JP5435393B2 - Solid oxide fuel cell system - Google Patents

Solid oxide fuel cell system Download PDF

Info

Publication number
JP5435393B2
JP5435393B2 JP2008048859A JP2008048859A JP5435393B2 JP 5435393 B2 JP5435393 B2 JP 5435393B2 JP 2008048859 A JP2008048859 A JP 2008048859A JP 2008048859 A JP2008048859 A JP 2008048859A JP 5435393 B2 JP5435393 B2 JP 5435393B2
Authority
JP
Japan
Prior art keywords
fuel cell
power generation
sofc
cell
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008048859A
Other languages
Japanese (ja)
Other versions
JP2009205997A (en
Inventor
茂 安藤
研一 樋渡
晃 上野
俊哉 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2008048859A priority Critical patent/JP5435393B2/en
Publication of JP2009205997A publication Critical patent/JP2009205997A/en
Application granted granted Critical
Publication of JP5435393B2 publication Critical patent/JP5435393B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体酸化物燃料電池(以下、SOFCと示す)システムに関し、特に燃料電池スタック間の電気的接続に関する。 The present invention relates to a solid oxide fuel cell (hereinafter referred to as SOFC) system, and more particularly to an electrical connection between fuel cell stacks.

固体酸化物燃料電池セルの1本の出力は限られているため、実際のSOFCでは、SOFCセルを複数本集合させて使用する。通常は、複数のSOFCセルからなるスタックを基本単位とし、複数個のスタックを集電板で電気的に接続したモジュールが提案されている。(例えば、下記特許文献1参照)   Since the output of one solid oxide fuel cell is limited, in actual SOFC, a plurality of SOFC cells are assembled and used. Usually, a module has been proposed in which a stack composed of a plurality of SOFC cells is used as a basic unit, and a plurality of stacks are electrically connected by a current collector plate. (For example, see Patent Document 1 below)

ところで、固体酸化物燃料電池システムが大きくなるに従って膨大なセル数を必要とする。固体高分子形燃料電池では、ある1つのセルの特性が劣化すると、その他のセルのもつ起電力により、問題のセルに起電力反応とは逆の電気分解反応が強要される。この現象は「転極」と称し、ひとたび問題が発生すると加速的に劣化が進むことが指摘され(例えば、下記非特許文献1参照、下記非特許文献2参照)、システム的な対策が提案されている。(例えば、下記特許文献3参照、下記特許文献4参照)   By the way, an enormous number of cells are required as the solid oxide fuel cell system becomes larger. In the polymer electrolyte fuel cell, when the characteristics of one cell deteriorate, an electrolysis reaction opposite to the electromotive force reaction is forced on the cell in question due to the electromotive force of another cell. This phenomenon is called “polarization”, and it has been pointed out that once a problem occurs, the deterioration progresses at an accelerated rate (for example, see Non-Patent Document 1 below and Non-Patent Document 2 below). ing. (For example, see Patent Document 3 below and Patent Document 4 below)

しかし、固体高分子形燃料電池で起こるこの課題はSOFCで生じにくい。なぜならSOFCの使用温度は800℃以上の高温であり、SOFCセルの材料は800℃以上の温度で化学的に安定な材料で構成されている。低温で駆動する高分子形燃料電池と比べると材料の化学的な安定性は高く、大容量化するSOFCシステムにおいてSOFCは「転極」による劣化を生じるとは予想されていなかった。
特開2007−157424号公報 特開2008−21606号公報 特開2007−250271号公報 燃料電池設計技術 サイエンスフォーラム 昭和62年9月30日発行 電子とイオンの機能化学シリーズ vol.1 エヌ・ティ・エス 2001年6月25日
However, this problem that occurs in polymer electrolyte fuel cells is unlikely to occur in SOFC. This is because the operating temperature of SOFC is a high temperature of 800 ° C. or higher, and the material of the SOFC cell is composed of a chemically stable material at a temperature of 800 ° C. or higher. Compared to polymer fuel cells that are driven at low temperatures, the chemical stability of the materials is high, and it has not been expected that SOFCs will deteriorate due to “polarization” in SOFC systems with large capacities.
JP 2007-157424 A JP 2008-21606 A JP 2007-250271 A Fuel Cell Design Technology Science Forum Issued September 30, 1987 Electron and ion functional chemistry series vol.1 NTS June 25, 2001

近年、SOFCの開発は急速であり、特にSOFCシステムの大容量化が進んでいるが、依然としていくつかの欠点がある。現行の大容量化したSOFCシステムの問題点の1つは、例えば電流取り出しのための外部電極間が短絡するなどの急激な電位変化を起こすと、多数あるセルの1つが劣化することを本発明者は実験で明らかにした。例えば、立ち上げ時、温度上昇に伴って構成部材が熱膨張し位置ずれを生じ、また供給ガスの不燃物生成や構成材料から発生する煤によって電気的な短絡を起こす可能性があり、大容量化によって、その確率はさらに高まるが、現行のSOFCシステムは短絡によるセル劣化を回避できない。セルが劣化し、損傷に至ると、その周辺の健全なセルもダメージを受けて被害は拡大する。 In recent years, the development of SOFC has been rapid, and in particular, the capacity of SOFC systems has been increasing, but there are still some drawbacks. One of the problems of the current large-capacity SOFC system is that one of a large number of cells deteriorates when a sudden potential change occurs, for example, a short circuit occurs between external electrodes for current extraction. Revealed by experiments. For example, when starting up, as the temperature rises, the structural members thermally expand, causing displacement, and there is a possibility of causing an electrical short circuit due to generation of incombustible material in the supply gas or flaws generated from the constituent materials. Although the probability is further increased by the conversion, the current SOFC system cannot avoid the cell deterioration due to the short circuit. When a cell deteriorates and becomes damaged, the surrounding healthy cells are damaged and the damage is expanded.

本発明は、大容量化するSOFCシステムに関し、短絡などによって急激な電位変化を起こした場合であってもSOFCセルを損傷させない、特にSOFCスタック間の電気的接続手段を提供することにある。 The present invention relates to an SOFC system with an increased capacity, and it is an object of the present invention to provide an electrical connection means, in particular, between SOFC stacks that does not damage the SOFC cell even when a sudden potential change occurs due to a short circuit or the like.

上記問題点を解決するために、本発明の燃料電池システムは、固体酸化物形燃料電池セルを備える燃料電池スタックと、複数の前記燃料電池スタックを電気的に接続する導電性部材と、複数の前記燃料電池スタック及び前記導電性部材を備える電気回路と、複数の前記燃料電池スタック間を電気的に接続又は遮断する回路開閉部と、前記燃料電池スタックが発電可能な温度にあるか否かを判断する温度計測手段と、前記燃料電池スタックが発電可能な電位にあるか否かを判断する電圧計測手段と、を備える燃料電池システムであって、前記回路開閉部は、前記燃料電池システムの立ち上げ時に、前記温度計測手段及び前記電圧計測手段のいずれの計測手段においても予め定められた所定の閾値を超え、発電が可能であると判断された発電可能な所定の状態になるまでは複数の前記燃料電池スタック間を電気的に遮断した状態を継続し、発電可能な所定の状態になると複数の前記燃料電池スタック間を電気的に接続することを特徴とする。 In order to solve the above problems, a fuel cell system of the present invention includes a fuel cell stack including a solid oxide fuel cell, a conductive member that electrically connects the plurality of fuel cell stacks, and a plurality of An electric circuit including the fuel cell stack and the conductive member, a circuit opening / closing unit that electrically connects or disconnects the plurality of fuel cell stacks , and whether or not the fuel cell stack is at a temperature capable of generating power. A temperature measuring means for judging; and a voltage measuring means for judging whether or not the fuel cell stack is at a potential capable of generating electric power, wherein the circuit opening / closing part is a stand-up of the fuel cell system. during the raising, the temperature exceeds a predetermined threshold in any of the measuring means of the measuring means and the voltage measuring means, have been possible power determined that power generation is possible A state in which the plurality of fuel cell stacks are electrically disconnected until a predetermined state is reached, and when the power generation is possible, the plurality of fuel cell stacks are electrically connected. To do.

本発明によれば、大容量化するSOFCシステムに関し、短絡などによって急激な電位変化を起こした場合であってもSOFCセルを損傷させない。   According to the present invention, an SOFC system with an increased capacity does not damage the SOFC cell even when a sudden potential change occurs due to a short circuit or the like.

本発明を実施するための最良の形態を説明するのに先立って、本発明の作用効果について説明する。   Prior to describing the best mode for carrying out the present invention, the function and effect of the present invention will be described.

本発明の燃料電池システムは、固体酸化物形燃料電池セルを備える燃料電池スタックと、複数の前記燃料電池スタックを電気的に接続する導電性部材と、複数の前記燃料電池スタック及び前記導電性部材を備える電気回路と、複数の前記燃料電池スタック間を電気的に接続又は遮断する回路開閉部と、前記燃料電池スタックが発電可能な温度にあるか否かを判断する温度計測手段と、前記燃料電池スタックが発電可能な電位にあるか否かを判断する電圧計測手段と、を備える燃料電池システムであって、前記回路開閉部は、前記燃料電池システムの立ち上げ時に、前記温度計測手段及び前記電圧計測手段のいずれの計測手段においても予め定められた所定の閾値を超え、発電が可能であると判断された発電可能な所定の状態になるまでは複数の前記燃料電池スタック間を電気的に遮断した状態を継続し、発電可能な所定の状態になると複数の前記燃料電池スタック間を電気的に接続することを特徴とする。 The fuel cell system of the present invention includes a fuel cell stack including a solid oxide fuel cell, a conductive member that electrically connects the plurality of fuel cell stacks, a plurality of the fuel cell stack, and the conductive member. An electric circuit comprising: a circuit opening / closing unit that electrically connects or disconnects the plurality of fuel cell stacks; temperature measuring means that determines whether the fuel cell stack is at a temperature capable of generating power; and the fuel A voltage measuring unit that determines whether or not the battery stack is at a potential capable of generating power , wherein the circuit opening and closing unit, when starting up the fuel cell system, the temperature measuring unit and the more than a predetermined threshold value also predetermined in any of the measuring means of the voltage measuring means, until the power generation capable predetermined state is determined to the power generation is possible in The inter fuel cell stack continues electrically disconnected state, and characterized by electrically connecting a plurality of the fuel cell stack becomes electricity can be generated a predetermined state.

例えば立ち上げ時、温度上昇に伴って構成部材が熱膨張し位置ずれを生じ、または供給ガスの不燃物生成や構成材料から発生する煤によって外部電極312の間が短絡しても、回路開閉部によってSOFCスタック同士の電気的接続が遮断されている。その後、発電可能な所定の状態になると、回路開閉部によってSOFCスタック同士は電気的に接続される。このようにすることで、発電可能な所定の状態になる前に外部電極312の間が短絡したとしても、燃料電池モジュールに電位の変化は生じず、セルの劣化や損傷を回避することができる。固体高分子形燃料電池では正常な運転であっても「転極」による劣化が進行するが、SOFCでは短絡などによる急激な電位変化がなければ「転極」はおこらず、長期的に安定した発電性能が得られる。 For example, when starting up, even if the constituent members thermally expand as the temperature rises and the position shifts, or even if the external electrodes 312 are short-circuited due to generation of non-combustible material in the supply gas or flaws generated from the constituent materials, This cuts off the electrical connection between the SOFC stacks . Thereafter, when a predetermined state in which power generation is possible is established, the SOFC stacks are electrically connected to each other by the circuit opening / closing unit. By doing so, even if the external electrodes 312 are short-circuited before a predetermined state in which power generation is possible , no potential change occurs in the fuel cell module, and cell deterioration and damage can be avoided. . In solid polymer fuel cells, deterioration due to “inversion” proceeds even under normal operation, but in SOFC, “inversion” does not occur unless there is a sudden potential change due to a short circuit or the like, and it has been stable over the long term. Power generation performance can be obtained.

またさらに本発明の燃料電池システムは、固体酸化物形燃料電池セルを備える燃料電池スタックと、複数の前記燃料電池スタックを電気的に接続する導電性部材と、複数の前記燃料電池スタック間を電気的に接続又は遮断する回路開閉部と、前記燃料電池スタックが発電可能な温度にあるか否かを判断する温度計測手段と、前記燃料電池スタックが発電可能な電位にあるか否かを判断する電圧計測手段と、を備える燃料電池システムの立ち上げ時の運転方法であって、燃料電池システムの立ち上げ開始後、複数の前記燃料電池スタック間の電気的な接続が遮断した状態で、発電可能な所定の状態か否かを判断する工程を行い、前記発電可能な所定の状態か否かを判断する工程は前記温度計測手段及び前記電圧計測手段のいずれの計測手段においても予め定められた所定の閾値を超え、発電が可能であると判断されたか否かによって判断される工程であって、前記いずれの計測手段においても発電が可能であると判断された場合には発電可能な所定の状態であると判断し、いずれか一方の計測手段でも発電可能な状態ではないと判断した場合には発電可能な所定の状態ではないと判断する工程であり、発電可能な所定の状態であると判断された後に、複数の前記燃料電池スタック間を電気的に接続する工程を行うことを特徴とするものであってもよい。

The fuel cell system of the present invention further includes a fuel cell stack including solid oxide fuel cells, a conductive member that electrically connects the plurality of fuel cell stacks, and an electrical connection between the plurality of fuel cell stacks. A circuit opening / closing part to be connected or disconnected, temperature measuring means for determining whether or not the fuel cell stack is at a temperature capable of generating power, and determining whether or not the fuel cell stack is at a potential capable of generating power An operation method at the time of start-up of the fuel cell system comprising voltage measuring means, and after the start of start-up of the fuel cell system, power generation is possible in a state where the electrical connection between the plurality of fuel cell stacks is interrupted It performs a process of determining whether such or predetermined state, the step of determining whether the or electricity can be generated a predetermined state at hotel to any of the measuring means of said temperature measuring means and said voltage measuring means However, it is a step that is determined by whether or not it is determined that power generation is possible, exceeding a predetermined threshold value, and when it is determined that power generation is possible in any of the measurement means Is a process that determines that the power generation is possible and if it is determined that any one of the measuring means is not capable of power generation, it is determined that the power generation is not possible. After determining that the fuel cell stack is in a predetermined state, a step of electrically connecting the plurality of fuel cell stacks may be performed.

以下、図面を参照して、本発明の実施の形態を詳細に説明する。尚、特に限定されないが以下の各実施例は、筒状固体酸化物形燃料電池として好適なSOFCシステムである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Although not particularly limited, the following examples are SOFC systems suitable as cylindrical solid oxide fuel cells.

図1は、本発明に係る燃料電池システム4を構成する燃料電池セル1の概略図である。しかしながら、これらは1例であり限定されるものではない。燃料電池セル1は、筒状の電解質12の内面に空気極11を、外面に燃料極13が形成されており、空気極11へ電気的に接続されたインターコネクタ14が燃料極13と通電せず電気的に接続される構造で形成されている。このとき、空気極11は多孔質のLaCoO3、LaMnO3、LaFeO3等のペロブスカイト型酸化物でSrやCa等をLaサイトにドープしたもの、あるいはドープしないもの、またはそれらの複合材により形成されている。電解質12は、Y、Sc、Caなどをドープした安定化ジルコニアにより形成されている。インターコネクタ14はLaCrO3にSrやCa等をドープしたものにより形成されている。   FIG. 1 is a schematic view of a fuel cell 1 constituting a fuel cell system 4 according to the present invention. However, these are only examples and are not limited. In the fuel cell 1, an air electrode 11 is formed on an inner surface of a cylindrical electrolyte 12, and a fuel electrode 13 is formed on an outer surface, and an interconnector 14 electrically connected to the air electrode 11 is electrically connected to the fuel electrode 13. It is formed with a structure that is electrically connected. At this time, the air electrode 11 is formed of a porous perovskite oxide such as LaCoO 3, LaMnO 3, LaFeO 3, etc., doped with Sr, Ca, etc. at the La site, undoped, or a composite material thereof. The electrolyte 12 is formed of stabilized zirconia doped with Y, Sc, Ca or the like. The interconnector 14 is made of LaCrO3 doped with Sr, Ca or the like.

図2は、本発明に係る燃料電池システム4を構成する燃料電池スタック2の基本構造の概略図である。本実施例では、燃料電池スタック2が12本の燃料電池セル1を電気的に2並列×6直列に配置した構成になっているが、例えば1並列×5直列、3並列×3直列など、これらは1例であり限定されるものではない。図1に示した円筒形状の燃料電池セル1が図2の図示中、インターコネクタを上向きに2並列6直列で複数積み重ねられた燃料電池セル12本の周囲を、導電性部材を兼ねる保持部材28a、28b、ならびに保持部材28cにより囲まれている。これらの燃料電池セル1は、導電性部材29および導電性部材210により、直列および/または並列に電気的に接続される。すなわち図示していなが、燃料極13とインターコネクタ14とが接続され、および/または燃料極13と燃料極13とが接続され、および/またはインターコネクタ14とインターコネクタ14とが接続される。燃料極セルは上下保持部材28aおよび28bによって押し圧されており、上下保持部材28aおよび28bが接続部212により側面保持部材28cに連結されることで押し圧をかけた状態で固定されている。保持部材28bは複数の燃料電池セル1の空気極側と電気的に接続し、接続部212により側面保持部材28cと絶縁されている。一方、保持部材28cは燃料電池セル1の燃料極側と電気的に接続し、接続部212により側面保持部材28cと絶縁されている。接続部212はアルミナ、ムライト、マグネシア、ジルコニア等を用いることができる。保持部材28a、28bには燃料電池バンドル間の電気的接続のために導電性部材213a、213bが一体化されている。発電された電力は、導電性部材213aと213bの間に出力される。 FIG. 2 is a schematic view of the basic structure of the fuel cell stack 2 constituting the fuel cell system 4 according to the present invention. In this embodiment, the fuel cell stack 2 has a configuration in which twelve fuel cells 1 are electrically arranged in 2 parallels × 6 series. For example, 1 parallel × 5 series, 3 parallels × 3 series, etc. These are only examples and are not limited. 1 is a holding member 28a that also serves as a conductive member around 12 fuel cells in which a plurality of interconnectors are stacked in two parallel 6 series with the interconnector facing upward. , 28b and the holding member 28c. These fuel cells 1 are electrically connected in series and / or in parallel by the conductive member 29 and the conductive member 210. That is, although not shown, the fuel electrode 13 and the interconnector 14 are connected, and / or the fuel electrode 13 and the fuel electrode 13 are connected, and / or the interconnector 14 and the interconnector 14 are connected. The fuel cell is pressed by the upper and lower holding members 28a and 28b. The upper and lower holding members 28a and 28b are connected to the side surface holding member 28c by the connecting portion 212 and are fixed in a pressed state. The holding member 28b is electrically connected to the air electrode side of the plurality of fuel cells 1, and is insulated from the side surface holding member 28c by the connection portion 212. On the other hand, the holding member 28 c is electrically connected to the fuel electrode side of the fuel cell 1 and is insulated from the side surface holding member 28 c by the connection portion 212. For the connection portion 212, alumina, mullite, magnesia, zirconia, or the like can be used. Conductive members 213a and 213b are integrated with the holding members 28a and 28b for electrical connection between the fuel cell bundles. The generated electric power is output between the conductive members 213a and 213b.

図3は、本発明に係る燃料電池システム4を構成する燃料電池モジュール3の横断面の概略図であって電気的な接続が遮断される状態を示す。本実施例では、燃料電池スタック2が3×5の15組、電気的に直列に配置された構成になっているが、例えば、2×10、5×5など、これらは1例であり限定されるものではない。燃料電池スタック2同士の間には仕切り部材330が配置され、燃料電池スタック同士が電気的に短絡するのが防止される。燃料電池モジュール3は、15個の燃料電池スタック2が導電性部材311を介して直列に接続配置されており、外部電極312を介して、電力を外部に供給している。燃料電池ジュール3では、ガス気密容器321により燃料電池モジュール3の内部のガスが外部に漏洩するのを防止する。また断熱と電気絶縁を兼ねたセラミック部材322、317により、燃料電池モジュール3から外部への放熱を抑制するとともに、燃料電池スタック2あるいは導電性部材311あるいは外部電極312が、ガス気密容器321と電気的に短絡するのを防止する。また、回路開閉部315は移動可能であって、電気的な接続が遮断されているとき、回路開閉部315と燃料電池スタック2の間に絶縁空間316が形成される。外部電極312に燃料電池スタック2が接続され、その燃料電池スタック2と他の燃料電池スタック2が導電性部材311により電気的に接続され、同じ構成を繰り返して、燃料電池スタック2が外部電極312に接続されている。   FIG. 3 is a schematic cross-sectional view of the fuel cell module 3 constituting the fuel cell system 4 according to the present invention, showing a state where electrical connection is cut off. In the present embodiment, the fuel cell stack 2 has a configuration in which 15 sets of 3 × 5, which are electrically arranged in series, are, for example, 2 × 10, 5 × 5, and the like, and are limited. Is not to be done. A partition member 330 is disposed between the fuel cell stacks 2 to prevent the fuel cell stacks from being electrically short-circuited. In the fuel cell module 3, 15 fuel cell stacks 2 are connected in series via conductive members 311, and power is supplied to the outside via external electrodes 312. In the fuel cell module 3, the gas-tight container 321 prevents the gas inside the fuel cell module 3 from leaking to the outside. In addition, heat radiation from the fuel cell module 3 to the outside is suppressed by the ceramic members 322 and 317 serving both as heat insulation and electric insulation, and the fuel cell stack 2 or the conductive member 311 or the external electrode 312 is electrically connected to the gas-tight container 321. To prevent short circuit. Further, the circuit opening / closing part 315 is movable, and when the electrical connection is interrupted, an insulating space 316 is formed between the circuit opening / closing part 315 and the fuel cell stack 2. The fuel cell stack 2 is connected to the external electrode 312, the fuel cell stack 2 and another fuel cell stack 2 are electrically connected by the conductive member 311, and the same configuration is repeated, so that the fuel cell stack 2 is connected to the external electrode 312. It is connected to the.

図4は、本発明に係る燃料電池システムの概略図である。しかしながら、これらは1例であり限定されるものではない。SOFCモジュール4は、電圧計測器45、電圧変換器(負荷制御部)44、例えばDC−DCコンバータに接続される。AC電流を供給する場合は、電圧変換器44は、DC−ACコンバータに置き換えられる。SOFCモジュールは地絡48し安全を図る。またSOFCモジュール3内部の温度計測器47、ならびに電圧計測器46が接続されている。燃料電池システム4は連系用遮断器41を経て電力ネットワーク42に接続される。図2、図3、図4に示されるように電気回路を形成されている。   FIG. 4 is a schematic view of a fuel cell system according to the present invention. However, these are only examples and are not limited. The SOFC module 4 is connected to a voltage measuring device 45 and a voltage converter (load control unit) 44, for example, a DC-DC converter. When supplying AC current, the voltage converter 44 is replaced with a DC-AC converter. The SOFC module is grounded for safety. A temperature measuring instrument 47 and a voltage measuring instrument 46 inside the SOFC module 3 are connected. The fuel cell system 4 is connected to the power network 42 via the interconnection circuit breaker 41. As shown in FIGS. 2, 3, and 4, an electric circuit is formed.

本システムの運転について説明する。しかしながら、これらは1例であり限定されるものではない。温度計測器47により発電可能な温度を判断する。発電可能な温度は、SOFCモジュールの構成部材が熱膨張し位置ずれを生じ、または供給ガスの不燃物生成や構成材料から発生する煤によるなど、外部電極312の間の短絡が発生する確率が低下する温度であって、またSOFCモジュール内の温度が均一になりSOFCセルの内部抵抗ばらつきが少なくなり、またSOFCモジュール内の燃料雰囲気が均一になりSOFCセルの起電力ばらつきが少なくなる温度であって、通常は600℃以上に設定するのが望ましい。好ましくは750℃以上に設定するのが望ましい。   The operation of this system will be described. However, these are only examples and are not limited. The temperature measuring device 47 determines the temperature at which power generation is possible. The temperature at which power can be generated is less likely to cause a short circuit between the external electrodes 312 due to thermal expansion of the components of the SOFC module, resulting in misalignment, or due to generation of non-combustible material in the supply gas or flaws generated from the component materials. The temperature within the SOFC module becomes uniform and the internal resistance variation of the SOFC cell decreases, and the fuel atmosphere in the SOFC module becomes uniform and the electromotive force variation of the SOFC cell decreases. Usually, it is desirable to set the temperature at 600 ° C. or higher. Preferably it is set to 750 ° C. or higher.

電圧計測器45により発電可能な電位の判断する。発電可能な電位は、SOFCモジュールの構成部材と接地との間が絶縁されていることが保証できる電位であって、通常はセル単体の開回路電圧として0.5V以上に設定するのが望ましい。   The voltage measuring device 45 determines the potential that can be generated. The potential at which power can be generated is a potential that can guarantee that the constituent members of the SOFC module and the ground are insulated, and it is usually desirable to set the open circuit voltage of a single cell to 0.5 V or more.

燃料電池システム4を立ち上げ時、回路開閉部315によってSOFCスタック間の電気的な接続を遮断する。温度計測器47により発電可能な温度であると判断され、電圧計測器45により発電可能な電位であると判断されたとき、電気的な接続を遮断している回路開閉部315は移動し、SOFCスタック間を電気的に接続する。温度計測器47により発電可能な温度であると判断されても電圧計測器45により発電可能な電位でないと判断されたとき回路開閉部315による電気的な接続の遮断は継続される。また電圧計測器45により発電可能な電位であると判断されても温度計測器47により発電可能な温度でないと判断されたとき回路開閉部315による電気的な接続の遮断は継続される。   When the fuel cell system 4 is started up, the electrical connection between the SOFC stacks is interrupted by the circuit opening / closing unit 315. When it is determined that the temperature can be generated by the temperature measuring device 47 and the potential can be generated by the voltage measuring device 45, the circuit opening / closing unit 315 that is blocking the electrical connection moves, and the SOFC Connect the stacks electrically. Even if it is determined that the temperature can be generated by the temperature measuring device 47, the electrical disconnection by the circuit opening / closing unit 315 is continued when it is determined by the voltage measuring device 45 that the potential cannot be generated. Even if it is determined that the potential can be generated by the voltage measuring device 45, the electrical disconnection by the circuit opening / closing unit 315 is continued when it is determined by the temperature measuring device 47 that the temperature cannot be generated.

図5は、本発明に係る燃料電池システム1を構成する回路開閉部315の概略図である。しかしながら、これらは1例であり限定されるものではない。図5の上図は電流遮断の状態にある回路開閉部315であって、保持部材28aに電気的接続を良好にするためのNiなどの導電性部材213aを具備するSOFCスタック2に、金属部材51(第2の金属部材)を対面配置する。図5は、金属部材51と導電性部材213aの電気的接続を良好にするため、金属部材51はNiなどの導電性部材であってもよい。また金属部材51は、図示しないが、2つの隣り合うSOFCスタックの導電性部材213aを良好に電気的接続するだけの面積を有している。そして金属部材51は保持部材52、絶縁保持部材53と一体になっている。移動ジグ54は一体となる棒55を出し入れすることで絶縁保持部材53を図5の左右に動かす。捧55とガス気密容器321はネジ57で会合し、気密性を保っている。棒55は、モーター56によって可動することができる。なお、図5は導電性部材213aと金属部材51が離れ、電気的に遮断している様子を示す。負荷制御部が固体酸化物形燃料電池セルから電流を流すように制御する前の電気開閉部の状態を表している。図6は導電性部材213aと金属部材51が接続し、電流通電している様子を示す。負荷制御部が固体酸化物形燃料電池セルから電流を流すように制御している時の電気開閉部の状態を表している。   FIG. 5 is a schematic view of the circuit opening / closing part 315 constituting the fuel cell system 1 according to the present invention. However, these are only examples and are not limited. The upper diagram of FIG. 5 is a circuit opening / closing portion 315 in a state of current interruption, and a metal member is attached to the SOFC stack 2 having a conductive member 213a such as Ni for improving electrical connection to the holding member 28a. 51 (second metal member) is disposed facing each other. In FIG. 5, in order to improve the electrical connection between the metal member 51 and the conductive member 213a, the metal member 51 may be a conductive member such as Ni. Further, although not shown, the metal member 51 has an area enough to satisfactorily electrically connect the conductive members 213a of two adjacent SOFC stacks. The metal member 51 is integrated with the holding member 52 and the insulating holding member 53. The moving jig 54 moves the insulating holding member 53 left and right in FIG. Dedicated 55 and the gas-tight container 321 meet with a screw 57 to maintain airtightness. The rod 55 can be moved by a motor 56. FIG. 5 shows a state in which the conductive member 213a and the metal member 51 are separated and electrically disconnected. The state of the electric switching part before a load control part controls so that an electric current may be sent from a solid oxide fuel cell is represented. FIG. 6 shows a state in which the conductive member 213a and the metal member 51 are connected and current is supplied. The state of the electric switching part when the load control part is controlling so that an electric current may be sent from a solid oxide fuel cell is represented.

電気的に接続する金属部材51と駆動部の間に絶縁保持部材53を介することにより、ガス気密容器と金属部材を電気的に絶縁できる。なお金属部材51はニッケルなどの電気導電性が高く耐熱性のある材料を用いることができる。さらには導電性部材を用いて電気的な接続の信頼性を高めてもよい。駆動部は耐熱鋼など強度のある金属材質を用いることができる。絶縁部材はアルミナ、ムライトなどのセラミックを用いても良い。   By interposing the insulating holding member 53 between the electrically connected metal member 51 and the drive unit, the gas-tight container and the metal member can be electrically insulated. The metal member 51 can be made of a material having high electrical conductivity such as nickel and having high heat resistance. Furthermore, the reliability of electrical connection may be increased using a conductive member. The drive unit can be made of a strong metal material such as heat resistant steel. The insulating member may be ceramic such as alumina or mullite.

棒55を移動させるモーター56の駆動は、判定を受けて自動で行ってもよい。自動の場合は油圧シリンダ、空圧シリンダ、モーターなどによって駆動することができる。   The driving of the motor 56 for moving the rod 55 may be automatically performed upon receiving the determination. In the case of automatic, it can be driven by a hydraulic cylinder, a pneumatic cylinder, a motor or the like.

なお、捧55とガス気密容器321はネジ57で会合することが望ましいが、磁気シール、耐熱パッキン、セラミックしゅう動材料を用いたかん合、金属フレキなどを用いて気密性を保っても良い。   It should be noted that the dedicated 55 and the gas-tight container 321 are preferably associated with each other by the screw 57, but may be kept airtight by using a magnetic seal, heat-resistant packing, mating using a ceramic sliding material, metal flexure, or the like.

本発明者は、数多くの信頼性試験ならびに実験的検証によって短絡によるセル損傷のメカニズムを明らかにすることで本発明を考案するに至った。以下、空気極を支持体とする円筒縦縞型SOFCセルを用いた検証試験の1例を次に説明する。   The present inventor has devised the present invention by clarifying the mechanism of cell damage due to a short circuit through numerous reliability tests and experimental verifications. Hereinafter, an example of a verification test using a cylindrical vertical stripe SOFC cell using an air electrode as a support will be described.

本検証実験で用いたSOFCセル1は有効長600mmとし、空気極支持体11の組成はLa0.75Sr0.25MnO3で厚み2mm、固体電解質12の組成は90mol%ZrO2―10mol%Sc2O3で厚み30μm、燃料極13の組成は、Niと90mol%ZrO2―10mol%Y2O3からなる混合材料で厚み100μm、インターコネクター14の組成は、La0.8Ca0.2CrO3で厚み30μmである。 The SOFC cell 1 used in this verification experiment has an effective length of 600 mm, the composition of the air electrode support 11 is La 0.75 Sr 0.25 MnO 3 and a thickness of 2 mm, and the composition of the solid electrolyte 12 is 90 mol% ZrO 2 -10 mol% Sc 2 O 3. The composition of the fuel electrode 13 is 100 μm thick with a mixed material of Ni and 90 mol% ZrO 2 -10 mol% Y 2 O 3, and the composition of the interconnector 14 is La 0.8 Ca 0.2 CrO 3 with a thickness of 30 μm. .

前記SOFCセル2本を電気的に並列接続した組を、電気的に6組直列接続したSOFCセル12本からなるスタックを構成し、該スタック8個を電気的に直列接続してモジュールを形成する。そして2つの該モジュールを2つ電気的に直列接続することで10KW級発電システムが得られる。 A set of 12 SOFC cells electrically connected in series is formed by a set of two SOFC cells electrically connected in parallel, and a stack is formed by electrically connecting the 8 stacks in series. . A 10 KW class power generation system can be obtained by electrically connecting two of the two modules in series.

発電試験は、SOFCセル内側に空気を、外側に燃料ガス(H2+N2混合ガス)を供給した。表1に示す条件を経た後、900℃まで昇温させ、発電を実施した。   In the power generation test, air was supplied to the inside of the SOFC cell, and fuel gas (H2 + N2 mixed gas) was supplied to the outside. After passing through the conditions shown in Table 1, the temperature was raised to 900 ° C. to generate power.

Figure 0005435393
Figure 0005435393

通常の立ち上げ、運転、終了が支障なく稼動する発電システムであることを確認した後、改めて発電システムを立ち上げる途中、発電システムから10KW発電を取り出す外部電極の両端を短絡させ、外部電極間の電位を急激に下げて0Vにすると、モジュール2個を構成しているSOFCセル180個のうちの1つが劣化した。 After confirming that the power generation system operates normally without problems, start-up, operation, and termination, while the power generation system is being started up again, short-circuit both ends of the external electrode to extract 10 kW power generation from the power generation system. When the potential was suddenly lowered to 0 V, one of 180 SOFC cells constituting two modules deteriorated.

本試験によって劣化したSOFCセルの空気極と電解質の界面近傍を電子顕微鏡で観察した結果を図7に示す。図7の71の範囲は空気極、72の範囲は空気極触媒層である。図7から空気極と空気極触媒層の界面近傍の組織に微小な凹凸が発生しているのがわかる。エネルギー分散型X線分析装置(EDX)やエックス線回折装置(XRD)などによる詳細な分析によって、この微小な凹凸が空気極材料の還元分解した結果であることがわかった。また短絡した状態で運転を継続するとSOFCセルは破壊し、周囲の正常なSOFCセルは損傷した。 FIG. 7 shows the result of observing the vicinity of the interface between the air electrode and the electrolyte of the SOFC cell deteriorated by this test with an electron microscope. In FIG. 7, a range 71 is an air electrode, and a range 72 is an air electrode catalyst layer. It can be seen from FIG. 7 that minute irregularities are generated in the structure near the interface between the air electrode and the air electrode catalyst layer. Detailed analysis using an energy dispersive X-ray analyzer (EDX), an X-ray diffractometer (XRD), and the like revealed that the minute irregularities are the result of reductive decomposition of the air electrode material. Further, when the operation was continued in a short-circuited state, the SOFC cell was destroyed and the surrounding normal SOFC cell was damaged.

本発明者が検討した結果、SOFCセルの劣化はセルを直列に配置して外部電極間の電位が100V以上の大型発電システムにおいて、短絡などの急激な電圧変化を伴った場合にのみ生じることを突き止めた。   As a result of the study by the present inventors, the deterioration of the SOFC cell occurs only when there is a sudden voltage change such as a short circuit in a large power generation system in which the cells are arranged in series and the potential between the external electrodes is 100 V or more. I found it.

本発明者は検討を重ね、外部電極間の短絡によって特定のSOFCセルが劣化するメカニズムを明らかにし、立ち上げ時の短絡が特定のセルを劣化することを予測した。以下にその詳細を述べる。   The present inventor has repeatedly studied and elucidated the mechanism by which a specific SOFC cell deteriorates due to a short circuit between external electrodes, and predicted that a short circuit at startup deteriorates a specific cell. Details are described below.

セルnの電位Enは起電力Vn、電流i、内部抵抗Rnを用い式1で説明される。
式1 En=Vn−iRn
またセルn個が直列で接続されているときの両端の電位E は式2で説明される。
式2 E=ΣEn
=ΣVn−iΣRn
短絡したときはE=0であるから式2から式3が求められる。
式3 ΣVn=iΣRn
つまりセルnに流れる電流iは式4となる。
式4 i=ΣVn/ΣRn
式4、式1からセルnの電位(=起電力)が求まる。
式5 En=Vn−Rn・ΣVn/ΣRn
各セルの起電力の平均値をVave、内部抵抗Raveとし、セルnの平均値との差をΔV、ΔRとすれば式5は式6のように変換される。
式6 En=(Vave+ΔV)−(Rave+ΔR)・Vave/Rave
=ΔV−ΔR・i
The potential En of the cell n is described by Equation 1 using the electromotive force Vn, the current i, and the internal resistance Rn.
Formula 1 En = Vn−iRn
Further, the potential E 1 at both ends when n cells are connected in series is described by Equation 2.
Formula 2 E = ΣEn
= ΣVn-iΣRn
Since E = 0 when short-circuited, Expressions 3 to 3 are obtained.
Formula 3 ΣVn = iΣRn
That is, the current i flowing through the cell n is expressed by Equation 4.
Formula 4 i = ΣVn / ΣRn
From Formula 4 and Formula 1, the potential (= electromotive force) of the cell n is obtained.
Formula 5 En = Vn−Rn · ΣVn / ΣRn
If the average value of the electromotive force of each cell is Vave and the internal resistance Rave, and the difference from the average value of the cell n is ΔV and ΔR, Expression 5 is converted into Expression 6.
Formula 6 En = (Vave + ΔV) − (Rave + ΔR) · Vave / Rave
= ΔV−ΔR · i

SOFC燃料電池システムで、出力端子の両端を短絡させた場合、式6は起電力が平均より低く、且つ内部抵抗が平均より高いセルにマイナス電位、すなわち「転極」が発生することを意味している。起電力が低い場合としては酸素ポテンシャル、すなわち電解質間の酸素濃度差が小さい、セルの品質粗悪などが考えられる。内部抵抗が高い場合としてはセル温度が低い、セルの品質粗悪などが考えられる。酸素濃度差はSOFCモジュール内の酸素雰囲気の不均一さと密接に関係し、セル温度差はSOFCモジュール内の温度分布と密接に関係している。   In the SOFC fuel cell system, when both ends of the output terminal are short-circuited, Equation 6 means that a negative potential, that is, “inversion” occurs in a cell whose electromotive force is lower than average and whose internal resistance is higher than average. ing. Possible cases where the electromotive force is low include oxygen potential, that is, a small difference in oxygen concentration between electrolytes, poor cell quality, and the like. Possible cases where the internal resistance is high include low cell temperature and poor cell quality. The oxygen concentration difference is closely related to the non-uniformity of the oxygen atmosphere in the SOFC module, and the cell temperature difference is closely related to the temperature distribution in the SOFC module.

ところでSOFCに用いるセルは、酸素イオン(O2-)透過性を有し、かつ、ガス透過性の無い固体電解質薄膜(ZrO2、CeO2等)と、固体電解質薄膜を挟む一方に空気電極(LaMnO3等)、一方に燃料極(Ni基サーメット等)が形成される。このうち空気極は、空気中の酸素と電子の反応場であり、外部の負荷から反応場へ電子を供給する導電路の働きもする。これらの機能を満足する材料として、高い導電性を持つペロブスカイト型酸化物が使われる。ところで同酸化物は近傍の酸素分圧が低下すると、空気極の還元分解を生じる。材料によって酸素濃度依存性は異なるが、導電性と酸素安定性を両立させた場合の空気極材料(例えば、(La0.75Sr0.25)yMnO3)の雰囲気温度と還元分解を生じる酸素濃度の閾値を実験的に求めた結果を表2に示す。閾値を下回ると空気極材質は分解し、分解膨張による内部応力が発生しセル劣化が加速する。 By the way, the cell used for SOFC has a solid electrolyte thin film (ZrO2, CeO2, etc.) having oxygen ion (O2-) permeability and no gas permeability, and an air electrode (LaMnO3, etc.) sandwiching the solid electrolyte thin film. On one side, a fuel electrode (Ni-based cermet or the like) is formed. Of these, the air electrode is a reaction field of oxygen and electrons in the air, and also serves as a conductive path for supplying electrons from an external load to the reaction field. As a material satisfying these functions, a perovskite oxide having high conductivity is used. By the way, when the oxygen partial pressure in the vicinity of the oxide decreases, reductive decomposition of the air electrode occurs. Although the oxygen concentration dependency differs depending on the material, the ambient temperature of the air electrode material (for example, (La 0.75 Sr 0.25 ) y MnO 3 ) and the oxygen concentration threshold value that causes reductive decomposition when both conductivity and oxygen stability are achieved. Table 2 shows the results obtained experimentally. Below the threshold value, the air electrode material is decomposed, internal stress is generated due to decomposition and expansion, and cell deterioration is accelerated.

Figure 0005435393
Figure 0005435393

またセルnの起電力Vnの理論値(開回路電圧:OCV)は式7で与えられる。μ(O2、a)はアノードの酸素ポテンシャル、μ(O2、c)はカソードの酸素ポテンシャル、Fはファラデー定数である。すなわち起電力Vnは電解質の両側の酸素ポテンシャル差で決定されることを示している。

式7 Vn=−(μ(O2、a)−μ(O2、c))/4F
The theoretical value (open circuit voltage: OCV) of the electromotive force Vn of the cell n is given by Equation 7. μ (O 2, a) is the oxygen potential of the anode, μ (O 2, c) is the oxygen potential of the cathode, and F is the Faraday constant. That is, the electromotive force Vn is determined by the difference in oxygen potential between both sides of the electrolyte.

Formula 7 Vn = − (μ (O2, a) −μ (O2, c)) / 4F

通常の運転条件下ではカソードの酸素濃度は閾値を下回ることはない。また「転極」によってマイナス電位を生じても、小規模のSOFCシステムであれば酸素濃度の閾値を下回るだけの電位がセルに発生することはなく、たとえ品質の悪いセルであっても空気極が劣化することはない。   Under normal operating conditions, the cathode oxygen concentration never falls below the threshold. Even if a negative potential is generated by “polarization”, a small-scale SOFC system does not generate a potential in the cell that is lower than the oxygen concentration threshold value. Will not deteriorate.

しかし、SOFCシステムが大規模になり、SOFCモジュール内の雰囲気や温度のばらつきが大きくなると、酸素濃度は閾値を下回ることになる。   However, when the SOFC system becomes large-scale and the variation in atmosphere and temperature in the SOFC module increases, the oxygen concentration falls below the threshold value.

本発明者は、SOFCセル1を1本用い、SOFCセル81に直流安定化電源82を接続しセル電極間の電位計83によりセル電極間にマイナスの電位を作用させる実験を実施した。図7に回路図を示す。本系統的実験で用いたSOFCセル1は有効長600mmとし、空気極支持体11の組成はLa0.75Sr0.25MnO3で厚み2mm、固体電解質12の組成は90mol%ZrO2―10mol%Sc2O3で厚み30μm、燃料極13の組成は、Niと90mol%ZrO2―10mol%Y2O3からなる混合材料で厚み100μm、インターコネクター14の組成は、La0.8Ca0.2CrO3で厚み30μmである。 The inventor conducted an experiment in which one SOFC cell 1 was used, a DC stabilized power source 82 was connected to the SOFC cell 81, and a negative potential was applied between the cell electrodes by an electrometer 83 between the cell electrodes. FIG. 7 shows a circuit diagram. The SOFC cell 1 used in this systematic experiment has an effective length of 600 mm, the composition of the air electrode support 11 is La 0.75 Sr 0.25 MnO 3 and a thickness of 2 mm, and the composition of the solid electrolyte 12 is 90 mol% ZrO 2 -10 mol% Sc 2 O. 3 is 30 μm thick, and the composition of the fuel electrode 13 is 100 μm thick with a mixed material of Ni and 90 mol% ZrO 2 -10 mol% Y 2 O 3 , and the interconnector 14 is La 0.8 Ca 0.2 CrO 3 with a thickness of 30 μm. is there.

本実験において、−0.5Vのセル電位ではセルの劣化は見られないが、−1.0Vのセル電圧になると若干の内部抵抗の増加が認められ、−2.0Vのセル電位になるとセルは劣化した。 In this experiment, cell deterioration was not observed at a cell potential of -0.5V, but a slight increase in internal resistance was observed when the cell voltage was -1.0V, and the cell potential was -2.0V. Has deteriorated.

すなわち酸素分圧の閾値を越える電位がかかったときにセルが劣化する。このような事象は大容量のSOFC装置において短絡などの不具合が発生したときに限られた現象である。また酸素分圧の閾値を越える電位はモジュール温度が600℃以下の場合、モジュール内の温度ばらつきによってセル内部抵抗ばらつきが大きく、またモジュールないの雰囲気ばらつきによってセル起電力ばらつきが大きく、特に危険である。一旦短絡を生じると、現在のSOFC装置においては、セルに大きなダメージを生じるという認識はなく、セル破損に至り、SOFCモジュール全体を損傷することになってしまう。本発明によってかかる損傷を防止できる。 That is, the cell deteriorates when a potential exceeding the threshold value of oxygen partial pressure is applied. Such an event is a phenomenon that is limited when a malfunction such as a short circuit occurs in a large-capacity SOFC device. In addition, when the module temperature is 600 ° C. or lower, the potential exceeding the oxygen partial pressure threshold is particularly dangerous because the cell internal resistance variation is large due to the temperature variation in the module, and the cell electromotive force variation is large due to the atmosphere variation of the module. . Once a short circuit occurs, the current SOFC device does not recognize that the cell will be seriously damaged, leading to cell failure and damaging the entire SOFC module. Such damage can be prevented by the present invention.

本実施形態のSOFCセルを示す図である。It is a figure which shows the SOFC cell of this embodiment. 本実施形態のSOFCスタックを示す図である。It is a figure which shows the SOFC stack of this embodiment. 本実施形態のSOFCモジュールを示す図である。It is a figure which shows the SOFC module of this embodiment. 本実施形態の燃料電池システムの概略図である。It is the schematic of the fuel cell system of this embodiment. 本実施形態の回路開閉部を示す図である。(電流遮断の状態)It is a figure which shows the circuit opening / closing part of this embodiment. (Current interruption state) 本実施形態の回路開閉部を示す図である。(電流導通の状態)It is a figure which shows the circuit opening / closing part of this embodiment. (Current conduction state) 本試験によって劣化したSOFCセルの空気極と電解質の界面近傍を電子顕微鏡像である。It is an electron microscopic image of the vicinity of the interface between the air electrode and the electrolyte of the SOFC cell deteriorated by this test. セル電極間にマイナスの電位を作用させる実験に用いた回路図である。It is the circuit diagram used for the experiment which makes a negative electric potential act between cell electrodes.

符号の説明Explanation of symbols

1…SOFCセル、2…SOFCバンドル、3…SOFCモジュール、4…SOFC発電装置、213a…導電性部材、315…回路開閉部   DESCRIPTION OF SYMBOLS 1 ... SOFC cell, 2 ... SOFC bundle, 3 ... SOFC module, 4 ... SOFC power generation device, 213a ... Conductive member, 315 ... Circuit switching part

Claims (2)

固体酸化物形燃料電池セルを備える燃料電池スタックと、
複数の前記燃料電池スタックを電気的に接続する導電性部材と、
複数の前記燃料電池スタック及び前記導電性部材を備える電気回路と、
複数の前記燃料電池スタック間を電気的に接続又は遮断する回路開閉部と、
前記燃料電池スタックが発電可能な温度にあるか否かを判断する温度計測手段と、
前記燃料電池スタックが発電可能な電位にあるか否かを判断する電圧計測手段と、を備える燃料電池システムであって、
前記回路開閉部は、前記燃料電池システムの立ち上げ時に、前記温度計測手段及び前記電圧計測手段のいずれの計測手段においても予め定められた所定の閾値を超え、発電が可能であると判断された発電可能な所定の状態になるまでは複数の前記燃料電池スタック間を電気的に遮断した状態を継続し、発電可能な所定の状態になると複数の前記燃料電池スタック間を電気的に接続することを特徴とする燃料電池システム。
A fuel cell stack comprising solid oxide fuel cells,
A conductive member for electrically connecting the plurality of fuel cell stacks;
An electrical circuit comprising a plurality of the fuel cell stack and the conductive member;
A circuit opening / closing part for electrically connecting or disconnecting a plurality of the fuel cell stacks;
Temperature measuring means for determining whether or not the fuel cell stack is at a temperature capable of generating electricity;
Voltage measuring means for determining whether or not the fuel cell stack is at a potential capable of generating power, and a fuel cell system comprising:
When the fuel cell system is started up, the circuit opening / closing unit exceeds a predetermined threshold value in any of the temperature measurement unit and the voltage measurement unit, and is determined to be capable of power generation. The plurality of fuel cell stacks are kept in an electrically disconnected state until a predetermined state in which power generation is possible, and the plurality of fuel cell stacks are electrically connected in a predetermined state in which power generation is possible. A fuel cell system.
固体酸化物形燃料電池セルを備える燃料電池スタックと、
複数の前記燃料電池スタックを電気的に接続する導電性部材と、
複数の前記燃料電池スタック間を電気的に接続又は遮断する回路開閉部と、
前記燃料電池スタックが発電可能な温度にあるか否かを判断する温度計測手段と、
前記燃料電池スタックが発電可能な電位にあるか否かを判断する電圧計測手段と、を備える燃料電池システムの立ち上げ時の運転方法であって、
燃料電池システムの立ち上げ開始後、
複数の前記燃料電池スタック間の電気的な接続が遮断した状態で、発電可能な所定の状態か否かを判断する工程を行い、
前記発電可能な所定の状態か否かを判断する工程は前記温度計測手段及び前記電圧計測手段のいずれの計測手段においても予め定められた所定の閾値を超え、発電が可能であると判断されたか否かによって判断される工程であって、前記いずれの計測手段においても発電が可能であると判断された場合には発電可能な所定の状態であると判断し、いずれか一方の計測手段でも発電可能な状態ではないと判断した場合には発電可能な所定の状態ではないと判断する工程であり、
発電可能な所定の状態であると判断された後に、複数の前記燃料電池スタック間を電気的に接続する工程を行うことを特徴とする燃料電池システムの立ち上げ時の運転方法。
A fuel cell stack comprising solid oxide fuel cells,
A conductive member for electrically connecting the plurality of fuel cell stacks;
A circuit opening / closing part for electrically connecting or disconnecting a plurality of the fuel cell stacks;
Temperature measuring means for determining whether or not the fuel cell stack is at a temperature capable of generating electricity;
Voltage measuring means for determining whether or not the fuel cell stack is at a potential capable of generating power, and an operation method at the time of start-up of the fuel cell system,
After the start-up of the fuel cell system,
Performing a step of determining whether or not a predetermined state in which power generation is possible in a state where electrical connection between the plurality of fuel cell stacks is interrupted;
Whether the step of determining whether or not the power generation is in a predetermined state exceeds a predetermined threshold value in any of the temperature measurement means and the voltage measurement means, and has been determined that power generation is possible If it is determined that power generation is possible in any of the measurement means, it is determined that the power generation is in a predetermined state, and power generation is also performed in either of the measurement means. When it is determined that it is not possible, it is a step that determines that it is not in a predetermined state where power generation is possible,
A method of operating the fuel cell system at the time of start-up, comprising performing a step of electrically connecting the plurality of fuel cell stacks after it is determined that the power generation is in a predetermined state.
JP2008048859A 2008-02-28 2008-02-28 Solid oxide fuel cell system Expired - Fee Related JP5435393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008048859A JP5435393B2 (en) 2008-02-28 2008-02-28 Solid oxide fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008048859A JP5435393B2 (en) 2008-02-28 2008-02-28 Solid oxide fuel cell system

Publications (2)

Publication Number Publication Date
JP2009205997A JP2009205997A (en) 2009-09-10
JP5435393B2 true JP5435393B2 (en) 2014-03-05

Family

ID=41148055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008048859A Expired - Fee Related JP5435393B2 (en) 2008-02-28 2008-02-28 Solid oxide fuel cell system

Country Status (1)

Country Link
JP (1) JP5435393B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216079A (en) * 2013-04-23 2014-11-17 大阪瓦斯株式会社 Solid oxide fuel cell system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3655507B2 (en) * 1999-09-30 2005-06-02 ダイハツ工業株式会社 Fuel cell system and electric vehicle equipped with the same
US7491457B2 (en) * 2002-08-16 2009-02-17 Hewlett-Packard Development Company, L.P. Fuel cell apparatus
WO2004027913A1 (en) * 2002-09-18 2004-04-01 Nec Corporation Fuel cell system and application method therefor
JP2005222864A (en) * 2004-02-06 2005-08-18 Toyota Motor Corp Control device of fuel cell system and vehicle equipped with control device
JP2007250271A (en) * 2006-03-14 2007-09-27 Nissan Motor Co Ltd Fuel cell control system

Also Published As

Publication number Publication date
JP2009205997A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
US20120178012A1 (en) Sealing member for solid oxide fuel cell and solid oxide fuel cell employing the same
TWI750185B (en) Soec system with heating ability
EP3309883A1 (en) Solid-oxide fuel cell
Christiansen et al. Recent progress in development and manufacturing of SOFC at Topsoe Fuel Cell A/S and Riso̸ DTU
KR101186537B1 (en) Micro cylindrical solid oxide fuel cell stack and solid oxide fuel cell power generation system comprising the same
CN109565057B (en) Electrochemical reaction single cell and electrochemical reaction cell stack
US9059434B2 (en) Structure and method for SOFC operation with failed cell diode bypass
JP6702585B2 (en) Flat electrochemical cell stack
JP5435393B2 (en) Solid oxide fuel cell system
EP3451427B1 (en) Solid oxide fuel cell
CN111937207B (en) Solid oxide fuel cell
KR20140053568A (en) Solid oxide fuel cell module
US20110053032A1 (en) Manifold for series connection on fuel cell
KR20160058275A (en) Metal-supported solid oxide fuel cell and method of manufacturing the same
KR102198390B1 (en) Direct Flame-Solid Oxide Fuel Cell under rapid start-up and shut-down condition
US9742022B2 (en) Solid electrolytic fuel battery having an inner gas supply path
US11870080B2 (en) Anode layer activation method for solid oxide fuel cell, and solid oxide fuel cell system
JP6926193B2 (en) Flat plate electrochemical cell stack
US20140178799A1 (en) Solid oxide fuel cell and manufacturing method thereof
KR101155375B1 (en) Combined flat-tube anode support solid oxide fuel cell and stack structure using the same
EP3340351B1 (en) Cell, cell stack device, module, and module accommodation device
KR101962267B1 (en) Stack Assembly with High temperature Fuel Cell Unit-cell with Homopolar plates
JP2019169240A (en) Operation method for electrochemical reaction cell stack and electrochemical reaction system
KR101180157B1 (en) Apparatus for treating of poor unit cell of solid oxide fuel cell and method for installating the same
US20220190377A1 (en) Fuel cell cartridge, fuel cell module, and combined power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131201

R150 Certificate of patent or registration of utility model

Ref document number: 5435393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees