JP5445869B2 - Atmospheric pressure plasma equipment - Google Patents

Atmospheric pressure plasma equipment Download PDF

Info

Publication number
JP5445869B2
JP5445869B2 JP2011104514A JP2011104514A JP5445869B2 JP 5445869 B2 JP5445869 B2 JP 5445869B2 JP 2011104514 A JP2011104514 A JP 2011104514A JP 2011104514 A JP2011104514 A JP 2011104514A JP 5445869 B2 JP5445869 B2 JP 5445869B2
Authority
JP
Japan
Prior art keywords
high voltage
dielectric
plasma
plasma apparatus
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011104514A
Other languages
Japanese (ja)
Other versions
JP2012178325A (en
Inventor
チュン、ビュンジュン
Original Assignee
エムエーケイ カンパニー、リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムエーケイ カンパニー、リミテッド filed Critical エムエーケイ カンパニー、リミテッド
Publication of JP2012178325A publication Critical patent/JP2012178325A/en
Application granted granted Critical
Publication of JP5445869B2 publication Critical patent/JP5445869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0081Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature by electric means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、常圧プラズマ装置に関するものであり、より詳しくは、高電圧電極を複数層で備えプラズマ反応を順次且つ連鎖的に誘導することによりプラズマ発生を極大化でき、また、高電圧電極の各層に高電圧を選択的に印加することによりプラズマ密度を制御できる常圧プラズマ装置に関するものである。 The present invention relates to an atmospheric pressure plasma apparatus, and more specifically, it is possible to maximize plasma generation by providing a plurality of layers of high voltage electrodes and sequentially and sequentially inducing plasma reactions. The present invention relates to an atmospheric pressure plasma apparatus capable of controlling plasma density by selectively applying a high voltage to each layer.

半導体またはLCDの製造には、常圧でプラズマを発生させエッチング、アッシング又はストリップ等の基板処理工程が要求される。   Manufacturing of a semiconductor or LCD requires a substrate processing step such as etching, ashing or strip by generating plasma at normal pressure.

しかし、従来の常圧プラズマ装置は必要な電極の数が多いという短所があった。さらに、被処理物である基板の面積が大面積の場合は、プラズマ処理のためのプラズマヘッドの電極の大きさもまた大きくならざるを得ないが、複数の電極を構成しなければならない従来のプラズマヘッドにおいては、複数個の大型電極を結合する構成を具現することが容易ではない関係により、大面積の対象物を処理できるプラズマヘッドを具現することが困難だった。   However, the conventional atmospheric pressure plasma apparatus has a disadvantage in that it requires a large number of electrodes. Furthermore, when the area of the substrate, which is the object to be processed, is large, the size of the electrode of the plasma head for plasma processing must also be increased, but the conventional plasma that must constitute a plurality of electrodes In the head, it is difficult to implement a plasma head capable of processing an object having a large area because it is not easy to implement a configuration in which a plurality of large electrodes are combined.

また、本技術分野の通常の知識を有する者には、大気圧下で発生させたプラズマの密度はウエハ又は基板に対するアッシング、エッチング又はストリップ工程を行うには十分ではないため、大気圧下で具現されるプラズマ発生装置を利用してアッシング、エッチング又はストリップ工程を行うことは不可能だと認識されている。   In addition, for those who have ordinary knowledge in this technical field, the density of plasma generated under atmospheric pressure is not sufficient to perform ashing, etching, or stripping processes on a wafer or a substrate. It has been recognized that it is not possible to perform an ashing, etching or stripping process using a plasma generator.

特に、従来の常圧プラズマ装置は、プラズマヘッドによってプラズマの密度が定められ、これを制御できないという問題点があった。   In particular, the conventional atmospheric plasma apparatus has a problem that the plasma density is determined by the plasma head and cannot be controlled.

本発明は上述の問題点を解決するためのものであり、本発明の目的は、高電圧電極を複数層で備えプラズマ反応を順次且つ連鎖的に誘導することによりプラズマ発生を極大化でき、また、高電圧電極の各層に高電圧を選択的に印加することによりプラズマ密度を制御できる常圧プラズマ装置を提供することにある。   The present invention is for solving the above-mentioned problems, and the object of the present invention is to maximize plasma generation by providing a plurality of layers of high voltage electrodes and sequentially and sequentially inducing plasma reactions. Another object of the present invention is to provide an atmospheric pressure plasma apparatus capable of controlling plasma density by selectively applying a high voltage to each layer of a high voltage electrode.

上のような技術的課題を解決するために、本発明による常圧プラズマ装置は反応ガスを注入するための注入口が形成されたハウジング;前記ハウジングの内部に複数層で備えられる高電圧電極;前記高電圧電極を覆う誘電体;高電圧を発生させて前記高電圧電極に印加する高電圧発生部;前記誘電体の両側に隣接するように配置される接地電極;及び反応によって生成されるプラズマの密度を制御する制御部;を含む。   In order to solve the above technical problem, the atmospheric pressure plasma apparatus according to the present invention includes a housing in which an inlet for injecting a reaction gas is formed; a high voltage electrode provided in a plurality of layers in the housing; A dielectric covering the high voltage electrode; a high voltage generator for generating a high voltage and applying it to the high voltage electrode; a ground electrode disposed adjacent to both sides of the dielectric; and a plasma generated by a reaction A control unit for controlling the density of the recording medium.

また、前記制御部は、複数層で備えられる前記高電圧電極の各層に高電圧が選択的に印加されるように制御することが好ましい。   Further, it is preferable that the control unit performs control so that a high voltage is selectively applied to each layer of the high voltage electrode provided in a plurality of layers.

また、前記高電圧電極は、各層に複数列で備えられることが好ましい。
また、前記制御部は、複数列で備えられる前記高電圧電極の各列に高電圧が選択的に印加されるように制御することが好ましい。
The high voltage electrode is preferably provided in a plurality of rows in each layer.
In addition, it is preferable that the control unit performs control so that a high voltage is selectively applied to each column of the high voltage electrodes provided in a plurality of columns.

また、反応によって生成されるプラズマの密度を測定して制御部に伝達するセンシング部が更に備えられることが好ましい。   In addition, it is preferable to further include a sensing unit that measures the density of plasma generated by the reaction and transmits it to the control unit.

また、前記各誘電体には前記高電圧電極が複数個挿入されることが好ましい。   Further, it is preferable that a plurality of the high voltage electrodes are inserted in each dielectric.

また、前記接地電極は前記誘電体の両側に垂直に設けられることが好ましい。   The ground electrode is preferably provided vertically on both sides of the dielectric.

また、前記接地電極は、前記誘電体の最上層上部または最下層下部に水平に延長される延長部がさらに形成されることが好ましい。   The ground electrode may further include an extension portion extending horizontally on the uppermost layer or the lowermost layer of the dielectric.

また、前記誘電体は、円形断面を有し、所定長さを有する棒形態であることが好ましい。   The dielectric body preferably has a circular cross section and a rod shape having a predetermined length.

また、前記誘電体は、前記高電圧電極が挿入されるための挿入ホールが形成されることが好ましい。   The dielectric is preferably formed with an insertion hole for inserting the high voltage electrode.

また、前記接地電極には円形断面を有する前記誘電体と同一な曲率を有する半円形態の溝部が形成されることが好ましい。   The ground electrode is preferably formed with a semicircular groove having the same curvature as the dielectric having a circular cross section.

本発明によると、高電圧電極を複数層に備えて順次、連鎖的にプラズマ反応を誘導するため、プラズマ発生をより活性化できるという効果を奏する。   According to the present invention, high voltage electrodes are provided in a plurality of layers, and the plasma reaction is sequentially induced in a chained manner, so that the plasma generation can be further activated.

特に、高電圧電極の各層に高電圧を選択的に印加することにより、プラズマ密度を制御できる効果も奏する。   In particular, the plasma density can be controlled by selectively applying a high voltage to each layer of the high voltage electrode.

また、棒形態の高電圧電極を複数列で備えることにより、基板の大面積化に効果的に対応できるという効果を奏する。   Further, by providing the rod-shaped high voltage electrodes in a plurality of rows, there is an effect that it is possible to effectively cope with an increase in the area of the substrate.

本発明による第1実施例の側面図を表したものである。1 is a side view of a first embodiment according to the present invention. 本発明による第1実施例の正面図を表したものである。It represents the front view of 1st Example by this invention. 本発明による第1実施例の平面図を表したものである。1 is a plan view of a first embodiment according to the present invention. 本発明によるリアクターの各機の他の実施例の要部を表したものである。It represents the principal part of another embodiment of each machine of the reactor according to the present invention. 本発明によるリアクターの各機の他の実施例の要部を表したものである。It represents the principal part of another embodiment of each machine of the reactor according to the present invention. 本発明によるリアクターの各機の他の実施例の要部を表したものである。It represents the principal part of another embodiment of each machine of the reactor according to the present invention.

以下、添付の図面を参照に本発明による実施例の構成及び作用を説明する。   Hereinafter, the configuration and operation of the embodiment of the present invention will be described with reference to the accompanying drawings.

図1〜図3を参照すると、本発明による第1実施例1は、プラズマ反応のためにN2、O2、Ar、He、SF6、CH4、NH4、NF4等の反応ガスを注入する注入口11と排気口12、ガスバッファ20及びガス供給プレート30が形成されたハウジング10が備えられる。前記排気口12はプラズマを利用して基板Sを処理する過程で発生する揮発性酸化物や不純物または陽電荷で充填された粒子等を外部に排出する構成要素であり、前記ガスバッファ20はガス注入口11から供給された反応ガスを貯蔵/伝達する構成要素であり、ガス供給プレート30にはガス供給ホール31が形成され前記ガスバッファ20から伝達されたガスを拡散させて供給する。   1 to 3, a first embodiment 1 according to the present invention includes an inlet 11 for injecting a reactive gas such as N2, O2, Ar, He, SF6, CH4, NH4, and NF4 for a plasma reaction. A housing 10 in which the exhaust port 12, the gas buffer 20, and the gas supply plate 30 are formed is provided. The exhaust port 12 is a component that exhausts volatile oxide, impurities, or particles filled with positive charges generated in the process of processing the substrate S using plasma, and the gas buffer 20 includes a gas The gas supply hole 31 is formed in the gas supply plate 30 to diffuse and supply the gas transmitted from the gas buffer 20.

また、前記ハウジング10には反応ガスが供給された状態で高電圧を印加しプラズマ反応を起こし、発生したプラズマを被処理物である基板Sに印加するリアクター100が備えられるが、前記リアクター100は高電圧電極110と誘電体120と高電圧発生部140と接地電極130を含む。   Further, the housing 10 is provided with a reactor 100 that applies a high voltage in a state in which a reaction gas is supplied to cause a plasma reaction, and applies the generated plasma to the substrate S that is an object to be processed. A high voltage electrode 110, a dielectric 120, a high voltage generator 140, and a ground electrode 130 are included.

本実施例で、前記高電圧電極110は円形断面を有する棒形態に形成され、特に複数層及び複数列に形成されることが分かる。よって、高電圧電極110の長さ及び列の配列を調節することにより、基板の面積に対応できる。   In the present embodiment, it can be seen that the high voltage electrode 110 is formed in a bar shape having a circular cross section, and in particular, formed in a plurality of layers and a plurality of rows. Therefore, the area of the substrate can be accommodated by adjusting the length of the high voltage electrode 110 and the arrangement of the columns.

また、前記高電圧電極110は誘電体120に挿入されており、前記高電圧電極110に高電圧を印加する高電圧発生部140が備えられ、接地電極130は前記誘電体120及び高電圧電極110の両側に垂直に設けられている。   Further, the high voltage electrode 110 is inserted into the dielectric 120, and a high voltage generator 140 for applying a high voltage to the high voltage electrode 110 is provided, and the ground electrode 130 is the dielectric 120 and the high voltage electrode 110. It is provided vertically on both sides.

また、前記高電圧発生部140から印加される高電圧を高電圧電極110の各層に高電圧が選択的に印加されるように制御する制御部150が備えられ、プラズマ密度を測定するセンシング部(未図示)がさらに備えられる。   In addition, a control unit 150 that controls the high voltage applied from the high voltage generation unit 140 so that the high voltage is selectively applied to each layer of the high voltage electrode 110 is provided, and a sensing unit that measures plasma density ( (Not shown) is further provided.

図1を参照して第1実施例1の作動形態を説明する。先ず、注入口11により反応ガスが注入されると、ガスバッファ20とガス供給プレート30を経ながら十分な拡散が行われる。こうして拡散された反応ガスは、リアクター100に供給され、この状態で高電圧電極110に高電圧を印加すると、プラズマ反応が起こりプラズマが発生する。こうして発生したプラズマは、ハウジング10の下面に形成されたプラズマ排出口40により基板Sに伝達されて所定の処理をすることになる。   The operation mode of the first embodiment will be described with reference to FIG. First, when the reaction gas is injected through the injection port 11, sufficient diffusion is performed through the gas buffer 20 and the gas supply plate 30. The reaction gas diffused in this way is supplied to the reactor 100. When a high voltage is applied to the high voltage electrode 110 in this state, a plasma reaction occurs and plasma is generated. The plasma thus generated is transmitted to the substrate S through a plasma discharge port 40 formed on the lower surface of the housing 10 and is subjected to a predetermined process.

特に、反応ガスは最上層部に位置する第1高電圧電極111を通りながら1次的にプラズマ反応を起こし、次に中間部に位置する第2高電圧電極112を通りながら2次的にプラズマ反応を起こし、次いで最下層部に位置した第3高電圧電極113を通りながら3次的にプラズマ反応を起こすことができる。よって、プラズマ反応が順次且つ連鎖的に起こるため、プラズマ発生が極大化されるのである。   In particular, the reactive gas undergoes a primary plasma reaction while passing through the first high-voltage electrode 111 located in the uppermost layer portion, and then secondarily passes through the second high-voltage electrode 112 located in the intermediate portion. A reaction can be caused and then a third order plasma reaction can be caused while passing through the third high voltage electrode 113 located at the lowermost layer. Therefore, the plasma reaction occurs sequentially and in a chain, so that plasma generation is maximized.

また、前記制御部150により第1高電圧電極111〜第3高電圧電極113全てに高電圧を印加することもでき、また選択的に1層または2層の高電圧電極だけに高電圧を印加できるように制御することもできる。このような制御によってプラズマ密度を制御できる。   In addition, the controller 150 can apply a high voltage to all of the first high voltage electrode 111 to the third high voltage electrode 113, and selectively apply a high voltage only to one or two high voltage electrodes. It can also be controlled as possible. The plasma density can be controlled by such control.

また、本実施例には発生されたプラズマの密度を測定するセンシング部がさらに備えられるため、前記センシング部の検出結果が制御部にフィードバックされ効果的にプラズマ密度が制御できる。   In addition, since the present embodiment further includes a sensing unit for measuring the density of the generated plasma, the detection result of the sensing unit is fed back to the control unit, and the plasma density can be controlled effectively.

図4は、本発明によるリアクターの第2実施例200を表したものである。第1実施例のリアクター100と対比すると、複数層221、222、223で備えられる誘電体220のそれぞれに複数個の高電圧電極210が挿入されていることが分かる。その他、説明していない構成は、第1実施例と同一なため省略する。   FIG. 4 shows a second embodiment 200 of a reactor according to the present invention. In comparison with the reactor 100 of the first embodiment, it can be seen that a plurality of high voltage electrodes 210 are inserted in each of the dielectrics 220 provided in the plurality of layers 221, 222, and 223. Other configurations that are not described are the same as those in the first embodiment, and are omitted.

図5は、本発明によるリアクターの第3実施例300を表したものである。第1実施例のリアクター100と対比すると、接地電極330に円形断面を有する誘電体320と同一な曲率を有する半円形態の溝部331が形成されていることが分かる。その他、説明していない構成は、第1実施例と同一なため省略する。   FIG. 5 shows a third embodiment 300 of a reactor according to the present invention. In comparison with the reactor 100 of the first embodiment, it can be seen that the ground electrode 330 is formed with a semicircular groove 331 having the same curvature as the dielectric 320 having a circular cross section. Other configurations that are not described are the same as those in the first embodiment, and are omitted.

図6は、本発明によるリアクターの第4実施例400を表したものである。第1実施例のリアクター100は誘電体120及び高電圧電極110が3層で構成されるのに対し、第4実施例は4層410、420で構成されることが分かる。この場合、プラズマ反応がより活性化されてプラズマ密度が高く形成される。よって、工程条件によって高電圧電極は2層以上に選択できる。   FIG. 6 shows a fourth embodiment 400 of a reactor according to the present invention. In the reactor 100 of the first embodiment, the dielectric 120 and the high voltage electrode 110 are formed of three layers, whereas the fourth embodiment is formed of four layers 410 and 420. In this case, the plasma reaction is further activated and the plasma density is increased. Therefore, two or more high voltage electrodes can be selected depending on the process conditions.

また、前記接地電極430は、誘電体420の最上層421上部及び最下層424下部に水平に延長される延長部431、432がさらに形成されることが分かる。上部に形成された延長部431には反応ガスが通過するホールh1が形成され、下部に形成された延長部432にはプラズマが通過するホールh2が形成される。   Further, it can be seen that the ground electrode 430 further includes extensions 431 and 432 extending horizontally above the uppermost layer 421 and the lowermost layer 424 of the dielectric 420. A hole h1 through which the reaction gas passes is formed in the extension part 431 formed in the upper part, and a hole h2 through which plasma passes is formed in the extension part 432 formed in the lower part.

1:第1実施例
11:注入口
12:排出口
20:ガスバッファ
30:ガス供給プレート
40:プラズマ排出ホール
100:リアクター
110:高電圧電極
120:誘電体
130:接地電極
140:高電圧発生部
150:制御部
1: First embodiment 11: Inlet 12: Discharge 20: Gas buffer 30: Gas supply plate 40: Plasma discharge hole 100: Reactor 110: High voltage electrode 120: Dielectric 130: Ground electrode 140: High voltage generator 150: Control unit

Claims (7)

反応ガスを注入するための注入口が形成されたハウジング、
前記ハウジングの内部に複数層及び複数列で備えられる高電圧電極、
前記高電圧電極のそれぞれを個別に覆う誘電体、
高電圧を発生させて前記高電圧電極に印加する高電圧発生部、
前記誘電体の両側に隣接するように配置される接地電極、
各層及び各列に位置した各高電圧電極に高電圧が選択的に印加されるように制御し、反応によって生成されるプラズマの密度を制御する制御部、及び、
前記プラズマの密度を測定して制御部に伝達するセンシング部、を含むことを特徴とする常圧プラズマ装置。
A housing formed with an inlet for injecting a reaction gas;
A high voltage electrode provided in a plurality of layers and a plurality of rows inside the housing;
A dielectric individually covering each of the high voltage electrodes;
A high voltage generator that generates a high voltage and applies the high voltage to the high voltage electrode;
A ground electrode disposed adjacent to both sides of the dielectric;
A control unit for controlling a high voltage to be selectively applied to each high voltage electrode located in each layer and each column, and controlling a density of plasma generated by the reaction ; and
A normal-pressure plasma apparatus, comprising: a sensing unit that measures the density of the plasma and transmits the measured density to the control unit .
前記各誘電体には、前記高電圧電極が複数個挿入されることを特徴とする請求項1に記載の常圧プラズマ装置。   The atmospheric pressure plasma apparatus according to claim 1, wherein a plurality of the high voltage electrodes are inserted into each dielectric. 前記接地電極は、前記誘電体の両側に前記ハウジングの下面に垂直になるように設けられることを特徴とする請求項1に記載の常圧プラズマ装置。 The atmospheric plasma apparatus according to claim 1, wherein the ground electrode is provided on both sides of the dielectric so as to be perpendicular to the lower surface of the housing . 前記接地電極は、前記誘電体の最上層上部または最下層下部に水平に延長される延長部がさらに形成されることを特徴とする請求項に記載の常圧プラズマ装置。 The atmospheric plasma apparatus according to claim 3 , wherein the ground electrode is further formed with an extension extending horizontally on the uppermost layer or the lowermost layer of the dielectric. 前記誘電体は、円形断面を有し、所定長さを有する棒形態であることを特徴とする請求項1に記載の常圧プラズマ装置。   The atmospheric plasma apparatus according to claim 1, wherein the dielectric has a rod shape having a circular cross section and a predetermined length. 前記誘電体は、前記高電圧電極が挿入されるための挿入ホールが形成されることを特徴とする請求項に記載の常圧プラズマ装置。 The atmospheric plasma apparatus according to claim 5 , wherein the dielectric is formed with an insertion hole for inserting the high voltage electrode. 前記接地電極には円形断面を有する前記誘電体と同一な曲率を有する半円形態の溝部が形成されることを特徴とする請求項に記載の常圧プラズマ装置。 6. The atmospheric plasma apparatus according to claim 5 , wherein the ground electrode is formed with a semicircular groove having the same curvature as the dielectric having a circular cross section.
JP2011104514A 2011-02-25 2011-05-09 Atmospheric pressure plasma equipment Active JP5445869B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110016906A KR101200801B1 (en) 2011-02-25 2011-02-25 Atmospheric pressure plasma generation device
KR10-2011-0016906 2011-02-25

Publications (2)

Publication Number Publication Date
JP2012178325A JP2012178325A (en) 2012-09-13
JP5445869B2 true JP5445869B2 (en) 2014-03-19

Family

ID=46980037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104514A Active JP5445869B2 (en) 2011-02-25 2011-05-09 Atmospheric pressure plasma equipment

Country Status (3)

Country Link
JP (1) JP5445869B2 (en)
KR (1) KR101200801B1 (en)
TW (1) TW201236515A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101599286B1 (en) * 2014-01-17 2016-03-03 (주) 엠에이케이 The apparatus for changing the surface character of material
CN105142324A (en) * 2015-08-17 2015-12-09 深圳市华鼎星科技有限公司 Linear plasma generator
KR102502074B1 (en) * 2020-08-31 2023-02-21 남부대학교 산학협력단 Plasma stack volume dielectric barrier discharge type plasma generation system
KR102502073B1 (en) * 2020-08-31 2023-02-21 남부대학교 산학협력단 Plasma stack volume dielectric barrier discharge type plasma torch device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070019297A (en) * 2005-08-12 2007-02-15 주성엔지니어링(주) Noninvasive system of measuring ion energy distribution for plasma apparatus and method of measuring ion energy distribution using the same
KR100886240B1 (en) * 2006-10-27 2009-03-02 주식회사 뉴파워 프라즈마 Inductively coupled plasma reactor with multi antenna and multi antenna driving system
KR100916826B1 (en) * 2008-04-18 2009-09-14 (주) 엠에이케이 Apparatus for generating air pressure plasma enabling ashing or etching

Also Published As

Publication number Publication date
KR20120097603A (en) 2012-09-05
TW201236515A (en) 2012-09-01
KR101200801B1 (en) 2012-11-13
JP2012178325A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5445869B2 (en) Atmospheric pressure plasma equipment
JP4447469B2 (en) Plasma generator, ozone generator, substrate processing apparatus, and semiconductor device manufacturing method
JP5913745B2 (en) Powder plasma processing equipment
US11798788B2 (en) Hollow cathode, an apparatus including a hollow cathode for manufacturing a semiconductor device, and a method of manufacturing a semiconductor device using a hollow cathode
CN104795398B (en) Memory device and its manufacturing method
JP6239483B2 (en) Nitrogen radical generation system
JP2018521454A5 (en)
JP2005342708A5 (en)
JP2008060258A (en) Plasma processor and plasma processing method
US20190226091A1 (en) Active gas-generating device and film formation apparatus
KR20060095706A (en) Apparatus for surface treatment atmospheric plasma
KR20030030161A (en) air exhaust system of chamber for semiconductor manufacture
KR20080061103A (en) Apparatus for providing gas and apparatus for forming a layer having the same
KR102039429B1 (en) Wafer Sensor with Heat Dissipating Function and Method for Fabricating the Same
KR20190025419A (en) Boat device
KR100916826B1 (en) Apparatus for generating air pressure plasma enabling ashing or etching
JP5996654B2 (en) Plasma processing equipment
KR100836860B1 (en) Apparatus for generating air pressure plasma enabling ashing or etching
KR100791995B1 (en) Apparatus for providing gas and apparatus for forming a layer having the same
CN105206495B (en) Dry-etching device and array substrate dry-etching remove neutralizing method
KR100946309B1 (en) Atmospheric pressureplasma apparatus
US9228260B1 (en) Wafer processing chamber, heat treatment apparatus and method for processing wafers
KR101935607B1 (en) Semiconductor device manufacturing method
JP2004311983A5 (en)
KR20120085924A (en) Deposition method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130806

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5445869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250