JP5446116B2 - Slide bearing mechanism - Google Patents

Slide bearing mechanism Download PDF

Info

Publication number
JP5446116B2
JP5446116B2 JP2008103674A JP2008103674A JP5446116B2 JP 5446116 B2 JP5446116 B2 JP 5446116B2 JP 2008103674 A JP2008103674 A JP 2008103674A JP 2008103674 A JP2008103674 A JP 2008103674A JP 5446116 B2 JP5446116 B2 JP 5446116B2
Authority
JP
Japan
Prior art keywords
fixed shaft
rotary bearing
bearing
rotary
bearing mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008103674A
Other languages
Japanese (ja)
Other versions
JP2009257351A (en
Inventor
誠 小坂
重治 松林
芝本  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008103674A priority Critical patent/JP5446116B2/en
Publication of JP2009257351A publication Critical patent/JP2009257351A/en
Application granted granted Critical
Publication of JP5446116B2 publication Critical patent/JP5446116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、すべり軸受機構に関し、特に、溶融めっき鋼線製造時に溶融金属浴中に浸漬されて使用される回転式シンカーの軸受の振動低減に関するものである。   The present invention relates to a sliding bearing mechanism, and more particularly to reduction of vibration of a bearing of a rotary sinker used by being immersed in a molten metal bath at the time of manufacturing a galvanized steel wire.

腐食環境下で使用される鋼線には、耐食性を付与するため、表面に例えば、溶融亜鉛等のめっきが施される。鋼線をめっきするために、製造ライン上で溶融金属浴13に、図1の如く鋼線を浸漬する必要がある。この機構は一般にシンカーと呼ばれるが、シンカーの機構は大別して、溶融シリカ等の硬質材料製で、通線溝を有する部材の下を擦過させて鋼線を通過させる固定シンカー方式(図1(a))と、軸と軸受を有し、浴中で円筒状面が回転して鋼線との擦過なしで鋼線を案内する回転シンカー方式(図1(b))がある。   In order to give corrosion resistance to the steel wire used in a corrosive environment, the surface is plated with, for example, molten zinc. In order to plate the steel wire, it is necessary to immerse the steel wire in the molten metal bath 13 on the production line as shown in FIG. This mechanism is generally called a sinker. The sinker mechanism is roughly divided into a fixed sinker system (Fig. 1 (a) that is made of a hard material such as fused silica and that passes through a steel wire by rubbing under a member having a passage groove. )), And a rotating sinker system (FIG. 1 (b)) that has a shaft and a bearing, and in which the cylindrical surface rotates in the bath and guides the steel wire without rubbing with the steel wire.

固定式シンカーは、構造が単純で、可動部がないことから、鋼線の案内が安定しており、線のぶれが少ないことが長所であるが、反面、鋼線とシンカー部材が擦過するため、繰り出し側の通材抵抗が大きく、その結果、面圧が高くなると、線表面に疵が付いたり、シンカー案内面が削れるという現象が発生することがある。   The fixed sinker has a simple structure and no moving parts, so the guide of the steel wire is stable and there is little blurring of the wire. However, the steel wire and the sinker member rub against each other. When the material passing resistance on the feeding side is large and as a result, the surface pressure becomes high, a phenomenon may occur in which the surface of the wire is wrinkled or the sinker guide surface is scraped off.

回転式シンカーの軸と軸受の関係については、固定軸受の中に回転するジャーナルを設け、このジャーナルが鋼線を案内する胴部と結合された固定軸受方式と、固定軸の廻りに回転する回転軸受を設け、この回転軸受が鋼線を案内する胴部と結合された回転軸受方式(図2)のいずれかを選択することができる。以下、回転軸受方式について説明する。   Regarding the relationship between the shaft and the bearing of the rotary sinker, a fixed journal is provided in the fixed bearing, and this journal is connected to the body that guides the steel wire, and the rotation rotates around the fixed shaft. A rotary bearing system (FIG. 2) in which a bearing is provided and the rotary bearing is coupled to a body portion for guiding a steel wire can be selected. Hereinafter, the rotary bearing system will be described.

回転式シンカーの長所は、鋼線とシンカー部材の擦過がないため、表面に疵を付けずに通材することができることであるが、短所としては、案内される線張力の変動により、特にラインスピードを上げた場合、固定軸の回りで回転軸受のぶれが起こり、そのぶれが線に伝達されるため、線に振動が生じ、表面品質が不安定になることである。   The advantage of the rotary sinker is that there is no friction between the steel wire and the sinker member, so that the surface can be passed without any wrinkles on the surface. When the speed is increased, the rotation of the rotary bearing occurs around the fixed shaft, and the vibration is transmitted to the line, so that the line is vibrated and the surface quality becomes unstable.

固定軸の回りで回転軸受のぶれが起こり易い理由は、回転式シンカーのすべり軸受機構内には、常温、大気中で用いられるような軸受と比較して、回転軸受と固定軸との間に極めて大きなクリアランスを設けているためである。   The reason why the rotary bearing is likely to run around the fixed shaft is that the rotary sinker has a sliding bearing mechanism between the rotary bearing and the fixed shaft, as compared to a bearing used at room temperature and in the atmosphere. This is because an extremely large clearance is provided.

本発明において、すべり軸受機構は溶融金属浴内に浸漬されるため、稼働中に回転軸受と固定軸の間に溶融金属が入り込む。通常のすべり軸受機構のように回転軸受と固定軸の間隔が狭いと、メンテナンス時に回転シンカーを溶融金属から引き揚げる際、回転軸受と固定軸の間に入り込んだ溶融金属が表面張力により隙間全周に残存し、温度低下により凝固した固体金属と、回転軸受と固定軸の収縮率の相違により、その後の冷却により、回転軸受又は固定軸の部材に応力が発生し、破損してしまう。溶融金属内に浸漬するすべり軸受機構において、回転軸受と固定軸との間に大きなクリアランスを設ける必要のある理由は、溶融金属から引き揚げた際、回転軸受と固定軸の隙間の大きな空間から、容易に溶融金属を自然流出させる必要があるためである。   In the present invention, since the slide bearing mechanism is immersed in the molten metal bath, the molten metal enters between the rotary bearing and the fixed shaft during operation. If the distance between the rotary bearing and the fixed shaft is narrow as in a normal slide bearing mechanism, when the rotary sinker is lifted from the molten metal during maintenance, the molten metal that has entered between the rotary bearing and the fixed shaft will spread over the entire circumference due to surface tension. Due to the difference between the remaining solid metal solidified by the temperature drop and the shrinkage rate of the rotary bearing and the fixed shaft, the subsequent cooling causes stress on the rotary bearing or the fixed shaft member, resulting in damage. The reason why it is necessary to provide a large clearance between the rotary bearing and the fixed shaft in the plain bearing mechanism immersed in the molten metal is that it is easy to remove from the large space between the rotary bearing and the fixed shaft when lifted from the molten metal. This is because it is necessary to let the molten metal flow out naturally.

したがって、鉄線の表面に疵を付けずに品質の良いめっき線を生産するためには、線との擦過が起こらない回転シンカーが必須であるにも関わらず、上記のような理由で、線ぶれを起こさずに安定的に操業するのは非常に困難であった。   Therefore, in order to produce a high quality plated wire without wrinkles on the surface of the iron wire, a rotating sinker that does not rub against the wire is essential. It was very difficult to operate stably without causing any problems.

すべり軸受機構の軸ぶれの低減に関連する既存の技術として、特許文献1に開示されているように、スキャナモーターの軸受構造について、複数の板状のすべり軸受に板バネ又は弾性体により予圧を加えることにより回転体の傾きを低減する技術が提案されている。   As an existing technology related to reduction of shaft runout of a slide bearing mechanism, as disclosed in Patent Document 1, a preload is applied to a plurality of plate-like slide bearings by a leaf spring or an elastic body in a scanner motor bearing structure. In addition, a technique for reducing the inclination of the rotating body has been proposed.

しかし、上記の機構の場合、板バネ又は弾性体で予圧を加えることは、本発明で提案しようとしている溶融金属中での機構の場合、高温により、板バネ又は弾性体の剛性が徐々に失われたり、材質が変性したりするため、適用が困難である。   However, in the case of the above mechanism, the preload is applied by the leaf spring or the elastic body. In the case of the mechanism in the molten metal to be proposed in the present invention, the rigidity of the leaf spring or the elastic body is gradually lost due to the high temperature. It is difficult to apply because it is broken or the material is denatured.

また、固定の摺動部材と予圧を付勢する部材の少なくとも3方から隙間なく押さえつける必要があるため、上述のようにメンテナンス時にジャーナルと固定軸受の間に残存した溶融金属の凝固収縮率と部材の収縮率の相違により、部材に無理な応力が発生して破損するため、本発明が想定しているような状況下では適用できない。   Further, since it is necessary to press the gap between at least three of the fixed sliding member and the member for biasing the preload without any gap, the solidification shrinkage rate of the molten metal remaining between the journal and the fixed bearing and the member as described above are maintained. Due to the difference in the shrinkage rate, excessive stress is generated in the member and it is damaged, so that it cannot be applied under the situation assumed by the present invention.

また、特許文献2に開示されているように、軸受孔の形状を略三角形として軸との接触を3箇所とすることにより熱の発生を大幅に軽減する技術が提案されている。   Further, as disclosed in Patent Document 2, a technique has been proposed in which the shape of the bearing hole is substantially triangular and the number of contacts with the shaft is three, thereby greatly reducing the generation of heat.

しかし、この場合も、本発明で提案しようとしている溶融金属中で使用する機構の場合、3方から隙間なく拘束されているため、メンテナンス時の凝固金属の凝固収縮率と部材の熱収縮率の相違により応力が発生して部材が破損するため、適用することができない。   However, in this case as well, in the case of the mechanism used in the molten metal to be proposed in the present invention, since it is restrained from three sides without a gap, the solidification shrinkage rate of the solidified metal and the thermal shrinkage rate of the member at the time of maintenance are determined. Due to the difference, stress is generated and the member is damaged, so that it cannot be applied.

特開平5−180217号公報Japanese Patent Laid-Open No. 5-180217 実開平7−1721号公報Japanese Utility Model Publication No. 7-1721

本発明は、このような実状に鑑みてなされたものであり、回転式シンカーの特徴である鉄線に疵が付き難い点を活かし、かつ、回転軸受−固定軸間のクリアランスの大きさ故に発生する振動を低減させるすべり軸受機構を提供することを目的とするものである。   The present invention has been made in view of such a situation, and occurs due to the large clearance between the rotary bearing and the fixed shaft, taking advantage of the fact that the iron wire, which is a feature of the rotary sinker, is not easily wrinkled. An object of the present invention is to provide a plain bearing mechanism that reduces vibration.

本発明は、上記の課題を解決するためになされたものであり、その趣旨とするところは次の通りである。
(1) 軸に垂直な断面が円形であり、内周より内側の空間7を有する回転軸受1と、回転軸受1の空間7を貫通する固定軸2から構成される、溶融めっき鋼線製造時に溶融金属浴内に浸漬されて使用される回転式シンカーのすべり軸受機構であって、固定軸2の軸に垂直な断面形状が、多角形、楕円形、又は、これらを組み合わせた形状であり、固定軸2と回転軸受1の内周8との接触箇所5が軸に垂直な断面で2箇所となる形状であり、回転軸受1の内周面の少なくとも50%が、対峙する固定軸との間隔が2mm〜20mmであることを特徴とするすべり軸受機構。
(2) 2箇所の接触部5における回転軸受内周8との接線のなす角度が、30〜150°である(1)記載のすべり軸受機構
(3) 固定軸2と回転軸受1が、何れも△T:500℃〜1200℃の耐熱衝撃性を有する(1)又は2)に記載のすべり軸受機構。
) 固定軸2と回転軸受1のうち、少なくもいずれか一方が、ビッカース硬さ:9.8×103MPa以上の硬度を有し、かつ、両方がビッカース硬さ34.3×103MPa以下である(1)〜()のいずれかに記載のすべり軸受機構。
The present invention has been made to solve the above problems, and the gist of the present invention is as follows.
(1) At the time of manufacturing a hot-dip galvanized steel wire, which is composed of a rotary bearing 1 having a circular cross section perpendicular to the shaft and having a space 7 inside the inner periphery and a fixed shaft 2 penetrating the space 7 of the rotary bearing 1 A sliding bearing mechanism of a rotary sinker used by being immersed in a molten metal bath, wherein a cross-sectional shape perpendicular to the axis of the fixed shaft 2 is a polygon, an ellipse, or a combination thereof, The contact portion 5 between the fixed shaft 2 and the inner periphery 8 of the rotary bearing 1 has two shapes in a cross section perpendicular to the shaft, and at least 50% of the inner peripheral surface of the rotary bearing 1 is opposed to the opposing fixed shaft. A sliding bearing mechanism characterized in that the interval is 2 mm to 20 mm.
(2) The sliding bearing mechanism according to (1), wherein an angle formed by a tangent to the inner periphery 8 of the rotary bearing at the two contact portions 5 is 30 to 150 ° .
(3 ) The sliding bearing mechanism according to (1) or ( 2) , wherein each of the fixed shaft 2 and the rotary bearing 1 has a thermal shock resistance of ΔT: 500 ° C. to 1200 ° C.
( 4 ) At least one of the fixed shaft 2 and the rotary bearing 1 has a Vickers hardness of 9.8 × 10 3 MPa or more, and both have a Vickers hardness of 34.3 × 10. The plain bearing mechanism according to any one of (1) to ( 3 ), which is 3 MPa or less.

本発明によるすべり軸受機構によれば、例えば、溶融金属めっき線の製造ライン上で溶融金属浴中に鋼線を浸潰しつつ通過させる必要がある工程で、回転式シンカーの特徴である鋼線に疵が付き難い特徴を活かしつつ、かつ、回転軸受と固定軸の間で生ずる振動が解消し、表面性状の極めて安定した溶融めっき線を、安定的に生産することができ、かつメンテナンス時のトラブルも防げるため、産業上の貢献が極めて顕著である。   According to the sliding bearing mechanism according to the present invention, for example, in the process where it is necessary to pass the steel wire through the molten metal bath while being crushed on the production line of the molten metal plating wire, the steel wire which is a feature of the rotary sinker is used. Utilizing the features that are difficult to get wrinkled, eliminating the vibration that occurs between the rotary bearing and the fixed shaft, can stably produce hot-plated wire with extremely stable surface properties, and trouble during maintenance Therefore, the industrial contribution is very remarkable.

本発明のすべり軸受機構の構造について述べる。本発明のすべり軸受機構は、図2に例示するような固定軸と回転軸受の組合せである。本発明で回転軸受1の空間7とは、回転軸受1の内周より内側の空間であって、固定軸2が貫通する空間をいう。また回転軸受1の内周8とは、回転軸受1と上記空間7との境界を形成する内周をいう。   The structure of the plain bearing mechanism of the present invention will be described. The plain bearing mechanism of the present invention is a combination of a fixed shaft and a rotary bearing as illustrated in FIG. In the present invention, the space 7 of the rotary bearing 1 refers to a space inside the inner periphery of the rotary bearing 1 and through which the fixed shaft 2 passes. The inner circumference 8 of the rotary bearing 1 refers to an inner circumference that forms a boundary between the rotary bearing 1 and the space 7.

すべり軸受機構の回転軸受に設けた空間7は、回転軸に垂直な断面が同心の円形をなしているが、断面位置により必ずしも径は同一である必要はなく、樽型、糸巻型又はそれらの組合せであっても差し支えない。   The space 7 provided in the rotary bearing of the slide bearing mechanism has a circular shape in which the cross section perpendicular to the rotation axis is concentric, but the diameter does not necessarily have to be the same depending on the position of the cross section. A combination is also acceptable.

固定軸2は、溶融金属浴13内に浸漬されて固定されている。回転軸受1は固定軸2が貫通する空間7を有する。本発明において、固定軸1の形状については、溶融金属浴内ですべり軸受機構として使用する際、図7に示すように、回転軸受1の内周8と固定軸2との間の接触箇所が軸に垂直な断面で2箇所(5a、5b)となる形状とする。   The fixed shaft 2 is immersed and fixed in the molten metal bath 13. The rotary bearing 1 has a space 7 through which the fixed shaft 2 passes. In the present invention, the shape of the fixed shaft 1 is such that when it is used as a sliding bearing mechanism in a molten metal bath, the contact portion between the inner periphery 8 of the rotary bearing 1 and the fixed shaft 2 is shown in FIG. The cross section is perpendicular to the axis and has two locations (5a, 5b).

以下に、本発明の基本作動について説明する。本発明が使用を想定している溶融金属中で、鋼線を案内する回転シンカーのすべり軸受機構では、図1(b)に示すように、回転軸受1と同心の胴部9に対し鋼線10の線張力4aと4bがかかっている。その線張力の合力4cによって、回転軸受1が固定軸2に押し付けられる方向は操業時には概ね決まった位置となるのが特徴である。回転軸受1との2つの接触点(5a、5b)の中点近傍に入線側と出線側の線張力の合力4cの方向が概一致するように固定軸の設置方向を調節する。   The basic operation of the present invention will be described below. In a sliding bearing mechanism of a rotating sinker for guiding a steel wire in a molten metal assumed to be used by the present invention, as shown in FIG. Ten line tensions 4a and 4b are applied. A characteristic is that the direction in which the rotary bearing 1 is pressed against the fixed shaft 2 by the resultant force 4c of the linear tension is substantially determined at the time of operation. The installation direction of the fixed shaft is adjusted so that the direction of the resultant force 4c of the line tension on the incoming line side and the outgoing line side substantially coincides with the vicinity of the middle point of the two contact points (5a, 5b) with the rotary bearing 1.

図4に示す従来使用されていた回転軸受と固定軸の接触点が1点の溶融金属浴中のすべり軸受においては、通常、図5に示すように、回転軸受1にかかる力は、固定軸2の接点から受ける抗力3と、鋼線から受ける張力4a、4bの合力4cとが釣り合って静止している。しかし、操業中に張力4aと4bのベクトルの大きさが変化すると、それらの合力4cの方向が変化し、それに応じた力の釣り合いが得られるのは図6の接点5であるから、回転軸受1は固定軸2上を移動せざるを得ず、回転軸受1のぶれが生ずる。   In the slide bearing in the molten metal bath having a single contact point between the rotary bearing and the fixed shaft shown in FIG. 4, the force applied to the rotary bearing 1 is usually as shown in FIG. 5. The drag 3 received from the contact point 2 and the resultant force 4c of the tension 4a, 4b received from the steel wire are balanced and stationary. However, if the magnitudes of the vectors of the tensions 4a and 4b change during operation, the direction of the resultant force 4c changes, and it is the contact 5 in FIG. 1 must move on the fixed shaft 2, and the rotary bearing 1 is shaken.

回転軸受のぶれが生じることにより、通材している線のパスラインが変動し、鉄線表面が振動することによって、その上を覆う未凝固の溶融金属に乱れや垂れが生ずるため、めっき線表面が荒れ易くなるという品質上の問題が発生する。   When the rolling bearing shakes, the pass line of the wire passing through fluctuates, and the surface of the iron wire vibrates, causing turbulence and sagging in the unsolidified molten metal covering it. This causes a quality problem that is likely to be rough.

一方、本発明のように、固定軸の外面を回転軸受の内周8と2箇所(5a、5b)で接触するような構造とした場合、通常は図7に示すように、回転軸受1は、固定軸2の2箇所(5a、5b)から抗力3a、3bを受け、鋼線からは張力4a、4bを受けて釣り合いの状態にある。   On the other hand, when the structure is such that the outer surface of the fixed shaft is in contact with the inner periphery 8 of the rotary bearing at two locations (5a, 5b) as in the present invention, the rotary bearing 1 is usually as shown in FIG. The drags 3a and 3b are received from two locations (5a and 5b) of the fixed shaft 2, and the tensions 4a and 4b are received from the steel wire and are in a balanced state.

仮に、操業中、図8のように、線張力4a、4bの大きさが変化した場合でも、回転軸受1が固定軸2の2箇所(5a、5b)から受ける抗力3a、3bが線張力の変動に応じて変化し、線張力4a、4bの調整範囲を超えない限り、即ち、4a、4bのいずれかが0(ゼロ)に成らない限りにおいては、回転軸受1は位置を変えることなく、力の釣り合いの状態を保つことができるため、回転軸受1のぶれを起こすことなく、安定した位置で回転を続けることができる。   Even if the magnitudes of the line tensions 4a and 4b change during operation, as shown in FIG. 8, the drags 3a and 3b received by the rotary bearing 1 from the two locations (5a and 5b) of the fixed shaft 2 are linear tensions. As long as it changes according to the fluctuation and does not exceed the adjustment range of the line tensions 4a and 4b, that is, as long as either 4a or 4b does not become 0 (zero), the rotary bearing 1 does not change its position. Since the balance of force can be maintained, the rotation of the rotary bearing 1 can be continued without causing the rotation of the rotary bearing 1.

次に、本発明での固定軸の接触箇所の位置関係について説明する。図9に、接触箇所(5a、5b)における2本の接線(6a、6b)のなす角度θについて定義を示した。回転軸受1と固定軸2が接触する点(5a、5b)での接線(6a、6b)のなす角度θが170°を越える場合、回転軸受が固定軸の2箇所から受ける力のベクトルの方向の差異が小さくなるため、線張力の変動の大きさが抗力の変動による調整の範囲を超え易くなり、4a、4bのうちどちらかが0となり、2箇所の接点(5a、5b)のうちのいずれかが固定軸との接触を失う現象が起こり、軸の位置がぶれてしまう可能性が高くなる。このため、本発明では、回転軸受と固定軸が接触する点での接線のなす角度θを170°以下にすることが好ましい。軸位置をより安定化するためには角度θは150°以下であると更に好ましい。   Next, the positional relationship between the contact points of the fixed shaft in the present invention will be described. FIG. 9 shows the definition of the angle θ formed by the two tangent lines (6a, 6b) at the contact locations (5a, 5b). When the angle θ formed by the tangent lines (6a, 6b) at the points (5a, 5b) where the rotary bearing 1 and the fixed shaft 2 are in contact exceeds 170 °, the direction of the vector of the force that the rotary bearing receives from two locations of the fixed shaft Therefore, the magnitude of the line tension fluctuation easily exceeds the range of adjustment due to the fluctuation of the drag, and one of 4a and 4b becomes 0, and two of the contact points (5a and 5b) There is a possibility that any one of them loses contact with the fixed shaft, and the position of the shaft is deviated. Therefore, in the present invention, it is preferable that the angle θ formed by the tangent line at the point where the rotary bearing and the fixed shaft are in contact with each other is 170 ° or less. In order to further stabilize the shaft position, the angle θ is more preferably 150 ° or less.

また、回転軸受1と固定軸2が接触するそれぞれの点(5a、5b)で引いた接線(6a、6b)の互いになす角度θが30°より小さい場合、摩擦力によって、回転軸受1が固定軸2の方向に押し付けられる力が大きくなり、場合によってはカジリを生じて引っ掛かる等して、回転速度がむしろ不均一となる現象が発生する可能性が高くなる。このため、本発明では、回転軸受1と固定軸2が接触する点での接線のなす角度θを30°以上にすることが好ましい。   Further, when the angle θ formed between the tangents (6a, 6b) drawn at the points (5a, 5b) where the rotary bearing 1 and the fixed shaft 2 are in contact is smaller than 30 °, the rotary bearing 1 is fixed by frictional force. The force that is pushed in the direction of the shaft 2 is increased, and in some cases, the possibility of occurrence of a phenomenon in which the rotational speed is rather non-uniform due to galling or the like is increased. For this reason, in the present invention, it is preferable that the angle θ formed by the tangent line at the point where the rotary bearing 1 and the fixed shaft 2 contact each other is 30 ° or more.

次に、固定軸2の断面形状について述べる。本発明における固定軸2の断面形状は、上記のように、2箇所で回転軸受1の内周8と接することができる形状であればどのような形状であっても構わないのであるが、図3に示すような形状が例示できる。その断面形状を、円弧、多角形、楕円の全部又はその一部、又は、それらの組合せとすることで、確実に接触箇所を2箇所とすることができる。図3(g)に示すように、突起部材14を2個埋め込んだものとしてもよい。   Next, the cross-sectional shape of the fixed shaft 2 will be described. The cross-sectional shape of the fixed shaft 2 in the present invention may be any shape as long as it can be in contact with the inner periphery 8 of the rotary bearing 1 at two locations as described above. A shape as shown in FIG. By making the cross-sectional shape to be all or a part of an arc, a polygon, an ellipse, or a combination thereof, it is possible to reliably make two contact points. As shown in FIG. 3G, two protruding members 14 may be embedded.

次に、回転軸受1と固定軸2の間の間隔について説明する。回転軸受1の内周面の少なくとも50%において、対峙する固定軸との間隔が2mm以上であることが好ましい。これは、メンテナンス時にすべり軸受機構を溶融金属浴から取り出した際に、稼働中に回転軸受と固定軸の間に入り込んだ溶融金属が表面張力により、回転軸受と固定軸の間に残存しないように、間隔を2mm以上として容易にすべり軸受機構内から排出されるようにするものである。   Next, the interval between the rotary bearing 1 and the fixed shaft 2 will be described. It is preferable that at least 50% of the inner peripheral surface of the rotary bearing 1 has a distance of 2 mm or more from the opposed fixed shaft. This is because when the sliding bearing mechanism is removed from the molten metal bath during maintenance, the molten metal that has entered between the rotating bearing and the fixed shaft during operation does not remain between the rotating bearing and the fixed shaft due to surface tension. The interval is set to 2 mm or more so as to be easily discharged from the slide bearing mechanism.

但し、回転軸受1の内周面の少なくとも50%において、対峙する固定軸との間隔が20mm以下であることが望ましい。これは20mm程度の間隔で、メンテナンス時の溶融金属排出効果が飽和すると共に、間隔が20mmを超えた大きな間隔となると、回転軸受が大きくなり、すべり軸受機構を設置するための無駄なスペースが必要となる可能性があるためである。   However, it is desirable that at least 50% of the inner peripheral surface of the rotary bearing 1 has a distance of 20 mm or less from the opposed fixed shaft. This is an interval of about 20 mm, the molten metal discharge effect at the time of maintenance is saturated, and if the interval exceeds 20 mm, the rotary bearing becomes large, and a useless space for installing the slide bearing mechanism is necessary. This is because there is a possibility of becoming.

次に、回転軸受と固定軸の耐熱衝撃性について述べる。耐熱衝撃性は、ある材質を加熟し、それを温度差△Tの氷水中に落下して急冷した亀裂が入らない最大の温度差で定義される。本発明での固定軸と回転軸受は、何れも△T≧500℃の耐熱衝撃性を有することが好ましい。   Next, the thermal shock resistance of the rotary bearing and the fixed shaft will be described. Thermal shock resistance is defined as the maximum temperature difference that does not cause cracking when a certain material is ripened and dropped into ice water with a temperature difference ΔT and rapidly cooled. Both the fixed shaft and the rotary bearing in the present invention preferably have a thermal shock resistance of ΔT ≧ 500 ° C.

この理由は、回転軸受及び固定軸の耐熱衝撃性△Tが500℃未満である場合、メンテナンス等で溶融金属から引き揚げた際、又は、再度溶融金属に浸漬する際の熱偏差により、回転軸受及び固定軸の部材自体に内部残留応力が発生し、破損してしまう可能性があるためである。   The reason for this is that when the thermal shock resistance ΔT of the rotary bearing and the fixed shaft is less than 500 ° C., the rotary bearing and This is because internal residual stress is generated in the member of the fixed shaft itself and may be damaged.

また、耐熱衝撃性△Tが1200℃を越える材質であっても、通常のめっきに用いる溶融金属浴程度で使用するにあたってはクラック発生抑制効果が飽和しているため、回転軸受及び固定軸の耐熱衝撃性△Tが1200℃以下で十分である。   In addition, even if the material has a thermal shock resistance ΔT exceeding 1200 ° C., the effect of suppressing cracks is saturated when used in a molten metal bath used for ordinary plating. An impact property ΔT of 1200 ° C. or less is sufficient.

回転軸受、固定軸の材質として、サイアロン(SiAlON)を含む窒化ケイ素(Si34)系ファインセラミックス群、またはSUS316等のステンレス材の表面に、Co−Cr系のメタル系溶射材を1〜2mm程度コーティングしたものを採用することにより、耐熱衝撃性ΔTを500〜1200℃の範囲とすることができる。 As a material of the rotary bearing and the fixed shaft, a Co—Cr based metal spray material is applied to the surface of a silicon nitride (Si 3 N 4 ) based fine ceramics group including sialon (SiAlON) or a stainless steel material such as SUS316. By adopting a coating of about 2 mm, the thermal shock resistance ΔT can be in the range of 500 to 1200 ° C.

また、少なくとも固定軸か回転軸受のどちらか一方が、ビッカース硬さ9.8×103MPa以上の硬度を有することが好ましい。固定軸と回転軸受のいずれもが9.8×103MPa未満の場合、回転軸受と固定軸の擦過によって、互いに凝着又はむしれの現象を生じ易くなり、摩耗面の凹凸が大きくなることがあり、比較的短時間で摩耗が進行することもあるために、長期間の安定的な操業を継続することが困難になる可能性がある。このため、回転軸受か固定軸のどちらか一方が、ビッカース硬さ9.8×103MPa以上であることが好ましい。 Further, it is preferable that at least one of the fixed shaft and the rotary bearing has a Vickers hardness of 9.8 × 10 3 MPa or more. When both the fixed shaft and the rotary bearing are less than 9.8 × 10 3 MPa, the friction between the rotary bearing and the fixed shaft tends to cause adhesion or peeling, and the unevenness of the wear surface increases. Since wear may progress in a relatively short time, it may be difficult to continue stable operation for a long period of time. For this reason, it is preferable that either the rotary bearing or the fixed shaft has a Vickers hardness of 9.8 × 10 3 MPa or more.

また、固定軸と回転軸受のいずれもが、ビッカース硬さ34.3×103MPa以下の硬度であることが好ましい。この理由は固定軸か回転軸受のどちらか一方でも34.3×103MPaを越えると、破壊靭性が低下する傾向があるため、メンテナンス等の取り扱いの際、ぶつけて破損する可能性が高くなるからである。 Further, it is preferable that both the fixed shaft and the rotary bearing have a Vickers hardness of 34.3 × 10 3 MPa or less. The reason for this is that if either the fixed shaft or the rotary bearing exceeds 34.3 × 10 3 MPa, the fracture toughness tends to be reduced, so that there is a high possibility that it will be damaged by being hit during handling such as maintenance. Because.

ビッカース硬さを9.8×103MPa以上とするためには、Si34系または炭化ケイ素(SiC)系ファインセラミックス群、またはCo−Cr等のメタル系溶射材を1〜2mm程度コーティングしたものより選択することで達成されるが、SiC系の場合逆に硬度が高すぎて破壊靱性と耐熱衝撃性が低下することからSi34系セラミックス、またはCo−Cr系メタル系溶射材を選択することで、ビッカース硬さ9.8〜34.3×103MPaの範囲とすることができる。 In order to set the Vickers hardness to 9.8 × 10 3 MPa or more, about 1 to 2 mm is coated with a Si 3 N 4 -based or silicon carbide (SiC) -based fine ceramics group or a metal-based thermal spray material such as Co—Cr. However, in the case of SiC, the hardness is too high, and the fracture toughness and thermal shock resistance are reduced. Therefore, the Si 3 N 4 ceramics or Co-Cr metal spray material By selecting, the Vickers hardness can be in the range of 9.8 to 34.3 × 10 3 MPa.

以下に実施例を示す。なお、この実施例は例に沿って具体的に説明するものであり、本発明の請求項の内容を限定するものではない。   Examples are shown below. In addition, this Example is demonstrated concretely along an example, The content of the claim of this invention is not limited.

めっき用線はJIS SWRM6−5.5mmφの熱間圧延材を用い、4.0mmφまで冷間伸線加工した鉄線を使用した。伸縮材繰り出し後、750℃流動床で約45秒の焼鈍を行い、15%、60℃の塩酸で酸洗後、水洗、塩化アンモニウム水溶液のフラックス中を経て、ブロワ乾燥後450℃の溶融純亜鉛槽へ浅漬させた。ラインスピードは30mm/min、溶融亜鉛浴中への浅漬時間を10秒とし、めっき線引き上げ部分の浴面を窒素断気によりシールを行った。   As the plating wire, a hot rolled material of JIS SWRM6-5.5 mmφ was used, and an iron wire cold-drawn to 4.0 mmφ was used. After drawing out the stretch material, it was annealed in a fluidized bed at 750 ° C for about 45 seconds, pickled with hydrochloric acid at 15% and 60 ° C, washed with water, passed through a flux of ammonium chloride aqueous solution, dried with blower, and then melted with pure zinc at 450 ° C. Soaked in a tank. The line speed was 30 mm / min, the shallow dipping time in the molten zinc bath was 10 seconds, and the bath surface of the portion where the plated wire was pulled up was sealed by nitrogen ventilation.

回転シンカーの構造としては、図2のような鉄線を案内する胴部9と、その内部に一体となった同心円状の空間7を有する回転軸受1と、空間7を貫通して受ける固定軸2からなる装置で行った。   As the structure of the rotary sinker, as shown in FIG. 2, a body portion 9 for guiding an iron wire, a rotary bearing 1 having a concentric space 7 integrated therein, and a fixed shaft 2 received through the space 7. It was carried out with an apparatus consisting of

回転軸受の材質は、耐熱衝撃性△T=600℃、ビッカース硬さ13.6×103MPaの汎用サイアロンで作成した。固定軸は、SUS316で作成し、表面にCo−Cr系の溶射を行い、2mm厚となるよう、切削して仕上げた。ただし、表1の比較例No.3については、回転軸受の材質をコーティングなしのSUS316とした。また、本発明例のNo.7の固定軸はAl23系ファインセラミックス、No.8の固定軸、回転軸受はいずれもコーティングなしのSUS316、No.9の固定軸にはSiC系のファインセラミックスをそれぞれ用いている。 The material of the rotary bearing was made of general-purpose sialon having thermal shock resistance ΔT = 600 ° C. and Vickers hardness of 13.6 × 10 3 MPa. The fixed shaft was made of SUS316, and the surface was subjected to thermal spraying of Co—Cr and cut to a thickness of 2 mm and finished. However, Comparative Example No. 1 in Table 1 was used. For No. 3, the material of the rotary bearing was SUS316 without coating. In addition, No. of the present invention example. The fixed shaft of No. 7 is Al 2 O 3 series fine ceramics, No. 7 No. 8 fixed shaft and rotary bearing are both SUS316, No. Each of the fixed shafts 9 is made of SiC fine ceramics.

回転軸受と鉄線を案内する胴部とは同心円状で一体であり、回転軸受の空間の径は80mm、胴径は180mmで、鉄線を案内する溝は10mmの深さを持つ。   The rotary bearing and the body portion for guiding the iron wire are concentric and integral, and the diameter of the space of the rotary bearing is 80 mm, the body diameter is 180 mm, and the groove for guiding the iron wire has a depth of 10 mm.

固定軸の断面形状は、本発明例では、図3(a)〜(e)に示す各形状及び六角形、八角形を用いた。四角形の場合、一辺70mmの概正方形で、正方形のコーナー部分はR13mmである。比較例では固定軸2の形状を図4に示す円形とした。回転軸受の内周面と接する固定軸の円筒側面部位の長さは300mmである。端部には四角断面の突起があり、これを19mm厚のSUS304製サポートの同形の孔に嵌め込み、回転軸受との共回りを抑制した。図3に示すように、溶融金属浴内ですべり軸受機構として使用する際、回転軸受1の内周8と固定軸2との間の接触箇所が軸に垂直な断面で2箇所(5a、5b)となるよう、固定軸2の形状の方向を調整した。   As the cross-sectional shape of the fixed shaft, in the example of the present invention, each shape, hexagon, and octagon shown in FIGS. In the case of a quadrangle, it is an approximate square with a side of 70 mm, and the corner portion of the square is R13 mm. In the comparative example, the shape of the fixed shaft 2 is a circle shown in FIG. The length of the cylindrical side surface portion of the fixed shaft in contact with the inner peripheral surface of the rotary bearing is 300 mm. A projection having a square cross section was formed at the end, and this was fitted into the same-shaped hole of a 19 mm-thick SUS304 support to suppress co-rotation with the rotary bearing. As shown in FIG. 3, when used as a sliding bearing mechanism in a molten metal bath, the contact location between the inner periphery 8 of the rotary bearing 1 and the fixed shaft 2 is two in a cross section perpendicular to the shaft (5a, 5b). ), The direction of the shape of the fixed shaft 2 was adjusted.

実施例のめっき線製造時の製造条件及び評価結果を表1に示す。   Table 1 shows the production conditions and evaluation results during the production of the plated wire of the example.

まず、はじめに、評価方法について説明する。   First, the evaluation method will be described.

表1の『振動』の評価は、操業中の線の振れ、めっき線表面の乱れの目視、及び回転式シンカーの台座に直接振れることによって判断した。シンカーの回転周期に一致した線の振れと、台座から手のひらに感じられる程度の継続的な振動が発生し、めっき線表面の未凝固の溶融亜鉛が垂れたり、乱れたりする場合を×とした。また、振動の発生は感じられるものの、めっき線表面が美麗である場合を△、振動の発生が感じられない場合を○とした。   The evaluation of “vibration” in Table 1 was judged by shaking the wire during operation, visually checking the surface of the plated wire, and shaking directly on the base of the rotary sinker. The case where the vibration of the line corresponding to the rotation period of the sinker and the continuous vibration as perceived by the palm from the pedestal occurred, and the unsolidified molten zinc on the surface of the plated wire dripped or disturbed was marked as x. Moreover, although generation | occurrence | production of the vibration was felt, it was set as (triangle | delta), and the case where generation | occurrence | production of a vibration was not felt was set as (circle) when the plating wire surface is beautiful.

『摩耗状況』の評価は、上述の条件で約100tのめっき線を生産したあと、回転シンカーを溶融亜鉛浴から引き揚げてすべり軸受機構を分解し、回転軸受と固定軸の擦過面を目視で観察して行った。擦過面に周方向の筋が確認できないものを○とした。いずれかの擦過面に周方向の筋が明確に確認出来るものの、操業中にめっき線に振動は発生せず、表面品質上では問題ない場合を△とした。擦過面に周方向の筋が明確に確認できると共に、操業中にめっき線に振動が発生し、表面外観に問題が生じる場合を×とした。 The evaluation of "wear state" is that after producing a plated wire of about 100t under the above conditions, the rotating sinker is lifted from the molten zinc bath, the slide bearing mechanism is disassembled, and the rubbing surfaces of the rotating bearing and the fixed shaft are visually observed. I went there. The case where no circumferential streak could be confirmed on the scratched surface was rated as “◯”. Although it was possible to clearly confirm the circumferential streak on any of the rubbing surfaces, the case where no vibration was generated in the plated wire during the operation and there was no problem in the surface quality was indicated as Δ. A case in which circumferential streaks could be clearly confirmed on the scraped surface, and the plating wire vibrated during operation, causing a problem in the appearance of the surface, was evaluated as x.

『耐破損性』の評価は、メンテナンス終了した回転シンカーを急速に溶融亜鉛浴中に浸漬し、操業後に急速に引き揚げ、目視でクラック、チッピング等を目視観察することによって行った。クラック、チッピング等が認められない場合を○、クラック、チッピング等が目視で観察出来るものの、操業中にめっき線に振動は発生せず、表面品質上では問題なかった場合を△、クラック、チッピング等が確認できると共に、操業中にめっき線に振動が発生し、表面外観に問題が生じる場合を×とした。   The evaluation of “breakage resistance” was performed by rapidly immersing the rotating sinker after completion of maintenance in a molten zinc bath, rapidly lifting it after operation, and visually observing cracks, chipping, and the like. ○, when cracks, chipping, etc. are not observed, cracks, chipping, etc. can be observed visually, but if the plating wire does not vibrate during operation and there is no problem in surface quality, Δ, cracks, chipping, etc. The case where the plating wire vibrates during operation and a problem occurs in the surface appearance is marked as x.

『軸位置安定性』の評価は、操業中にシンカー入り側の溶融亜鉛浴浸入前の矯直ローラーを故意に押しこみ、直後に戻して、線張力を変動させ、その前後で、線のブレが発生するかどうかを目視で判断した。この時、めっき線がぶれない場合を○、めっき線が一時的にぶれるものの、その時だけの表面品質の乱れにとどまり、全体的な品質低下につながらない場合を△、めっき線がぶれると共に、表面外観に問題が生じる場合を×とした。   The evaluation of the “shaft position stability” was made by deliberately pushing the straightening roller before entering the molten zinc bath on the sinker side during operation and returning it immediately to change the line tension. It was judged visually whether or not this occurred. At this time, when the plated wire is not blurred, ○, when the plated wire is temporarily blurred, but only when the surface quality is disturbed and does not lead to the overall quality degradation, the plated wire is blurred and the surface appearance The case where a problem occurs in the case is marked with x.

『回転安定性』の評価は、操業中にシンカー入り側の溶融亜鉛浴浸入前の矯直ローラーを故意に押しこみ、線張力を定常的に増加して、線張力の大きさで、通線速度が変化するかどうかで判断した。この時、通線速度に変化がない場合を○、固定軸回転軸受に強くはまり込むことで、めっき線の速度が変動するものの、表面品質上では問題なかった場合を△、通線速度が変動し、めっき線表面外観に問題が生じる場合を×とした。 “Rotational stability” was evaluated by deliberately pushing in the straightening roller before entering the molten zinc bath on the sinker side during operation, increasing the line tension constantly, and increasing the line tension. Judgment was made based on whether the speed changed. At this time, ○ when there is no change in the line speed, △ when the speed of the plated wire fluctuates because the fixed shaft is firmly fitted into the rotary bearing, but there is no problem in surface quality, and the line speed is When it fluctuated and a problem arises in the plating wire surface appearance, it was set as x.

『メンテ時溶融金属残存性』の評価は、メンテナンス時に溶融金属浴から回転シンカーを引き揚げた時、固定軸回転軸受の間の隙間の溶融金属の残存状況によって判断した。この時、溶融金属が残存しない場合を○、溶融亜鉛が残存するものの、金属ブラシ等により掻き出すことができ、表面品質上では問題なかった場合を△、金属ブラシ等で掻き出すことができず、溶融亜鉛が残存した場合を×とした。 The evaluation of “maintenance of molten metal during maintenance” was judged by the remaining state of molten metal in the gap between the fixed shaft and the rotary bearing when the rotating sinker was lifted from the molten metal bath during maintenance. At this time, when the molten metal does not remain, ◯, when molten zinc remains, but can be scraped with a metal brush, etc., when there is no problem in surface quality, △, cannot be scraped with a metal brush, etc. When the zinc remained, it was set as x.

Figure 0005446116
Figure 0005446116

比較例1〜3は、固定軸2の形状が円形であり、固定軸と回転軸受の接触箇所が、すべり軸受機構1個につき1箇所であるために、回転軸受の位置が周期的に変動し、操業中常にめっき線に振動が発生して振動評価が×となり、表面の品質を悪化させる例である。   In Comparative Examples 1 to 3, since the shape of the fixed shaft 2 is circular and the number of contact points between the fixed shaft and the rotary bearing is one for each sliding bearing mechanism, the position of the rotary bearing varies periodically. This is an example in which vibration is constantly generated in the plated wire during the operation and the vibration evaluation becomes x, which deteriorates the surface quality.

本発明例4は、固定軸と回転軸受との間の間隔が狭いために、メンテナンス時に溶融亜鉛から引き揚げた際、溶融亜鉛を何らかの方法で強制的に除去しない限り残存し、その後の熱収縮差により部材が変形または破損する可能性があり、メンテ時溶融金属残存性の評価が△であった例である。   In Example 4 of the present invention, since the distance between the fixed shaft and the rotary bearing is narrow, when it is lifted from the molten zinc at the time of maintenance, it remains unless the molten zinc is forcibly removed by any method, and the subsequent heat shrinkage difference This is an example in which the member may be deformed or broken, and the evaluation of molten metal residualness during maintenance was Δ.

本発明例5は、固定軸と回転軸受との接線のなす角θが25°と小さいために、固定軸と回転軸受との間にカジリが生じ易くなり、回転が不安定となる可能性があり、回転安定性評価が△であった例である。   In Example 5 of the present invention, since the angle θ formed by the tangent line between the fixed shaft and the rotary bearing is as small as 25 °, galling is likely to occur between the fixed shaft and the rotary bearing, and the rotation may become unstable. In this example, the rotational stability evaluation was Δ.

本発明例6は、固定軸と回転軸受との2箇所の接点から引いた接線のなす角θが175°と大きいために、回転軸受が固定軸の2点から受ける抗力のベクトルの方向の差異が小さくなり、鉄線の張力が変動した際の変動を吸収する範囲が狭く、軸がぶれてしまう可能性があり、軸位置安定性の評価が△であった例である。   In Example 6 of the present invention, since the angle θ formed by the tangent lines drawn from the two contact points between the fixed shaft and the rotary bearing is as large as 175 °, the difference in the vector direction of the drag force that the rotary bearing receives from the two points of the fixed shaft In this example, the range for absorbing fluctuations when the tension of the iron wire fluctuates is narrow, the shaft may be shaken, and the evaluation of the shaft position stability is Δ.

本発明例7は、固定軸の耐熱衝撃性が300℃と低いために、溶融亜鉛浴に浸漬する際、または溶融亜鉛から引き揚げる際、部材内部に応力が発生し易くなり、破損する可能性があり、耐破損性の評価が△であった例である。   In Example 7 of the present invention, since the thermal shock resistance of the fixed shaft is as low as 300 ° C., when immersed in a molten zinc bath or when it is lifted from the molten zinc, stress is easily generated inside the member, and there is a possibility of breakage. There is an example in which the evaluation of breakage resistance was Δ.

本発明例8は、固定軸と回転軸受のいずれもがビッカース硬さが3.5×103MPaと低いために、使用開始から短時間の内に摺動面に不均一な凹凸状の摩耗が発生し、長期間の安定的な操業がし難くなり、摩耗状況と回転安定性の評価が△であった例である。 In Invention Example 8, since both the fixed shaft and the rotary bearing have a low Vickers hardness of 3.5 × 10 3 MPa, uneven wear on the sliding surface within a short time from the start of use. This is an example in which a stable operation for a long period of time becomes difficult, and the evaluation of wear status and rotational stability is Δ.

本発明例9は、固定軸のビッカース硬さが45×103MPaと高すぎるために、破壊靱性や耐熱衝撃性が低く、操業開始時またはメンテナンス時に溶融亜鉛に出し入れする際、ぶつけたり、熱衝撃によって破損し易いため、耐破損性の評価が△であった例である。 In Example 9 of the present invention, the Vickers hardness of the fixed shaft is too high at 45 × 10 3 MPa, so the fracture toughness and thermal shock resistance are low. This is an example in which the evaluation of breakage resistance is Δ because it is easily damaged by impact.

本発明例の10〜16は、本発明で好ましいとされる全ての条件を満たしているために、溶融亜鉛めっき線に疵を付けることなく、かつ操業中の振動等が極めて少ない状態で、安定的な品質のめっき線を長時間にわたって製造することができ、メンテナンスも問題なくできる例である。   Examples 10 to 16 of the present invention satisfy all the conditions that are preferable in the present invention, so that the hot-dip galvanized wire is not wrinkled and vibrations during operation are extremely small, and stable. This is an example in which a plated wire of a certain quality can be manufactured for a long time and maintenance can be performed without any problem.

鋼線の溶融めっき浴の断面図であり、(a)は固定式シンカー、(b)は回転式シンカーを表す。It is sectional drawing of the hot dipping bath of a steel wire, (a) represents a fixed sinker and (b) represents a rotary sinker. 本発明のすべり軸受機構の一例である。It is an example of the plain bearing mechanism of this invention. 本発明のすべり軸受機構の固定軸の断面形状の具体例であり、(a)は四角形、(b)は三角形、(c)は内側に凸の曲線と組み合わせた四角形、(d)はチャネル型、(e)は楕円形、(f)は外側に凸の曲線と組み合わせた四角形、(g)は突起部材を2個埋め込んだものである。It is a specific example of the cross-sectional shape of the fixed shaft of the slide bearing mechanism of the present invention, (a) is a quadrangle, (b) is a triangle, (c) is a quadrangle combined with an inwardly convex curve, and (d) is a channel type. (E) is an ellipse, (f) is a quadrangle combined with an outwardly convex curve, and (g) is an embedding of two protruding members. 従来のすべり軸受機構の形状である。This is the shape of a conventional plain bearing mechanism. 従来のすべり軸受機構の定常時の応力状態を示す図である。It is a figure which shows the stress state at the time of the steady state of the conventional slide bearing mechanism. 従来のすべり軸受機構の応力変動時の状態を示す図である。It is a figure which shows the state at the time of the stress fluctuation | variation of the conventional slide bearing mechanism. 本発明のすべり軸受機構の定常時の応力状態を示す図である。It is a figure which shows the stress state at the time of the steady state of the slide bearing mechanism of this invention. 本発明のすべり軸受機構の応力変動時の状態を示す図である。It is a figure which shows the state at the time of the stress fluctuation | variation of the sliding bearing mechanism of this invention. 本発明のすべり軸受機構の接触部における接線のなす角度を示す図である。It is a figure which shows the angle which the tangent forms in the contact part of the sliding bearing mechanism of this invention.

符号の説明Explanation of symbols

1 回転軸受
2 固定軸
3、3a、3b 抗力
4a、4b 張力
4c 合力
5a、5b 回転軸受と固定軸の接点
6a、6b 接点における接線
7 空間
8 内周
9 胴部
10 鋼線
11 回転式シンカー
12 固定式シンカー
13 溶融金属浴
14 突起部材
θ 2本の接線のなす角度
DESCRIPTION OF SYMBOLS 1 Rotating bearing 2 Fixed shaft 3, 3a, 3b Drag 4a, 4b Tension 4c Combined force 5a, 5b Contact of rotary bearing and fixed shaft 6a, 6b Contact tangent 7 Space 8 Inner circumference 9 Body 10 Steel wire 11 Rotating sinker 12 Fixed sinker 13 Molten metal bath 14 Protruding member θ Angle formed by two tangents

Claims (4)

軸に垂直な断面が円形であり、内周より内側の空間を有する回転軸受と、回転軸受の前記空間を貫通する固定軸から構成される、溶融めっき鋼線製造時に溶融金属浴内に浸漬されて使用される回転式シンカーのすべり軸受機構であって、前記固定軸の軸に垂直な断面形状が、多角形、楕円形、又は、これらを組み合わせた形状であり、該固定軸と前記回転軸受の内周との接触箇所が軸に垂直な断面で2箇所となる形状であって、前記回転軸受の内周面の少なくとも50%において、対峙する固定軸との間隔が2mm〜20mmであることを特徴とするすべり軸受機構。 It is immersed in a molten metal bath when manufacturing a hot-dip galvanized steel wire, which is composed of a rotary bearing having a circular cross section perpendicular to the axis and having a space inside the inner periphery and a fixed shaft that penetrates the space of the rotary bearing. The slide bearing mechanism of a rotary sinker used in the above-mentioned configuration has a cross-sectional shape perpendicular to the axis of the fixed shaft, which is a polygon, an ellipse, or a combination thereof, and the fixed shaft and the rotary bearing The contact portion with the inner periphery of the rotary bearing has two cross-sections perpendicular to the shaft, and at least 50% of the inner peripheral surface of the rotary bearing has a distance of 2 mm to 20 mm between the opposing fixed shaft. A plain bearing mechanism characterized by 前記2箇所の接触部における前記回転軸受内周との接線のなす角度が、30〜150°である請求項1記載のすべり軸受機構。   The plain bearing mechanism according to claim 1, wherein an angle formed by a tangent to the inner periphery of the rotary bearing at the two contact portions is 30 to 150 °. 前記固定軸と前記回転軸受が、何れも△T:500℃〜1200℃の耐熱衝撃性を有する請求項1又は2に記載のすべり軸受機構。 The sliding bearing mechanism according to claim 1 or 2 , wherein both the fixed shaft and the rotary bearing have a thermal shock resistance of ΔT: 500 ° C to 1200 ° C. 前記固定軸と前記回転軸受のうち、少なくもいずれか一方が、ビッカース硬さ:9.8×103MPa以上の硬度を有し、かつ、両方がビッカース硬さ34.3×103MPa以下である請求項1〜のいずれかに記載のすべり軸受機構。 At least one of the fixed shaft and the rotary bearing has a Vickers hardness of 9.8 × 10 3 MPa or more, and both have a Vickers hardness of 34.3 × 10 3 MPa or less. The sliding bearing mechanism according to any one of claims 1 to 3 .
JP2008103674A 2008-04-11 2008-04-11 Slide bearing mechanism Expired - Fee Related JP5446116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008103674A JP5446116B2 (en) 2008-04-11 2008-04-11 Slide bearing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008103674A JP5446116B2 (en) 2008-04-11 2008-04-11 Slide bearing mechanism

Publications (2)

Publication Number Publication Date
JP2009257351A JP2009257351A (en) 2009-11-05
JP5446116B2 true JP5446116B2 (en) 2014-03-19

Family

ID=41385041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008103674A Expired - Fee Related JP5446116B2 (en) 2008-04-11 2008-04-11 Slide bearing mechanism

Country Status (1)

Country Link
JP (1) JP5446116B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952097B (en) * 2019-12-31 2024-07-02 苏州丰川电子科技有限公司 Surface treatment device for metal shell of electronic product

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528738Y2 (en) * 1972-10-28 1977-02-24
JPS57125768U (en) * 1981-01-29 1982-08-05
JPS62205254A (en) * 1986-03-05 1987-09-09 Sumitomo Metal Ind Ltd Roll shaft for continuous hot dipping
JP2668054B2 (en) * 1992-02-05 1997-10-27 株式会社日立製作所 Roll for continuous molten metal plating equipment and continuous molten metal plating equipment
JPH0669437U (en) * 1993-03-08 1994-09-30 株式会社クボタ Journal bearing device
US5538559A (en) * 1994-05-31 1996-07-23 Ak Steel Corporation Bearing support system for a roll submerged in a molten metal coating bath
JPH08325698A (en) * 1995-05-26 1996-12-10 Nittetsu Hard Kk Coating material for roll shaft member in continuous hot-dip metal plating bath
JP3795661B2 (en) * 1998-03-03 2006-07-12 Jfeスチール株式会社 Think roll
JP2001234924A (en) * 2000-02-23 2001-08-31 Hitachi Ltd Bearing and roll shaft for molten plating device and method of manufacturing the same
DE10130959A1 (en) * 2001-06-27 2003-01-16 Band Zink Gmbh coater
JP2007145642A (en) * 2005-11-28 2007-06-14 Nippon Steel Corp Immersion member for hot-dip metal plating bath, and manufacturing method of the same

Also Published As

Publication number Publication date
JP2009257351A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
KR100711444B1 (en) Bearing device for zinc pot roll in continuous galvanizing line
JPH07331402A (en) Device for conducting continuous high-temperature immersion coating of metal strip with molten metal
JP5123798B2 (en) Wire surface treatment equipment
JP5446116B2 (en) Slide bearing mechanism
JP5114670B2 (en) Slide bearing mechanism
JP5269435B2 (en) Roll in bath for hot metal plating
JP3698001B2 (en) Slide bearing device for rolls in continuous molten metal plating bath
KR101228793B1 (en) Zinc pot roll
JP2012225514A (en) Sliding bearing mechanism
JP4949207B2 (en) Roller bearing structure in hot metal plating bath
JP6579066B2 (en) Bearing device
JP4551248B2 (en) Roll bearing used in continuous molten metal plating bath
JP4725759B2 (en) Bearing device in molten metal bath
KR100971971B1 (en) A twin roll of strip casting apparatus
JP2006307266A (en) Hot dip plating method and device for steel strip
JP2668054B2 (en) Roll for continuous molten metal plating equipment and continuous molten metal plating equipment
JPH05195178A (en) Roll in molten-metal plating bath
CN106457326A (en) A cooling system for a dry drawing capstan
JPH06306560A (en) Plain bearing for continuous hot-dip metal coating bath roll
JPH0617212A (en) Continuous hot-dipping device
JP3178465B2 (en) Continuous molten metal plating equipment, bearings for continuous molten metal plating equipment, and rolls for continuous molten metal plating equipment
JP2002285308A (en) Device for removing stuck material on surface of roll provided in bath
JP2005248298A (en) Support roll in non-actuated molten metal bath
JP5050383B2 (en) Hot-dip metal strip manufacturing method and hot-dip metal strip manufacturing apparatus
JP6137261B2 (en) Bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R151 Written notification of patent or utility model registration

Ref document number: 5446116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees