JP5441094B2 - Semiconductor substrate manufacturing method and semiconductor substrate - Google Patents

Semiconductor substrate manufacturing method and semiconductor substrate Download PDF

Info

Publication number
JP5441094B2
JP5441094B2 JP2008256536A JP2008256536A JP5441094B2 JP 5441094 B2 JP5441094 B2 JP 5441094B2 JP 2008256536 A JP2008256536 A JP 2008256536A JP 2008256536 A JP2008256536 A JP 2008256536A JP 5441094 B2 JP5441094 B2 JP 5441094B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
iii
silicon carbide
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008256536A
Other languages
Japanese (ja)
Other versions
JP2010087360A (en
Inventor
昌広 吉本
博之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO MECHATROTECH CO., LTD.
Kyoto Institute of Technology NUC
Original Assignee
SHINKO MECHATROTECH CO., LTD.
Kyoto Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO MECHATROTECH CO., LTD., Kyoto Institute of Technology NUC filed Critical SHINKO MECHATROTECH CO., LTD.
Priority to JP2008256536A priority Critical patent/JP5441094B2/en
Publication of JP2010087360A publication Critical patent/JP2010087360A/en
Application granted granted Critical
Publication of JP5441094B2 publication Critical patent/JP5441094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体基板の製造方法および半導体基板に関し、特に、炭化珪素基板上にIII−V族半導体層を直接接合した半導体基板の製造方法および半導体基板に関する。   The present invention relates to a semiconductor substrate manufacturing method and a semiconductor substrate, and more particularly to a semiconductor substrate manufacturing method and a semiconductor substrate in which a group III-V semiconductor layer is directly bonded on a silicon carbide substrate.

III−V族半導体はシリコンに比べて幾つかの優れた特性を持っており、これらの特性を生かし、光デバイスや高速、高出力デバイスなどに応用されている。しかしながら、III−V族半導体は、シリコンに比較して熱伝導特性が劣り、例えば、シリコンの熱伝導率が室温で130W/mKであるのに対して、砒化ガリウムの熱伝導率は室温で45W/mK、リン化インジウムで68W/mKとなっている。このため、III−V族半導体を用いて例えば高出力デバイスを作製した場合、放熱特性の向上が問題となる。   Group III-V semiconductors have some excellent characteristics compared to silicon, and are applied to optical devices, high-speed, high-power devices and the like by utilizing these characteristics. However, III-V semiconductors have poor thermal conductivity compared to silicon, for example, silicon has a thermal conductivity of 130 W / mK at room temperature, whereas gallium arsenide has a thermal conductivity of 45 W at room temperature. / MK, 68 W / mK for indium phosphide. For this reason, when a high output device is produced using a III-V group semiconductor, for example, improvement in heat dissipation characteristics becomes a problem.

このような問題を解決するために、SOI、GaN・on・Sapphire、GaAs・on・Siのような、熱伝導特性の良好なSi基板やサファイヤ基板の上にIII−V族半導体層をエピタキシャル成長させたり、Si基板やサファイヤ基板にIII−V族半導体基板を貼り付けた、複合基板が提案されている(例えば、特許文献1参照)。
特開2007−300146号公報
In order to solve such problems, a III-V group semiconductor layer is epitaxially grown on a Si substrate or a sapphire substrate with good thermal conductivity, such as SOI, GaN on sapphire, and GaAs on on Si. Alternatively, a composite substrate is proposed in which a III-V group semiconductor substrate is bonded to a Si substrate or a sapphire substrate (see, for example, Patent Document 1).
JP 2007-300166 A

しかしながら、例えば、Si基板上にIII−V族半導体層をエピタキシャル成長させた場合、両者の格子定数が異なるため、結晶性の良好なエピタキシャル層を形成することが困難であった。このため、III−V族半導体層に作製した半導体素子において、良好な素子特性を得ることができなかった。   However, for example, when a group III-V semiconductor layer is epitaxially grown on a Si substrate, it is difficult to form an epitaxial layer with good crystallinity because both have different lattice constants. For this reason, in the semiconductor element produced in the III-V group semiconductor layer, good element characteristics could not be obtained.

また、Si基板上にIII−V族半導体基板を貼り付ける場合、両者の熱膨張係数が異なるため、両者を加熱接合すると接合工程中に剥離や割れが発生するという問題があった。また、両者を室温で接合した場合、接合強度が低く、素子作製プロセス等において剥離が生じるという問題があった。   In addition, when a III-V group semiconductor substrate is bonded onto a Si substrate, the thermal expansion coefficients of the two are different, and thus there is a problem that peeling or cracking occurs during the bonding process when the two are heat bonded. Further, when both are bonded at room temperature, there is a problem that the bonding strength is low and peeling occurs in the element manufacturing process and the like.

そこで、本発明は、熱伝導性の良好な炭化珪素基板上に、例えば砒化ガリウムのようなIII−V族半導体層を良好な接合状態で形成した半導体基板の提供を目的とする。   Accordingly, an object of the present invention is to provide a semiconductor substrate in which a group III-V semiconductor layer such as gallium arsenide is formed in a good bonding state on a silicon carbide substrate having good thermal conductivity.

本発明は、炭化珪素基板上にIII−V族半導体層を設けた半導体基板の製造方法であって、それぞれが表面と裏面とを有するIII−V族半導体基板と炭化珪素基板を準備する工程と、III−V族半導体基板の裏面を研磨板に貼り付けて、III−V族半導体基板を表面から研磨して薄層化する研磨工程と、III−V族半導体基板の表面と炭化珪素基板の表面の少なくとも一方に有機溶剤を塗布する塗布工程と、III−V族半導体基板の表面と炭化珪素基板の表面を重ねて接合面とする重ね合わせ工程と、III−V族半導体基板と炭化珪素基板とを、接合面に向かって加圧した状態で加熱して、炭化珪素基板の表面にIII−V族半導体基板を直接接合してIII−V族半導体層を形成する加熱工程とを含むことを特徴とする半導体基板の製造方法である。   The present invention is a method of manufacturing a semiconductor substrate having a group III-V semiconductor layer provided on a silicon carbide substrate, the steps of preparing a group III-V semiconductor substrate and a silicon carbide substrate each having a front surface and a back surface; A polishing step of attaching a back surface of the III-V semiconductor substrate to a polishing plate and polishing the III-V semiconductor substrate from the surface to make a thin layer; a surface of the III-V semiconductor substrate and a silicon carbide substrate; An application step of applying an organic solvent to at least one of the surfaces, an overlaying step of superimposing the surface of the III-V semiconductor substrate and the surface of the silicon carbide substrate to form a bonding surface, and a III-V semiconductor substrate and a silicon carbide substrate And heating in a state of being pressurized toward the bonding surface to form a group III-V semiconductor layer by directly bonding the group III-V semiconductor substrate to the surface of the silicon carbide substrate. Characteristic semiconductor It is a method of manufacturing a substrate.

また、本発明は、炭化珪素基板と、炭化珪素基板上に積層されたIII−V族半導体層とを含む半導体基板であって、炭化珪素基板の上に、III−V族半導体層が直接接合されていることを特徴とする半導体基板である。
ここで、直接接合されているとは、例えば接着剤のような他の接合材料を用いない接合状態をいう。
The present invention is also a semiconductor substrate including a silicon carbide substrate and a group III-V semiconductor layer stacked on the silicon carbide substrate, wherein the group III-V semiconductor layer is directly bonded on the silicon carbide substrate. It is a semiconductor substrate characterized by being made.
Here, “directly bonded” means a bonded state in which no other bonding material such as an adhesive is used.

このように、本発明によれば、剥離や割れを生じることなく、熱伝導性の良好な炭化珪素基板上にIII−V族半導体層を形成した半導体基板を提供することができる。   Thus, according to the present invention, it is possible to provide a semiconductor substrate in which a group III-V semiconductor layer is formed on a silicon carbide substrate having good thermal conductivity without causing peeling or cracking.

また、本発明によれば、炭化珪素基板の上に、III−V族半導体層が、接着剤等の接合材料を介さずに直接接合されるため、強固な接合を安価に得ることができる。   In addition, according to the present invention, the III-V group semiconductor layer is directly bonded onto the silicon carbide substrate without using a bonding material such as an adhesive, so that strong bonding can be obtained at low cost.

また、本発明によれば、熱伝導性の優れたIII−V族半導体層を有する半導体基板を得ることができる。   Moreover, according to this invention, the semiconductor substrate which has the III-V group semiconductor layer excellent in thermal conductivity can be obtained.

実施の形態1.
図1は、全体が100で表される、本発明の実施の形態1にかかる半導体基板の斜視図である。半導体基板100は、6H−SiC(炭化珪素)基板10の上に、GaAs(砒化ガリウム)層25が接合された構造である。SiC基板10とGaAs層25とは、直接接合された構造となっている。即ち、接着剤のような他の接着材料を用いることなく、SiC基板10とGaAs層25とが直接接合されている。
Embodiment 1 FIG.
FIG. 1 is a perspective view of a semiconductor substrate according to a first embodiment of the present invention, the whole being represented by 100. FIG. The semiconductor substrate 100 has a structure in which a GaAs (gallium arsenide) layer 25 is bonded to a 6H—SiC (silicon carbide) substrate 10. The SiC substrate 10 and the GaAs layer 25 are directly bonded. That is, the SiC substrate 10 and the GaAs layer 25 are directly bonded without using another adhesive material such as an adhesive.

次に、図2を参照しながら、本実施の形態1にかかる半導体基板100の製造方法について説明する。かかる製造方法は、以下の工程1〜4を含む。   Next, a method for manufacturing the semiconductor substrate 100 according to the first embodiment will be described with reference to FIG. This manufacturing method includes the following steps 1 to 4.

工程1:図2(a)に示すように、III−V族半導体であるGaAs基板20を、ワックス30を用いて研磨板40に貼り付ける。GaAs基板20の膜厚は、例えば300〜400μm程度であり、n型、p型、i型の導電型のいずれを用いても良い。研磨板30には、例えばアルミナ板やステンレス鋼(SUS)板が用いられる。GaAs基板20と研磨板40とを接合するワックスの膜厚は10μm以下が好ましい。   Step 1: As shown in FIG. 2A, a GaAs substrate 20 that is a group III-V semiconductor is attached to a polishing plate 40 using a wax 30. The thickness of the GaAs substrate 20 is, for example, about 300 to 400 μm, and any of n-type, p-type, and i-type conductivity types may be used. As the polishing plate 30, for example, an alumina plate or a stainless steel (SUS) plate is used. The film thickness of the wax that joins the GaAs substrate 20 and the polishing plate 40 is preferably 10 μm or less.

工程2:図2(b)に示すように、GaAs基板20を研磨する。研磨工程により、GaAs基板20の膜厚は、例えば300μmから、100μm以下、好ましくは2μm以上で15μm以下、更に好ましくは3μm程度に減じられる。研磨工程は、例えば、SiC砥粒を用いて研磨した後、酸またはアルカリ溶液を用いて化学研磨を行い、研磨面が鏡面となるように行われる。GaAs基板20の研磨面(接合面)は、Ga面(III族面)であることが好ましい。   Step 2: As shown in FIG. 2B, the GaAs substrate 20 is polished. By the polishing process, the film thickness of the GaAs substrate 20 is reduced from, for example, 300 μm to 100 μm or less, preferably from 2 μm to 15 μm, and more preferably about 3 μm. The polishing step is performed so that, for example, polishing is performed using SiC abrasive grains and then chemical polishing is performed using an acid or alkali solution so that the polishing surface becomes a mirror surface. The polished surface (bonding surface) of the GaAs substrate 20 is preferably a Ga surface (Group III surface).

ここで、GaAs基板20の研磨後の膜厚について検討すると、SiC基板10とGaAs基板20を接合して温度変化を加えると、両基板の熱膨張差により割れや剥がれが生じる。表1に、SiCと、Si、GaAs、InPの熱膨張率および熱膨張係数の比較を示す。   Here, when the film thickness after polishing of the GaAs substrate 20 is examined, when the SiC substrate 10 and the GaAs substrate 20 are joined and a temperature change is applied, cracking or peeling occurs due to a difference in thermal expansion between the two substrates. Table 1 shows a comparison of the thermal expansion coefficient and the thermal expansion coefficient between SiC, Si, GaAs, and InP.

特に、GaAs基板20の膜厚が厚い場合、図3A(加熱工程前)、図3B(加熱工程後)に示すように、SiC基板10の割れやSiC基板10とGaAs基板20の間での剥がれが発生する。図3Bは、加熱工程においてSiC基板10が割れたものである。これは、熱膨張係数の差により基板に反りが発生し、靭性の低いSiC基板10が、機械的な曲がりにより割れたものと考えられる。   In particular, when the thickness of the GaAs substrate 20 is thick, as shown in FIG. 3A (before the heating step) and FIG. 3B (after the heating step), the SiC substrate 10 is cracked or peeled between the SiC substrate 10 and the GaAs substrate 20. Occurs. FIG. 3B shows the SiC substrate 10 cracked in the heating process. It is considered that this is because the substrate is warped due to the difference in thermal expansion coefficient, and the SiC substrate 10 having low toughness is cracked by mechanical bending.

一般に、基板(支持基板)と、その表面に設けられた膜厚の薄い層(表層)を含む積層構造体に応力が加えられた場合の積層構造体の反り量は次の式(1)で表される(例えば、特開平10−19693公報などに記載)。   In general, the amount of warpage of a laminated structure when a stress is applied to the laminated structure including a substrate (support substrate) and a thin layer (surface layer) provided on the surface is expressed by the following equation (1). (For example, described in JP-A-10-19893).

δ=3σ・(1−v)・Tf・l/(Es・ts)・・・・・・・(1) δ = 3σ · (1−v) · Tf · l 2 / (Es · ts 2 ) (1)

但し、
δ:反り量
σ:応力
v:基板のポアッソン比
Tf:表層の膜厚
l:基板の口径
Es:基板のヤング率
ts:基板の厚さ
However,
δ: Warpage amount σ: Stress v: Substrate Poisson's ratio Tf: Surface layer thickness l: Substrate diameter Es: Young's modulus of substrate ts: Substrate thickness

このとき、線膨張係数の異なる材料の接合部に生ずる熱応力は、以下の式(2)で示される(特開昭61−26227号公報などに記載)。
σ=(4/ts)・Tf・Ef・∫Th Tl(αs−αf)dT・・・・(2)
但し、
σ:熱応力
Ef:基板上の形成層のヤング率
αs:基板の線膨張係数
αf:基板上の形成層の線膨張係数
Th:基板と形成層が接合される温度
Tl:温度変化後の温度
At this time, the thermal stress generated in the joint portion of materials having different linear expansion coefficients is expressed by the following formula (2) (described in Japanese Patent Application Laid-Open No. 61-26227).
σ = (4 / ts) · Tf · Ef · ∫ Th Tl (αs−αf) dT (2)
However,
σ: Thermal stress Ef: Young's modulus of the formation layer on the substrate αs: Linear expansion coefficient of the substrate αf: Linear expansion coefficient of the formation layer on the substrate Th: Temperature at which the substrate and the formation layer are joined Tl: Temperature after temperature change

よって、線膨張係数を一定とした場合、式(1)、式(2)より、GaAs層(表層)の膜厚Tfと複合構造体の反りδの関係は、以下の式(3)で表される。
δ=
{12・Ef/Es・(αs−αf)・ΔT・(1−v)・l/Ts}・Tf
・・・・・・・(3)
Therefore, when the linear expansion coefficient is constant, the relationship between the film thickness Tf of the GaAs layer (surface layer) and the warpage δ of the composite structure is expressed by the following equation (3) from the equations (1) and (2). Is done.
δ =
{12 · Ef / Es · (αs−αf) · ΔT · (1-v) · l 2 / Ts 3 } · Tf 2
.... (3)

式(3)より、基板の厚さを一定とすると、複合構造体の反り量δは、表層の膜厚Tfと基板の口径lの積の2乗に比例することが分かる。   From equation (3), it can be seen that if the thickness of the substrate is constant, the amount of warpage δ of the composite structure is proportional to the square of the product of the film thickness Tf of the surface layer and the diameter l of the substrate.

SiCのヤング率を400GPa、GaAsのヤング率を83GPaとし、表1より両者の熱膨張係数の差を1.2×10−6/degとし、SiCのポアッソン比を0.45として、口径が2インチ、3インチ、および4インチで厚さが300μmのSiCを支持基板に用いた積層構造体を、800℃から30℃へ降温した場合、表層のGaAsの膜厚と支持基板の反り量との関係は、式3より、図4に示すような関係となる。 The Young's modulus of SiC is 400 GPa, the Young's modulus of GaAs is 83 GPa, the difference in thermal expansion coefficient between them is 1.2 × 10 −6 / deg, the Poisson's ratio of SiC is 0.45, and the aperture is 2 When a laminated structure using SiC having a thickness of 300 μm in inches, 3 inches, and 4 inches as a supporting substrate is cooled from 800 ° C. to 30 ° C., the thickness of the surface GaAs and the amount of warpage of the supporting substrate The relationship is as shown in FIG.

図4において、横軸が表層のGaAs層膜厚、縦軸が基板の反り量を示し、ウエハの口径は、φ50.8mm(2インチ)、φ76.2mm(3インチ)、およびφ100mm(4インチ)となっている。   In FIG. 4, the horizontal axis indicates the thickness of the surface GaAs layer, the vertical axis indicates the amount of warpage of the substrate, and the wafer diameters are 50.8 mm (2 inches), 76.2 mm (3 inches), and 100 mm (4 inches). ).

表面粗さや端面形状にも依存するが、SiC基板では、3点支持の割れ試験において、両面研磨品で、#600番のダイヤモンド砥石で端面を研削加工した2インチの300μm厚の基板に対して、約20μmの屈曲を強制的に与えると割れるものがあり、100μm屈曲させると、全数破壊するという実験結果を得ている。   Although it depends on the surface roughness and the end face shape, the SiC substrate is a double-sided polished product in a three-point support crack test, compared to a 2-inch 300 μm thick substrate whose end surface is ground with a # 600 diamond wheel. Some experimental results have been obtained that some cracks occur when a bending of about 20 μm is forcibly applied, and that all of them break when 100 μm is bent.

また、同じ300μm厚の基板では、破壊開始曲げ量は、基板の直径にほぼ比例しているとの結果を得ており、3インチ基板、4インチ基板では、破壊開始の曲げ量はそれぞれ30μm、40μmとなり、全数が破壊する曲げ量は、それぞれ150μm、200μmであった。   In addition, for the same 300 μm thick substrate, the result is that the fracture start bending amount is almost proportional to the diameter of the substrate, and for the 3 inch substrate and the 4 inch substrate, the bending start bending amount is 30 μm, respectively. The amount of bending at which the total number was destroyed was 40 μm and 150 μm and 200 μm, respectively.

これらの結果より、SiC基板に接合されるGaAs層の膜厚の許容値(破壊が生じない膜厚)は、2インチ基板では28.8μm以下で、好ましくは12.9μm以下、3インチ基板では、19.2μm以下で、好ましくは8.6μm以下、4インチ基板では、14.6μm以下で、好ましくは6.5μm以下となる。   From these results, the allowable value of the thickness of the GaAs layer bonded to the SiC substrate (the thickness at which destruction does not occur) is 28.8 μm or less for a 2-inch substrate, preferably 12.9 μm or less, preferably for a 3-inch substrate. 19.2 μm or less, preferably 8.6 μm or less, and for a 4-inch substrate, it is 14.6 μm or less, preferably 6.5 μm or less.

工程3:SiC基板10の、Si面(接合面)側をコロイダルシリカを用いて化学機械研磨する。研磨は、SiC基板10の表面に原子ステップが観察されるように研磨することが好ましい。続いて、イソプロピールアルコール等の有機溶剤で、研磨した表面を洗浄する。一方、工程2で研磨したGaAs基板20の研磨面も、同様に有機溶剤を用いて洗浄する。有機溶媒としては、イソプロピールアルコールの他に、メチルアルコール、エチルアルコール等のアルコールや他の有機溶媒が用いられる。
なお、SiC基板10の表面は、研磨せずに洗浄のみ行うこともできる。
Step 3: The Si surface (bonding surface) side of the SiC substrate 10 is subjected to chemical mechanical polishing using colloidal silica. Polishing is preferably performed so that atomic steps are observed on the surface of SiC substrate 10. Subsequently, the polished surface is washed with an organic solvent such as isopropyl alcohol. On the other hand, the polished surface of the GaAs substrate 20 polished in step 2 is similarly cleaned using an organic solvent. As the organic solvent, in addition to isopropyl alcohol, alcohols such as methyl alcohol and ethyl alcohol and other organic solvents are used.
The surface of SiC substrate 10 can also be cleaned only without being polished.

次に、図2(c)に示すように、GaAs基板20の研磨面と、SiC基板10の研磨面とが接するように、有機溶媒を介して貼り合わせる。両基板の接触面が接合面となる。この場合、研磨面の有機溶剤を塗布した状態で貼り合わせても良いし、研磨面を有機溶剤で洗浄した後、例えば室温で乾燥させた後に貼り合わせても良い。   Next, as shown in FIG. 2C, bonding is performed through an organic solvent so that the polished surface of the GaAs substrate 20 and the polished surface of the SiC substrate 10 are in contact with each other. The contact surfaces of both substrates become the bonding surfaces. In this case, the polishing surface may be bonded with the organic solvent applied, or may be bonded after the polishing surface is washed with the organic solvent and then dried at room temperature, for example.

GaAs基板20とSiC基板10の貼り合わせは、例えば、研磨板40とSiC基板10を接合面に向かって加圧して行うことが好ましい。この場合、加圧工程でSiC基板10やGaAs基板20が割れるのを防止するために、グラファイトシート等の緩衝材を介して加圧するのが好ましい。緩衝材には、例えば日本カーボン社製のニカフィルム、東洋炭素社製のパーマフォイルやグラフォイルが用いられる。貼り合わせたSiC基板10とGaAs基板20は、容易に剥がれないようになる。   The bonding of the GaAs substrate 20 and the SiC substrate 10 is preferably performed, for example, by pressing the polishing plate 40 and the SiC substrate 10 toward the bonding surface. In this case, in order to prevent the SiC substrate 10 and the GaAs substrate 20 from cracking in the pressurizing step, it is preferable to pressurize through a buffer material such as a graphite sheet. As the buffer material, for example, Nika film manufactured by Nippon Carbon Co., Ltd., permafoil or graph foil manufactured by Toyo Tanso Co., Ltd. is used. The bonded SiC substrate 10 and GaAs substrate 20 are not easily peeled off.

次に、SiC基板10とGaAs基板20とを貼り合わせた状態で、加熱炉等に入れて加熱する。加熱条件は、例えば、200°/時間以下の加熱速度、好ましくは150°/時間で、約800℃の保持温度まで昇温し、少なくとも1時間、好適には12時間程度、この温度で保持する。この後、100°/時間以下の速度、好ましくは70°/時間の速度で降温する。   Next, in a state where the SiC substrate 10 and the GaAs substrate 20 are bonded together, the substrate is heated in a heating furnace or the like. The heating condition is, for example, at a heating rate of 200 ° / hour or less, preferably 150 ° / hour, up to a holding temperature of about 800 ° C. and held at this temperature for at least 1 hour, preferably about 12 hours. . Thereafter, the temperature is lowered at a rate of 100 ° / hour or less, preferably 70 ° / hour.

200°/時間より速い速度で昇温した場合、350℃以上の温度で基板に割れが発生する。一方、200°/時間以下、特に150°/時間以下の速度で昇温した場合は、基板に割れは生じない。   When the temperature is increased at a rate faster than 200 ° / hour, cracks occur in the substrate at a temperature of 350 ° C. or higher. On the other hand, when the temperature is raised at a rate of 200 ° / hour or less, particularly 150 ° / hour or less, the substrate does not crack.

なお、GaAs基板20の膜厚が10μm以下であれば、500°/時間で昇温、降温を行っても、割れ、クラック、剥がれなどは発生しない。更に、GaAs基板20の膜厚が3μm以下では、1000°/時間で昇温、降温を行っても、割れ、クラック等は発生しない。   If the film thickness of the GaAs substrate 20 is 10 μm or less, cracks, cracks, peeling, etc. do not occur even if the temperature is raised and lowered at 500 ° / hour. Furthermore, when the film thickness of the GaAs substrate 20 is 3 μm or less, no cracks, cracks, etc. occur even when the temperature is raised and lowered at 1000 ° / hour.

また、保持温度は、少なくとも500℃より高い温度で、好ましくは800℃程度である。かかる保持温度は、後に行われる半導体素子の製造プロセスの温度より高い温度であることが好ましい。   The holding temperature is at least higher than 500 ° C, preferably about 800 ° C. The holding temperature is preferably higher than the temperature of the semiconductor element manufacturing process performed later.

加熱工程は、SiC基板10とGaAs基板20とを接合面に向かって加圧した状態で行っても良い。   The heating process may be performed in a state where the SiC substrate 10 and the GaAs substrate 20 are pressurized toward the bonding surface.

また、例えば、300℃までは加圧を行わずに昇温し、300℃で加圧しても良い。この場合、SiC基板10とGaAs基板20とを接合面の一部に剥がれが生じても、加圧することにより、SiC基板10とGaAs基板20を再度接合させることができる。300℃では室温よりも容易に接合面の接合が可能であるが、これは加熱により基板が軟化しているためと考えられる。
一方、基板温度が350℃以上に達すると、加圧しても剥がれた接合面の再接合が困難となる。これは、剥がれた部分の基板表面が酸化するためと考えられる。従って、剥がれた接合面を再接合させるには、350℃以下、好適には300℃程度で加圧する必要がある。
Further, for example, the temperature may be increased to 300 ° C. without applying pressure, and the pressure may be increased at 300 ° C. In this case, even if the SiC substrate 10 and the GaAs substrate 20 are peeled off at a part of the bonding surface, the SiC substrate 10 and the GaAs substrate 20 can be bonded again by applying pressure. At 300 ° C., the bonding surfaces can be bonded more easily than at room temperature. This is probably because the substrate is softened by heating.
On the other hand, when the substrate temperature reaches 350 ° C. or higher, it becomes difficult to re-join the peeled joint surfaces even if the substrate is pressurized. This is presumably because the substrate surface at the peeled portion is oxidized. Therefore, in order to rejoin the peeled joint surface, it is necessary to pressurize at 350 ° C. or less, preferably about 300 ° C.

このような、加熱、加圧工程を行うことにより、SiC基板10とGaAs基板20を十分な強度で直接接合させることができる。   By performing such heating and pressurizing steps, the SiC substrate 10 and the GaAs substrate 20 can be directly bonded with sufficient strength.

工程4:図2(d)に示すように、ワックス30を有機溶剤等で溶かし、研磨板40とGaAs基板20とを分離する。以上の工程のより、SiC基板10上に薄膜化したGaAs基板20からなるGaAs層25が積層された半導体基板100を得ることができる。   Step 4: As shown in FIG. 2D, the wax 30 is dissolved with an organic solvent or the like, and the polishing plate 40 and the GaAs substrate 20 are separated. Through the above steps, the semiconductor substrate 100 in which the GaAs layer 25 made of the thinned GaAs substrate 20 is laminated on the SiC substrate 10 can be obtained.

このように、本実施の形態にかかる製造方法を用いることにより、剥離や割れを生じることなく、熱伝導性の良好なSiC基板10上にGaAs層25を形成した半導体基板100を提供することができる。   Thus, by using the manufacturing method according to the present embodiment, it is possible to provide the semiconductor substrate 100 in which the GaAs layer 25 is formed on the SiC substrate 10 having good thermal conductivity without causing peeling or cracking. it can.

また、本実施の形態にかかる製造方法を用いることにより、SiC基板10の上にGaAs層25が、接着剤等の接合材料を介さずに直接接合されるため、例えば半導体素子の製造プロセスで基板が加熱されても接合面が剥がれにくく、強固な接合を得ることができる。また、接着材料を塗布する工程が不要であり、製造工程を複雑化させることなく安価に半導体基板を得ることができる。   Further, by using the manufacturing method according to the present embodiment, the GaAs layer 25 is directly bonded onto the SiC substrate 10 without using a bonding material such as an adhesive. Even if heated, the joint surface is difficult to peel off, and a strong joint can be obtained. In addition, the process of applying the adhesive material is unnecessary, and the semiconductor substrate can be obtained at low cost without complicating the manufacturing process.

また、本実施の形態では、熱伝導性の優れた、GaAs層25を有する半導体基板100を得ることができる。即ち、単結晶SiCの熱伝導は490Wm/Kで、この値は多結晶SiCの2倍、Siの3倍、GaAsの10倍であり、単結晶SiC基板を用いることにより、圧倒的に優れた放熱効果を得ることができる。   Moreover, in this Embodiment, the semiconductor substrate 100 which has the GaAs layer 25 excellent in thermal conductivity can be obtained. That is, the thermal conductivity of single crystal SiC is 490 Wm / K, which is twice that of polycrystalline SiC, three times that of Si, and ten times that of GaAs. By using a single crystal SiC substrate, it was overwhelmingly superior. A heat dissipation effect can be obtained.

また、SiCは、SiやGaAs等のIII−V族半導体に比べて透過波長域が広いため、輻射による熱拡散の効果も期待できる。特に、金属や接着剤などの接着材料を介せずにSiC基板とGaAs層が直接接合されているため、介在物の熱抵抗や接触熱抵抗の影響を受けず、良好な熱拡散を得ることができる。   Further, since SiC has a wider transmission wavelength range than III-V group semiconductors such as Si and GaAs, an effect of thermal diffusion due to radiation can be expected. In particular, since the SiC substrate and the GaAs layer are directly joined without using an adhesive material such as metal or adhesive, good thermal diffusion can be obtained without being affected by the thermal resistance or contact thermal resistance of inclusions. Can do.

また、単結晶SiCは導電性(P型、N型)の制御が可能であり、SiC基板を用いた本実施の形態にかかる半導体基板は、横型の片面電極素子構造、縦型の導電素子構造等に適用することができる。更に、P形、N形のいずれかを選択して接合面にすることができるので、最も熱拡散効率の良い素子構造を選択することができる。   In addition, single crystal SiC can be controlled in conductivity (P type, N type), and the semiconductor substrate according to the present embodiment using an SiC substrate has a horizontal single-sided electrode element structure and a vertical conductive element structure. Etc. can be applied. Furthermore, since either the P-type or the N-type can be selected to form a bonding surface, an element structure with the highest thermal diffusion efficiency can be selected.

実施の形態2.
図5は、全体が200で表される、本発明の実施の形態2にかかる半導体基板の斜視図である。半導体基板200では、SiC基板20の上にGaAs層25が積層されている。
SiC基板10の(1−100)面と、GaAs層25を構成するGaAs基板の(110)面が平行になるように、SiC基板10とGaAs基板20とが張り合わされている。2つの劈開面は、同一面内に配置されるのが好ましい。
Embodiment 2. FIG.
FIG. 5 is a perspective view of the semiconductor substrate according to the second embodiment of the present invention, the whole being represented by 200. FIG. In the semiconductor substrate 200, a GaAs layer 25 is stacked on the SiC substrate 20.
The SiC substrate 10 and the GaAs substrate 20 are bonded so that the (1-100) plane of the SiC substrate 10 and the (110) plane of the GaAs substrate constituting the GaAs layer 25 are parallel to each other. The two cleavage planes are preferably arranged in the same plane.

SiC基板10の(1−100)面と、GaAs基板20の(110)面は、X線などで精度良く測定して決定しても良いが、実際には劈開面を用いるのが好ましい。SiC基板10の(1−100)面も、GaAs基板20の(110)面も、比較的精度良く、劈開により形成することができる。   The (1-100) plane of the SiC substrate 10 and the (110) plane of the GaAs substrate 20 may be determined by measuring with high accuracy using X-rays or the like, but in practice, it is preferable to use a cleavage plane. Both the (1-100) plane of the SiC substrate 10 and the (110) plane of the GaAs substrate 20 can be formed by cleaving with relatively high accuracy.

半導体基板の製造工程は、実施の形態1で述べた工程1〜4と略同じである。工程3に示す基板の貼り合わせ工程において、基板の端に形成した、SiC基板10の(1−100)劈開面と、GaAs基板20の(110)劈開面が平行になるように、2つの基板を貼り合わせる。劈開面は、同一平面に配置することが好ましい。この場合、高温状態では、位置や方向のアライメントが難しくなるため、室温で2つの劈開面が平行であることを確認しながら、貼り合わせを行うのが好ましい。   The manufacturing process of the semiconductor substrate is substantially the same as the processes 1 to 4 described in the first embodiment. In the substrate bonding step shown in step 3, the two substrates are formed so that the (1-100) cleavage surface of the SiC substrate 10 and the (110) cleavage surface of the GaAs substrate 20 formed at the edge of the substrate are parallel to each other. Paste together. The cleavage plane is preferably arranged on the same plane. In this case, since it is difficult to align the position and direction in a high temperature state, it is preferable to perform the bonding while confirming that the two cleavage planes are parallel at room temperature.

SiC基板10の(1−100)劈開面と、GaAs基板20の(110)劈開面を同一平面に配置するために、SiC基板10の表面に垂直な平面を有する治具に、2つの劈開面を押し当てるようにして配置し、貼り合わせればよい。劈開面を平行に配置するための精度は、倍率が100倍の光学顕微鏡または拡大投影機で観察した場合に平行が確認できる程度の精度が好ましい。   In order to arrange the (1-100) cleavage surface of the SiC substrate 10 and the (110) cleavage surface of the GaAs substrate 20 on the same plane, two cleavage surfaces are provided on a jig having a plane perpendicular to the surface of the SiC substrate 10. It is only necessary to place and paste them together. The accuracy for arranging the cleavage planes in parallel is preferably such that the parallelism can be confirmed when observed with an optical microscope or magnification projector having a magnification of 100 times.

このように、SiC基板10とGaAs基板20の劈開面が平行、好適には劈開面が同一平面となるように貼り合わせた半導体基板200では、SiC基板10の(1−100)面とGaAs基板20(GaAs層25)の(110)面を、同時に劈開で形成することが可能となる。これは、半導体基板200を光半導体素子の作製に使用し、素子の分割や、レーザの共振面に劈開面を使用するのに有用である。   Thus, in the semiconductor substrate 200 bonded so that the cleavage planes of the SiC substrate 10 and the GaAs substrate 20 are parallel, and preferably the cleavage plane is the same plane, the (1-100) plane of the SiC substrate 10 and the GaAs substrate. The (110) plane of 20 (GaAs layer 25) can be simultaneously cleaved. This is useful when the semiconductor substrate 200 is used for manufacturing an optical semiconductor element and the element is divided or a cleavage plane is used as a laser resonance surface.

なお、SiC基板10の(1−100)面と、GaAs基板20(GaAs層25)の(110)面は、それぞれの面が必ずしも同一平面内にある必要はなく、両基板の接合面とSiC基板10の(1−100)面との交線と、接合面とGaAs基板20(GaAs層25)の(110面)とが一致していれば、SiC基板10とGaAs基板20とを同時に劈開することが可能となる。   Note that the (1-100) plane of the SiC substrate 10 and the (110) plane of the GaAs substrate 20 (GaAs layer 25) do not necessarily have to be in the same plane. If the line of intersection with the (1-100) surface of the substrate 10 and the bonding surface coincide with the (110 surface) of the GaAs substrate 20 (GaAs layer 25), the SiC substrate 10 and the GaAs substrate 20 are simultaneously cleaved. It becomes possible to do.

実施の形態3.
上述の実施の形態1、2では、工程3の加熱工程を加熱炉やアニール炉を用いて行ったが、SiC基板10の裏面から、SiC基板10を透過するレーザ光を照射して、接合面を加熱しても良い。
かかるレーザ加熱を用いた場合、局所的に接合面を加熱して接合することができ、加熱工程における接合面の剥がれを低減することができる。
Embodiment 3 FIG.
In the above-described first and second embodiments, the heating process of the process 3 is performed using a heating furnace or an annealing furnace. May be heated.
When such laser heating is used, the bonding surfaces can be locally heated and bonded, and peeling of the bonding surfaces in the heating process can be reduced.

なお、実施の形態1〜3では、SiC基板10の上にGaAs基板20を接合する場合について説明したが、InP、GaN、AlGaAs等の他のIII−V族半導体基板を用いた場合でも、同様に接合することができる。   In the first to third embodiments, the case where the GaAs substrate 20 is bonded onto the SiC substrate 10 has been described. However, the same applies to the case where other III-V group semiconductor substrates such as InP, GaN, and AlGaAs are used. Can be joined.

本発明の実施の形態1にかかる半導体基板の斜視図である。1 is a perspective view of a semiconductor substrate according to a first embodiment of the present invention. 本発明の実施の形態1にかかる半導体基板の製造工程の概略図である。It is the schematic of the manufacturing process of the semiconductor substrate concerning Embodiment 1 of this invention. 加熱工程前のGaAs/SiC基板である。It is a GaAs / SiC substrate before a heating process. 加熱工程後で割れが発生したGaAs/SiC基板である。It is a GaAs / SiC substrate in which cracking occurred after the heating process. GaAs層膜厚と基板の反りとの関係である。This is the relationship between the thickness of the GaAs layer and the warpage of the substrate. 本発明の実施の形態2にかかる半導体基板の斜視図である。It is a perspective view of the semiconductor substrate concerning Embodiment 2 of this invention.

符号の説明Explanation of symbols

10 SiC基板、20 GaAs基板、25 GaAs層、30 ワックス、40 研磨板、100、200 半導体基板。   10 SiC substrate, 20 GaAs substrate, 25 GaAs layer, 30 wax, 40 polishing plate, 100, 200 semiconductor substrate.

Claims (11)

炭化珪素基板上にIII−V族半導体層を設けた半導体基板の製造方法であって、
それぞれが表面と裏面とを有するIII−V族半導体基板と炭化珪素基板を準備する工程と、
該III−V族半導体基板の裏面を研磨板に貼り付けて、該III−V族半導体基板を表面から研磨して、膜厚を30μm以下に減じる研磨工程と、
該III−V族半導体基板の表面と該炭化珪素基板の表面の少なくとも一方に有機溶剤を塗布する塗布工程と、
該III−V族半導体基板の表面と該炭化珪素基板の表面を重ねて接合面とする重ね合わせ工程と、
該III−V族半導体基板と該炭化珪素基板とを、該接合面に向かって加圧した状態で200℃/時間より遅い速度で昇温して、該炭化珪素基板の表面に該III−V族半導体基板を直接接合してIII−V族半導体層を形成する加熱工程とを含むことを特徴とする半導体基板の製造方法。
A method for manufacturing a semiconductor substrate in which a group III-V semiconductor layer is provided on a silicon carbide substrate,
Preparing a group III-V semiconductor substrate and a silicon carbide substrate each having a front surface and a back surface;
A polishing step of attaching the back surface of the III-V semiconductor substrate to a polishing plate, polishing the III-V semiconductor substrate from the surface, and reducing the film thickness to 30 μm or less ;
An application step of applying an organic solvent to at least one of the surface of the III-V group semiconductor substrate and the surface of the silicon carbide substrate;
An overlaying step of superposing the surface of the III-V semiconductor substrate and the surface of the silicon carbide substrate to form a bonding surface;
The III-V semiconductor substrate and the silicon carbide substrate are heated at a rate slower than 200 ° C./hour in a state of being pressurized toward the bonding surface, and the III-V substrate is formed on the surface of the silicon carbide substrate. And a heating step of directly joining the group semiconductor substrate to form a group III-V semiconductor layer.
上記研磨工程は、上記III−V族半導体基板の膜厚を2μm以上で15μm以下に減じる工程であることを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the polishing step is a step of reducing the film thickness of the group III-V semiconductor substrate to 2 μm or more and 15 μm or less. 上記塗布工程は、上記有機溶剤を塗布した後に、該有機溶剤が塗布された表面を室温で乾燥させる工程を含むことを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the coating step includes a step of drying the surface coated with the organic solvent at room temperature after coating the organic solvent. 上記加熱工程は、150℃/時間より遅い速度で昇温する工程であることを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the heating step is a step of increasing the temperature at a rate slower than 150 ° C./hour. 上記加熱工程は、少なくとも300℃以下の温度において、上記III−V族半導体基板と上記炭化珪素基板とを上記接合面に向かって加圧し、この加圧状態で加熱する工程であることを特徴とする請求項1に記載の製造方法。   The heating step is a step of pressurizing the III-V group semiconductor substrate and the silicon carbide substrate toward the bonding surface at a temperature of at least 300 ° C. and heating in the pressurized state. The manufacturing method according to claim 1. 上記加熱工程は、上記III−V族半導体基板と上記炭化珪素基板とを、300℃以上で、該III−V族半導体の融点より低い保持温度まで加熱し、該保持温度で保持する工程を含むことを特徴とする請求項1に記載の製造方法。   The heating step includes a step of heating the III-V group semiconductor substrate and the silicon carbide substrate to a holding temperature lower than the melting point of the group III-V semiconductor at 300 ° C. or higher and holding at the holding temperature. The manufacturing method of Claim 1 characterized by the above-mentioned. 上記保持温度が、800℃であることを特徴とする請求項に記載の製造方法。 The manufacturing method according to claim 6 , wherein the holding temperature is 800 ° C. 上記III−V族半導体基板と上記炭化珪素基板とが、それぞれ上記表面と上記裏面との間の側壁面に劈開面を有し、
上記重ね合わせ工程は、該III−V族半導体基板と該炭化珪素基板の該劈開面が同一平面内になるように、該III−V族半導体基板と該炭化珪素基板とを重ねる工程であることを特徴とする請求項1に記載の製造方法。
The III-V group semiconductor substrate and the silicon carbide substrate each have a cleavage plane on a side wall surface between the front surface and the back surface,
The overlapping step is a step of overlapping the group III-V semiconductor substrate and the silicon carbide substrate such that the cleavage plane of the group III-V semiconductor substrate and the silicon carbide substrate are in the same plane. The manufacturing method according to claim 1.
上記III−V族半導体基板の劈開面は(110)面であり、上記炭化珪素基板の劈開面は(1−100)面であることを特徴とする請求項に記載の製造方法。 9. The manufacturing method according to claim 8 , wherein the cleavage plane of the III-V group semiconductor substrate is a (110) plane, and the cleavage plane of the silicon carbide substrate is a (1-100) plane. 上記III−V族半導体が、砒化ガリウムであることを特徴とする請求項1〜のいずれか1項に記載の製造方法。 The group III-V semiconductors, the production method according to any one of claims 1 to 9, characterized in that a gallium arsenide. 炭化珪素基板と、該炭化珪素基板上に積層されたIII−V族半導体層とを含む半導体基板であって、
該炭化珪素基板の上に、該III−V族半導体層が直接接合されていることを特徴とする請求項1に記載の製造方法で作製した半導体基板。
A semiconductor substrate comprising a silicon carbide substrate and a group III-V semiconductor layer laminated on the silicon carbide substrate,
The semiconductor substrate manufactured by the manufacturing method according to claim 1 , wherein the group III-V semiconductor layer is directly bonded onto the silicon carbide substrate.
JP2008256536A 2008-10-01 2008-10-01 Semiconductor substrate manufacturing method and semiconductor substrate Expired - Fee Related JP5441094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256536A JP5441094B2 (en) 2008-10-01 2008-10-01 Semiconductor substrate manufacturing method and semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256536A JP5441094B2 (en) 2008-10-01 2008-10-01 Semiconductor substrate manufacturing method and semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2010087360A JP2010087360A (en) 2010-04-15
JP5441094B2 true JP5441094B2 (en) 2014-03-12

Family

ID=42251001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256536A Expired - Fee Related JP5441094B2 (en) 2008-10-01 2008-10-01 Semiconductor substrate manufacturing method and semiconductor substrate

Country Status (1)

Country Link
JP (1) JP5441094B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004343B2 (en) * 2013-09-13 2016-10-05 日本電信電話株式会社 Manufacturing method of semiconductor device
JP6573451B2 (en) * 2014-12-12 2019-09-11 浜松ホトニクス株式会社 Semiconductor laser unit and semiconductor laser device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183986A (en) * 1985-02-08 1986-08-16 Toshiba Corp Manufacture of semiconductor light emitting device
JP3905935B2 (en) * 1995-09-01 2007-04-18 株式会社東芝 Semiconductor device and method for manufacturing semiconductor device
JPH1041547A (en) * 1996-07-23 1998-02-13 Nec Corp Nitrogen compound semiconductor element
JPH10223496A (en) * 1997-02-12 1998-08-21 Ion Kogaku Kenkyusho:Kk Single-crystal wafer and manufacture thereof
JP2005129825A (en) * 2003-10-27 2005-05-19 Sumitomo Chemical Co Ltd Manufacturing method of compound semiconductor substrate
JP2007036130A (en) * 2005-07-29 2007-02-08 Canon Inc Substrate joining method and apparatus thereof utilizing difference in thermal expansion coefficient
US8334155B2 (en) * 2005-09-27 2012-12-18 Philips Lumileds Lighting Company Llc Substrate for growing a III-V light emitting device
JP5003033B2 (en) * 2006-06-30 2012-08-15 住友電気工業株式会社 GaN thin film bonded substrate and manufacturing method thereof, and GaN-based semiconductor device and manufacturing method thereof
WO2008091010A1 (en) * 2007-01-26 2008-07-31 Shin-Etsu Handotai Co., Ltd. Light-emitting device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2010087360A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP5199525B2 (en) Nitride laser diode structure and manufacturing method thereof
CN104716080B (en) Compound structure and method for forming compound structure
US8664086B2 (en) Semiconductor wafer, semiconductor thin film, and method for manufacturing semiconductor thin film devices
JP2016119489A (en) Method for manufacturing composite substrate
JP6319849B2 (en) Pseudo substrate with improved utilization efficiency of single crystal material
JP2008219019A (en) Manufacturing method of substrate, in particular, substrate for optics, electronics or electron optics, and substrate obtained by the method
JP6772711B2 (en) Semiconductor laminated structures and semiconductor devices
US10396220B2 (en) Device layer thin-film transfer to thermally conductive substrate
JP2013125971A (en) Composite wafer for fabrication of semiconductor devices
TWI310212B (en) Substrate assembly for stressed systems
KR20140072876A (en) Clad material for led light-emitting element holding substrate, and method for manufacturing same
JP5441094B2 (en) Semiconductor substrate manufacturing method and semiconductor substrate
JP2019527477A (en) Method for regenerating donor substrate
CN109585615B (en) Method for stripping gallium nitride epitaxial layer from substrate
JP2009040639A (en) Semiconductor wafer device
JP6327519B2 (en) Method for processing silicon carbide single crystal substrate and silicon carbide single crystal substrate with jig
JP2008166646A (en) Method of manufacturing semiconductor substrate
WO2021199426A1 (en) Polishing method, and production method for semiconductor substrate
JP4902150B2 (en) Membrane transfer method
JP5053252B2 (en) Method for manufacturing a heterostructure comprising at least one thick layer of semiconductor material
WO2022255363A1 (en) Joined body comprising mosaic diamond wafer and semiconductor of different type, method for producing same, and mosaic diamond wafer for use in joined body with semiconductor of different type
JP2012049448A (en) Method of manufacturing nitride semiconductor substrate
JP2002134422A (en) Method for producing nitride semiconductor film, and method for producing nitride semiconductor substrate
JP2020152625A (en) Epitaxial compound composite substrate and method for manufacturing the same
CN113972128A (en) Preparation method of self-supporting substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees