JP5441104B2 - Nondestructive inspection method and apparatus - Google Patents

Nondestructive inspection method and apparatus Download PDF

Info

Publication number
JP5441104B2
JP5441104B2 JP2009116270A JP2009116270A JP5441104B2 JP 5441104 B2 JP5441104 B2 JP 5441104B2 JP 2009116270 A JP2009116270 A JP 2009116270A JP 2009116270 A JP2009116270 A JP 2009116270A JP 5441104 B2 JP5441104 B2 JP 5441104B2
Authority
JP
Japan
Prior art keywords
radiation
inspection object
radiation source
thinning
detection position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009116270A
Other languages
Japanese (ja)
Other versions
JP2010266264A (en
Inventor
祐嗣 大石
隆 藤井
孝七 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2009116270A priority Critical patent/JP5441104B2/en
Publication of JP2010266264A publication Critical patent/JP2010266264A/en
Application granted granted Critical
Publication of JP5441104B2 publication Critical patent/JP5441104B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は非破壊検査方法及びその装置に関し、特に検査対象物である配管等に放射線(X線)を照射し、これにより検査対象物を透過した透過放射線の強度を検出することにより減肉の程度等を検出する場合に適用して有用なものである。   The present invention relates to a non-destructive inspection method and an apparatus therefor, and in particular, radiation (X-rays) is applied to piping or the like that is an inspection object, thereby detecting the intensity of transmitted radiation that has passed through the inspection object. This is useful when detecting the degree or the like.

発電設備をはじめ各種のプラントにおける配管の検査等にはX線を利用した非破壊検査が汎用されている。これは検査対象物である配管等にX線を照射し、これによる透過放射線の強度を検出することにより減肉の程度等を検出するものである(例えば特許文献1参照)。   Non-destructive inspection using X-rays is widely used for inspection of piping in various plants including power generation facilities. This is to detect the degree of thinning by irradiating a pipe or the like, which is an inspection object, with X-rays and detecting the intensity of the transmitted radiation (see, for example, Patent Document 1).

図4は従来技術に係る非破壊検査の態様を概念的に示す説明図である。当該非破壊検査では、同図(a)乃至(c)に示すように、円筒状の配管である検査対象物03の一方側(図中左側)に配設した放射線(X線)源01から放射線を照射し、検査対象物03を透過した放射線を検査対象物03の反対側(図中右側)に配設した放射線検出器02で検出している。この結果、横軸に検出器回転位置(放射線検出器02の検査対象物03に対する相対位置)を採り、縦軸に透過信号強度(放射線検出器02で検出した透過放射線の強度)を採った図4(d)に示すように、検査対象物03に減肉部04が存在した場合、減肉部04に対応する部分の透過信号強度が、平坦な正常部05に較べて上に凸の強度特性を有する。この場合の凸状の大きさは,減肉量に依存しており、したがって凸の程度、換言すれば透過信号の強度により減肉量を検出することができる。   FIG. 4 is an explanatory view conceptually showing a mode of nondestructive inspection according to the prior art. In the nondestructive inspection, as shown in FIGS. 4A to 4C, from a radiation (X-ray) source 01 arranged on one side (left side in the figure) of the inspection object 03 which is a cylindrical pipe. Radiation is irradiated, and the radiation transmitted through the inspection object 03 is detected by a radiation detector 02 disposed on the opposite side (right side in the figure) of the inspection object 03. As a result, the horizontal axis represents the detector rotation position (relative position of the radiation detector 02 with respect to the inspection object 03), and the vertical axis represents the transmission signal intensity (the intensity of transmitted radiation detected by the radiation detector 02). As shown in FIG. 4D, when the thinned portion 04 exists in the inspection object 03, the transmitted signal intensity of the portion corresponding to the thinned portion 04 is higher than the flat normal portion 05. Has characteristics. The size of the convex shape in this case depends on the thinning amount, and therefore the thinning amount can be detected based on the degree of the convexity, in other words, the intensity of the transmitted signal.

特開2006―177841号公報JP 2006-177841 A

ところで、図4に示す従来技術において、図4(a)に示すような減肉量laの減肉部が存在した場合、減肉量laに依存する透過信号強度が得られ、同様に図4(b)に示すような減肉量lbの減肉部が存在した場合、減肉量lbに依存する透過信号強度が得られ、図4(c)に示すような減肉量lc1、lc2の減肉部が存在した場合、減肉量(lc1+lc2)に依存する透過信号強度が得られる。したがって、la=lb=(lc1+lc2)の場合、放射線検出器02で検出する透過信号強度ではこれらの各場合を区別することができない。   By the way, in the prior art shown in FIG. 4, when there is a thinning portion of the thinning amount la as shown in FIG. 4A, a transmission signal intensity depending on the thinning amount la is obtained, and similarly FIG. When there is a thinning portion of the thinning amount lb as shown in (b), a transmission signal intensity depending on the thinning amount lb is obtained, and the thinning amounts lc1 and lc2 as shown in FIG. When the thinned portion exists, the transmission signal intensity depending on the thinning amount (lc1 + lc2) is obtained. Therefore, in the case of la = lb = (lc1 + lc2), these cases cannot be distinguished by the transmission signal intensity detected by the radiation detector 02.

一方、検査対象物03の交換は残肉厚を基準に評価しているので、図4(a)及び(b)に示す減肉量la、lbの場合は交換の必要がある場合でも、図4(c)に示す減肉量lc1又はlc2の場合には交換する必要がない場合もある。   On the other hand, since the replacement of the inspection object 03 is evaluated based on the remaining thickness, in the case of the thinning amounts la and lb shown in FIGS. In the case of the thinning amount lc1 or lc2 shown in 4 (c), it may not be necessary to replace it.

このように、従来技術に係る非破壊検査では、検査対象物03の中心を通る直線上で相対向する部位に、交換にはまだ余裕がある少量の減肉が発生していても、両者の和が減肉量として検出されてしまうので、減肉量が既に交換限界を超えているものとして判断してしまう虞がある。すなわち、交換時期を必要以上に早く判断してしまう等の不都合を生起していた。   As described above, in the non-destructive inspection according to the conventional technique, even if a small amount of thinning that still has room for replacement has occurred in the opposing portions on the straight line passing through the center of the inspection object 03, Since the sum is detected as the thinning amount, it may be determined that the thinning amount has already exceeded the replacement limit. That is, inconveniences such as determining the replacement time earlier than necessary occur.

本発明は、上述の点に鑑み、検査対象物の減肉量を適切に検出することができる非破壊検査方法及びその装置を提供することを目的とする。   An object of this invention is to provide the nondestructive inspection method and its apparatus which can detect the thinning amount of a test target object appropriately in view of the above-mentioned point.

上記目的を達成する本発明の第の態様は、筒状の検査対象物に向けて放射線源から放射線を照射するとともに、前記検査対象物の中心を通る直線上で前記放射線源と相対向する位置から時計方向又は反時計方向にずれた検出位置及び前記相対向する位置にそれぞれ配設した各放射線検出器で前記放射線を検出するとともに、前記各検出位置における前記各放射線検出器の出力信号である透過放射線の強度を表す透過信号強度に基づき、前記検出位置における前記検査対象物の減肉量を未知数として含む方程式をそれぞれ作成し、さらに前記放射線源及び前記各放射線検出器の相対的な位置関係を変えることなく前記放射線源の位置及び放射線検出器の検出位置を前記検査対象物の外周面に沿って同角度ずつ移動させることにより前記検査対象物の外周面に沿う少なくとも3箇所で同様の放射線の検出を行なうとともに、前記未知数と同数の前記方程式をそれぞれ作成し、これらの方程式を連立させて解くことにより前記各検出位置における前記検査対象物の減肉量をそれぞれ求めることを特徴とする非破壊検査方法にある。 A first aspect of the present invention that achieves the above object is to irradiate a radiation from a radiation source toward a cylindrical inspection object and to face the radiation source on a straight line passing through the center of the inspection object. and detects the radiation in the radiation detectors respectively disposed position that detect the position and the phase opposite shifted clockwise or counterclockwise direction from the position, the output of the radiation detectors in the respective detecting positions Based on the transmitted signal intensity representing the intensity of transmitted radiation that is a signal, an equation including the amount of thinning of the inspection object at the detection position as an unknown number is created, and the relative relationship between the radiation source and each radiation detector The position of the radiation source and the detection position of the radiation detector are moved by the same angle along the outer peripheral surface of the inspection object without changing the positional relationship. The same object is detected at least at three locations along the outer peripheral surface of the object, and the same number of equations as the unknowns are created, and the equations are simultaneously solved to solve the inspection object at each detection position. There is a nondestructive inspection method characterized in that the amount of thinning of the metal is obtained.

本発明の第の態様は、筒状の検査対象物に向けて放射線を照射する放射線源と、前記検査対象物の中心を通る直線上で前記放射線源と相対向する検出位置及びこの検出位置から時計方向又は反時計方向にずれた検出位置にそれぞれ配設した放射線検出器と、前記放射線源及び前記各放射線検出器の相対的な位置関係を変えることなく前記放射線源及び前記各放射線検出器を一体的に前記検査対象物の外周面に沿って移動させる移動手段と、前記検査対象物の外周面に沿う少なくとも3箇所で前記各放射線検出器による放射線の検出を行なうように前記移動手段を介して前記放射線源及び前記各放射線検出器が同量ずつ移動されるように制御する制御手段と、各検出位置における前記各放射線検出器の出力信号である透過放射線の強度を表す透過信号強度に基づき、前記各検出位置における前記検査対象物の各減肉量を未知数として含む前記未知数と同数の連立方程式を作成するとともに、前記連立方程式を解くことにより前記各検出位置における前記検査対象物の減肉量をそれぞれ求める演算処理手段とを有することを特徴とする非破壊検査装置にある。 According to a second aspect of the present invention, there is provided a radiation source that emits radiation toward a cylindrical inspection object, a detection position facing the radiation source on a straight line passing through a center of the inspection object, and the detection position The radiation source and the radiation detection without changing the relative positional relationship between each radiation detector disposed at a detection position shifted clockwise or counterclockwise from the radiation source, and the radiation source and each radiation detector. Moving means for integrally moving the detector along the outer peripheral surface of the object to be inspected, and the moving means for detecting radiation by each of the radiation detectors in at least three locations along the outer peripheral surface of the object to be inspected. Control means for controlling the radiation source and the radiation detectors to be moved by the same amount via each of the radiation sources, and the intensity of transmitted radiation that is an output signal of the radiation detectors at each detection position. Based on the transmitted signal intensity, create the same number of simultaneous equations as the unknowns including each thinning amount of the inspection object at each detection position as an unknown, and solve the simultaneous equations to check the inspection at each detection position A non-destructive inspection apparatus having arithmetic processing means for determining the thickness reduction of an object.

本発明によれば、放射線が検査対象物の複数の肉厚部を透過しても各肉厚部毎の減肉量を検出することができるので、減肉の状態を各箇所毎に的確に検出することができる。この結果、減肉量を基準とした検査対象である配管等の交換の時期を最適に決定することができる。   According to the present invention, the amount of thinning for each thick portion can be detected even if radiation passes through a plurality of thick portions of the object to be inspected. Can be detected. As a result, it is possible to optimally determine the replacement timing of the pipes to be inspected based on the thinning amount.

本発明の第1の実施の形態に係る非破壊検査装置を示すブロック線図。The block diagram which shows the nondestructive inspection apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る非破壊検査装置の要部を示す模式図。The schematic diagram which shows the principal part of the nondestructive inspection apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る非破壊検査装置の要部を示す模式図。The schematic diagram which shows the principal part of the nondestructive inspection apparatus which concerns on the 3rd Embodiment of this invention. 従来技術に係る非破壊検査の態様を概念的に示す説明図。Explanatory drawing which shows notionally the aspect of the nondestructive inspection which concerns on a prior art.

以下、本発明の実施の形態を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の第1の実施の形態に係る非破壊検査装置を示すブロック線図である。同図に示すように、本形態は円筒状の配管を検査対象物4とするもので、かかる検査対象物4の周囲に反時計方向に60度ずつ回動させた位置P0,P1,P2,P3,P4,P5に順次放射線源1を移動させ、各位置P0〜P5において検査対象物4に向けて放射線を照射することにより検査対象物4を透過した放射線をその周囲の2箇所で検出するように構成してある。すなわち、検査対象物4の周囲には、検査対象物4の中心を通る直線上で放射線源1と相対向する位置から時計方向及び反時計方向にずれた検出位置にそれぞれ放射線検出器2,3が配設してある。ここで、本形態においては放射線源1及び放射線検出器2,3が、相互の相対的な位置関係が一定に保たれるようにリング状のベルト8上に120度の間隔で等間隔に配設されている。この結果、検査対象物4の周囲をベルト8が移動することにより、放射線源1及び放射線検出器2,3が120度の相互の間隔を保持しながら一体となって60度ずつ検査対象物4の周囲を移動する。   FIG. 1 is a block diagram showing a nondestructive inspection apparatus according to a first embodiment of the present invention. As shown in the figure, in this embodiment, a cylindrical pipe is used as an inspection object 4, and positions P0, P1, P2, which are rotated around the inspection object 4 by 60 degrees counterclockwise. The radiation source 1 is sequentially moved to P3, P4, and P5, and the radiation transmitted through the inspection object 4 is detected at two positions around it by irradiating the inspection object 4 at each position P0 to P5. It is constituted as follows. That is, the radiation detectors 2 and 3 are arranged around the inspection object 4 at detection positions shifted in a clockwise direction and a counterclockwise direction from positions opposed to the radiation source 1 on a straight line passing through the center of the inspection object 4. Is arranged. Here, in this embodiment, the radiation source 1 and the radiation detectors 2 and 3 are arranged on the ring-shaped belt 8 at equal intervals of 120 degrees so that the relative positional relationship between them is kept constant. It is installed. As a result, the belt 8 moves around the inspection object 4 so that the radiation source 1 and the radiation detectors 2 and 3 are integrated with each other by 60 degrees while maintaining the mutual distance of 120 degrees. Move around.

かくして、放射線源1が位置P0に占位しているときは、放射線検出器2,3は位置P2,P4に占位しており、以下放射線源1の回動に伴い、放射線源1が位置P1に占位しているときは、放射線検出器2,3が位置P3,P5に、放射線源1が位置P2に占位しているときは、放射線検出器2,3が位置P4,P0に、放射線源1が位置P3に占位しているときは、放射線検出器2,3が位置P5,P1に、放射線源1が位置P4に占位しているときは、放射線検出器2,3が位置P0,P2に、放射線源1が位置P5に占位しているときは、放射線検出器2,3が位置P1,P3にそれぞれ占位するようになっている。   Thus, when the radiation source 1 is occupied at the position P0, the radiation detectors 2 and 3 are located at the positions P2 and P4, and the radiation source 1 is positioned as the radiation source 1 rotates. When occupied at P1, the radiation detectors 2 and 3 are at positions P3 and P5. When the radiation source 1 is occupied at position P2, the radiation detectors 2 and 3 are at positions P4 and P0. When the radiation source 1 is occupied at the position P3, the radiation detectors 2 and 3 are located at the positions P5 and P1, and when the radiation source 1 is located at the position P4, the radiation detectors 2 and 3 are used. Are positioned at positions P0 and P2, and the radiation source 1 is positioned at position P5, the radiation detectors 2 and 3 are positioned at positions P1 and P3, respectively.

放射線源1が位置P0に占位しているときに放射線検出器2,3で検出される透過放射線に基づく信号強度S02,S04は次式(1),(2)で与えられる。   Signal intensities S02 and S04 based on transmitted radiation detected by the radiation detectors 2 and 3 when the radiation source 1 is occupied at the position P0 are given by the following equations (1) and (2).

S02=Sn×η0×exp(−u×(−l2/cosθ)) ・・・(1)
S04=Sn×η0×exp(−u×(−l4/cosθ)) ・・・(2)
S02 = Sn × η0 × exp (−u × (−l2 / cos θ)) (1)
S04 = Sn × η0 × exp (−u × (−14 / cos θ)) (2)

ここで、S02:放射線源1が位置P0に占位している場合における、位置P2において放射線検出器2が検出する信号強度(すなわち、Sの下付添字である「0」が放射線源1の位置を表し、Sの上付添字である「2」が放射線検出器2の位置P2の「2」を表している(以下、同じ。))、
S04:放射線源1が位置P0に占位している場合における、位置P4において
放射線検出器3が検出する信号強度、
Sn:減肉がない場合(正常な検査対象物)における信号強度、
η0:位置P0から位置P2,P4への透過効果係数(角度θ及び減肉効果を含む)、
exp( ):位置P2,P4付近の減肉による信号強度の増加量、
u:線源弱係数(予め求まる)、
u’:u/cosθ、
l2,l4:位置P2,P4における検査対象物4の減肉量である。
Here, S02: the signal intensity detected by the radiation detector 2 at the position P2 when the radiation source 1 is occupied at the position P0 (that is, the subscript “0” of S is the radiation source 1). Represents the position, and the superscript “2” of S represents “2” of the position P2 of the radiation detector 2 (hereinafter the same)).
S04: At the position P4 when the radiation source 1 is occupied at the position P0
Signal intensity detected by the radiation detector 3;
Sn: signal intensity when there is no thinning (normal inspection object),
η0: Transmission effect coefficient from position P0 to positions P2, P4 (including angle θ and thinning effect),
exp (): increase in signal intensity due to thinning near positions P2 and P4,
u: source weak coefficient (obtained in advance),
u ′: u / cos θ,
l2, l4: The amount of thinning of the inspection object 4 at the positions P2, P4.

上式(1)及び(2)の比を採れば次式(3)を得る。   If the ratio of the above formulas (1) and (2) is taken, the following formula (3) is obtained.

S02/S04=exp(u’×(l2−l4)) ・・・(3)     S02 / S04 = exp (u ′ × (l2−14)) (3)

上式(3)の左辺及びu’は定数となるので、式(3)は位置P2,P4における検査対象物4の減肉量l2,l4を未知数とする方程式となる。   Since the left side and u ′ of the above equation (3) are constants, equation (3) is an equation in which the thinning amounts l2 and l4 of the inspection object 4 at positions P2 and P4 are unknowns.

放射線源1を他の位置P1〜P5に移動して放射線検出器2,3で検出される信号強度(S13,S15)、(S24,S20)、(S35,S31)、(S40,S42)、(S51,S53)の比を採ることにより位置(P3,P5)、(P4,P0)、(P5,P1)、(P0,P2)、(P1,P3)における検査対象物4の減肉量を未知数とする方程式(4)〜(8)を得る。   Signal intensity (S13, S15), (S24, S20), (S35, S31), (S40, S42) detected by the radiation detectors 2 and 3 by moving the radiation source 1 to other positions P1 to P5, By taking the ratio of (S51, S53), the amount of thinning of the inspection object 4 at the positions (P3, P5), (P4, P0), (P5, P1), (P0, P2), (P1, P3) Equations (4) to (8) are obtained, where is an unknown.

S13/S15=exp(u’×(l3−l5)) ・・・(4)
S24/S20=exp(u’×(l4−l0)) ・・・(5)
S35/S31=exp(u’×(l5−l1)) ・・・(6)
S40/S42=exp(u’×(l0−l2)) ・・・(7)
S51/S53=exp(u’×(l1−l3)) ・・・(8)
S13 / S15 = exp (u ′ × (l3−15)) (4)
S24 / S20 = exp (u ′ × (l4-l0)) (5)
S35 / S31 = exp (u ′ × (l5-l1)) (6)
S40 / S42 = exp (u ′ × (l0−l2)) (7)
S51 / S53 = exp (u ′ × (l1-l3)) (8)

上式中、ln:位置Pn(n=0〜5)における検査対象物4の減肉量である。     In the above formula, ln is the amount of thinning of the inspection object 4 at the position Pn (n = 0 to 5).

上式(3)〜(8)は位置P0〜P5における検査対象物4の各減肉量l0〜l5を6個の未知数とする6個の方程式である。したがって、式(3)〜(8)を連立させた方程式を解けば各減肉量l0〜l5を求めることができる。   The above equations (3) to (8) are six equations in which the thickness reduction amounts l0 to l5 of the inspection object 4 at the positions P0 to P5 are six unknowns. Therefore, the respective thinning amounts 10 to 15 can be obtained by solving an equation in which the equations (3) to (8) are combined.

演算処理部5は各位置P0〜P5における放射線検出器2,3の出力信号を処理して上記式(3)〜(8)に基づく演算をすることにより、各位置P0〜P5における検査対象物4の減肉量l0〜l5を求め、これらを表す信号を判定部9に送出する。判定部9では検出された減肉量l0〜l5が所定値を超えて薄くなっているときこのことを表す出力信号OUTを送出する。この出力信号OUTが検査対象物4の交換等の時期を表す警告信号となる。   The arithmetic processing unit 5 processes the output signals of the radiation detectors 2 and 3 at the respective positions P0 to P5 and performs calculations based on the above formulas (3) to (8), so that the inspection objects at the respective positions P0 to P5 are obtained. 4 is obtained, and a signal representing them is sent to the determination unit 9. The determination unit 9 sends out an output signal OUT indicating this when the detected thinning amount 10 to 15 exceeds a predetermined value and becomes thin. This output signal OUT becomes a warning signal indicating the time of replacement of the inspection object 4 or the like.

ここで、制御部6は当該非破壊検査装置の全体的な機能を制御するものである。代表的には、演算処理部5における所定の演算処理の制御、及び駆動部7によるベルト8の駆動制御を行う。駆動部7は制御部6の駆動制御の下、放射線源1乃至放射線検出器2,3を所定の位置P0〜P5に移動させる。すなわち、放射線源1及び放射線検出器2,3の相対的な位置関係を変えることなく、一体的に同量ずつ回動する。   Here, the control unit 6 controls the overall function of the nondestructive inspection apparatus. Typically, control of predetermined arithmetic processing in the arithmetic processing unit 5 and drive control of the belt 8 by the driving unit 7 are performed. The drive unit 7 moves the radiation source 1 to the radiation detectors 2 and 3 to predetermined positions P0 to P5 under the drive control of the control unit 6. That is, the radiation source 1 and the radiation detectors 2 and 3 rotate integrally by the same amount without changing the relative positional relationship.

かかる本形態においては、放射線源1を位置P1において検査対象物4に向けて照射した放射線のうち角度θで検査対象物4を透過した放射線の強度が位置P2,P4に配設された放射線検出器2,3でそれぞれ検出される。この結果、位置P2,P4における検査対象物4の減肉量l2,l4を反映した強度の信号が得られる。同様の検出を放射線源1と放射線検出器2,3の相対位置を変えることなく同量ずつ回動しながら放射線源1を位置P1〜P5に移動してそれぞれ行うことにより各位置P1〜P5において検査対象物4の減肉量(l3,l5)、(l4,l0)、(l5,l1)、(l0,l2)、(l1,l3)を反映した強度の信号が得られる。これらの信号に基づき式(3)〜(8)に示すような比を取ることにより減肉量l0〜l5を未知数とする6つの方程式ができる。そこで、これらを連立させて解くことにより各減肉量l0〜l5を求めることができる。したがって、各減肉量l0〜l5データに基づき検査対象物4の各位置P0〜P5における減肉量l0〜l5を個別に検出することができ、減肉の程度を正確且つ適正に知ることができる。   In this embodiment, the radiation detection is performed at the positions P2 and P4 where the intensity of the radiation transmitted through the inspection object 4 at the angle θ is the radiation irradiated from the radiation source 1 toward the inspection object 4 at the position P1. Detected by devices 2 and 3, respectively. As a result, an intensity signal reflecting the thickness reduction amounts l2 and l4 of the inspection object 4 at the positions P2 and P4 is obtained. The same detection is performed by moving the radiation source 1 to the positions P1 to P5 while rotating the same amount by the same amount without changing the relative positions of the radiation source 1 and the radiation detectors 2 and 3, respectively. A signal having an intensity reflecting the thinning amount (l3, l5), (l4, l0), (l5, l1), (l0, l2), (l1, l3) of the inspection object 4 is obtained. By taking the ratios as shown in equations (3) to (8) based on these signals, six equations can be made with the thinning amounts 10 to 15 as unknowns. Therefore, the respective thinning amounts 10 to 15 can be obtained by solving them in a simultaneous manner. Therefore, it is possible to individually detect the thinning amounts 10 to 15 at the positions P0 to P5 of the inspection object 4 based on the thinning amounts 10 to 15 data, and to know the degree of thinning accurately and appropriately. it can.

なお、本形態において、検査対象物4の中心を通る直線上で相対向する位置(例えば、位置P0及びP3)のみに減肉が発生していることが、図4に示す従来技術による非破壊検査方法により予め分かっている場合には、l0≠0、l3≠0、l1=l2=l4=l5=0として上式(3)〜(8)に基づく計算をすれば良い。かかる方法により、限定的な部位(従来技術では判定できない検査対象物4の中心を通る直線上で相対向する位置)の減肉量l0,l3を簡易に検出することができる。   In the present embodiment, the thinning occurs only at the positions (for example, the positions P0 and P3) facing each other on the straight line passing through the center of the inspection object 4, and this is the non-destructive technique according to the prior art shown in FIG. If it is known in advance by the inspection method, calculation based on the above equations (3) to (8) may be performed assuming that l0 ≠ 0, l3 ≠ 0, and l1 = l2 = l4 = l5 = 0. By this method, it is possible to easily detect the thinning amounts l0 and l3 of a limited part (positions facing each other on a straight line passing through the center of the inspection object 4 that cannot be determined by the prior art).

上述の如き第1の実施の形態では、検査対象物4の周囲の6箇所の位置P0〜P5で放射線を検出するようにしたが、これは少なくとも3箇所で検出すれば良い。放射線源1及び放射線検出器2,3を一体的に,同量ずつ検査対象物4の周囲を移動させた場合に検出位置の数と同数の減肉量を未知数とする方程式が得られるからである。したがって、検出位置の数が3箇所以上であれば、放射線源1及び放射線検出器2,3を一体的に,同量ずつ検査対象物4の周囲を移動させ、各位置で減肉量を未知数とする方程式を作成し,これらを連立させて解けば任意の箇所での各減肉量を検出することができる。   In the first embodiment as described above, radiation is detected at six positions P0 to P5 around the inspection object 4, but this may be detected at least at three positions. When the radiation source 1 and the radiation detectors 2 and 3 are integrally moved around the inspection object 4 by the same amount, an equation with the same amount of thinning as the number of detection positions can be obtained. is there. Therefore, if the number of detection positions is three or more, the radiation source 1 and the radiation detectors 2 and 3 are integrally moved around the inspection object 4 by the same amount, and the thinning amount is unknown at each position. If each equation is created and solved by simultaneous, it is possible to detect each amount of thinning at an arbitrary location.

図2は本発明の第2の実施の形態に係る非破壊検査装置の要部を示す模式図である。同図に示すように、本形態にかかる非破壊検査装置は、放射線源1が位置P0に占位しているとき、一個の放射線検出器12が位置P3に、他の放射線検出器13が位置P4に占位するように放射線検出器12,13を配設したものである。すなわち、放射線検出器12,13は検査対象物4の中心を通る直線上で放射線源1と相対向する位置及びこの位置から時計方向又は反時計方向にずれた位置(本形態では反時計方向にずれた検出位置)で放射線源1とともに、ベルト8に配設してあり、放射線源1との相対的な位置関係を変えることなく検査対象物4の周囲をベルト8の回動に伴い同量(本形態では60度)ずつ移動するように構成してある。   FIG. 2 is a schematic view showing a main part of a nondestructive inspection apparatus according to the second embodiment of the present invention. As shown in the figure, in the nondestructive inspection apparatus according to this embodiment, when the radiation source 1 is occupied at the position P0, one radiation detector 12 is located at the position P3 and the other radiation detector 13 is located. Radiation detectors 12 and 13 are arranged so as to occupy P4. That is, the radiation detectors 12 and 13 are located on a straight line passing through the center of the inspection object 4 and at positions opposite to the radiation source 1 and positions shifted from this position in the clockwise or counterclockwise direction (in this embodiment, in the counterclockwise direction). The detection position is shifted to the belt 8 together with the radiation source 1 and the same amount of the circumference of the inspection object 4 as the belt 8 rotates without changing the relative positional relationship with the radiation source 1. It is configured to move by 60 degrees (in this embodiment).

かくして、放射線源1が位置P0に占位しているときは、放射線検出器12,13は位置P3,P4に占位しており、以下放射線源1の回動に伴い、放射線源1が位置P1に占位しているときは、放射線検出器12,13が位置P4,P5に、放射線源1が位置P2に占位しているときは、放射線検出器12,13が位置P5,P0に、放射線源1が位置P3に占位しているときは、放射線検出器12,13が位置P0,P1に、放射線源1が位置P4に占位しているときは、放射線検出器12,13が位置P1,P2に、放射線源1が位置P5に占位しているときは、放射線検出器12,13が位置P2,P3にそれぞれ占位するようになっている。   Thus, when the radiation source 1 is occupied at the position P0, the radiation detectors 12 and 13 are located at the positions P3 and P4, and the radiation source 1 is positioned as the radiation source 1 rotates. When occupied at P1, the radiation detectors 12 and 13 are at positions P4 and P5, and when the radiation source 1 is occupied at position P2, the radiation detectors 12 and 13 are at positions P5 and P0. When the radiation source 1 is occupied at the position P3, the radiation detectors 12 and 13 are located at the positions P0 and P1, and when the radiation source 1 is located at the position P4, the radiation detectors 12 and 13 are located. Are positioned at positions P1 and P2, and the radiation source 1 is positioned at position P5, the radiation detectors 12 and 13 are positioned at positions P2 and P3, respectively.

放射線源1が位置P0に占位しているときに放射線検出器12,13で検出される透過放射線に基づく信号強度S03,S04は次式(9),(10)で与えられる。   The signal intensities S03 and S04 based on the transmitted radiation detected by the radiation detectors 12 and 13 when the radiation source 1 is occupied at the position P0 are given by the following equations (9) and (10).

S03=Sn×exp(−u×(l0+l3)) ・・・(9)
S04=Sn’×η0×exp(−u’×(−l4))
=Sn’×exp(−u×(−l0/cosθ))×
exp(−u’×(−l4)) ・・・(10)
S03 = Sn × exp (−u × (10 + 13)) (9)
S04 = Sn ′ × η0 × exp (−u ′ × (−14))
= Sn ′ × exp (−u × (−10 / cos θ)) ×
exp (−u ′ × (−14)) (10)

ここで、
Sn:減肉がない場合(正常な検査対象物)における信号強度、
(角度=0の位置(例えばP0−P3)での計測)、
Sn’:減肉がない場合(正常な検査対象物)における信号強度、
(角度=±θの位置(例えばP0−P2、P0−P4)での計測)、
η0:exp(−u×(−l0/cosθ))、
u’:u/cosθ、
l0、l3、l4:位置P0,P3,P4における検査対象物4の減肉量である。
here,
Sn: signal intensity when there is no thinning (normal inspection object),
(Measurement at a position of angle = 0 (for example, P0-P3)),
Sn ′: signal intensity when there is no thinning (normal inspection object),
(Measurement at a position of angle = ± θ (for example, P0-P2, P0-P4)),
η0: exp (−u × (−10 / cos θ)),
u ′: u / cos θ,
l0, l3, l4: The amount of thinning of the inspection object 4 at the positions P0, P3, P4.

上式(9)よりl0+l3=k03 ・・・(11)
上式(10)よりl0+l4=k04/u’ ・・・(12)
From the above equation (9), l0 + l3 = k03 (11)
From the above equation (10), l0 + l4 = k04 / u ′ (12)

上式(11),(12)の右辺は定数となるので、これらは位置P0,P3,P4における検査対象物4の減肉量l0,l3,l4を未知数とする方程式となる。   Since the right side of the above formulas (11) and (12) is a constant, these are equations in which the thinning amounts l0, l3 and l4 of the inspection object 4 at positions P0, P3 and P4 are unknowns.

放射線源1を他の位置P1〜P5に移動して放射線検出器12,13で検出される信号強度(S14,S15)、(S25,S20)、(S30,S31)、(S41,S42)、(S52,S53)に基づき位置(P4,P5)、(P5,P0)、(P0,P1)、(P1,P2)、(P2,P3)における検査対象物4の減肉量を未知数とする以下の方程式を得る。   The signal intensity (S14, S15), (S25, S20), (S30, S31), (S41, S42) detected by the radiation detectors 12 and 13 by moving the radiation source 1 to other positions P1 to P5, Based on (S52, S53), the thinning amount of the inspection object 4 at the positions (P4, P5), (P5, P0), (P0, P1), (P1, P2), (P2, P3) is set as an unknown. Obtain the following equation:

放射線源1の位置P0; l0+l3=k03 l0+l4=k04/u’
放射線源1の位置P1; l1+l4=k14 l1+l5=k15/u’
放射線源1の位置P2; l2+l5=k25 l2+l0=k20/u’
放射線源1の位置P3; l3+l0=k30 l3+l1=k31/u’
放射線源1の位置P4; l4+l1=k41 l4+l2=k42/u’
放射線源1の位置P5; l5+l2=k52 l5+l3=k53/u’
Position P0 of radiation source 1; l0 + l3 = k03 l0 + l4 = k04 / u ′
Position P1 of radiation source 1; l1 + l4 = k14 l1 + l5 = k15 / u ′
Position P2 of radiation source 1; l2 + l5 = k25 l2 + l0 = k20 / u ′
Position P3 of radiation source 1; l3 + l0 = k30 l3 + l1 = k31 / u ′
Position P4 of radiation source 1; l4 + l1 = k41 l4 + l2 = k42 / u ′
Position P5 of radiation source 1; l5 + l2 = k52 l5 + l3 = k53 / u ′

上式中、ln:位置Pn(n=0〜5)における検査対象物4の減肉量である。   In the above formula, ln is the amount of thinning of the inspection object 4 at the position Pn (n = 0 to 5).

上式は位置P0〜P2、又はP3〜P5における検査対象物4の各減肉量l0〜l5を6個の未知数とする6個の方程式である。したがって、位置P0〜P2、又はP3〜P5の何れかのグループに属する上記方程式を連立させて解けば各減肉量l0〜l5を求めることができる。   The above equation is six equations in which each of the thinning amounts l0 to l5 of the inspection object 4 at the positions P0 to P2 or P3 to P5 is six unknowns. Therefore, each of the thinning amounts 10 to 15 can be obtained by solving the above equations belonging to any group of the positions P0 to P2 or P3 to P5 simultaneously.

このように,本形態によれば、放射線源1を半周だけ移動させることにより必要な数(本例の場合は6個)の方程式を得る。したがって、放射線源1を同量(本例の場合は60度)ずつ検査対象物4の周囲に半周移動させることにより検査対象物4の全周を6等分した各位置P0〜P5での減肉量l0〜l5を検出することができる。   As described above, according to the present embodiment, the necessary number of equations (six in this example) are obtained by moving the radiation source 1 by a half circumference. Therefore, the radiation source 1 is moved by half the circumference around the inspection object 4 by the same amount (60 degrees in this example), and the decrease at each position P0 to P5 obtained by dividing the entire circumference of the inspection object 4 into six equal parts. Meat amounts 10 to 15 can be detected.

なお、放射線検出器12,13の出力信号の上述の如き所定の演算処理、減肉量l0〜l5が所定値を超えて薄くなっている場合の処理、ベルト8を駆動しての放射線源1及び放射線検出器12,13の一体的な移動等に関する構成は、基本的に図1に示す第1の実施の形態と同様である。   It should be noted that the predetermined calculation processing of the output signals of the radiation detectors 12 and 13 as described above, the processing when the thinning amount 10 to 15 exceeds the predetermined value, and the radiation source 1 by driving the belt 8. And the structure regarding the integral movement etc. of the radiation detectors 12 and 13 is the same as that of 1st Embodiment shown in FIG.

また、本形態において、l4=0であることが予め分かっていれば、上式(9),(10)に基づく計算により、限定的な部位(従来技術では判定できない検査対象物4の中心を通る直線上で相対向する位置)の減肉量l0,l3を簡易に検出することができる。   Further, in this embodiment, if it is known in advance that l4 = 0, the calculation based on the above formulas (9) and (10) can be used to determine the limited part (the center of the inspection object 4 that cannot be determined by the prior art). It is possible to easily detect the thinning amounts l0 and l3 at positions facing each other on a straight line passing through.

図3は本発明の第3の実施の形態に係る非破壊検査装置の要部を示す模式図である。同図に示すように、本形態にかかる非破壊検査装置は、図2に示す第2の実施の形態における放射線検出器12を除去し、放射線検出器13のみを用いた場合である。すなわち、放射線検出器13は検査対象物4の中心を通る直線上で放射線源1と相対向する位置から時計方向又は反時計方向にずれた位置(本形態では反時計方向にずれた検出位置)で放射線源1とともに、ベルト8に配設してあり、放射線源1との相対的な位置関係を変えることなく検査対象物4の周囲をベルト8の回動に伴い同量(本形態では60度)ずつ移動するように構成してある。   FIG. 3 is a schematic view showing a main part of a nondestructive inspection apparatus according to the third embodiment of the present invention. As shown in the figure, the nondestructive inspection apparatus according to this embodiment is a case where the radiation detector 12 in the second embodiment shown in FIG. 2 is removed and only the radiation detector 13 is used. That is, the radiation detector 13 is a position shifted in a clockwise direction or a counterclockwise direction from a position facing the radiation source 1 on a straight line passing through the center of the inspection object 4 (detected position shifted in the counterclockwise direction in this embodiment). And the radiation source 1 together with the radiation source 1 and the same amount (60 in this embodiment) around the inspection object 4 as the belt 8 rotates without changing the relative positional relationship with the radiation source 1. It is configured to move in degrees.

かくして、放射線源1が位置P0に占位しているときは、放射線検出器13は位置P4に占位しており、以下放射線源1の回動に伴い、放射線源1が位置P1に占位しているときは位置P5に、位置P2に占位しているときは位置P0に、位置P3に占位しているときは位置P1に、位置P4に占位しているときは位置P2に、位置P5に占位しているときは位置P3にそれぞれ占位するようになっている。   Thus, when the radiation source 1 is occupied at the position P0, the radiation detector 13 is located at the position P4. Then, as the radiation source 1 rotates, the radiation source 1 is located at the position P1. When position is occupied at position P5, when position is occupied at position P2, position is P0. When position is occupied at position P3, position is P1. When position is occupied at position P4, position is P2. When occupied at the position P5, the position is occupied at the position P3.

放射線源1が位置P0に占位しているときに放射線検出器13で検出される透過放射線に基づく信号強度S04は上式(10)で与えられる。この結果、上式(12)の関係を導くことができる。すなわち、l0+l4=k04/u’となる。この式の右辺は定数であり、放射線検出器13による位置P4における検出結果に基づく検査対象物4の減肉量l0,l4を未知数とする方程式となる。   The signal intensity S04 based on the transmitted radiation detected by the radiation detector 13 when the radiation source 1 is occupied at the position P0 is given by the above equation (10). As a result, the relationship of the above formula (12) can be derived. That is, l0 + l4 = k04 / u ′. The right side of this equation is a constant and is an equation in which the thinning amounts l0 and l4 of the inspection object 4 based on the detection result at the position P4 by the radiation detector 13 are unknown.

そこで、放射線源1を他の位置P1〜P5に移動して放射線検出器13で検出される信号強度S15,S20,S31,S42,S53に基づき位置P5,P0,P1,P2,P3における検査対象物4の減肉量を未知数とする以下の方程式を得る。   Therefore, the inspection object at positions P5, P0, P1, P2, and P3 based on the signal intensities S15, S20, S31, S42, and S53 detected by the radiation detector 13 by moving the radiation source 1 to other positions P1 to P5. The following equation is obtained in which the amount of thinning of the object 4 is unknown.

放射線源1の位置P0; l0+l4=k04/u’
放射線源1の位置P1; l1+l5=k15/u’
放射線源1の位置P2; l2+l0=k20/u’
放射線源1の位置P3; l3+l1=k31/u’
放射線源1の位置P4; l4+l2=k42/u’
放射線源1の位置P5; l5+l3=k53/u’
Position P0 of radiation source 1; l0 + l4 = k04 / u ′
Position P1 of radiation source 1; l1 + l5 = k15 / u ′
Position P2 of radiation source 1; l2 + l0 = k20 / u ′
Position P3 of radiation source 1; l3 + l1 = k31 / u ′
Position P4 of radiation source 1; l4 + l2 = k42 / u ′
Position P5 of radiation source 1; l5 + l3 = k53 / u ′

上式中、ln:位置Pn(n=0〜5)における検査対象物4の減肉量である。   In the above formula, ln is the amount of thinning of the inspection object 4 at the position Pn (n = 0 to 5).

上式は位置P0〜P5における検査対象物4の各減肉量l0〜l5を6個の未知数とする6個の方程式である。したがって、上記方程式を連立させて解けば各減肉量l0〜l5を求めることができる。   The above equations are six equations with six unknowns for each of the thinning amounts 10 to 15 of the inspection object 4 at positions P0 to P5. Therefore, the respective thinning amounts 10 to 15 can be obtained by solving the above equations simultaneously.

なお、放射線検出器13の出力信号の上述の如き所定の演算処理、減肉量l0〜l5が所定値を超えて薄くなっている場合の処理、ベルト8を駆動しての放射線源1及び放射線検出器12,13の一体的な移動等に関する構成は、基本的に図1に示す第1の実施の形態と同様である。   In addition, the above-mentioned predetermined calculation processing of the output signal of the radiation detector 13, the processing when the thinning amount 10 to 15 exceeds the predetermined value, the radiation source 1 driving the belt 8, and the radiation The configuration relating to the integral movement of the detectors 12 and 13 is basically the same as that of the first embodiment shown in FIG.

また、本形態では、検査対象物4の周囲の6箇所の位置P0〜P5で放射線を検出するようにしたが、これは少なくとも3箇所で検出すれば良い。放射線源1及び放射線検出器13を一体的に、同量ずつ検査対象物4の周囲を移動させた場合に検出位置の数と同数の減肉量を未知数とする方程式が得られるからである。したがって、検出位置の数が3箇所以上であれば、放射線源1及び放射線検出器13を一体的に、同量ずつ検査対象物4の周囲を移動させ、各位置で減肉量を未知数とする方程式を作成し、これらを連立させて解けば任意の箇所での各減肉量を検出することができる。   In this embodiment, radiation is detected at six positions P0 to P5 around the inspection object 4. However, this may be detected at least at three positions. This is because when the radiation source 1 and the radiation detector 13 are integrally moved around the inspection object 4 by the same amount, an equation with the same amount of thinning as the number of detection positions can be obtained. Therefore, if the number of detection positions is three or more, the radiation source 1 and the radiation detector 13 are integrally moved around the inspection object 4 by the same amount, and the thinning amount is set to an unknown number at each position. By creating an equation and solving them simultaneously, it is possible to detect the amount of thinning at an arbitrary location.

本発明は配管等の非破壊検査を行うとともに、その装置を製造販売する産業分野で有効に利用することができる。   The present invention performs nondestructive inspection of piping and the like, and can be effectively used in the industrial field in which the device is manufactured and sold.

1 放射線源
2,3、12,13 放射線検出器
4 検査対象物
5 演算処理部
P0〜P5 位置
l0〜l5 減肉量
DESCRIPTION OF SYMBOLS 1 Radiation sources 2, 3, 12, 13 Radiation detector 4 Inspection object 5 Arithmetic processing part P0-P5 Position 10-l5 Thinning amount

Claims (2)

筒状の検査対象物に向けて放射線源から放射線を照射するとともに、前記検査対象物の
中心を通る直線上で前記放射線源と相対向する位置から時計方向又は反時計方向にずれた
検出位置及び前記相対向する位置にそれぞれ配設した各放射線検出器で前記放射線を
検出するとともに、前記各検出位置における前記各放射線検出器の出力信号である透過放
射線の強度を表す透過信号強度に基づき、前記検出位置における前記検査対象物の減肉量
を未知数として含む方程式をそれぞれ作成し、
さらに前記放射線源及び前記各放射線検出器の相対的な位置関係を変えることなく前記
放射線源の位置及び放射線検出器の検出位置を前記検査対象物の外周面に沿って同角度ず
つ移動させることにより前記検査対象物の外周面に沿う少なくとも3箇所で同様の放射線
の検出を行なうとともに、前記未知数と同数の前記方程式をそれぞれ作成し、
これらの方程式を連立させて解くことにより前記各検出位置における前記検査対象物の
減肉量をそれぞれ求めることを特徴とする非破壊検査方法。
Irradiating radiation from a radiation source toward a cylindrical inspection object, and a detection position shifted in a clockwise or counterclockwise direction from a position facing the radiation source on a straight line passing through the center of the inspection object; and detects the radiation in the radiation detectors respectively disposed position you said phase counter, based on the transmission signal intensity representing the intensity of the transmitted radiation, which is the output signal of the radiation detectors in the respective detecting positions , Each creating an equation including the amount of thinning of the inspection object at the detection position as an unknown,
Further, by moving the position of the radiation source and the detection position of the radiation detector by the same angle along the outer peripheral surface of the inspection object without changing the relative positional relationship between the radiation source and each radiation detector. While detecting the same radiation in at least three locations along the outer peripheral surface of the object to be inspected, each creating the same number of the equations as the unknown,
A non-destructive inspection method characterized by obtaining the amount of thinning of the inspection object at each detection position by solving these equations simultaneously.
筒状の検査対象物に向けて放射線を照射する放射線源と、
前記検査対象物の中心を通る直線上で前記放射線源と相対向する検出位置及びこの検出
位置から時計方向又は反時計方向にずれた検出位置にそれぞれ配設した放射線検出器と、
前記放射線源及び前記各放射線検出器の相対的な位置関係を変えることなく前記放射線
源及び前記各放射線検出器を一体的に前記検査対象物の外周面に沿って移動させる移動手
段と、
前記検査対象物の外周面に沿う少なくとも3箇所で前記各放射線検出器による放射線の
検出を行なうように前記移動手段を介して前記放射線源及び前記各放射線検出器が同量ず
つ移動されるように制御する制御手段と、
各検出位置における前記各放射線検出器の出力信号である透過放射線の強度を表す透過
信号強度に基づき、前記各検出位置における前記検査対象物の各減肉量を未知数として含
む前記未知数と同数の連立方程式を作成するとともに、前記連立方程式を解くことにより
前記各検出位置における前記検査対象物の減肉量をそれぞれ求める演算処理手段とを有す
ることを特徴とする非破壊検査装置。
A radiation source that emits radiation toward a cylindrical inspection object;
Each radiation detector disposed at a detection position opposite to the radiation source on a straight line passing through the center of the inspection object and a detection position shifted from the detection position in a clockwise direction or a counterclockwise direction,
Moving means for moving the radiation source and each radiation detector integrally along the outer peripheral surface of the inspection object without changing the relative positional relationship between the radiation source and each radiation detector;
The radiation source and each radiation detector are moved by the same amount through the moving means so that the radiation detectors detect radiation at at least three locations along the outer peripheral surface of the inspection object. Control means for controlling;
Based on the transmitted signal intensity representing the intensity of transmitted radiation, which is the output signal of each radiation detector at each detection position, the same number of simultaneouss as the unknowns including each thinning amount of the inspection object at each detection position as an unknown number A nondestructive inspection apparatus comprising: an arithmetic processing unit that creates an equation and obtains a thinning amount of the inspection object at each detection position by solving the simultaneous equations.
JP2009116270A 2009-05-13 2009-05-13 Nondestructive inspection method and apparatus Expired - Fee Related JP5441104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116270A JP5441104B2 (en) 2009-05-13 2009-05-13 Nondestructive inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116270A JP5441104B2 (en) 2009-05-13 2009-05-13 Nondestructive inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2010266264A JP2010266264A (en) 2010-11-25
JP5441104B2 true JP5441104B2 (en) 2014-03-12

Family

ID=43363372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116270A Expired - Fee Related JP5441104B2 (en) 2009-05-13 2009-05-13 Nondestructive inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP5441104B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020038573A1 (en) * 2018-08-23 2020-02-27 Abb Schweiz Ag Method for inspection of a target object, control system and inspection system
JP6582146B1 (en) * 2019-01-24 2019-09-25 札幌施設管理株式会社 Thickness detection method and piping inspection method
JP7410606B1 (en) 2023-06-20 2024-01-10 株式会社ウィズソル Non-destructive testing method and non-destructive testing equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046364B2 (en) * 1980-07-18 1985-10-15 川崎製鉄株式会社 Method for measuring wall thickness of tubular materials
JPS60165508A (en) * 1984-02-08 1985-08-28 Sumitomo Light Metal Ind Ltd Measuring method of tube thickness
JP3452773B2 (en) * 1997-10-14 2003-09-29 株式会社日立エンジニアリングサービス Pipe thinning state evaluation method and its evaluation device

Also Published As

Publication number Publication date
JP2010266264A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
EP3702736A3 (en) Sensor system for rotation angular detection and 3d joystick function
AU2017297405B2 (en) Methods and systems for measurement and inspection of tubular goods
WO2013119973A3 (en) Internal imaging system
JP5441104B2 (en) Nondestructive inspection method and apparatus
JP2019082461A (en) Tube end right angle degree measurement method of steel pipe and method for manufacturing steel pipe
KR102417791B1 (en) Determining the orientation of an edge-on x-ray detector with respect to the direction of incoming x-rays
JP2017521170A5 (en)
JP2004045212A5 (en)
JP5730183B2 (en) Ultrasonic flaw detector
JP5400704B2 (en) Piping inspection device and piping inspection method
JP6094538B2 (en) Radiation flaw detection method and radiation flaw detection apparatus
JP2010204060A (en) X-ray inspection device, and inspection method of the same
CN104655663A (en) Optical axis adjustment device for X-ray analyzer
US11016042B2 (en) Fast industrial computed tomography for large objects
JP5914850B2 (en) Three-dimensional measuring device and illumination device used therefor
JP2013024754A (en) Object diameter measurement method
JP2009276142A (en) Radiographic inspection system and imaging method of radiographic inspection
JP2016136098A (en) Eddy current measuring probe
JP2010230559A (en) X-ray inspection apparatus
US11604152B2 (en) Fast industrial computed tomography for large objects
JP6763526B2 (en) Non-destructive inspection equipment and non-destructive inspection method
CN116057363A (en) Measurement system and measurement method
US9101322B2 (en) X-ray imaging apparatus and imaging method
JP2016133623A5 (en)
JP2019158724A (en) X-ray reflection type measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5441104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees