JP5435732B2 - Piezoelectric ceramic composition - Google Patents

Piezoelectric ceramic composition Download PDF

Info

Publication number
JP5435732B2
JP5435732B2 JP2010103261A JP2010103261A JP5435732B2 JP 5435732 B2 JP5435732 B2 JP 5435732B2 JP 2010103261 A JP2010103261 A JP 2010103261A JP 2010103261 A JP2010103261 A JP 2010103261A JP 5435732 B2 JP5435732 B2 JP 5435732B2
Authority
JP
Japan
Prior art keywords
piezoelectric
ceramic composition
piezoelectric ceramic
phase transformation
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010103261A
Other languages
Japanese (ja)
Other versions
JP2011230962A (en
Inventor
淳 佐々木
俊浩 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010103261A priority Critical patent/JP5435732B2/en
Publication of JP2011230962A publication Critical patent/JP2011230962A/en
Application granted granted Critical
Publication of JP5435732B2 publication Critical patent/JP5435732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は圧電磁器組成物に関し、特に鉛を含まない圧電磁器組成物に関する。   The present invention relates to a piezoelectric ceramic composition, and more particularly to a lead-free piezoelectric ceramic composition.

従来、圧電磁器組成物としては二成分で構成されるPZT(PbTiO−PbZrO)系セラミックスや三成分で構成されるPCM(PbTiO−PbZrO−Pb(Mg0.5Nb0.5)TiO)系セラミックスが主に用いられてきた。その理由としては上記の材料が大きな圧電性を示す事は勿論であるが、それと共に以下の事を挙げる事ができる。それは圧電材料の用途はセンサー、アクチュエータ、フィルター等多種にわたり、各用途に要求される特性も様々であるが、上記材料系では特性を各成分量の割合を調整する事により、要求に対応した特性に適宜に操作できるからである。 Conventionally composed of two components as the piezoelectric ceramic composition PZT (PbTiO 3 -PbZrO 3) ceramics and PCM consists of three components (PbTiO 3 -PbZrO 3 -Pb (Mg 0.5 Nb 0.5) TiO 3 ) ceramics have been mainly used. The reason for this is that, of course, the above materials exhibit large piezoelectricity, but the following can also be mentioned. Piezoelectric materials have a wide variety of applications such as sensors, actuators, filters, etc., and various characteristics are required for each application. In the above materials, the characteristics can be met by adjusting the proportion of each component amount. This is because it can be appropriately operated.

しかし、これらの材料の主成分は、どれも鉛を主成分とするもので、原料比でいうと酸化鉛にして60質量%以上も含まれている。酸化鉛は低温でも揮発性が高く、仮焼、焼結等の製造時の環境対策や産業廃棄物中からの溶出に対する対策をするにも、設備設置のため膨大な費用を投じなければならない。そこで無鉛材料で大きな圧電特性を示す材料が要望されている。   However, the main components of these materials are all composed mainly of lead, and in terms of the raw material ratio, 60 mass% or more is contained as lead oxide. Lead oxide has high volatility even at low temperatures, and enormous costs must be invested to install the equipment in order to take environmental measures such as calcination and sintering and measures against elution from industrial waste. Therefore, there is a demand for a lead-free material that exhibits large piezoelectric characteristics.

圧電性が消失するキュリー点、もしくは相変態点の要求値はその使用温度によって決定されるものであり、アクチュエータ、超音波モータなどの駆動素子として用いられる場合は、一般に圧電性消失温度が150℃以上の圧電磁器組成物であれば、多くの場合は実用可能である。一方、圧電定数d33は電界強度に対する変位量を表す特性で、一般に大きければ大きいほどよく、ユーザから望まれる圧電定数の値に対する要求には際限がない。アクチュエータ、超音波モータなどに適用する場合は最低でもd33=200pm/V以上であることが望ましい。 The required value of the Curie point at which piezoelectricity disappears or the phase transformation point is determined by the operating temperature, and when used as a drive element for an actuator, ultrasonic motor, etc., the piezoelectric disappearance temperature is generally 150 ° C. The piezoelectric ceramic composition described above is practical in many cases. On the other hand, the piezoelectric constant d 33 is a characteristic representing the amount of displacement with respect to the electric field strength. Generally, the larger the piezoelectric constant d 33 , the better. When applied to an actuator, an ultrasonic motor, etc., it is desirable that at least d 33 = 200 pm / V or more.

近年、非特許文献1に開示されるように化学式BaTiOで表されるチタン酸バリウムを特殊な焼結方法で作製することで、アクチュエータに必要な変位を表す特性である圧電定数d33が350pC/N(=350pm/V)まで向上する事が報告されている。 In recent years, as disclosed in Non-Patent Document 1, by producing barium titanate represented by the chemical formula BaTiO 3 by a special sintering method, the piezoelectric constant d 33 which is a characteristic representing the displacement required for the actuator is 350 pC. / N (= 350 pm / V) is reported to be improved.

また、特許文献1には、(Na0.5Bi0.5)TiOなどの菱面晶系ペロブスカイト構造化合物と、BaTiO、(K0.5Bi0.5)TiOなどの正方晶系ペロブスカイト構造化合物と、NaNbO、KNbO、CaTiOなどの斜方晶系ペロブスカイト構造化合物とを含む圧電特性を向上させることができる圧電磁器が記載されている。 Patent Document 1 discloses rhombohedral perovskite structure compounds such as (Na 0.5 Bi 0.5 ) TiO 3 and tetragonal crystals such as BaTiO 3 and (K 0.5 Bi 0.5 ) TiO 3. A piezoelectric ceramic that can improve the piezoelectric characteristics including a perovskite structure compound and an orthorhombic perovskite structure compound such as NaNbO 3 , KNbO 3 , and CaTiO 3 is described.

特開2002−220280号公報JP 2002-220280 A

Japanese Journal of Applied Physics Vol.45,No.1,2006,ppL30Japan Journal of Applied Physics Vol. 45, no. 1,2006, ppL30

非特許文献1に記載のBaTiOはキュリー点が120℃であるため、使用環境が制限されると共に圧電特性の温度変化が大きい問題がある。また特殊な焼結方法は量産化にはコストの面で不向きである。また、特許文献1に記載された一連の実施例で斜方晶系ペロブスカイト構造化合物としてはNaNbOしか記載がなく、キュリー点、相変態点についての記載もない。また、圧電定数に関する記載もなく、更なる特性向上が望まれている。 Since BaTiO 3 described in Non-Patent Document 1 has a Curie point of 120 ° C., there is a problem that the usage environment is limited and the temperature change of the piezoelectric characteristics is large. A special sintering method is not suitable for mass production in terms of cost. Further, in the series of examples described in Patent Document 1, as the orthorhombic perovskite structure compound, only NaNbO 3 is described, and there is no description about the Curie point and the phase transformation point. Further, there is no description regarding the piezoelectric constant, and further improvement in characteristics is desired.

即ち、本発明の課題は、鉛を使用せず、圧電特性が消失する温度が実用上問題とならず、圧電定数が高い圧電磁器組成物を提供することにある。   That is, an object of the present invention is to provide a piezoelectric ceramic composition having a high piezoelectric constant, without using lead, the temperature at which the piezoelectric characteristics disappear is not a practical problem.

上記課題を解決するため、本発明は(Na0.5Bi0.5)TiO、BaTiO、および(Na0.50.5)NbOの3種類のペロブスカイト構造化合物からなる圧電磁器組成物の組成を検討した結果、圧電特性が消失するキュリー点及び相変態温点が実用上問題とならない値であり、しかも圧電定数が高い圧電磁器組成物が得られることを見出したものである。圧電磁器組成物に必要とされるキュリー点及び相変態点の値は、通常はそれを用いる製品の使用温度によって決定される。ここで、圧電磁器組成物の主要な用途であるアクチュエータ、超音波モータなどの駆動素子などとして用いられる場合は、キュリー点及び相変態温点が120℃以上であることが一般的に必要な条件である。ここで30℃のマージンを見込んで、キュリー点が150℃以上の圧電磁器組成物を提供することができるならば、多くの場合は実用上問題がない。従ってキュリー点及び相変態温点の値が150℃以上であることが、前記課題を解決する圧電磁器組成物が満たすべき条件となる。 In order to solve the above problems, the present invention provides a piezoelectric ceramic comprising three kinds of perovskite structure compounds of (Na 0.5 Bi 0.5 ) TiO 3 , BaTiO 3 , and (Na 0.5 K 0.5 ) NbO 3. As a result of investigating the composition of the composition, it has been found that a piezoelectric ceramic composition having a Curie point at which piezoelectric characteristics disappear and a phase transformation temperature point are values that do not cause a practical problem and a high piezoelectric constant can be obtained. . The Curie point and phase transformation point values required for a piezoelectric ceramic composition are usually determined by the operating temperature of the product using it. Here, when used as a driving element such as an actuator or an ultrasonic motor, which is the main application of the piezoelectric ceramic composition, it is generally necessary that the Curie point and the phase transformation temperature point be 120 ° C. or higher. It is. If a piezoelectric ceramic composition having a Curie point of 150 ° C. or higher can be provided in consideration of a margin of 30 ° C., there is no practical problem in many cases. Therefore, the value of the Curie point and the phase transformation temperature point being 150 ° C. or higher is a condition to be satisfied by the piezoelectric ceramic composition for solving the above-mentioned problems.

すなわち本発明の圧電磁器組成物は、式x(Bi0.5Na0.5)TiO−yBaTiO−z(Na0.50.5)NbOで表され、x、y、zがそれぞれ0.910≦x≦0.960、0.035≦y≦0.085、0.002≦z≦0.007の範囲にあり、x+y+z=1であることを特徴とする。 That is, the piezoelectric ceramic composition of the present invention is represented by the formula x (Bi 0.5 Na 0.5 ) TiO 3 —yBaTiO 3 —z (Na 0.5 K 0.5 ) NbO 3 , and x, y, z Are in the ranges of 0.910 ≦ x ≦ 0.960, 0.035 ≦ y ≦ 0.085, 0.002 ≦ z ≦ 0.007, respectively, and x + y + z = 1.

また、Bi、Na、Ba、Kの総モル数のTi、Nbの総モル数に対する比[(Biモル数+Naモル数+Baモル数+Kモル数)/(Tiモル数+Nbモル数)]が0.98以上1.01以下であることが好ましい。   Further, the ratio [(Bi mole number + Na mole number + Ba mole number + K mole number) / (Ti mole number + Nb mole number)] of the total mole number of Bi, Na, Ba, K to the total mole number of Ti, Nb is 0. It is preferable that it is .98 or more and 1.01 or less.

本発明によれば、式x(Bi0.5Na0.5)TiO−yBaTiO−z(Na0.50.5)NbOで表され、x、y、zがそれぞれ0.910≦x≦0.960、0.035≦y≦0.085、0.002≦z≦0.007の範囲にあり、x+y+z=1であり、通常の焼成方法でもキュリー点、相変態点Tdは通常の使用で問題とならない充分高い温度であり、圧電定数d33の優れた無鉛の圧電磁器組成物を得ることが可能となる。 According to the present invention, the formula x (Bi 0.5 Na 0.5 ) TiO 3 —yBaTiO 3 —z (Na 0.5 K 0.5 ) NbO 3 is used. 910 ≦ x ≦ 0.960, 0.035 ≦ y ≦ 0.085, 0.002 ≦ z ≦ 0.007, x + y + z = 1, Curie point, phase transformation point Td even in a normal firing method is a high enough temperature that no problem in normal use, it is possible to obtain a piezoelectric ceramic composition of excellent lead-free piezoelectric constant d 33.

以下、本発明の圧電磁器組成物の実施の形態について説明する。本発明における圧電磁器組成物は以下の式に示される組成範囲のものである。   Hereinafter, embodiments of the piezoelectric ceramic composition of the present invention will be described. The piezoelectric ceramic composition in the present invention has a composition range represented by the following formula.

x(Bi0.5Na0.5)TiO−yBaTiO−z(Na0.50.5)NbOで表され、x、y、zがそれぞれ0.910≦x≦0.960、0.035≦y≦0.085,0.002≦z≦0.007の範囲にあり、x+y+z=1である。 x (Bi 0.5 Na 0.5 ) TiO 3 —yBaTiO 3 —z (Na 0.5 K 0.5 ) NbO 3 , where x, y and z are 0.910 ≦ x ≦ 0.960, respectively. 0.035 ≦ y ≦ 0.085, 0.002 ≦ z ≦ 0.007, and x + y + z = 1.

前式の圧電磁器組成物において主成分は(Bi0.5Na0.5)TiOであり、BaTiO、(Na0.50.5)NbOは副成分である。(Bi0.5Na0.5)TiOはキュリー点が比較的高いことが知られており、また、BaTiOはキュリー点は高くないものの圧電特性に優れた値を示す化合物である。さらに(Na0.50.5)NbOはキュリー点や圧電特性において他の二種類の化合物に比べて単独ではキュリー点や圧電特性に特段の優れた特性を示すものではない。しかし主成分の(Bi0.5Na0.5)TiOが菱面晶系、副成分のBaTiOが正方晶系ペロブスカイト構造化合物であるのに対し、(Na0.50.5)NbOは斜方晶系ペロブスカイト構造化合物である。本発明の圧電磁器組成物は構造中に結晶構造が異なる領域同士が互いに接してできる境界点を多く有し、これは圧電特性d33を向上させる上で有効である。 In the piezoelectric ceramic composition of the previous formula, the main component is (Bi 0.5 Na 0.5 ) TiO 3 , and BaTiO 3 and (Na 0.5 K 0.5 ) NbO 3 are subcomponents. (Bi 0.5 Na 0.5 ) TiO 3 is known to have a relatively high Curie point, and BaTiO 3 is a compound that exhibits an excellent value in piezoelectric properties although the Curie point is not high. Further, (Na 0.5 K 0.5 ) NbO 3 alone does not exhibit particularly excellent characteristics in terms of Curie point and piezoelectric characteristics compared to the other two kinds of compounds in terms of Curie point and piezoelectric characteristics. However, the main component (Bi 0.5 Na 0.5 ) TiO 3 is a rhombohedral system and the minor component BaTiO 3 is a tetragonal perovskite structure compound, whereas (Na 0.5 K 0.5 ). NbO 3 is an orthorhombic perovskite structure compound. The piezoelectric ceramic composition of the present invention has many boundary points between regions where the crystal structure is different in the structure can be in contact with each other, which is effective in improving the piezoelectric properties d 33.

本発明の圧電磁器組成物は、原材料として、純度99.9%以上のBaCO、TiO、NaCO、Bi、KCO、Nbを用いることができる。これらを所定の比率となるように混合した後、ボールミルにより20時間混合する。得られた粉末状の混合物を800〜1100℃で1時間保持して仮焼し、次に20時間粉砕を行う。バインダーとしてポリビニールアルコールを用い造粒し、圧力1ton/cmで例えば直径20mm、厚さ1mmの円板状に加圧成形する。焼成は温度1100〜1400℃で2時間保持して行う。この焼結体の両面に銀電極を設け、100℃シリコンオイル中で直流電圧4kV/mmを電極間に加え、厚み方向に分極する。 The piezoelectric ceramic composition of the present invention can use BaCO 3 , TiO 2 , Na 2 CO 3 , Bi 2 O 3 , K 2 CO 3 , and Nb 2 O 5 with a purity of 99.9% or more as a raw material. These are mixed at a predetermined ratio, and then mixed for 20 hours by a ball mill. The obtained powdery mixture is calcined by holding at 800 to 1100 ° C. for 1 hour, and then pulverized for 20 hours. It is granulated using polyvinyl alcohol as a binder, and pressure-molded into a disk shape having a diameter of 20 mm and a thickness of 1 mm, for example, at a pressure of 1 ton / cm 2 . Firing is performed at a temperature of 1100 to 1400 ° C. for 2 hours. Silver electrodes are provided on both surfaces of the sintered body, and a DC voltage of 4 kV / mm is applied between the electrodes in 100 ° C. silicon oil to polarize in the thickness direction.

圧電特性を評価する指標としては、アクチュエータや超音波モータなどの駆動素子といった圧電磁器組成物の用途を勘案すると、分極軸と同一方向に直流電界を印加した場合の分極軸方向の変位を示す指標である、圧電定数d33の値に着目することが適切である。圧電定数d33は印加した直流電界に対する単位長さあたりの圧電変位の大きさを表す量であり、このときの分極軸の方向は、圧電磁器組成物を用いて各種の圧電デバイスを作製したときに、多くの場合に変位を取り出す向きである。従って、この向きの圧電特性を表す指標である圧電定数d33の値は、圧電磁器組成物を用いて作製する製品の特性について検討する際に重要な指標となる。また本発明品の評価においては、キュリー点ではなく擬立方晶相に相変化する相変態点を測定した。これは本発明品ではキュリー点より低温にこの相変態点が存在するからである。以上を踏まえ、本発明では作製した圧電磁器組成物の評価方法として、その相変態点の値と圧電定数d33の値の2つの指標を評価することとしている。 As an index for evaluating the piezoelectric characteristics, an index indicating the displacement in the polarization axis direction when a DC electric field is applied in the same direction as the polarization axis, considering the use of a piezoelectric ceramic composition such as a drive element such as an actuator or an ultrasonic motor. is, it is appropriate to focus on the value of the piezoelectric constant d 33. The piezoelectric constant d 33 is a quantity representing the magnitude of the piezoelectric displacement per unit length with respect to the applied DC electric field, and the direction of the polarization axis at this time is when various piezoelectric devices are produced using the piezoelectric ceramic composition. In many cases, the displacement is taken out. Therefore, the value of the piezoelectric constant d 33 is an index representing the piezoelectric properties of this orientation is an important indicator when considering the characteristics of the products produced using the piezoelectric ceramic composition. In the evaluation of the product of the present invention, not the Curie point but the phase transformation point at which the phase changed to a pseudo cubic phase was measured. This is because the phase transformation point exists at a temperature lower than the Curie point in the product of the present invention. Based on the above, in the present invention, as an evaluation method of the produced piezoelectric ceramic composition, two indices, that is, the value of the phase transformation point and the value of the piezoelectric constant d 33 are evaluated.

また、本発明の圧電磁器組成物がこれらの指標について満たすべき値は、相変態点が150℃、圧電定数d33が200pC/N(=200pm/V)である。このうち相変態点の満たすべき値が150℃であるのは、前述の理由のためである。一方、圧電定数d33が満たすべき値が200pC/Nであるのは、単体のBaTiOの圧電定数d33の値が測定の結果、200pC/Nであったことによる。 The values that the piezoelectric ceramic composition of the present invention should satisfy for these indices are a phase transformation point of 150 ° C. and a piezoelectric constant d 33 of 200 pC / N (= 200 pm / V). The reason why the value to be satisfied of the phase transformation point is 150 ° C. is for the reason described above. On the other hand, the value that the piezoelectric constant d 33 should satisfy is 200 pC / N because the value of the piezoelectric constant d 33 of the single BaTiO 3 was 200 pC / N as a result of measurement.

(実施例1)
本発明の実施例1の圧電磁器組成物は、原材料として、純度99.9%以上のBaCO、TiO、NaCO、Bi、KCO、Nbを用いた。これらを所定の比率となるように混合した。具体的には最終的な圧電磁器組成物の組成が、0.910(Bi0.5Na0.5)TiO−0.085BaTiO−0.005(Na0.50.5)NbOとなるように原材料を化学量論的に配合した。
Example 1
The piezoelectric ceramic composition of Example 1 of the present invention uses BaCO 3 , TiO 2 , Na 2 CO 3 , Bi 2 O 3 , K 2 CO 3 , and Nb 2 O 5 with a purity of 99.9% or more as a raw material. It was. These were mixed so that it might become a predetermined ratio. Specifically, the composition of the final piezoelectric ceramic composition is 0.910 (Bi 0.5 Na 0.5 ) TiO 3 −0.085 BaTiO 3 −0.005 (Na 0.5 K 0.5 ) NbO. The raw materials were blended stoichiometrically to be 3 .

次いでこれらの混合物を、ボールミルにより20時間混合した。得られた粉末状の混合物を900℃で1時間保持して仮焼し、次にボールミルにより20時間粉砕を行った。バインダーとしてポリビニールアルコールを用い造粒し、1ton/cmの圧力で直径20mm、厚さ1mmの円板状に加圧成形した。円板状の成形体を温度1200℃で2時間保持して焼成を行った。これにより得られた焼結体の両面に銀電極を設け、100℃シリコンオイル中で直流電圧4kV/mmを電極間に加え、厚み方向に分極し実施例1とした。なお、この方法にて作製した圧電磁器組成物の試料数は5個である。 These mixtures were then mixed for 20 hours by a ball mill. The obtained powdery mixture was calcined by holding at 900 ° C. for 1 hour, and then pulverized by a ball mill for 20 hours. The mixture was granulated using polyvinyl alcohol as a binder, and pressed into a disk shape having a diameter of 20 mm and a thickness of 1 mm at a pressure of 1 ton / cm 2 . The disc-shaped shaped body was fired by holding at a temperature of 1200 ° C. for 2 hours. Silver electrodes were provided on both sides of the sintered body obtained in this manner, and a DC voltage of 4 kV / mm was applied between the electrodes in silicon oil at 100 ° C. and polarized in the thickness direction to obtain Example 1. In addition, the number of samples of the piezoelectric ceramic composition produced by this method is five.

ここで、圧電磁器組成物を作製する際の仮焼、焼成温度は、昇温条件を変更して実験して求めた最適値である。なお得られた焼結体が3相の化合物となっていることは、X線回折装置による解析により確認している。   Here, the calcining and firing temperature at the time of producing the piezoelectric ceramic composition are optimum values obtained by experiments by changing the temperature raising conditions. The fact that the obtained sintered body is a three-phase compound has been confirmed by analysis using an X-ray diffractometer.

実施例1の各試料について擬立方晶相に相変化する相変態点と圧電定数d33の測定を行った。キュリー点ではなく上記の相変態点を測定した理由は本発明品ではキュリー点より低温にこの相変態点が存在するからである。相変態点はLCRメータにより、容量の温度特性を測定し、そのプロファイルから決定した。電界に対する単位長さの圧電変位を表す圧電定数d33は電界1kV/mm印加時の厚み方向の長さ変化をレーザー変位計により測定し、算出した。これにより得られた測定値を表1に実施例1として示す。なお表1に示した実施例1の値は5個の平均値である。 The measurement of the phase transformation point of the phase change in the pseudo-cubic crystal phase for each sample of Example 1 and the piezoelectric constant d 33 was carried out. The reason why the above-mentioned phase transformation point was measured instead of the Curie point is that this phase transformation point exists at a temperature lower than the Curie point in the product of the present invention. The phase transformation point was determined from the profile of the temperature characteristic of the capacitance measured with an LCR meter. The piezoelectric constant d 33 representing the piezoelectric displacement of the unit length with respect to the electric field was calculated by measuring the length change in the thickness direction when an electric field of 1 kV / mm was applied with a laser displacement meter. The measured values thus obtained are shown in Table 1 as Example 1. In addition, the value of Example 1 shown in Table 1 is an average value of five pieces.

(実施例2〜7、比較例1〜7)
実施例2〜7、比較例1〜7の圧電磁器組成物を原材料の配合比率を変えた以外は実施例1と同様に作製した。ただし仮焼、焼成温度は実施例1と異なり,それぞれの組成比率において実験によって最適値を求めた。具体的には仮焼温度は800〜1100℃、焼成温度は1100〜1400℃の範囲の中の最適値である。なお、作製した圧電磁器組成物の試料数は、各実施例、比較例ともに実施例1の場合と同じく5個である。
(Examples 2-7, Comparative Examples 1-7)
The piezoelectric ceramic compositions of Examples 2 to 7 and Comparative Examples 1 to 7 were produced in the same manner as in Example 1 except that the mixing ratio of the raw materials was changed. However, the calcination and firing temperatures were different from those in Example 1, and optimum values were obtained by experiments at the respective composition ratios. Specifically, the calcination temperature is an optimum value in the range of 800 to 1100 ° C., and the firing temperature is in the range of 1100 to 1400 ° C. In addition, the number of samples of the produced piezoelectric ceramic composition is five as in the case of Example 1 in each Example and Comparative Example.

これらの各実施例、比較例において、実施例1の場合と同様に相変態点と圧電定数d33を測定した。測定結果を表1に示す。ここで比較例1はBaTiOの測定値である。BaTiO以外はどの試料でも相変態点は150℃より高い。またd33は実施例(0.910≦x≦0.960、0.035≦y≦0.085、0.002≦z≦0.007の範囲内)では200pm/Vより大きくなり、最大で実施例2に示す230pm/Vが得られた。比較例(0.910≦x≦0.960、0.035≦y≦0.085、0.002≦z≦0.007の範囲外)でd33は低下し、200pm/Vを下回る結果となった。比較例7のzが多くなった場合、d33が極端に低下したのは結晶系が圧電特性を持たない立方晶に近づき、圧電特性が低下したのが原因である。 In each of these Examples and Comparative Examples, the phase transformation point and the piezoelectric constant d 33 were measured in the same manner as in Example 1. The measurement results are shown in Table 1. Here, Comparative Example 1 is a measured value of BaTiO 3 . The phase transformation point is higher than 150 ° C. in any sample except for BaTiO 3 . In addition, d 33 is larger than 200 pm / V in the examples (in the ranges of 0.910 ≦ x ≦ 0.960, 0.035 ≦ y ≦ 0.085, 0.002 ≦ z ≦ 0.007), and the maximum 230 pm / V shown in Example 2 was obtained. In the comparative example (outside the range of 0.910 ≦ x ≦ 0.960, 0.035 ≦ y ≦ 0.085, 0.002 ≦ z ≦ 0.007), d 33 decreases and results below 200 pm / V. became. When z in Comparative Example 7 increased, d 33 decreased extremely because the crystal system approached a cubic crystal having no piezoelectric characteristics, and the piezoelectric characteristics deteriorated.

これより本発明品は相変態点が150℃より大きく、d33が200pm/Vより大きい結果が得られた。上述のように、式x(Bi0.5Na0.5)TiO−yBaTiO−z(Na0.50.5)NbOで表され、x、y、zがそれぞれ0.910≦x≦0.960、0.035≦y≦0.085、0.002≦z≦0.007の範囲にあり、x+y+z=1である圧電磁器組成物を提供することで、無鉛圧電材料であると共に、高いキュリー点または相変態点と圧電定数d33を有し、アクチュエータ、超音波モータ用途への適用を可能にする効果が期待できるものである。 As a result, the product of the present invention had a phase transformation point higher than 150 ° C. and d 33 higher than 200 pm / V. As described above, it is represented by the formula x (Bi 0.5 Na 0.5 ) TiO 3 —yBaTiO 3 —z (Na 0.5 K 0.5 ) NbO 3 , and x, y, and z are each 0.910. By providing a piezoelectric ceramic composition in the range of ≦ x ≦ 0.960, 0.035 ≦ y ≦ 0.085, 0.002 ≦ z ≦ 0.007, and x + y + z = 1, with some having a high Curie point or phase transformation point and the piezoelectric constant d 33, the actuator, in which the effect of allowing the application to the ultrasonic motor applications can be expected.

Figure 0005435732
Figure 0005435732

Claims (2)

式x(Bi0.5Na0.5)TiO−yBaTiO−z(Na0.50.5)NbOで表され、x、y、zがそれぞれ0.910≦x≦0.960、0.035≦y≦0.085、0.002≦z≦0.007の範囲にあり、x+y+z=1であることを特徴とする圧電磁器組成物。 It is represented by the formula x (Bi 0.5 Na 0.5 ) TiO 3 —yBaTiO 3 —z (Na 0.5 K 0.5 ) NbO 3 , and x, y, and z are 0.910 ≦ x ≦ 0. The piezoelectric ceramic composition is in the range of 960, 0.035 ≦ y ≦ 0.085, 0.002 ≦ z ≦ 0.007, and x + y + z = 1. 請求項1の圧電磁器組成物においてBi、Na、Ba、Kの総モル数のTi、Nbの総モル数に対する比[(Biモル数+Naモル数+Baモル数+Kモル数)/(Tiモル数+Nbモル数)]が0.98以上1.01以下であることを特徴とする圧電磁器組成物。   The ratio of the total number of moles of Bi, Na, Ba and K to the total number of moles of Ti and Nb in the piezoelectric ceramic composition of claim 1 [(Bi mole number + Na mole number + Ba mole number + K mole number) / (Ti mole number). + Nb mole number)] is 0.98 or more and 1.01 or less.
JP2010103261A 2010-04-28 2010-04-28 Piezoelectric ceramic composition Active JP5435732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103261A JP5435732B2 (en) 2010-04-28 2010-04-28 Piezoelectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103261A JP5435732B2 (en) 2010-04-28 2010-04-28 Piezoelectric ceramic composition

Publications (2)

Publication Number Publication Date
JP2011230962A JP2011230962A (en) 2011-11-17
JP5435732B2 true JP5435732B2 (en) 2014-03-05

Family

ID=45320676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103261A Active JP5435732B2 (en) 2010-04-28 2010-04-28 Piezoelectric ceramic composition

Country Status (1)

Country Link
JP (1) JP5435732B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102410B2 (en) * 2013-03-28 2017-03-29 Tdk株式会社 Dielectric porcelain composition and dielectric element
CN105094046B (en) * 2015-04-14 2019-05-21 宁波职业技术学院 A kind of piezoelectric ceramic actuator console
CN104987068A (en) * 2015-05-22 2015-10-21 桂林理工大学 Nanocrystalline columbate high-temperature leadless capacitor material and preparation method thereof
US9637414B2 (en) 2015-06-29 2017-05-02 Taiyo Yuden Co., Ltd. Dielectric porcelain composition and dielectric element having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100513B (en) * 1985-04-01 1987-08-19 中国科学院上海硅酸盐研究所 Bi-na-ba-tio3 series piezoelectric ceramic material for ultrasonic devices
JP4529219B2 (en) * 2000-03-17 2010-08-25 株式会社豊田中央研究所 Piezoelectric ceramics and manufacturing method thereof
JP4674405B2 (en) * 2000-11-21 2011-04-20 Tdk株式会社 Piezoelectric ceramic
DE102008021827B9 (en) * 2008-04-30 2022-04-07 Tdk Electronics Ag Ceramic material, method for producing the ceramic material, component with the ceramic material and its use

Also Published As

Publication number Publication date
JP2011230962A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP4973931B2 (en) Piezoelectric ceramic composition
JP6096510B2 (en) Piezoelectric ceramic composition, method for producing the composition, and electrical component comprising the composition
JP5213135B2 (en) Piezoelectric ceramics and piezoelectric / dielectric / pyroelectric elements using the same
JP4929522B2 (en) Piezoelectric ceramic composition
Lee et al. Crystal Structure, dielectric and ferroelectric properties of (Bi0. 5Na0. 5) TiO3–(Ba, Sr) TiO3 lead-free piezoelectric ceramics
JP2010241615A (en) Piezoelectric ceramic composition
US9054310B2 (en) Ceramic material based on the perovskite ceramic Bi0, 5Na0, 5TiO3, piezoelectric actuator containing the ceramic material and process for producing the ceramic material
JP5337513B2 (en) Piezoelectric / electrostrictive porcelain composition
JPWO2009072369A1 (en) Piezoelectric ceramic composition
JP5435732B2 (en) Piezoelectric ceramic composition
JP2014224038A (en) Piezoelectric ceramic and piezoelectric device using the same
JP5008090B2 (en) Lead-free piezoelectric ceramics and piezoelectric, dielectric and pyroelectric elements using the same
KR102020605B1 (en) Lead-free piezoelectric ceramic ternary compositions with high strains
JP2008156172A (en) Lead-free piezoelectric porcelain composition
JP2007055864A (en) Piezoelectric ceramic composition
JP2007055867A (en) Piezoelectric ceramic composition
JP4437848B2 (en) Piezoelectric ceramic composition
JP2009132598A (en) Piezoelectric/electrostrictive body, and piezoelectric/electrostrictive element
JP2013001591A (en) Piezoelectric ceramic composition
JP5898032B2 (en) Piezoelectric ceramic and piezoelectric element using the same
Ramam et al. Dielectric and piezoelectric properties of combinatory effect of A-site isovalent and B-site acceptor doped PLZT ceramics
JP4877672B2 (en) Piezoelectric composition
JP2009012997A (en) Unleaded piezoelectric porcelain composition
JP6075630B2 (en) Piezoelectric ceramic and piezoelectric element using the same
JP6105777B2 (en) Piezoelectric ceramic and piezoelectric element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R150 Certificate of patent or registration of utility model

Ref document number: 5435732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250