JP5436023B2 - Fuel oil composition for diesel engines - Google Patents

Fuel oil composition for diesel engines Download PDF

Info

Publication number
JP5436023B2
JP5436023B2 JP2009106229A JP2009106229A JP5436023B2 JP 5436023 B2 JP5436023 B2 JP 5436023B2 JP 2009106229 A JP2009106229 A JP 2009106229A JP 2009106229 A JP2009106229 A JP 2009106229A JP 5436023 B2 JP5436023 B2 JP 5436023B2
Authority
JP
Japan
Prior art keywords
fuel
oil
engine
oil composition
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009106229A
Other languages
Japanese (ja)
Other versions
JP2010254796A (en
Inventor
行男 赤坂
康一 松下
真美 串田
昭雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2009106229A priority Critical patent/JP5436023B2/en
Publication of JP2010254796A publication Critical patent/JP2010254796A/en
Application granted granted Critical
Publication of JP5436023B2 publication Critical patent/JP5436023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、ディーゼルエンジン用燃料油組成物、特には、エンジンの運転条件をフィードバック制御するフィードバック制御機構を具えたディーゼルエンジン用の燃料油組成物に関するものである。   The present invention relates to a fuel oil composition for a diesel engine, and more particularly to a fuel oil composition for a diesel engine provided with a feedback control mechanism that feedback-controls engine operating conditions.

自動車用燃料に要求される課題は、時代と共に変化してきているが、近年は「燃料の生産から燃料の消費までの総CO2排出量(WtW−CO2:Well to Wheel)が少ない燃料(CO2対策)」及び「化石燃料の有効利用と多様化(セキュリティー対策)」が、極めて重要になっている。前者に対しては、カーボンフリーとして扱われるバイオ燃料の導入に加えて、エンジン技術と燃料技術の組み合わせによるWtW−CO2の最小化を目指すことが、必要となっている。すなわち、自動車からのCO2排出量(TtW−CO2:Tank to Wheel)の削減を目的として高品質な燃料を追求しても、製造過程でのCO2排出量(WtT−CO2:Well to Tank)が過大になると、WtW−CO2の削減には至らないので、WtW−CO2が最小になる燃料品質の追求が必要である。 Challenges required for automobile fuels have changed with the times, but in recent years, “fuels with low total CO 2 emissions from fuel production to fuel consumption (WtW-CO2: Well to Wheel) (CO 2 Measures) ”and“ Effective use and diversification of fossil fuels (security measures) ”are extremely important. For the former, in addition to the introduction of biofuels treated as carbon-free, it is necessary to aim to minimize WtW-CO2 by a combination of engine technology and fuel technology. That is, even if high-quality fuel is pursued for the purpose of reducing CO 2 emissions from automobiles (TtW-CO2: Tank to Wheel), CO 2 emissions in the manufacturing process (WtT-CO2: Well to Tank) If it becomes excessive, WtW-CO2 cannot be reduced. Therefore, it is necessary to pursue fuel quality that minimizes WtW-CO2.

また、後者(セキュリティー対策)に対しては、石油製品の需要構造の変化(重油需要の激減)に伴って、ディーゼルエンジン用燃料においては、分解系軽油基材(LCO)の有効利用が重要となっている。また、基材の多様化対策の一環として、非石油系であるオイルサンド由来の軽油基材の利用も増加している。しかしながら、該オイルサンド由来の軽油基材やLCOは、芳香族含有量が高く、且つセタン価が低い低質燃料であり、既存のディーゼルエンジンが要求する軽油品質にまで品質を向上(アップグレーディング)させるためには、製造段階で大量のCO2が発生してしまい、且つ製造コストの大幅な上昇が見込まれ、経済性の観点からも好ましくない。 In addition, for the latter (security measures), effective use of cracked diesel oil base (LCO) is important for diesel engine fuel due to changes in the demand structure of petroleum products (the drastic decrease in demand for heavy oil). It has become. In addition, as part of diversification measures for base materials, the use of non-petroleum oil sand-derived light oil base materials is also increasing. However, the light oil base and LCO derived from the oil sand are low-quality fuels with high aromatic content and low cetane number, and improve (upgrade) the quality to the light oil quality required by existing diesel engines. Therefore, a large amount of CO 2 is generated in the production stage, and a significant increase in production cost is expected, which is not preferable from the viewpoint of economy.

一方、ディーゼルエンジン用燃料に対する要求品質は、エンジンの諸元や制御法によって大きく異なることが知られている。例えば、着火性の異なる一連の燃料に対して、圧縮比を各燃料に対して最適化(低着火性燃料に対しては、高い圧縮比に設定)することで、各燃料間の燃焼効率の差異を殆ど無くせることが報告されている(非特許文献1)。また、エンジン内圧力を検出して燃焼状態を把握し、燃料の着火性に見合った燃料噴射時期に制御するエンジン機構(フィードバック制御機構)を装着することで、燃料の着火性(例えば、セタン価)の変化がエンジン性能に過大な影響を与えないようにする技術が開発されている(非特許文献2)。   On the other hand, it is known that the required quality for diesel engine fuel varies greatly depending on engine specifications and control method. For example, by optimizing the compression ratio for each fuel for a series of fuels with different ignitability (high compression ratio is set for low ignitable fuel), the combustion efficiency between the fuels can be improved. It has been reported that the difference can be almost eliminated (Non-patent Document 1). In addition, by equipping an engine mechanism (feedback control mechanism) that detects the internal pressure of the engine, grasps the combustion state, and controls the fuel injection timing that matches the ignitability of the fuel, the ignitability of the fuel (for example, cetane number) ) Has been developed in order to prevent the change of) from excessively affecting the engine performance (Non-patent Document 2).

Hideyuki Ogawa, Fuel ignitability and compression ratio dependence of a premixed charge compression ignition engine, Int. J. Vehicle Design, Vol. 41 No. 1/2/3/4, 2006Hideyuki Ogawa, Fuel ignition and compression ratio dependency of a pre-charged charge compression engine, Int. J. et al. Vehicle Design, Vol. 41 no. 1/2/3/4, 2006 Mamoru Hasegawa, Study on Ignition Timing Control for Diesel Engines Using In−Cylinder Pressure Sensor, SAE Paper 2006−01−0180 (2006)Mamoru Hasegawa, Study on Ignition Timing Control for Diesel Engine Using In-Cylinder Pressure Sensor, SAE Paper 2006-0180 (2006)

したがって、近年のエンジン技術の進歩を考慮すると、アップグレーディングによって低質油の有効利用を図る場合には、既存のディーゼルエンジン諸元や制御を前提にしたエンジンの要求品質までアップグレーディングするのではなく、エンジンと燃料の最適化で望ましい品質を追求することが、WtW−CO2削減の観点から極めて重要である。このような考え方に基づく品質水準の検討例としては、ガソリンのオクタン価の設定がある。一般に、オクタン価を高めることでエンジンの圧縮比を高くすることができるので、自動車の燃費が改善され、自動車からのCO2排出量が削減される。一方、高オクタン価ガソリンを製造すると、製油所でのCO2排出量が増加するので、燃料とエンジンの最適化の追及で、WtW−CO2が最小となるオクタン価が存在することとなり、最適なオクタン価の設定が検討されている。 Therefore, considering the recent progress in engine technology, when trying to use low quality oil effectively by upgrading, instead of upgrading to the required quality of the engine based on the specifications and control of the existing diesel engine, Pursuing desirable quality by optimizing the engine and fuel is extremely important from the viewpoint of WtW-CO2 reduction. An example of studying the quality level based on this concept is setting the octane number of gasoline. Generally, since the compression ratio of the engine can be increased by increasing the octane number, the fuel efficiency of the automobile is improved, and the CO 2 emission from the automobile is reduced. On the other hand, if high-octane gasoline is produced, CO 2 emissions at the refinery will increase. Therefore, pursuing the optimization of fuel and engine, there will be an octane number that minimizes WtW-CO2, and the optimal octane number Setting is being considered.

そこで、低質軽油基材(LCOやオイルサンド由来の軽油留分)を出発原料とし、該原料のアップグレーディングの手段として水素化精製を用いる場合のアップグレーディングの程度は、燃料を使用するエンジン(運転条件を燃料の性状に適合させることができるエンジン)の運転性や排出ガスを損なわず、且つエンジンからのCO2排出量が過大にならない性状の燃料を製造できる水素化精製条件とする必要があるが、水素化精製条件を厳しくするほど製造時のCO2排出量(WtT−CO2)が増大し、且つ製造に伴う経済性も悪化するので、その程度(シビアリティー)は、できるだけマイルドな条件とする必要がある。 Therefore, when using a low-quality gas oil base (light oil fraction derived from LCO or oil sand) as a starting material, and using hydrorefining as a means of upgrading the material, the degree of upgrading is determined by the engine that uses the fuel (operation It is necessary to have hydrorefining conditions that can produce fuel with properties that do not impair the operability and exhaust gas of the engine) that can adapt the conditions to the properties of the fuel and that do not cause excessive CO 2 emissions from the engine. However, the more severe the hydrorefining conditions, the more CO 2 emissions during production (WtT-CO2) will increase and the economics associated with production will deteriorate, so the degree (severity) will be as mild as possible. There is a need to.

そこで、本発明の目的は、エンジンが要求する品質を確保でき、且つ製造時のCO2排出量が少ないディーゼルエンジン用燃料油組成物を提供することにある。 Accordingly, an object of the present invention is to provide a fuel oil composition for a diesel engine that can ensure the quality required by the engine and that has a low CO 2 emission during production.

本発明者らは、上記目的を達成するために鋭意検討した結果、低品質な軽油基材、特には、セタン価が30以下で、全芳香族分が50容量%以上の軽油基材を、特定の蒸留性状を有し、主としてセタン価及び全芳香族分が特定範囲の値となるよう水素化精製して得た燃料を、運転条件を燃料性状に適合させることが可能なエンジン制御機構を有するディーゼルエンジンに用いることで、エンジンの運転性を悪化させたり、排出ガス量を増加させることなく、WtW−CO2を低減できることを見出し、本発明を完成させたるに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a low-quality light oil base, particularly a light oil base having a cetane number of 30 or less and a total aromatic content of 50% by volume or more, An engine control mechanism capable of adapting the operating conditions to the fuel properties of the fuel obtained by hydrorefining so that the cetane number and the total aromatic content are in a specific range, with specific distillation properties It has been found that the use of the diesel engine can reduce WtW-CO2 without deteriorating the operability of the engine or increasing the amount of exhaust gas, and the present invention has been completed.

即ち、本発明の燃料油組成物は、セタン価が30以下で、全芳香族分が50容量%以上の軽油基材を、水素分圧が3〜15MPa、温度が250〜420℃、液空間速度が0.3〜10.0hr -1 、水素/オイル比が100〜2,000L/Lの条件で水素化精製して得た水素化精製油を用いた、
セタン価が34〜50、全芳香族分が10.0〜45.0容量%、沸点範囲が130〜360℃、硫黄分が50質量ppm以下、15℃における密度が0.800〜0.880g/cm3、CO2排出原単位(CO2I)が0.072(CO2−g/kJ)以下であることを特徴とする、エンジンの運転条件をフィードバック制御するフィードバック制御機構を具えたディーゼルエンジン用の燃料油組成物である。
That is, the fuel oil composition of the present invention comprises a light oil base having a cetane number of 30 or less and a total aromatic content of 50% by volume or more, a hydrogen partial pressure of 3 to 15 MPa, a temperature of 250 to 420 ° C., a liquid space. Using hydrorefined oil obtained by hydrotreating under conditions of a speed of 0.3 to 10.0 hr −1 and a hydrogen / oil ratio of 100 to 2,000 L / L,
Cetane number of 34 to 50, total aromatic content of 10.0 to 45.0% by volume, boiling point range of 130 to 360 ° C, sulfur content of 50 mass ppm or less, density at 15 ° C of 0.800 to 0.880 g / Cm 3 , CO 2 emission intensity (CO2I) is 0.072 (CO2-g / kJ) or less, and for diesel engines having a feedback control mechanism for feedback control of engine operating conditions It is a fuel oil composition.

本発明の燃料油組成物によれば、粒子状物質(PM)、NOx等の排出ガスの量を増加させることなく、WtW−CO2を低減することができる。   According to the fuel oil composition of the present invention, WtW-CO2 can be reduced without increasing the amount of exhaust gas such as particulate matter (PM) and NOx.

以下に、本発明の詳細を説明する。本発明のディーゼルエンジン用燃料油組成物は、例えば、接触分解系軽油基材やオイルサンド由来軽油基材のような低質油を原料とし、該原料を水素化精製でアップグレーディングした場合の品質が、以下の性状を有する燃料であり、運転条件を燃料性状に適合させることが可能なディーゼルエンジン用の燃料として用いられることを特徴とする。   Details of the present invention will be described below. The fuel oil composition for a diesel engine of the present invention has, for example, a quality obtained when a low quality oil such as a catalytic cracking light oil base or an oil sand derived light oil base is used as a raw material and the raw material is upgraded by hydrorefining. The fuel has the following properties, and is characterized in that it is used as a fuel for a diesel engine whose operating conditions can be adapted to the fuel properties.

<密度>
本発明の燃料油組成物は、密度が0.800〜0.880g/cm3である。燃料油組成物の密度が0.880g/cm3を超えると、粒子状物質(PM)の排出量が増加して、環境負荷を十分に低減できない。また、密度が高過ぎると、燃料の霧化特性が悪化し、燃焼効率の低下を引き起こす場合があるため、本発明の燃料油組成物は、密度が0.880g/cm3以下、好ましくは0.860g/cm3以下である。一方、密度が0.800g/cm3未満では、容量基準の燃料消費率の悪化が顕著となるので、本発明の燃料油組成物は、密度が0.800g/cm3以上、好ましくは0.820g/cm3以上である。
<Density>
The fuel oil composition of the present invention has a density of 0.800 to 0.880 g / cm 3 . If the density of the fuel oil composition exceeds 0.880 g / cm 3 , the amount of particulate matter (PM) discharged increases and the environmental load cannot be reduced sufficiently. Further, if the density is too high, the atomization characteristics of the fuel are deteriorated and the combustion efficiency may be lowered. Therefore, the fuel oil composition of the present invention has a density of 0.880 g / cm 3 or less, preferably 0. 860 g / cm 3 or less. On the other hand, when the density is less than 0.800 g / cm 3 , the capacity-based fuel consumption rate is significantly deteriorated. Therefore, the fuel oil composition of the present invention has a density of 0.800 g / cm 3 or more, preferably 0.8. It is 820 g / cm 3 or more.

<硫黄分>
本発明の燃料油組成物は、硫黄分が50質量ppm以下であり、好ましくは10質量ppm以下、更に好ましくは1質量ppm以下である。本発明の燃料油組成物は、硫黄分が50質量ppm以下であるため、燃焼生成物である硫黄酸化物が少なく、環境負荷の低減に寄与できる。また、硫黄分は、排出ガス浄化触媒を被毒するので、硫黄分の低減は、排出ガス浄化触媒の性能の維持を通じても、環境負荷の低減に寄与できる。更に、NOx吸蔵還元触媒を装着した車輌においては、該触媒の硫黄被毒の再生に燃料を使用するので、硫黄分の低減は、燃費の向上にも寄与する。そして、これらの効果は、硫黄分が低い程顕著であるため、本発明の燃料油組成物中の硫黄分は、好ましくは10質量ppm以下、更に好ましくは1質量ppm以下である。
<Sulfur content>
The fuel oil composition of the present invention has a sulfur content of 50 mass ppm or less, preferably 10 mass ppm or less, more preferably 1 mass ppm or less. Since the fuel oil composition of the present invention has a sulfur content of 50 ppm by mass or less, there are few sulfur oxides as combustion products, which can contribute to a reduction in environmental burden. Further, since the sulfur content poisons the exhaust gas purification catalyst, the reduction of the sulfur content can contribute to the reduction of the environmental load through the maintenance of the performance of the exhaust gas purification catalyst. Furthermore, in a vehicle equipped with a NOx occlusion reduction catalyst, fuel is used for regeneration of sulfur poisoning of the catalyst. Therefore, reduction of the sulfur content also contributes to improvement of fuel consumption. And since these effects are so remarkable that a sulfur content is low, the sulfur content in the fuel oil composition of this invention becomes like this. Preferably it is 10 mass ppm or less, More preferably, it is 1 mass ppm or less.

<蒸留性状>
本発明の燃料油組成物は、沸点範囲が130〜360℃であり、好ましくは150〜340℃である。留出温度がこの範囲を超えると、エンジン性能への悪影響が見られる。より具体的には、初留温度(IBP)が130℃を下回ると、高温条件下では燃料の噴射系に燃料蒸気が発生し、必要な燃料噴射量を確保できなくなる。また、初留温度が低過ぎると、燃料の取り扱いや燃料の供給システムでの燃料の気化に伴う危険性が増すことからも、初留温度は130℃以上であることが必要である。一方、燃料油組成物の終点(EP)が360℃を超えると、粒子状物質(PM)の排出量が増加して、環境負荷を十分に低減できない。また、終点が高過ぎると、未燃の燃料の一部がオイルパンへと流れ込み、エンジンオイルの希釈を引き起こし易くなるので、本発明の燃料油組成物の終点は360℃以下であることが必要である。なお、特に限定されるものではないが、本発明の燃料油組成物は、燃料噴射ポンプの潤滑性の維持や燃料噴射ノズルの摩耗防止の観点から、終点は300℃以上であることが好ましい。
<Distillation properties>
The fuel oil composition of the present invention has a boiling point range of 130 to 360 ° C, preferably 150 to 340 ° C. If the distillation temperature exceeds this range, an adverse effect on engine performance is observed. More specifically, when the initial distillation temperature (IBP) is lower than 130 ° C., fuel vapor is generated in the fuel injection system under a high temperature condition, and a necessary fuel injection amount cannot be secured. In addition, if the initial distillation temperature is too low, the danger associated with fuel handling and vaporization of the fuel in the fuel supply system increases, so the initial distillation temperature needs to be 130 ° C. or higher. On the other hand, if the end point (EP) of the fuel oil composition exceeds 360 ° C., the amount of particulate matter (PM) discharged increases and the environmental load cannot be reduced sufficiently. Further, if the end point is too high, a part of unburned fuel flows into the oil pan and easily causes dilution of the engine oil. Therefore, the end point of the fuel oil composition of the present invention needs to be 360 ° C. or less. It is. Although not particularly limited, the fuel oil composition of the present invention preferably has an end point of 300 ° C. or higher from the viewpoint of maintaining the lubricity of the fuel injection pump and preventing wear of the fuel injection nozzle.

<セタン価>
本発明の燃料油組成物は、セタン価が34以上、好ましくは36以上である。セタン価が34未満では、エンジンの制御系を燃料の着火性に応じて最適化しても、燃焼効率の低下が避けられないからである。また、セタン価が低すぎると、特に、低温条件下では、着火性の悪化により燃焼変動が顕著に増大するので、本発明の燃料油組成物は、セタン価が34以上、好ましくは36以上である。一方、セタン価がある値以上になると、セタン価の向上に伴う着火遅れの短縮が得られないので、必要以上に高くすることは、エンジン性能上からは無意味である。また、セタン価を高めると、製造時のCO2排出量が増加するばかりではなく、燃料の製造価格が高くなるので、経済性の観点からも、エンジンが要求する最低のセタン価に設定する必要があり、運転条件を燃料性状に適合させることが可能なエンジンでは、燃料油組成物のセタン価を50以下、好ましくは47以下とする。
<Cetane number>
The fuel oil composition of the present invention has a cetane number of 34 or more, preferably 36 or more. This is because if the cetane number is less than 34, a reduction in combustion efficiency cannot be avoided even if the engine control system is optimized in accordance with the ignitability of the fuel. In addition, if the cetane number is too low, combustion fluctuations increase remarkably due to deterioration of ignitability, particularly under low temperature conditions. is there. On the other hand, if the cetane number exceeds a certain value, the ignition delay accompanying the improvement of the cetane number cannot be shortened. Therefore, it is meaningless from the standpoint of engine performance to increase it higher than necessary. In addition, increasing the cetane number not only increases CO 2 emissions during production, but also increases the production price of fuel. From the economic point of view, it is necessary to set the minimum cetane number required by the engine. In an engine in which the operating conditions can be adapted to the fuel properties, the cetane number of the fuel oil composition is 50 or less, preferably 47 or less.

<芳香族>
本発明の燃料油組成物は、全芳香族分が45.0容量%以下であり、好ましくは40.0容量%以下、更に好ましくは35.0容量%以下である。燃料油組成物中の芳香族の含有量が増加すると、粒子状物質(PM)の排出量が増加して、環境負荷を十分に低減できないからである。また、特に限定されるものではないが、2環以上の芳香族が1環芳香族よりもPM排出量の増加への影響が大きいので、本発明の燃料油組成物中の2環以上の芳香族の含有量は、好ましくは11容量%以下、より好ましくは5容量%以下である。なお、石油系軽油では、芳香族含有量と密度には大凡の相関性があり、密度と芳香族含有量の両者が高い燃料では排出ガス(特に、PM)の悪化が顕著であるため、高密度燃料では、全芳香族分は40.0容量%以下が望ましい。
<Aromatic>
The fuel oil composition of the present invention has a total aromatic content of 45.0% by volume or less, preferably 40.0% by volume or less, more preferably 35.0% by volume or less. This is because when the aromatic content in the fuel oil composition increases, the amount of particulate matter (PM) discharged increases and the environmental load cannot be reduced sufficiently. Further, although not particularly limited, since aromatics having two or more rings have a greater influence on the increase in PM emission than single-ring aromatics, aromatics having two or more rings in the fuel oil composition of the present invention. The group content is preferably 11% by volume or less, more preferably 5% by volume or less. In petroleum-based light oil, there is a general correlation between the aromatic content and density, and in fuels with both high density and aromatic content, exhaust gas (especially PM) is significantly deteriorated. In the density fuel, the total aromatic content is desirably 40.0% by volume or less.

<CO2排出原単位(CO2I)>
本発明の燃料油組成物は、燃焼時の二酸化炭素排出量が少なく、下記式(1):
CO2I=1000×{(16×2+12)/12}×(C/100)/(真発熱量)} ・・・ (1)
[式中、Cは、元素分析で求めた炭素の質量割合(%)で、真発熱量(kJ/kg)は、下記式(2):
真発熱量(kJ/kg)=4.184×[8100×C/100+29000×{H/100−O/(8×100)}+2200×0/1000000−600×0/1000000] ・・・ (2)
{式中、Cは元素分析で求めた炭素の質量割合(%)で、Hは元素分析で求めた水素の質量割合(%)で、Oは元素分析で求めた酸素の質量割合(%)である}で示した計算値である]で定義されるCO2排出原単位(CO2I)が0.072(CO2−g/kJ)以下であり、好ましくは0.071(CO2−g/kJ)以下である。エンジンから排出されるCO2量を削減するためには、燃料油組成物の単位発熱量当たりのCO2排出量が少ない必要があるため、本発明の燃料油組成物は、CO2Iが0.072(CO2−g/kJ)以下である。
<CO 2 emission intensity (CO2I)>
The fuel oil composition of the present invention has a low carbon dioxide emission during combustion, and the following formula (1):
CO2I = 1000 × {(16 × 2 + 12) / 12} × (C / 100) / (true calorific value)} (1)
[In the formula, C is the mass ratio (%) of carbon obtained by elemental analysis, and the true calorific value (kJ / kg) is expressed by the following formula (2):
True calorific value (kJ / kg) = 4.184 × [8100 × C / 100 + 29000 × {H / 100−O / (8 × 100)} + 2200 × 0 / 1000000−600 × 0/1000000] (2 )
{In the formula, C is a mass proportion (%) of carbon obtained by elemental analysis, H is a mass proportion (%) of hydrogen obtained by elemental analysis, and O is a mass proportion (%) of oxygen obtained by elemental analysis. The calculated CO 2 emission unit (CO2I) defined in the above is 0.072 (CO2-g / kJ) or less, preferably 0.071 (CO2-g / kJ). It is as follows. In order to reduce the amount of CO 2 emitted from the engine, the CO 2 emission amount per unit calorific value of the fuel oil composition needs to be small, and therefore the CO 2 I of the fuel oil composition of the present invention is 0.072. (CO2-g / kJ) or less.

(燃料油組成物の調製)
本発明の燃料油組成物は、上記の性状を満たすように、分解系軽油基材(LCO)やオイルサンド由来の軽油基材等の低品質な軽油基材、特には、セタン価が30以下で、全芳香族分が50容量%以上の軽油基材を原料に用い、水素化精製することにより調製することができる。すなわち、特定の芳香族濃度を有する軽油、例えば分解系軽油留分(例えば、沸点が120〜400(℃)の留分)を特定の条件で水素化精製することにより、適切なセタン価を有し、しかも残留硫黄分の低い軽油留分を得ることができる。さらに、反応塔を2基に分けて、その中間に既知の硫化水素除去装置を設けて水素化脱硫工程で生じた硫化水素を除去することも有効である。また、本発明の燃料油組成物は、高圧流通式反応器に固定床式触媒を形成した通常の反応装置を使用し、かつ比較的マイルドな反応条件で軽油留分を処理して調製することができる。よって、本発明によれば、例えば余剰の分解系軽油をディーゼル燃料等の軽油留分へ経済的に転化することができる。以下に具体的な方法を記載する。
(Preparation of fuel oil composition)
The fuel oil composition of the present invention has a low quality light oil base material such as a cracked light oil base material (LCO) or a light oil base material derived from oil sand, in particular, a cetane number of 30 or less so as to satisfy the above properties. Thus, it can be prepared by hydrorefining using a light oil base having a total aromatic content of 50% by volume or more as a raw material. That is, a gas oil having a specific aromatic concentration, for example, a cracked gas oil fraction (for example, a fraction having a boiling point of 120 to 400 (° C.)) is hydrorefined under specific conditions to have an appropriate cetane number. In addition, a gas oil fraction having a low residual sulfur content can be obtained. Furthermore, it is also effective to divide the reaction tower into two groups and provide a known hydrogen sulfide removing device in the middle to remove hydrogen sulfide generated in the hydrodesulfurization step. In addition, the fuel oil composition of the present invention is prepared by using a normal reactor in which a fixed bed type catalyst is formed in a high-pressure flow reactor and treating a light oil fraction under relatively mild reaction conditions. Can do. Therefore, according to the present invention, for example, surplus cracking gas oil can be economically converted to a gas oil fraction such as diesel fuel. A specific method is described below.

水素化精製条件としては、水素分圧が3〜15MPa、好ましくは4〜12MPa、より好ましくは5〜10MPaであり、温度が250〜420℃、好ましくは280〜400℃、より好ましくは300〜380℃であり、液空間速度が0.3〜10.0hr-1、好ましくは0.4〜7.0hr-1、より好ましくは0.5〜5.0hr-1であり、水素/オイル比が100〜2,000L/L、好ましくは200〜1,700L/L、より好ましくは300〜1,500L/Lである。 As hydrorefining conditions, the hydrogen partial pressure is 3 to 15 MPa, preferably 4 to 12 MPa, more preferably 5 to 10 MPa, and the temperature is 250 to 420 ° C., preferably 280 to 400 ° C., more preferably 300 to 380. ° C, the liquid space velocity is 0.3 to 10.0 hr -1 , preferably 0.4 to 7.0 hr -1 , more preferably 0.5 to 5.0 hr -1 , and the hydrogen / oil ratio is 100 to 2,000 L / L, preferably 200 to 1,700 L / L, more preferably 300 to 1,500 L / L.

圧力(水素分圧)が3MPa未満であると、触媒の脱硫活性が低下すると共に核水添活性が低下し、所望のセタン価と硫黄濃度を達成できず、逆に15MPaを超えると、過剰な核水添反応が進行してしまい、燃料油製造時のCO2排出量が増大してしまい好ましくない。また、反応温度が250℃未満であると、触媒の脱硫活性や核水添活性が低く、逆に420℃を超えると、炭素析出に伴う触媒の活性劣化が急激に進行し、しかも設備費と運転費が嵩む。また、液空間速度が10.0hr-1を超えると、触媒と原料油の接触時間が短くなり過ぎ、脱硫反応や核水添反応が十分に行われないために生成油の残留硫黄分が多くなり、逆に0.1hr-1未満では、必要以上に接触時間が長くなり過ぎ、処理効率が低下する。また、水素/オイル比が100L/L未満であると、十分に脱硫反応が進まず、逆に2,000L/Lを超えると、過剰の水素を消費することになるので、処理コストが増大し不経済である。 If the pressure (hydrogen partial pressure) is less than 3 MPa, the desulfurization activity of the catalyst is lowered and the nuclear hydrogenation activity is lowered, and the desired cetane number and sulfur concentration cannot be achieved. Since the nuclear hydrogenation reaction proceeds, the amount of CO 2 emission during the production of fuel oil increases, which is not preferable. In addition, if the reaction temperature is less than 250 ° C., the desulfurization activity and nuclear hydrogenation activity of the catalyst are low. Conversely, if the reaction temperature exceeds 420 ° C., the catalyst activity deteriorates rapidly due to carbon deposition, and the equipment cost increases. Operating costs increase. In addition, when the liquid space velocity exceeds 10.0 hr −1 , the contact time between the catalyst and the raw material oil becomes too short, and the desulfurization reaction and the nuclear hydrogenation reaction are not sufficiently performed. On the other hand, if it is less than 0.1 hr −1 , the contact time becomes excessively longer than necessary, and the processing efficiency decreases. Further, if the hydrogen / oil ratio is less than 100 L / L, the desulfurization reaction does not proceed sufficiently. Conversely, if the hydrogen / oil ratio exceeds 2,000 L / L, excessive hydrogen is consumed, which increases the processing cost. It is uneconomical.

本発明の燃料油組成物の調製に使用する水素化精製触媒としては、特に限定されるものではないが、以下に例示する担体に金属を担持した触媒が好ましい。担体としては種々のものが使用できるが、例えば、シリカ、アルミナ、ボリア、マグネシア、チタニア、ゼオライトなどの無機酸化物が挙げられる。これらの無機酸化物は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。   Although it does not specifically limit as a hydrorefining catalyst used for preparation of the fuel oil composition of this invention, The catalyst which carry | supported the metal on the support | carrier illustrated below is preferable. Various carriers can be used, and examples thereof include inorganic oxides such as silica, alumina, boria, magnesia, titania and zeolite. These inorganic oxides may be used alone or in combination of two or more.

本発明の燃料油組成物の調製に使用する水素化精製触媒としては、上記担体に6族金属、8族金属から選ばれる少なくとも1種の金属を担持した触媒が好ましい。6族金属としては、モリブデン、タングステン、8族金属としては、コバルト、ニッケル、白金、パラジウム、ロジウム、ルテニウム、イリジウム、インジウム、オスミウム、鉄が挙げられる。更に、上記水素化精製触媒には、必要に応じて、6族金属及び8族金属からなる活性金属に加えて、リン、ホウ素、亜鉛、ジルコニア等を含ませることができる。   The hydrorefining catalyst used for the preparation of the fuel oil composition of the present invention is preferably a catalyst in which at least one metal selected from Group 6 metals and Group 8 metals is supported on the carrier. Examples of the Group 6 metal include molybdenum and tungsten. Examples of the Group 8 metal include cobalt, nickel, platinum, palladium, rhodium, ruthenium, iridium, indium, osmium, and iron. Furthermore, the hydrorefining catalyst may contain phosphorus, boron, zinc, zirconia, or the like, in addition to the active metal composed of Group 6 metal and Group 8 metal, as necessary.

上記触媒の平均細孔径は、60〜120Åであることが好ましい。平均細孔径が大きすぎると、細孔内への硫黄化合物の拡散性は良いものの、触媒の比表面積が小さくなるため、脱硫活性が低下するので好ましくなく、逆に小さすぎると分子の拡散抵抗が高くなり、同様に脱硫活性が低下するので好ましくない。   The average pore diameter of the catalyst is preferably 60 to 120 mm. If the average pore diameter is too large, the diffusibility of the sulfur compound into the pores is good, but the specific surface area of the catalyst is small, so the desulfurization activity is reduced, which is not preferable. Since it becomes high and desulfurization activity falls similarly, it is not preferable.

また、本発明の燃料油組成物は、上記の水素化精製により得た水素化精製油を用い、さらに、ノルマルパラフィン系、イソパラフィン系、並びにナフテン系の基材や溶剤を1種類または複数種類添加して調製することもできる。このような基材や溶剤の例としては、天燃ガスなどから合成ガス(水素と一酸化炭素)を経てFischer-Tropsh反応(FT合成)させて製造できるGTL、植物油由来の油脂分を石油精製で用いられるような水素化触媒などで水素化精製または水素化分解で製造できるHVD、JOMOサンエナジーを通じて購入できるノルマルパラフィン系溶剤であるSHNPなどが挙げられる。これらの基材や溶剤は芳香族が極端に少ない(または、全く含まない)、着火性が良い、CO2排出原単位が小さいなどの特徴を有しており、望ましい燃料性状を得るために、低質油の水素化精製油に混合して使用することが出来る。しかしながら、これらの基材や溶剤は製造時のCO2排出量が、石油系基材よりも多いので、その添加量は、これらの基材や溶剤と低質油の水素化精製油との混合物を製造する時のCO2排出量がエンジンから排出されるCO2排出量を上回らないように、すなわち、燃料の製造から消費までの総CO2排出量が増大しないように、必要最小限の添加量とする必要がある。 The fuel oil composition of the present invention uses the hydrorefined oil obtained by the above hydrorefining, and further adds one or more kinds of normal paraffin-based, isoparaffin-based and naphthenic base materials and solvents. It can also be prepared. Examples of such base materials and solvents include GTL that can be manufactured from natural gas through synthetic gas (hydrogen and carbon monoxide) and Fischer-Tropsh reaction (FT synthesis), and refined oils and fats derived from vegetable oil. Examples include HVD that can be produced by hydrorefining or hydrocracking with a hydrogenation catalyst such as those used in the above, and SHNP that is a normal paraffinic solvent that can be purchased through JOMO Sun Energy. These base materials and solvents have features such as extremely low aromaticity (or no inclusion), good ignitability, and low CO 2 emission basic unit. In order to obtain desirable fuel properties, It can be used by mixing with low quality hydrorefined oil. However, since these substrates and solvents have a higher CO 2 emission during production than petroleum-based substrates, the amount added is a mixture of these substrates and solvents and low-grade hydrorefined oil. so as not to exceed the CO 2 emissions CO 2 emissions discharged from the engine in the preparation, i.e., such that the total CO 2 emissions from the production of fuel to consumption is not increased, the amount of the minimum necessary It is necessary to.

<添加剤>
なお、上記方法で得られた燃料油組成物には、低温流動性向上剤、耐摩耗性向上剤、セタン価向上剤、酸化防止剤、金属不活性化剤、腐食防止剤等の公知の燃料添加剤を添加してもよい。低温流動性向上剤としては、エチレン共重合体などを用いることができるが、特には、酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなどの飽和脂肪酸のビニルエステルが好ましく用いられる。耐摩耗性向上剤としては、例えば長鎖脂肪酸(炭素数12〜24)又はその脂肪酸エステルが好ましく用いられ、10〜500質量ppm、好ましくは50〜100質量ppmの添加量で十分に耐摩耗性が向上する。また、セタン価向上剤としては、アルキルナイトレートが100〜5000質量ppmの添加量で広く用いられているが、パーオキサイド(例えば、ジターシャリーブチルパーオキサイド)もセタン価向上効果があることがあり、有効である。
<Additives>
The fuel oil composition obtained by the above method includes known fuels such as low-temperature fluidity improvers, wear resistance improvers, cetane number improvers, antioxidants, metal deactivators, and corrosion inhibitors. Additives may be added. As the low temperature fluidity improver, an ethylene copolymer or the like can be used. In particular, a vinyl ester of a saturated fatty acid such as vinyl acetate, vinyl propionate or vinyl butyrate is preferably used. As the wear resistance improver, for example, a long-chain fatty acid (carbon number 12 to 24) or a fatty acid ester thereof is preferably used, and the wear resistance is sufficient with an addition amount of 10 to 500 ppm by mass, preferably 50 to 100 ppm by mass. Will improve. In addition, as the cetane number improver, alkyl nitrate is widely used with an addition amount of 100 to 5000 ppm by mass, but peroxide (for example, ditertiary butyl peroxide) may also have an effect of improving cetane number. ,It is valid.

<フィードバック制御機構付きディーゼルエンジン>
上述した本発明の燃料油組成物は、エンジンの運転条件をフィードバック制御するフィードバック制御機構を具えたディーゼルエンジンに用いられる。該フィードバック制御機構は、エンジンの運転条件をフィードバック制御できる限り特に限定されない。例えば、該フィードバック制御機構としては、エンジンの運転条件を制御する運転条件制御手段と、実際の燃料の燃焼状態を検出する燃焼状態検出手段と、実際の燃料の燃焼状態が目的の燃焼状態となるように、上記運転条件制御手段をフィードバック制御するフィードバック制御手段とを具えるフィードバック制御機構が挙げられる。ここで、エンジンの運転条件としては、例えば、圧縮比、燃料噴射パターン制御等が挙げられる。
<Diesel engine with feedback control mechanism>
The above-described fuel oil composition of the present invention is used in a diesel engine having a feedback control mechanism that feedback-controls engine operating conditions. The feedback control mechanism is not particularly limited as long as the engine operating conditions can be feedback controlled. For example, as the feedback control mechanism, an operating condition control means for controlling the operating condition of the engine, a combustion condition detecting means for detecting the actual combustion state of the fuel, and the actual combustion condition of the fuel become the target combustion condition. As described above, there is a feedback control mechanism including feedback control means for performing feedback control on the operation condition control means. Here, examples of the operating condition of the engine include a compression ratio and fuel injection pattern control.

上記フィードバック制御機構付きディーゼルエンジンは、エンジンの運転条件をフィードバック制御する機構を具えるため、許容できる燃料性状の範囲が広く、従来のディーゼルエンジンの要求性状を満たさない燃料でも使用することができる。上述した本発明の燃料油組成物は、従来のディーゼルエンジンの要求性状を満たさないものの、フィードバック制御機構付きディーゼルエンジンの要求性状を満たすため、フィードバック制御機構付きディーゼルエンジンに使用できる。そして、上述した本発明の燃料油組成物は、製油所における製造時のCO2排出量が従来の軽油に比べて少ないため、製造時のCO2排出量とエンジンからのCO2排出量の合計で見た場合、従来の軽油よりも、WtW−CO2(合計でのCO2排出量)を低減できる。 Since the diesel engine with the feedback control mechanism includes a mechanism for feedback control of the operating condition of the engine, the allowable fuel property range is wide, and the fuel that does not satisfy the requirement property of the conventional diesel engine can be used. Although the above-described fuel oil composition of the present invention does not satisfy the requirements of a conventional diesel engine, it can be used in a diesel engine with a feedback control mechanism in order to satisfy the requirements of a diesel engine with a feedback control mechanism. The fuel oil composition of the present invention described above, since CO 2 emissions during production in refineries is small as compared with the conventional gas oil, the total CO 2 emissions from the production time of CO 2 emissions and engine If in saw than conventional light oil, it can be reduced WtW-CO2 (CO 2 emissions in total).

上記フィードバック制御機構付きディーゼルエンジンとしては、燃焼室に装着した圧力センサー(例えば、燃料噴射装置に具備する方法が知られている:非特許文献2)とクランク角度検出器で、燃焼室内圧力履歴を計測して、着火遅れ、熱発生率の最大値、圧力上昇率の最大値などの燃焼特性を算出して、燃料の噴射特性(例えば、パイロット噴射の時期やその噴射量)を調整して、燃料性状の変化がエンジン内燃焼に及ぼす影響を制御するエンジンが好ましい。   As a diesel engine with a feedback control mechanism, a pressure sensor (for example, a method provided in a fuel injection device known in a fuel injection device) mounted in a combustion chamber and a crank angle detector are used to record a pressure history in the combustion chamber. Measure and calculate combustion characteristics such as ignition delay, maximum value of heat generation rate, maximum value of pressure rise rate, and adjust fuel injection characteristics (for example, pilot injection timing and its injection amount) An engine that controls the effect of changes in fuel properties on internal combustion is preferred.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

<軽油組成物の調製>
まず以下のようにして、評価試験のために用いる燃料油組成物(燃料−1〜燃料−8)を調製した。これら燃料−1〜燃料−8の組成等の分析値を表1に示す。
<Preparation of light oil composition>
First, fuel oil compositions (fuel-1 to fuel-8) used for the evaluation test were prepared as follows. Table 1 shows analytical values of the composition of these fuel-1 to fuel-8.

・燃料−1:接触分解系軽油基材(LCO)・・・出発原料 ・ Fuel-1: Catalytic cracking gas oil base material (LCO) ... starting material

・燃料−2:LCOを水素化分解した燃料A[LCOを原料として、アルミナ担体にNi、Mo、Pが担持された触媒(水素化精製触媒)をA塔に、アルミナとUSYゼオライトからなる担体にNiとMoが担持された触媒(水素化分解触媒)をB塔に用い、A塔での反応温度360(℃)、B塔での反応温度400(℃)、水素分圧5(MPa)、水素/オイル比1400(NL/L)、通油量0.5(1/h)で水素化分解した製品の140〜360(℃)留出分]。なお、水素化精製触媒の組成は、Mo 12.3重量%、Ni 3.5重量%、P 2.0重量%、Al 43.3重量%、水素化分解触媒の組成は、Mo 7.1重量%、Ni 3.0重量%、Si 15.8重量%、Al 23.5重量%であった。また、この水素化精製触媒と水素化分解触媒の細孔特性を窒素ガス吸着法で測定したところ、水素化精製触媒では、比表面積が185m2/g、細孔直径2〜60nmの範囲にある細孔の容積が0.415mL/g、中央細孔直径は7.9nmであり、水素化分解触媒では、比表面積が387m2/g、細孔直径2〜60nmの範囲にある細孔の容積が0.543mL/g、中央細孔直径は9.6nmであった。 ・ Fuel-2: Fuel A obtained by hydrocracking LCO [A catalyst consisting of LCO as a raw material and Ni, Mo, P supported on an alumina carrier (hydrorefining catalyst) in the A tower, a carrier comprising alumina and USY zeolite A catalyst (hydrocracking catalyst) carrying Ni and Mo is used in column B, reaction temperature 360 (° C.) in column A, reaction temperature 400 (° C.) in column B, and hydrogen partial pressure 5 (MPa). , 140 to 360 (° C.) distillate of a product hydrocracked at a hydrogen / oil ratio of 1400 (NL / L) and an oil flow rate of 0.5 (1 / h). The composition of the hydrorefining catalyst is 12.3% by weight of Mo, 3.5% by weight of Ni, 2.0% by weight of P, 43.3% by weight of Al, and the composition of the hydrocracking catalyst is Mo 7.1. % By weight, 3.0% by weight of Ni, 15.8% by weight of Si, and 23.5% by weight of Al. Further, when the pore characteristics of the hydrorefining catalyst and hydrocracking catalyst were measured by a nitrogen gas adsorption method, the hydrorefining catalyst had a specific surface area of 185 m 2 / g and a pore diameter of 2 to 60 nm. The pore volume is 0.415 mL / g, the center pore diameter is 7.9 nm, and the hydrocracking catalyst has a specific surface area of 387 m 2 / g and a pore volume in the range of 2 to 60 nm. Was 0.543 mL / g, and the median pore diameter was 9.6 nm.

・燃料−3:LCOを水素化精製した燃料B[LCOを原料として、燃料−2の製造に用いた触媒の存在下で、A塔での反応温度320(℃)、B塔での反応温度355(℃)、水素分圧7(MPa)、水素/オイル比1400、通油量0.5(1/h)で水素化精製した製品の140〜360(℃)留出分] Fuel-3: Fuel B obtained by hydrorefining LCO [In the presence of the catalyst used for the production of fuel-2 using LCO as a raw material, reaction temperature 320 (° C.) in tower A, reaction temperature in tower B 355 (° C.), hydrogen partial pressure 7 (MPa), hydrogen / oil ratio 1400, oil-purified product 140-360 (° C.) distillate]

・燃料−4:LCOを水素化精製した燃料C[LCOを原料として、Ni、Mo系触媒の存在下で、反応温度340(℃)、水素分圧8(MPa)、水素/オイル比300、通油量0.9(1/h)で水素化精製した製品の140〜360(℃)留出分] Fuel-4: Fuel C obtained by hydrorefining LCO [using LCO as a raw material, in the presence of Ni, Mo-based catalyst, reaction temperature 340 (° C.), hydrogen partial pressure 8 (MPa), hydrogen / oil ratio 300, 140-360 (° C) distillate of hydrorefined product with oil flow rate 0.9 (1 / h)]

・燃料−5:上述の燃料−4を96容量%に、FT合成で製造したGTL{(株)JOMOサンエナジーを通じてモスガス品を購入。セタン価=75、硫黄<1質量%、芳香族<1質量%}を4容量%混合し、該混合燃料にアルキルナイトレートセタン価向上剤を600容量ppm添加した。 ・ Fuel-5: GTL produced by FT synthesis with 96% by volume of the above-mentioned fuel-4 {Moss gas product purchased through JOMO Sun Energy Co., Ltd. 4% by volume of cetane number = 75, sulfur <1% by mass, aromatic <1% by mass} was mixed, and 600 ppm by volume of alkyl nitrate cetane improver was added to the mixed fuel.

・燃料−6:LCOを水素化精製した燃料D[LCOを原料として、Ni、Mo系触媒の存在下で、反応温度300(℃)、水素分圧8(MPa)、水素/オイル比300、通油量0.9(1/h)で水素化精製した製品の140〜360(℃)留出分] Fuel-6: Fuel D obtained by hydrorefining LCO [LCO is used as a raw material in the presence of Ni, Mo-based catalyst, reaction temperature 300 (° C.), hydrogen partial pressure 8 (MPa), hydrogen / oil ratio 300, 140-360 (° C) distillate of hydrorefined product with oil flow rate 0.9 (1 / h)]

・燃料−7:減圧蒸留で得られた減圧軽油留分を水素化分解した燃料[減圧軽油を原料とし、前述の水素化精製触媒をA塔に、USYゼオライト担体にPtとPdを担持した水素化分解触媒をB塔に用いて、A塔での反応温度320(℃)、B塔での反応温度210(℃)、水素分圧5(MPa)、水素/オイル比450(NL/L)、通油量1.0(1/h)で水素化分解した製品の140〜360(℃)留出分]。なお、水素化分解触媒の組成は、Pd 0.71重量%、Pt 0.25重量%、Si 22.6重量%、Al 16.7重量%であった。 Fuel-7: Fuel obtained by hydrocracking a vacuum gas oil fraction obtained by distillation under reduced pressure [hydrogen using a vacuum gas oil as a raw material, the above-mentioned hydrorefining catalyst as the A tower, and Pt and Pd supported on the USY zeolite carrier Using the cracking catalyst in the B tower, the reaction temperature 320 (° C.) in the A tower, the reaction temperature 210 (° C.) in the B tower, the hydrogen partial pressure 5 (MPa), the hydrogen / oil ratio 450 (NL / L) , 140-360 (° C.) distillate of the product hydrocracked at an oil flow rate of 1.0 (1 / h)]. The composition of the hydrocracking catalyst was 0.71 wt% Pd, 0.25 wt% Pt, 22.6 wt% Si, and 16.7 wt% Al.

・燃料−8:市販 JIS 2号軽油 ・ Fuel-8: Commercial JIS No. 2 diesel oil

<燃料の性状分析>
・密度:JIS K2249「原油及び石油製品の密度試験法」
・蒸留性状:JIS K2254「蒸留試験法」
・硫黄分:JIS K2541−6「硫黄分試験法(紫外蛍光法)」
・全芳香族分、2環以上の芳香族分:石油学会法JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」
・セタン価:JIS K2280「石油製品−燃料油−オクタン価およびセタン価試験方法並びにセタン指数算出法」
・H分とC分:有機元素分析装置(LECO社製CHN−1000型)を用いて測定した。
・CO2排出原単位(CO2I):元素分析で求めた炭素の質量割合、水素の質量割合、酸素の質量割合を用いて、上記式(1)及び式(2)に従って算出した。
<Fuel property analysis>
・ Density: JIS K2249 “Density test method for crude oil and petroleum products”
・ Distillation properties: JIS K2254 "Distillation test method"
・ Sulfur content: JIS K2541-6 “Sulfur content test method (ultraviolet fluorescence method)”
-Total aromatic content, aromatic content of 2 or more rings: Petroleum Society method JPI-5S-49-97 "Petroleum products-Hydrocarbon type test method-High performance liquid chromatographic method"
-Cetane number: JIS K2280 "Petroleum products-Fuel oil-Octane number and cetane number test method and cetane index calculation method"
-H component and C component: Measured using an organic element analyzer (CHN-1000 type manufactured by LECO).
CO 2 emission basic unit (CO2I): Calculated according to the above formulas (1) and (2) using the mass ratio of carbon, the mass ratio of hydrogen, and the mass ratio of oxygen determined by elemental analysis.

<供試機関諸元と運転条件>
気筒数:1
排気量:1007(cm3
圧縮比:16及び20に設定
燃料噴射系:パイロット噴射や主噴射時期可変
噴射圧:150(MPa)
<Test engine specifications and operating conditions>
Number of cylinders: 1
Displacement: 1007 (cm 3 )
Compression ratio: Set to 16 and 20 Fuel injection system: Pilot injection and variable main injection timing Injection pressure: 150 (MPa)

<エンジン性能評価方法>
燃焼解析:圧力センサーで燃焼室内圧力を検出後、燃焼挙動を解析
排出ガス:堀場製排出ガス分析装置を用いて、排出ガス中のPM、NOx、HC、CO、CO2を分析
<Engine performance evaluation method>
Combustion analysis: Analyzing combustion behavior after detecting the pressure in the combustion chamber with a pressure sensor Exhaust gas: Analyzing PM, NOx, HC, CO, CO 2 in exhaust gas using an exhaust gas analyzer manufactured by Horiba

<エンジンからのCO2排出量及び排出ガス量、並びに製造時のCO2排出量の評価方法>
圧縮比を16及び20に設定して、回転速度を1300(rpm)に固定し、各燃料で燃焼効率が最大になる燃料噴射パターンを探しつつ、各燃料の燃料消費率(燃料消費量と図示平均有効圧力から算出)を求めた。また、各燃料について、燃焼効率が最大になる条件下で測定した燃料消費率と燃料のH/C比から「エンジンから排出される最小CO2量」を求めた。さらに、排出ガス中のCO2を直接測定して、同上での測定結果を確認した。一方、排出ガスは、燃料消費率が最小となるエンジン条件下で測定した。
<Methods for evaluating CO 2 emissions and emissions from engines, and CO 2 emissions during production>
The compression ratio is set to 16 and 20, the rotational speed is fixed to 1300 (rpm), and the fuel consumption rate (the fuel consumption amount and the figure are shown) of each fuel while searching for the fuel injection pattern that maximizes the combustion efficiency with each fuel Calculated from the mean effective pressure). For each fuel, the “minimum amount of CO 2 emitted from the engine” was determined from the fuel consumption rate measured under conditions that maximize the combustion efficiency and the H / C ratio of the fuel. Furthermore, CO 2 in the exhaust gas was directly measured, and the measurement result was confirmed. On the other hand, the exhaust gas was measured under engine conditions where the fuel consumption rate was minimized.

なお、エンジン試験での各燃料からのCO2排出量評価は、市販軽油JIS 2号軽油(燃料−8)を基準に、これよりもCO2排出量が多い燃料を(×)、同等な燃料を(△)、少ない燃料を(○)として、また、燃焼変動が大きくて運転性が悪く極端に燃料消費量が悪化した燃料を(××)と表した。さらに、排出ガスに関しても市販軽油と相対的な評価を行い、排出ガス(主に、PM)量が多い燃料を(×)、同等な燃料を(△)、少ない燃料を(○)、極端に多い燃料を(××)とした。 In addition, the evaluation of CO 2 emissions from each fuel in the engine test is based on the commercially available diesel oil JIS No. 2 diesel oil (Fuel-8) as a reference (×) for fuel with more CO 2 emissions than this, equivalent fuel Is represented by (Δ), a small amount of fuel is represented by (◯), and a fuel with a large fluctuation in combustion and poor operability and extremely deteriorated fuel consumption is represented by (XX). In addition, exhaust gas is evaluated relative to commercial diesel oil, fuel with a large amount of exhaust gas (mainly PM) (×), equivalent fuel (△), fuel with small amount (○), A large amount of fuel was designated as (XX).

一方、製造時のCO2排出量は、LCOを水素化精製する条件である温度や水素消費量などから、最もマイルドな水素化精製条件である燃料−6を製造する時に製油所で排出されたCO2量を基準に、各燃料製造に伴うCO2排出量を相対的に評価し、CO2排出量が少ない燃料を(○)、CO2排出量の増分が軽微な燃料を(△)、CO2排出量が顕著に増大した燃料を(×)とした。これらの結果を表1に示す。 On the other hand, CO 2 emissions during production were exhausted at refineries when producing fuel-6, which is the mildest hydrorefining condition, based on conditions such as temperature and hydrogen consumption that are conditions for hydrotreating LCO. based on the amount of CO 2, relatively evaluated CO 2 emissions from the fuel production, CO 2 emissions and less fuel (○), CO 2 emissions increment minor fuel (△), The fuel whose CO 2 emission was remarkably increased was designated as (x). These results are shown in Table 1.


Figure 0005436023
Figure 0005436023

エンジンの運転条件を燃料性状に適合させることが可能なエンジンでは、燃料性状の変化へのロバスト性が大きく、既存のエンジンよりも広範囲な性状の燃料を許容できるが、LCO単体(燃料−1)では、水素化精製を行わないので製造時のCO2排出量評価は(○)であるが、運転性の顕著な悪化に加えて排出ガス量も極めて顕著に増大するため、使用できない。また、製造時のCO2排出量が比較的少ないマイルドな条件下で水素化精製した燃料(燃料−4、燃料−6)では、エンジンからの排出ガスの悪化に加えて、CO2排出量も増大するので、許容できる品質水準とはなっていない。 An engine that can adapt the operating conditions of the engine to the fuel properties is more robust to changes in the fuel properties and can tolerate a wider range of properties than existing engines, but LCO alone (Fuel-1) Then, since hydrorefining is not performed, the evaluation of CO 2 emission during production is (◯). However, in addition to the remarkable deterioration of operability, the amount of exhaust gas increases remarkably, so that it cannot be used. Also, the fuel CO 2 emissions during manufacturing was purified hydrogenated with relatively little mild conditions (fuel -4, fuel -6) In addition to the deterioration of exhaust gas from the engine, CO 2 emissions Since it increases, it is not an acceptable quality level.

水素化精製のシビアリティーを高めた燃料(燃料−2、燃料−3)では、エンジンの運転性、排出ガス量、CO2排出量が、ほぼ市販軽油(燃料−8)と同等となり、同エンジン用燃料として十分な品質を有している。また、燃料−4と同等の水素化精製条件で処理した燃料でも、セタン価の向上や芳香族含有量の低減を目的にした最小限(製造時のCO2を最小とする)の改質を行うことで、許容できる燃料品質となる(燃料−5)。一方、水素化精製のシビアリティーを一段と高めた燃料−7では、エンジンからの排出ガスが比較的少なく、且つCO2排出量がわずかに少なかったが、製造時のCO2排出量が顕著に多く、且つ燃料製造に係わる経済性の観点からも劣位にあり、燃料の製造から消費までを総合的に判断する上述の燃料−2、燃料−3よりも劣っている。すなわち、燃料−7では、過剰品質であると判断される。 In the fuel with increased severe Rithy hydrotreating (fuel -2, fuel -3), the operation of the engine, the amount of exhaust gas, CO 2 emissions, it is equivalent to approximately commercial diesel (fuel -8), the engine It has sufficient quality as a fuel for use. In addition, even fuel processed under hydrorefining conditions equivalent to that of Fuel-4 can be reformed to the minimum (to minimize CO 2 during production) for the purpose of improving the cetane number and reducing the aromatic content. By doing so, the fuel quality is acceptable (Fuel-5). On the other hand, the fuel -7 enhanced further Severe Rithy hydrorefining, a relatively small exhaust gas from the engine, and although CO 2 emissions was slightly less, remarkably many CO 2 emissions during manufacturing In addition, it is inferior from the viewpoint of economics related to fuel production, and is inferior to the above-described fuel-2 and fuel-3, which comprehensively judge from fuel production to consumption. That is, it is determined that the fuel-7 is of excessive quality.

したがって、燃料の製造から消費までを総合的に判断すると、エンジン内燃焼を制御できる機構を有するエンジンに望ましい燃料は、水素化精製の程度を燃料−2や燃料−3程度とした燃料及び水素化精製条件の制御に加えて添加剤などで改質を行って燃料−5程度の燃料品質とした燃料が、最適である。   Therefore, when comprehensively judging from the production to consumption of fuel, the fuel desirable for an engine having a mechanism capable of controlling the combustion in the engine is the fuel and hydrogenation whose hydrorefining degree is about fuel-2 or fuel-3. A fuel having a fuel quality of about fuel-5 by reforming with additives in addition to controlling the refining conditions is optimal.

Claims (1)

セタン価が30以下で、全芳香族分が50容量%以上の軽油基材を、水素分圧が3〜15MPa、温度が250〜420℃、液空間速度が0.3〜10.0hr -1 、水素/オイル比が100〜2,000L/Lの条件で水素化精製して得た水素化精製油を用いた、
セタン価が34〜50、全芳香族分が10.0〜45.0容量%、沸点範囲が130〜360℃、硫黄分が50質量ppm以下、15℃における密度が0.800〜0.880g/cm3、CO2排出原単位が0.072(CO2−g/kJ)以下であることを特徴とする、エンジンの運転条件をフィードバック制御するフィードバック制御機構を具えたディーゼルエンジン用の燃料油組成物。
A gas oil base having a cetane number of 30 or less and a total aromatic content of 50% by volume or more, a hydrogen partial pressure of 3 to 15 MPa, a temperature of 250 to 420 ° C., and a liquid space velocity of 0.3 to 10.0 hr −1 , Using a hydrorefined oil obtained by hydrorefining under a hydrogen / oil ratio of 100 to 2,000 L / L,
Cetane number of 34 to 50, total aromatic content of 10.0 to 45.0% by volume, boiling point range of 130 to 360 ° C, sulfur content of 50 mass ppm or less, density at 15 ° C of 0.800 to 0.880 g / Cm 3 , CO 2 emission basic unit is 0.072 (CO 2 -g / kJ) or less, fuel oil composition for diesel engine having feedback control mechanism for feedback control of engine operating conditions object.
JP2009106229A 2009-04-24 2009-04-24 Fuel oil composition for diesel engines Active JP5436023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009106229A JP5436023B2 (en) 2009-04-24 2009-04-24 Fuel oil composition for diesel engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009106229A JP5436023B2 (en) 2009-04-24 2009-04-24 Fuel oil composition for diesel engines

Publications (2)

Publication Number Publication Date
JP2010254796A JP2010254796A (en) 2010-11-11
JP5436023B2 true JP5436023B2 (en) 2014-03-05

Family

ID=43316090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106229A Active JP5436023B2 (en) 2009-04-24 2009-04-24 Fuel oil composition for diesel engines

Country Status (1)

Country Link
JP (1) JP5436023B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7101021B2 (en) * 2018-03-30 2022-07-14 コスモ石油株式会社 Manufacturing method of high calorific value light oil base material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223656B2 (en) * 2000-04-20 2009-02-12 新日本石油株式会社 Light oil composition
JP5121138B2 (en) * 2005-11-30 2013-01-16 Jx日鉱日石エネルギー株式会社 Light oil composition

Also Published As

Publication number Publication date
JP2010254796A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5288740B2 (en) Method for producing light oil composition
JP4902278B2 (en) Fuel for premixed compression self-ignition engines
JP5121137B2 (en) Light oil composition
NL2006731C2 (en) Diesel engine injector fouling improvements with a highly paraffinic diesel.
JP5072005B2 (en) Method for producing unleaded gasoline composition
JP5154817B2 (en) Gas oil base and gas oil composition
JP5436023B2 (en) Fuel oil composition for diesel engines
CN101410496B (en) Fuel composition
JP5121138B2 (en) Light oil composition
JP4979269B2 (en) Method for producing A heavy oil composition
AU2001251660B2 (en) Low sulfur/low aromatics distillate fuels
JP2011026504A (en) Fuel oil composition for diesel engine
JP5288741B2 (en) Method for producing light oil composition
JP5072006B2 (en) Method for producing light oil composition
JP5072004B2 (en) Method for producing unleaded gasoline composition
JP5091762B2 (en) Gas oil base and gas oil composition
AU2001251660A1 (en) Low sulfur/low aromatics distillate fuels
CN101177620A (en) Hydrogenation processing method for f-t synthetic oil
JP5108329B2 (en) Kerosene composition
JP2008007675A (en) Gas oil composition
JP4919572B2 (en) Low sulfur distillate fuel
JP2007308575A (en) Gas oil composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5436023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250