2015129376A1 (en) Winding electrode group and non-aqueous electrolyte battery
JP6319089B2 (en) Lithium secondary battery
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5708597B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2012252951A (en) Nonaqueous electrolyte secondary battery
JP2021068621A (en) Solid-state battery, composition for manufacturing positive electrode active material layer of solid-state battery, and manufacturing method of producing positive electrode active material layer of solid-state battery
JP2014041732A (en) Positive electrode active material, and secondary battery
US20140011068A1 (en) Non-aqueous electrolyte secondary battery
JP5708598B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
WO2012077434A1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5447517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees