WO2004027913A1 - Fuel cell system and application method therefor - Google Patents

Fuel cell system and application method therefor Download PDF

Info

Publication number
WO2004027913A1
WO2004027913A1 PCT/JP2003/011827 JP0311827W WO2004027913A1 WO 2004027913 A1 WO2004027913 A1 WO 2004027913A1 JP 0311827 W JP0311827 W JP 0311827W WO 2004027913 A1 WO2004027913 A1 WO 2004027913A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
temperature
cell system
electrode
Prior art date
Application number
PCT/JP2003/011827
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Manako
Tsutomu Yoshitake
Hidekazu Kimura
Yoshimi Kubo
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2004537579A priority Critical patent/JPWO2004027913A1/en
Publication of WO2004027913A1 publication Critical patent/WO2004027913A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a method for using the same.
  • Conventional technology
  • a fuel cell is composed of a fuel electrode and an oxidant electrode, and an electrolyte provided therebetween. Fuel is supplied to the fuel electrode and an oxidant is supplied to the oxidant electrode to generate power by an electrochemical reaction.
  • hydrogen has been used as a fuel, but in recent years, direct type fuel cells that directly use inexpensive and easy-to-handle methanol as fuel have been actively developed.
  • reaction at the fuel electrode is represented by the following equation (1).
  • the fuel cell has a poor startability as compared with other power sources.
  • the power generation efficiency of direct fuel cells decreases as the temperature decreases, and if the temperature is low, the equipment may not be able to start because it cannot supply the desired voltage and current.
  • Patent Document 1 In order to improve such poor startability of the fuel cell, for example, a method has been proposed in which an electric heater is added to the fuel cell to forcibly raise the temperature to a predetermined temperature (Patent Document 1). Also, for example, when the fuel cell starts, A method has been proposed in which the fuel cell is directly supplied with fuel and the methanol is directly combusted at the air electrode, whereby the temperature of the fuel cell can be rapidly increased and the optimum operating temperature is obtained in a short time (Patent Document 2). ).
  • the conventional method of adding an electric heater has a problem that the size of the apparatus is increased due to the addition of the electric heater, and a problem that a power source for heating the electric heater must be separately prepared.
  • a pipe for supplying methanol to the air electrode even in a system in which methanol is directly combusted at the air electrode, it is necessary to provide a pipe for supplying methanol to the air electrode, and when applied to a cell stack including a plurality of fuel cells, the structure is complicated. Therefore, there is a problem that the device becomes large.
  • a fuel cell is used for a portable device such as a mobile phone, it is often used externally, and it is required that the fuel cell can be used in a low-temperature atmosphere of about 0 ° C.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique that can increase the temperature of a fuel cell to enhance the startability even when the temperature is low. Disclosure of the invention
  • a fuel cell having a fuel cell and supplying electric power to a load connected to the fuel cell, wherein a short circuit or an open circuit between input and output terminals of the load is provided according to the temperature of the fuel cell.
  • a fuel cell system characterized by having a temperature switch that changes the temperature is provided. When the input and output terminals to the load connected to the fuel cell are short-circuited, no current flows to the load. Therefore, according to the present invention, supply or cutoff of power to the load can be switched according to the temperature of the fuel cell.
  • the fuel cell can include a solid electrolyte membrane, and a fuel electrode and an oxidant electrode provided with the solid electrolyte membrane interposed therebetween. Further, the solid electrolyte membrane may be configured to be sandwiched between a fuel electrode and an oxidant electrode.
  • a polymer solid electrolyte membrane can be used as the solid electrolyte membrane.
  • Liquid fuel can be used as fuel for the fuel cell. Here, methanol, ethanol, dimethyl ether, or other alcohols can be used as the liquid fuel.
  • the liquid fuel can be an aqueous solution.
  • the fuel cell system may further include a short-circuit path formed by connecting to the fuel cell in parallel with the load, and the temperature switch may connect or disconnect the short-circuit path and the fuel cell. Can be. Further, the fuel cell system of the present invention may include a system power switch for starting the fuel cell.
  • the temperature switch can be made of a material whose shape changes depending on the temperature, and the input / output terminals can be connected or disconnected according to the temperature.
  • the temperature switch can be made of bimetal, shape alloy, thermal expansive agent, panel, or temperature sensitive light: ⁇ : light. With this configuration, connection or disconnection between the input / output terminals can be repeatedly performed each time the temperature of the fuel cell changes.
  • the temperature switch is composed of a fixed conductor connected to the short-circuit path and a material whose shape changes according to the temperature. Accordingly, a movable conductor that comes into contact with the fixed conductor or separates from the fixed conductor can be used. With this configuration, the contact and detachment between the fixed conductor and the movable conductor can be repeated each time the temperature of the fuel cell changes.
  • the movable conductor can be made of a pi metal, a shape memory alloy, a thermal expansion agent, a panel, or a temperature-sensitive ferrite.
  • the fuel cell system may further include a temperature sensor installed in the fuel cell, and the temperature switch can short-circuit or open / close the input / output terminals based on an output signal of the temperature sensor.
  • the temperature sensor can be composed of a thermocouple, a metal resistance thermometer, a thermistor, an IC temperature sensor, a magnetic temperature sensor, a thermopile, and a pyroelectric temperature sensor.
  • the fuel cell may be a fuel cell stack including a plurality of single cells in which a fuel electrode and an oxidant electrode are arranged with a solid electrolyte membrane interposed therebetween, and the temperature switch may be a fuel cell.
  • the input and output terminals can be short-circuited or opened depending on the temperature of the oxidizer electrode arranged at the end of the stack. In this way, the temperature at the end of the fuel cell stack that is most likely to be affected by the external temperature can be reflected.
  • the temperature switch when the temperature of the fuel cell is lower than the reference temperature, the temperature switch short-circuits between the input and output terminals to the load, and when the temperature of the fuel cell becomes higher than the reference temperature, The input and output terminals can be opened.
  • the reference temperature can be in the range of 110 ° C. or more and 35 ° C. or less.
  • the fuel cell system of the present invention may further include a warning signal transmitting unit that generates a warning signal when the temperature of the fuel cell becomes equal to or higher than a second reference temperature that is higher than the reference temperature.
  • the fuel cell may include a fuel electrode and an oxidizer electrode
  • the fuel cell system includes a fuel supply processing unit that performs a process of supplying fuel to the fuel electrode, and a temperature of the fuel cell.
  • a control unit that controls the fuel supply processing unit in accordance with the control value and adjusts the concentration of the fuel supplied to the fuel electrode. Wear.
  • the control unit can set so that the lower the temperature of the fuel cell is, the higher the concentration of the fuel is. This promotes crossover and heats the fuel cell.
  • the control unit when the temperature of the fuel cell is equal to or lower than the predetermined temperature, sets the concentration of the fuel to be supplied to the fuel electrode according to the temperature of the fuel cell.
  • the concentration of the fuel to be supplied to the fuel electrode can be set to a predetermined concentration.
  • the control unit can set the fuel supplied to the fuel electrode to a predetermined concentration regardless of the temperature of the fuel cell.
  • control unit can control the fuel supply unit according to the temperature of the fuel cell to further adjust the amount of fuel supplied to the fuel electrode.
  • the control unit can reduce the fuel supply amount as the temperature of the fuel cell decreases. This can prevent the fuel electrode from being cooled by the fuel.
  • the fuel cell system may further include an oxidant supply processing unit that performs a process of supplying the oxidant to the oxidant electrode, and the control unit controls the oxidant electrode according to the temperature of the fuel cell.
  • the amount of the oxidizing agent supplied to the oxidizing agent electrode can be adjusted.
  • the control unit can reduce the supply amount of the oxidant as the temperature of the fuel cell decreases. This can prevent the oxidant electrode from being cooled by the oxidant.
  • the fuel cell system of the present invention may further include a heater for heating at least one of the fuel supplied to the fuel electrode and the oxidant supplied to the oxidant electrode.
  • the fuel supplied to the fuel electrode of the fuel cell can be a liquid fuel.
  • a method of using a fuel cell system characterized by being short-circuited or opened.
  • the input / output terminals are short-circuited, and when the temperature of the fuel cell becomes higher than the reference temperature, the input / output terminals are connected. Can be opened.
  • the fuel cell may include a fuel electrode and an oxidizer electrode, and setting a concentration of fuel supplied to the fuel electrode according to a temperature of the fuel cell. Supplying the fuel of the concentration set in the step of setting the concentration to the fuel electrode.
  • the step of supplying the fuel to the fuel electrode includes, when the temperature of the fuel cell is equal to or lower than a predetermined temperature, the fuel having the concentration set in the concentration setting step. And supplying the fuel of a predetermined concentration to the fuel electrode regardless of the temperature of the fuel cell when the concentration of the fuel cell exceeds the predetermined temperature.
  • the method of using the fuel cell system according to the present invention may further include a step of setting an amount of fuel to be supplied to the fuel electrode according to a temperature of the fuel cell, and in the step of supplying fuel to the fuel electrode, The amount of fuel set in the step of adjusting the amount of fuel can be supplied to the fuel electrode.
  • the method of using the fuel cell system according to the present invention may further include a step of heating at least one of the fuel supplied to the fuel electrode and the oxidant supplied to the oxidant electrode.
  • FIG. 1 is a diagram showing a circuit configuration of a fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a single-cell structure of the fuel cell stack of the fuel cell shown in FIG.
  • FIG. 3 schematically shows a fuel cell according to the first embodiment of the present invention.
  • FIG. 4 is a configuration diagram schematically showing a fuel cell according to the second embodiment of the present invention.
  • FIG. 5 is a diagram showing another example of the fuel cell shown in FIG.
  • FIG. 6 is a diagram showing an example of the fuel cell shown in FIG.
  • FIG. 7 is a block diagram showing a fuel cell system according to the third embodiment of the present invention.
  • reference numeral 101 denotes a single cell structure.
  • Reference numeral 102 is a fuel electrode.
  • Reference numeral 104 denotes a substrate.
  • Reference numeral 110 denotes a substrate.
  • Reference numeral 106 denotes a fuel electrode side catalyst layer.
  • Reference numeral 108 denotes an oxidizer electrode.
  • Reference numeral 112 denotes an oxidant electrode side catalyst layer.
  • Reference numeral 114 denotes a solid electrolyte membrane.
  • Reference numeral 124 is fuel.
  • Reference numeral 126 denotes an oxidizing agent.
  • Reference numeral 532 denotes a fuel cell.
  • Reference numeral 534 denotes a fuel cell stack.
  • Reference numeral 536 denotes a temperature switch.
  • Reference numeral 538 is a system load.
  • Reference numeral 540 is an output terminal.
  • Reference numeral 542 denotes an input terminal.
  • Reference numeral 544 denotes a system power switch.
  • Reference numeral 545 denotes a short-circuit path.
  • Reference numeral 546 denotes a temperature sensor.
  • Reference numeral 548 denotes a power supply control unit.
  • Reference numeral 550 denotes a support.
  • Reference numeral 552 denotes a movable conductor.
  • Reference numeral 55 3 is a contact point.
  • Reference numeral 554 denotes a fixed conductor.
  • Reference numeral 556 denotes a warning signal transmission unit.
  • Reference numeral 560 denotes a temperature switch.
  • Reference numeral 662 denotes an anode tank.
  • Reference numeral 674 denotes a fuel supply processing unit.
  • Reference numeral 676a is a first fuel storage unit.
  • Reference numeral 6776b is a second fuel storage unit.
  • Reference numeral 900 denotes a fuel cell system.
  • Reference numeral 90 1 is a corresponding value storage unit.
  • Reference numeral 92 denotes a control unit.
  • Reference numeral 906 denotes an oxidizer electrode tank.
  • Reference numeral 908 denotes an oxidant supply processing unit.
  • Reference numeral 9110 denotes a fuel supply pipe.
  • Reference numeral 912 is an oxidant supply pipe.
  • Reference numerals 914 and 916 denote heaters.
  • the use of the fuel cell described in the following embodiment is not particularly limited, For example, it can be used appropriately for small electronic devices such as mobile phones, notebook computers, PDAs (Personal Digital Assistants), various cameras, navigation systems, and portable music players.
  • small electronic devices such as mobile phones, notebook computers, PDAs (Personal Digital Assistants), various cameras, navigation systems, and portable music players.
  • FIG. 1 is a diagram showing a circuit configuration of a fuel cell according to an embodiment of the present invention.
  • the fuel cell 532 has a fuel cell stack 534, a system power switch 54, an output terminal 54 to the system load 538, and an input from the system load 538. It includes a terminal 542, a temperature switch 5336, and a short-circuit path 545.
  • the system load 538 is the resistance in the electric device described above.
  • the output terminal 540 to the system load 538 is connected to the fuel electrode 102 of the fuel cell stack 534.
  • the oxidizer electrode 108 of the fuel cell stack 534 is connected to the input terminal 542 from the system load 538.
  • a short-circuit path 5 provided in parallel with the system load 538 between the output terminal 5400 and the input terminal 542
  • the temperature switch 5336 connects the output terminal 540 to the input terminal 542 when the temperature of the fuel cell stack 534 is lower than the reference temperature.
  • a short-circuit current flows through the short-circuit path 545.
  • the temperature switch 536 disconnects the connection between the input terminal 542 and the output terminal 540. As a result, even if the system power switch 5
  • the temperature switch 5336 be designed so as to be switched on and off according to the temperature of the oxidant electrode 108 in the fuel cell stack 5354. If the temperature near the catalyst is low in the oxidant electrode 108, sufficient power generation efficiency cannot be obtained.
  • the reference temperature be a temperature at which power generation efficiency sufficient to supply power to the system load 538 is obtained.
  • the reference temperature is in a range of 110 ° C or more and 35 ° C or less. It is.
  • the temperature switch 5336 closes and current flows through the short-circuit path 545, so that a short-circuit current flows through the fuel cell stack 534. Therefore, the fuel cell stack 5 3 4 can be quickly heated. This allows fuel to burn even at low ambient temperatures. The startability of the fuel cell 532 can be improved.
  • FIG. 1A is a diagram showing an initial state of the fuel cell 532 when the system power switch 544 is off when the ambient temperature is low. At this time, the temperature of the fuel cell stack 534 is lower than the reference temperature. In this case, as shown, the temperature switch 5336 is in the closed state, and the connection between the output terminal 540 and the input terminal 542 is established. Even in this case, when the system power switch 544 is turned off, no current flows to the fuel cell 532, so that the battery is not consumed.
  • FIG. 1 (b) is a diagram showing a state of the fuel cell 532 immediately after the system power switch 544 is turned on.
  • the system power switch 544 When the system power switch 544 is turned on, current flows to the fuel cell 532.
  • the temperature switch 536 since the temperature switch 536 is turned on, a short-circuit current flows between the output terminal 540 and the input terminal 542 via the temperature switch 536, and the short-circuit current flows. Flows into the fuel cell stack 5 3 4 as it is.
  • the fuel cell stack 534 generates self-heating, the fuel cell stack 534 is overheated, and the temperature of the fuel cell stack 534 rises. Therefore, the power generation efficiency of the fuel cell 532 also increases.
  • FIG. 1 (c) is a diagram showing the fuel cell 532 when the temperature of the fuel cell stack 5334 has become equal to or higher than the reference temperature.
  • the temperature switch 536 is turned off, and no short-circuit current flows between the input terminal 542 and the output terminal 540.
  • the current from 40 flows into the system load 538.
  • power can be supplied to the system load 538.
  • FIG. 2 is a cross-sectional view schematically showing a single cell structure of the fuel cell stack 534 of the fuel cell shown in FIG.
  • the fuel cell stack 5334 has a plurality of single cell structures 101.
  • Each single cell structure 101 is composed of a fuel electrode 102, an oxidant electrode 108, and a solid electrolyte membrane 114.
  • the solid electrolyte membrane 114 separates the fuel electrode 102 from the oxidant electrode 108, It has a role of transferring hydrogen ions between the two. For this reason, solid electrolyte membrane 114
  • 114 is a film having high conductivity for hydrogen ions. Further, it is preferable that it is chemically stable and has high mechanical strength.
  • an organic polymer having a polar group such as a strong acid group such as a sulfone group or a phosphate group or a weak acid group such as a carboxy group is preferably used.
  • organic polymers include aromatic polycondensation polymers such as sulfonated poly (4-f: n-oxybenzoyl-1,4-phenylene) and alkylsulfonated polybenzoylmidazoyl: sulfone group-containing perfume.
  • Fluorocarbon Naphion (manufactured by Dupont) (registered trademark), Aciplex (manufactured by Asahi Kasei Corporation)): Carboxyl group-containing perfluorocarbon (Fremion S membrane (manufactured by Asahi Glass Co., Ltd.) (registered trademark)); Etc. are exemplified.
  • the fuel electrode 102 and the oxidant electrode 108 respectively include a fuel electrode-side catalyst layer 106 and an oxidant electrode-side catalyst layer 112 containing carbon particles carrying a catalyst and fine particles of solid electrolyte.
  • a structure formed on the substrate 104 and the substrate 110 can be employed.
  • the surfaces of the substrate 104 and the substrate 110 may be subjected to a water-repellent treatment.
  • the catalyst of the anode-side catalyst layer 106 includes platinum, gold, silver, ruthenium, rhodium, palladium, osmium, iridium, cobalt, nickel, rhenium, lithium, lanthanum, strontium, and itt. Examples thereof include lithium and alloys thereof.
  • the same catalyst as that of the fuel electrode-side catalyst layer 106 can be used, and the above-mentioned exemplified substances can be used.
  • the catalyst of the fuel electrode side catalyst layer 106 and the catalyst of the oxidant electrode side catalyst layer 112 may be either the same or different.
  • Examples of the carbon particles carrying the catalyst include acetylene black (Denka Black (manufactured by Denki Kagaku) (registered trademark), XC72 (manufactured by Vulcan), etc.), Ketjen Black, carbon nanotubes, carbon nanohorns, and the like. You.
  • the fine particles of the solid electrolyte in the fuel electrode side catalyst layer 106 and the oxidant electrode side catalyst layer 112 may be the same or different.
  • the solid electrolyte fine particles the same material as the solid electrolyte membrane 114 can be used.
  • a material different from the solid electrolyte membrane 114 or a plurality of materials can be used.
  • the base material 104 and the base material 110 may be made of carbon paper, a molded carbon material, a sintered carbon material, a sintered metal, a foamed metal, or the like.
  • a functional substrate can be used.
  • a water repellent such as polytetrafluoroethylene can be used for the water repellent treatment of the substrate 104 and the substrate 110.
  • the solid electrolyte membrane 114 when the solid electrolyte membrane 114 is composed of an organic polymer material, the solid electrolyte membrane 114 is formed of a liquid obtained by dissolving or dispersing the organic polymer material in a solvent by using a peelable sheet such as polytetrafluoroethylene. It can be obtained by casting and drying on the like.
  • the fuel electrode 102 and the oxidant electrode 108 can be obtained, for example, by the following method. First, a catalyst is supported on carbon particles by a commonly used impregnation method. Next, the carbon particles carrying the catalyst and the fine particles of the solid electrolyte are dispersed in a solvent to form a paste, and then applied to the substrate 104 or the substrate 110 that has been subjected to the water-repellent treatment.
  • the method for applying the paste to the substrate 104 or 110 is not particularly limited, and for example, methods such as brush coating, spray coating, and screen printing can be used. After applying the paste, for example, the fuel electrode 102 and the oxidizer electrode 108 are dried by heating at a heating temperature of 100 to 250 ° C and a heating time of 30 seconds to 30 minutes. can get.
  • the solid electrolyte membrane 114 is sandwiched between the fuel electrode 102 and the oxidant electrode 108, and hot pressed to obtain a single cell structure 101.
  • the fuel electrode side catalyst layer 106 and the oxidant electrode side catalyst layer 112 are brought into contact with the solid electrolyte membrane 114.
  • the hot pressing conditions are as follows. The temperature can be higher than the softening temperature or glass transition temperature of these organic polymers.
  • the temperature is set to 100 to 250 ° C.
  • the pressure is set to 1 to 100 kg / cm 2
  • the time is set to 10 to 300 seconds.
  • the fuel 124 is supplied to the fuel electrode 102 of each single cell structure 101.
  • the oxidizer electrode 126 of each single cell structure 101 is supplied with the oxidizer 126.
  • an organic liquid fuel such as methanol, ethanol, dimethyl ether, or other alcohols, or a liquid hydrocarbon such as cycloparaffin can be used.
  • the organic liquid fuel can be an aqueous solution.
  • air can be usually used, but oxygen gas may be supplied.
  • FIG. 3 is a configuration diagram schematically showing a fuel cell 532 in the first embodiment of the present invention.
  • the temperature switch 5336 can be realized by the power supply control unit 548.
  • the fuel cell 532 further includes a temperature sensor 546 in addition to the configuration described with reference to FIG.
  • a temperature sensor 546 a thermocouple, a metal resistance thermometer, a thermistor, an IC temperature sensor, a magnetic temperature sensor, a thermopile, a pyroelectric temperature sensor, or the like can be used.
  • the temperature sensor 546 can take various arrangements depending on the structure of the fuel cell stack 534, for example, it is bonded to the surface of the oxidant electrode 108 at the end of the fuel cell stack 534. You. This can reflect the temperature of the end of the fuel cell stack 534 that is most likely to be affected by the external temperature, thereby ensuring good startability.
  • the power supply control unit 548 receives a signal from the temperature sensor 546 via an AZD converter (not shown), and supplies a current to either the short-circuit path 545 or the system load 538 according to the signal.
  • the switching control of the room is performed.
  • the power supply control section 5 4 8 supplies a current to the short-circuit path 5 4 5.
  • a short-circuit current flows through the fuel cell stack 5 34, and self-heating occurs in the fuel cell stack 5 3 4, and the fuel cell stack 5 3 4 is overheated and the temperature of the fuel cell stack 5 3 4 is increased.
  • the power supply control unit 548 supplies a current to the system load 538.
  • the power generation efficiency of the fuel cell 532 also increases, and sufficient power can be supplied to the system load 538 .
  • the fuel cell of the present embodiment when the ambient temperature is low and the startability of the fuel cell is poor, no current flows to the high-resistance system load 538, and the fuel cell itself does not flow.
  • a short-circuit current flows through the fuel cell stack 5 3 4 defined only by the internal resistance of the fuel cell stack 5.
  • the temperature of the fuel cell stack 5334 can be quickly increased, and the power generation efficiency of the fuel cell 532 can be increased.
  • the short-circuit current is stopped and the current is automatically supplied to the system load 538. You can switch. As a result, even when the ambient temperature is low, the electric device to be started can be started quickly.
  • FIG. 4 is a configuration diagram schematically showing a fuel cell 532 in the second embodiment of the present invention.
  • the temperature switch 5336 can be made of a material whose shape changes with temperature.
  • the temperature switch 5336 can take various arrangements depending on the structure of the fuel cell stack 5334. For example, as shown in FIG. The oxidizer electrode on the surface is bonded to the surface. As a result, the temperature of the end of the fuel cell stack 534, which is most likely to be affected by the external temperature, can be reflected, and good startup performance can be ensured.
  • FIG. 4 (b) is an enlarged view showing the configuration of the temperature switch 5336 shown in FIG. 4 (a).
  • the temperature switch 536 is composed of a support 550, a movable conductor 552, a contact 553, and a fixed conductor 554.
  • the movable conductor 552 can be made of a pie metal, a shape memory alloy, a thermal expansion agent, a panel, a temperature-sensitive filler, or the like in which metals having different thermal expansion coefficients are joined.
  • the movable The contact 553 of the conductor 552 contacts the fixed conductor 554.
  • a short-circuit current flows in the short-circuit path 545, self-heating occurs in the fuel cell stack 533, and the fuel cell stack 533 is overheated and the fuel cell stack 533 is heated. Temperature rises. In this way, when the temperature of the fuel cell stack 534 becomes higher than the reference temperature, the movable conductor 552 moves away from the fixed conductor 554 as shown in FIG. 4 (c). Deformation occurs, and no current flows through the short-circuit path 545. As a result, the current from the fuel cell stack 534 is supplied to the system load 538. At this time, the power generation efficiency of the fuel cell 532 is also high, and sufficient power can be supplied to the system load 538.
  • the fuel cell of the present embodiment when the ambient temperature is low and the startability of the fuel cell is poor, no current flows to the high-resistance system load 538, and the fuel cell itself does not flow.
  • a short-circuit current flows through the fuel cell stack 5 3 4 defined only by the internal resistance of the fuel cell stack 5.
  • the temperature of the fuel cell stack 534 can be quickly raised, and the power generation efficiency of the fuel cell 532 can be increased.
  • the short-circuit current is stopped and the current is automatically supplied to the system load 538. You can switch.
  • the temperature switch 5336 is made of a material whose shape changes according to the temperature, and the temperature switch 536 itself deforms according to the ambient temperature, so that the fuel cell stack Switch whether or not to supply short circuit current to 5 3 4. Therefore, the structure for driving the temperature switch 536 can be further simplified.
  • FIG. 7 is a block diagram showing a fuel cell system 900 according to the third embodiment of the present invention.
  • the fuel cell system 900 has a fuel electrode tank 662, a fuel supply processing section 674, a first fuel storage section 676a, Second fuel storage section 6 7 6 b, corresponding value storage section 9 01, control section 9 0 2, It includes an oxidizer electrode tank 906, an oxidizer supply processing section 908, a fuel supply pipe 910, an oxidizer supply pipe 912, and heaters 914 and 916.
  • the temperature sensor 546 is connected to the surface of the oxidant electrode 1 ⁇ 8 at the end of the fuel cell stack 534, inside the fuel cell stack 534, the surface of the fuel cell stack 534, and the waste liquid. Or a waste air circulation path (not shown).
  • the control unit 902 receives a signal from the temperature sensor 546, and controls the fuel supply processing unit 704, the oxidant supply processing unit 908, and the power supply control unit 548 according to the signal. I do.
  • the fuel supply processing section 674 adjusts the concentration and supply amount of the fuel 124 supplied to the fuel electrode tank 662.
  • the oxidizing agent supply processing section 908 adjusts the supply amount of the oxidizing agent 126 supplied to the oxidizing agent electrode tank 906.
  • the first fuel storage section 676a and the second fuel storage section 676b store fuels having different concentrations, respectively. Either the first fuel storage section 676a or the second fuel storage section 676b can store alcohol-free water.
  • the fuel supply processing section 674 can include, for example, an inverter and a pump.
  • the pump can be configured to be provided in each of the first fuel storage section 676a and the second fuel storage section 676b.
  • a piezoelectric pump can be used as the pump.
  • the control unit 92 changes the frequency or voltage of the impeller to control the fuel from the first fuel storage unit 676a and the second fuel storage unit 676b. To control the supply of water. Thereby, the concentration and the supply amount of the fuel 124 supplied to the fuel electrode tank 662 can be adjusted.
  • the size and weight of the pump can be reduced and the durability can be improved as compared with the case where a conventional electromagnetic pump or the like is used. Also, the power required to drive the pump is reduced. Also, the amount of fuel supplied from the pump can be controlled well by changing the frequency or voltage of the impeller. When the frequency of the inverter is changed, the discharge frequency of the pump per unit time changes. Also, when these voltages are changed, the discharge amount per discharge changes due to the change in the displacement amount of the piezoelectric element. Therefore, even when either of them is changed, the fuel concentration and supply amount can be adjusted.
  • a bimorph type piezoelectric pump is preferably used.
  • a bimorph pump manufactured by Kyoko Corporation, a registered trademark
  • a piemorph-type piezoelectric element manufactured by FDK, or the like can be used.
  • an EXCF series manufactured by Matsushita Electronic Components, Ltd. or the like can be used as the inverter 461.
  • the oxidizing agent supply processing section 908 can include a fan. By changing the rotation speed of the fan, the supply amount of the oxidant to be supplied to the oxidant electrode tank 906 can be controlled.
  • control unit 9 when the temperature of fuel cell stack 5 34 4 measured by temperature sensor 5 46 is lower than the reference temperature, control unit 9
  • the corresponding value storage unit 901 stores a corresponding value that is referred to when the control unit 902 performs the low temperature process.
  • the corresponding values are the temperature of the fuel cell stack 5 34, the concentration and supply amount of the fuel 124 to be supplied to the fuel electrode tank 66 2 at that temperature, and the oxidizer electrode tank 90 0 These are the respective relationships with the supply amount of the oxidizing agent 1 26 to be supplied to 6.
  • the concentration of fuel 1 2 4 to be supplied to the anode tank 6 6 2 depends on the fuel cell stack.
  • the temperature is set to increase as the temperature of 5 3 4 decreases.
  • the fuel 124 such as methanol supplied to the fuel electrode tank 66 2 reaches the oxidant electrode 108 via the solid electrolyte membrane 114 and crossover. Is promoted, and the oxidizer electrode tank 906 is heated.
  • the supply amount of the fuel 124 to be supplied to the fuel electrode tank 662 is set to be lower as the temperature of the fuel cell stack 5334 is lower. In this way, the supply speed of fuel 124 to fuel electrode tank 662 is reduced, and heat radiation from fuel cell stack 5334 can be reduced. Further, the supply amount of the oxidizer 126 to be supplied to the oxidizer electrode tank 906 is set to be lower as the temperature of the fuel cell stack 534 is lower. In this manner, the supply speed of the oxidizer 126 to the oxidizer electrode tank 906 is reduced, and the oxidizer electrode tank 906 is prevented from being air-cooled by the oxidizer 126. Wear.
  • the control unit 902 refers to the corresponding value storage unit 901 based on the temperature of the fuel cell stack 534 measured by the temperature sensor 546, and at that temperature, the fuel supply processing unit Information on the concentration and supply amount of the fuel 124 to be supplied from the oxidizing agent supply section 908 and information on the supply amount of the oxidizing agent 126 to be supplied from the oxidizing agent supply processing section 908 are obtained.
  • the control section 902 controls the fuel supply processing section 694 and the oxidant supply processing section 908 based on this information.
  • control section 92 controls the heaters 9 14 and 9 16 so that the fuel 12 4 and the oxidizing agent 12 which pass through the fuel supply pipe 9 10 and the oxidant supply pipe 9 12 respectively. 6 can also be heated.
  • the fuel The temperature of the fuel cell stack 534 can be increased by flowing a short-circuit current defined only by the internal resistance of the fuel cell itself to the cell stack 534.
  • the ambient temperature when the ambient temperature is low, a process of increasing the concentration of the fuel 124 supplied to the fuel cell stack 534 to generate a crossover and heat the fuel cell stack 534 is also performed. As a result, the power generation efficiency of the fuel cell stack 534 can be more efficiently increased. Further, when the ambient temperature is low, the supply amounts of the fuels 124 and the oxidizing agent 126 to be supplied to the fuel cell stack 534 are reduced so that the fuel cell stack 534 can supply the fuel 124 and Oxidant 126 can also prevent cooling. As a result, the power generation efficiency of the fuel cell stack 534 can be efficiently increased. Further, since the fuel 124 and the oxidant 126 supplied to the fuel cell stack 534 can be heated by the heater, the temperature of the fuel cell stack 534 can be efficiently raised. Wear.
  • the control unit 902 controls the power supply control unit 548 first. Then, a process for flowing a current to the short-circuit path 545 is performed, and after a predetermined time elapses, the fuel supply processing unit 674 and the oxidant supply processing unit 908 are controlled to perform the low-temperature processing described above. You can also. In this way, even if the time for short-circuiting the fuel cell stack 534 is shortened, the temperature of the fuel cell stack 534 can be raised by the subsequent low-temperature processing, and the fuel cell stack 534 can be heated. The temperature of 4 can be raised efficiently. As a result, the temperature of the fuel cell stack 534 can be increased without causing damage to the solid electrolyte 114 of the fuel cell stack 534 by short-circuiting the fuel cell stack 534. Can be.
  • the present invention has been described based on the embodiments and the examples. It should be understood by those skilled in the art that the embodiments and examples are exemplifications, and that various modifications can be made to the combination of each component and each processing process, and that such modifications are also within the scope of the present invention. It is understood. Hereinafter, such an example will be described.
  • the temperature sensor 546 in the first embodiment or the temperature sensor in the second embodiment may be used.
  • the switch 536 may be disposed between the separator and the oxidizer electrode 108.
  • the fuel cell 532 can be configured to include a warning signal transmitting section 556.
  • the warning signal generator 556 transmits a warning signal when the temperature of the fuel cell stack 534 becomes higher than the second reference temperature.
  • the second reference temperature is a temperature at which a circuit or the like in an electric device to which the fuel cell stack 5334 or the fuel cell 532 supplies power may be destroyed, for example, 70 ° C to 90 ° C. ° C.
  • the warning signal transmitting section 556 may be, for example, a switch made of a material whose shape changes depending on the temperature, similarly to the description of the temperature switch 536 in the second embodiment. it can.
  • the warning signal transmitter 5 5 6 It is made of a material whose shape changes at a temperature different from that of the temperature switch 536.
  • the power supply control unit 548 supplies the current to the system load 538. Can be shut off.
  • the warning signal can be processed in various forms according to the type of electrical equipment to which the fuel cell 532 is applied.For example, when the fuel cell 5332 is applied to a system having a control unit, a warning signal is transmitted.
  • the unit 556 transmits a warning signal to the control unit of the system.
  • the control unit of the system can take some measures such as cooling the fuel cell stack 534 when the temperature of the fuel cell stack 534 rises excessively.
  • the warning signal transmitting unit 556 can transmit a warning cancellation signal when the temperature of the fuel cell stack 534 becomes lower than the second reference temperature. As a result, the control unit of the system can perform processing for returning the entire system to a normal state.
  • the warning signal transmitting section 556 can cut off the supply of current from the fuel cell stack 534 to the system load 538 by the warning signal. In this way, when the temperature of the fuel cell stack 534 rises excessively, the power supply to the fuel cell 532 can be stopped, and the fuel cell stack 533 and the like are not destroyed. Can be prevented. Also, in this case, the warning signal transmitter 556 restores the connection between the fuel cell stack 534 and the system load 538 when the temperature of the fuel cell stack 534 becomes lower than the second reference temperature. You. Thus, the fuel cell 532 can supply power to the system load 538 again.
  • FIG. 6 is a diagram showing a circuit configuration of the fuel cell 532 in the case where the warning signal transmitting section 5556 is realized by a temperature switch 5600 similar to the temperature switch 536.
  • FIG. 6 (a) shows the initial state of the fuel cell 532 when the system power switch 544 is off
  • FIG. 6 (b) shows the system The state of the fuel cell 532 immediately after the power switch 544 is turned on is shown.
  • FIG. 6 (c) shows the state of the fuel cell 533 when the temperature of the fuel cell stack 534 is higher than the reference temperature. Shows 2.
  • Figure 6 (d) shows the fuel cell stack 5 3 4 5 shows the fuel cell 532 when the temperature of the fuel cell becomes equal to or higher than the second reference temperature.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The starting performance of a fuel cell is improved. A fuel cell (532) has a fuel cell stack (534), and supplies power to a system load (538) connected with the fuel cell stack (534). The fuel cell (532) has a temperature switch (536), and, by switching the temperature switch (536), shorts between input and output terminals to the system load (538) when the temperature of the fuel cell stack (534) is lower than a reference temperature, and opens between the input and output terminals to allow a current to flow to the system load (538) when the temperature of the fuel cell stack (534) is at least the reference temperature.

Description

明細書 燃料電池システムおよびその使用方法 技術分野  Description Fuel cell system and method of using the same
本発明は、 燃料電池システムおよびその使用方法に関する。 従来技術  The present invention relates to a fuel cell system and a method for using the same. Conventional technology
燃料電池は、燃料極および酸化剤極と、 これらの間に設けられた電解質か ら構成され、燃料極には燃料が、酸化剤極には酸化剤が供給されて電気化学 反応により発電する。 燃料としては、 一般的には水素が用いられていたが、 近年、安価で取り扱いの容易なメタノールを燃料として直接利用する直接型 の燃料電池の開発も盛んに行われている。  A fuel cell is composed of a fuel electrode and an oxidant electrode, and an electrolyte provided therebetween. Fuel is supplied to the fuel electrode and an oxidant is supplied to the oxidant electrode to generate power by an electrochemical reaction. In general, hydrogen has been used as a fuel, but in recent years, direct type fuel cells that directly use inexpensive and easy-to-handle methanol as fuel have been actively developed.
燃料としてメタノールを用いた場合、 燃料極での反応は以下の式 ( 1 ) の ようになる。  When methanol is used as the fuel, the reaction at the fuel electrode is represented by the following equation (1).
C H3 OH + H20 → 6H+ + C 02 + 6 e- (1) また、 酸化剤極での反応は以下の式 (2) のようになる。 CH 3 OH + H 2 0 → 6H + + C 0 2 + 6 e- (1) The reaction at the oxidant electrode is as shown in the following equation (2).
3/202 + 6 H+ + 6 e - → 3 H20 (2) 3/20 2 + 6 H + + 6 e-→ 3 H 2 0 (2)
このように、 直接型の燃料電池では、 メタノール水溶液から水素ィオンを 得ることができるので、改質器等が不要になり、 小型化および軽量化を図る ことができる。 また、 液体のメ夕ノール水溶液を燃料とするため、 エネルギ 一密度が非常に高いという特徴がある。  As described above, in the direct fuel cell, since hydrogen ions can be obtained from the aqueous methanol solution, a reformer or the like is not required, and the size and weight can be reduced. In addition, since it uses liquid methanol aqueous solution as fuel, it has the characteristic that the energy density is very high.
しかし、 一般に、燃料電池は他の電源に比べて起動性が悪いという問題が ある。 特に、 直接型の燃料電池の発電効率は、 温度の低下とともに減少し、 温度が低いと、所望の電圧ノ電流を供給することができずに機器を起動でき ない可能性もある。  However, in general, there is a problem that the fuel cell has a poor startability as compared with other power sources. In particular, the power generation efficiency of direct fuel cells decreases as the temperature decreases, and if the temperature is low, the equipment may not be able to start because it cannot supply the desired voltage and current.
このような燃料電池の起動性の悪さを改善するために、 たとえば、燃料電 池に電熱ヒータを付加して強制的に所定の温度まで高温させる方式が提案 されている (特許文献 1) 。 また、 たとえば、 燃料電池起動時に、 空気室に 燃料のメタノールを直接供給し、空気極でメタノールを直接燃焼することに より、燃料電池を急速に温度上昇させることができ、短時間で最適運転温度 とする方式が提案されている (特許文献 2 ) 。 In order to improve such poor startability of the fuel cell, for example, a method has been proposed in which an electric heater is added to the fuel cell to forcibly raise the temperature to a predetermined temperature (Patent Document 1). Also, for example, when the fuel cell starts, A method has been proposed in which the fuel cell is directly supplied with fuel and the methanol is directly combusted at the air electrode, whereby the temperature of the fuel cell can be rapidly increased and the optimum operating temperature is obtained in a short time (Patent Document 2). ).
[特許文献 1 ]  [Patent Document 1]
特開平 1— 1 8 7 7 7 6号公報  Japanese Patent Application Laid-Open No. 1-1877776
[特許文献 2 ]  [Patent Document 2]
特開平 5 - 3 0 7 9 7 0号公報 発明が解決しょうとする課題  SUMMARY OF THE INVENTION Problems to be Solved by the Invention
しかし、従来の電熱ヒータを付加する方式では、 電熱ヒータを付加するた め装置が大型化するという問題や、電熱ヒータを加熱するための電源を別途 準備しなければならないという問題がある。 また、空気極でメタノールを直 接燃焼する方式においても、空気極にメタノールを供給するための配管を設 ける必要があり、複数の燃料電池単セルを含むセルスタックに適用する場合、 構造が複雑となり装置が大型化してしまうという問題がある。 一方、燃料電 池を携帯電話等の携帯型の機器に利用する場合は、外部で利用することも多 く、 0 °C前後の低温雰囲気下でも使用可能であることが要求される。 そのた め、燃料電池を携帯型の機器に用いる場合、周囲温度が低くても短時間で燃 料電池の温度を上昇させて出力を通常のレベルに到達させるための筒便な 機構を有する携帯型燃料電池の提供がますます望まれる。  However, the conventional method of adding an electric heater has a problem that the size of the apparatus is increased due to the addition of the electric heater, and a problem that a power source for heating the electric heater must be separately prepared. In addition, even in a system in which methanol is directly combusted at the air electrode, it is necessary to provide a pipe for supplying methanol to the air electrode, and when applied to a cell stack including a plurality of fuel cells, the structure is complicated. Therefore, there is a problem that the device becomes large. On the other hand, when a fuel cell is used for a portable device such as a mobile phone, it is often used externally, and it is required that the fuel cell can be used in a low-temperature atmosphere of about 0 ° C. Therefore, when a fuel cell is used in a portable device, even if the ambient temperature is low, a portable device that has a simple mechanism to raise the temperature of the fuel cell in a short period of time and reach the output at a normal level is achieved. It is increasingly desired to provide portable fuel cells.
本発明は上記事情を踏まえてなされたものであり、 本発明の目的は、温度 が低い場合でも、燃料電池の温度を上昇させて起動性を高めることのできる 技術を提供することにある。 発明の開示  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique that can increase the temperature of a fuel cell to enhance the startability even when the temperature is low. Disclosure of the invention
本発明によれば、燃料電池を有し、燃料電池に接続された負荷に電力を供 給する燃料電池であって、燃料電池の温度に応じて、 負荷への出入力端子間 を短絡または開放する温度スィ ツチを備えたことを特徴とする燃料電池シ ステムが提供される。 燃料電池に接続された負荷への出入力端子間を短絡させた場合、負荷には 電流が流れない。 そのため、 本発明によれば、 燃料電池の温度に応じて負荷 への電力の供給または遮断を切り替えることができる。出入力端子間を短絡 すると、 燃料電池には短絡電流が流れ、 燃料電池で自己発熱がおこり、 燃料 電池が過熱されて燃料電池の温度が上昇する。 したがって、 たとえば燃料電 池の温度が低い場合に出入力端子間を短絡すると、燃料電池の温度が上昇す るので、燃料電池の発電効率を高めることができる。 その時点で出入力端子 間を開放すると、 負荷に電流が流れるようになり、 負荷に充分な電力を供給 することができる。 According to the present invention, there is provided a fuel cell having a fuel cell and supplying electric power to a load connected to the fuel cell, wherein a short circuit or an open circuit between input and output terminals of the load is provided according to the temperature of the fuel cell. A fuel cell system characterized by having a temperature switch that changes the temperature is provided. When the input and output terminals to the load connected to the fuel cell are short-circuited, no current flows to the load. Therefore, according to the present invention, supply or cutoff of power to the load can be switched according to the temperature of the fuel cell. If the input and output terminals are short-circuited, a short-circuit current will flow through the fuel cell, causing self-heating in the fuel cell, causing the fuel cell to overheat and the fuel cell temperature to rise. Therefore, for example, when the input / output terminals are short-circuited when the temperature of the fuel cell is low, the temperature of the fuel cell increases, and the power generation efficiency of the fuel cell can be increased. If the input and output terminals are opened at that time, current will flow to the load, and sufficient power can be supplied to the load.
ここで、 燃料電池は、 固体電解質膜と、 前記固体電解質膜を挟んで設けら れた燃料極および酸化剤極とを含むことができる。 また、 固体電解質膜は、 燃料極と酸化剤極とで挟持された構成とすることができる。固体電解質膜と して、 高分子固体電解質膜を用いることができる。 燃料電池の燃料として、 液体燃料を用いることができる。 ここで、 液体燃料は、 メタノール、 ェタノ —ル、ジメチルエーテル、または他のアルコール類等を用いることができる。 液体燃料は、 水溶液とすることができる。  Here, the fuel cell can include a solid electrolyte membrane, and a fuel electrode and an oxidant electrode provided with the solid electrolyte membrane interposed therebetween. Further, the solid electrolyte membrane may be configured to be sandwiched between a fuel electrode and an oxidant electrode. A polymer solid electrolyte membrane can be used as the solid electrolyte membrane. Liquid fuel can be used as fuel for the fuel cell. Here, methanol, ethanol, dimethyl ether, or other alcohols can be used as the liquid fuel. The liquid fuel can be an aqueous solution.
本発明の燃料電池システムにおいて、負荷と並列に燃料電池に接続して形 成された短絡経路をさらに備えることができ、 温度スィ ツチは、短絡経路と 燃料電池との間を接続または切断することができる。 また、 本発明の燃料電 池システムにおいて、燃料電池を起動させるシステムパワースィ ツチを含む ことができる。  In the fuel cell system of the present invention, the fuel cell system may further include a short-circuit path formed by connecting to the fuel cell in parallel with the load, and the temperature switch may connect or disconnect the short-circuit path and the fuel cell. Can be. Further, the fuel cell system of the present invention may include a system power switch for starting the fuel cell.
本発明の燃料電池システムにおいて、温度スィ ツチは、温度により形状が 変化する材料により構成することができ、温度に応じて、 出入力端子間を接 続または切断することができる。 温度スィ ツチは、 バイメタル、 形状記億合 金、 熱膨張剤、 パネ、 または感温フ:■:ライ トにより構成することができる。 このようにすれば、燃料電池の温度が変化する度に出入力端子間の接続また は切断を繰り返し行うことができる。  In the fuel cell system of the present invention, the temperature switch can be made of a material whose shape changes depending on the temperature, and the input / output terminals can be connected or disconnected according to the temperature. The temperature switch can be made of bimetal, shape alloy, thermal expansive agent, panel, or temperature sensitive light: ■: light. With this configuration, connection or disconnection between the input / output terminals can be repeatedly performed each time the temperature of the fuel cell changes.
本発明の燃料電池システムにおいて、温度スィ ツチは、 短絡経路に接続さ れた固定導電体と、温度により形状が変化する材料により構成され、 温度に 応じて、固定導電体と接触し、または固定導電体から離脱する可動導電体と、 により構成することができる。 このようにすれば、燃料電池の温度が変化す る度に固定導電体と可動導電体との接触および離脱を繰り返し行うことが できる。 In the fuel cell system of the present invention, the temperature switch is composed of a fixed conductor connected to the short-circuit path and a material whose shape changes according to the temperature. Accordingly, a movable conductor that comes into contact with the fixed conductor or separates from the fixed conductor can be used. With this configuration, the contact and detachment between the fixed conductor and the movable conductor can be repeated each time the temperature of the fuel cell changes.
本発明の燃料電池システムにおいて、 可動導電体は、 パイメタル、 形状記 憶合金、 熱膨張剤、 パネ、 または感温フェライ トにより構成することができ る。  In the fuel cell system of the present invention, the movable conductor can be made of a pi metal, a shape memory alloy, a thermal expansion agent, a panel, or a temperature-sensitive ferrite.
本発明の燃料電池システムにおいて、燃料電池内に設置された温度センサ をさらに含むことができ、温度スィ ッチは、温度センサの出力信号に基づき、 出入力端子間を短絡または開放することができる。温度センサは熱電対、金 属測温抵抗体、 サ一ミ スタ、 I C温度センサ、 磁気温度センサ、 サーモパイ ル、 焦電型温度センサにより構成することができる。  In the fuel cell system of the present invention, the fuel cell system may further include a temperature sensor installed in the fuel cell, and the temperature switch can short-circuit or open / close the input / output terminals based on an output signal of the temperature sensor. . The temperature sensor can be composed of a thermocouple, a metal resistance thermometer, a thermistor, an IC temperature sensor, a magnetic temperature sensor, a thermopile, and a pyroelectric temperature sensor.
本発明の燃料電池システムにおいて、燃料電池は、燃料極と酸化剤極とが 固体電解質膜を挟んで配置された単セルを複数含む燃料電池スタックとす ることができ、 温度スィツチは、燃料電池スタックの端部に配置された酸化 剤極の温度に応じて出入力端子間を短絡または開放することができる。この ようにすれば、外部温度の影響を最も受ける可能性の高い燃料電池スタック の端部の温度を反映することができる。  In the fuel cell system of the present invention, the fuel cell may be a fuel cell stack including a plurality of single cells in which a fuel electrode and an oxidant electrode are arranged with a solid electrolyte membrane interposed therebetween, and the temperature switch may be a fuel cell. The input and output terminals can be short-circuited or opened depending on the temperature of the oxidizer electrode arranged at the end of the stack. In this way, the temperature at the end of the fuel cell stack that is most likely to be affected by the external temperature can be reflected.
本発明の燃料電池システムにおいて、温度スィ ツチは、燃料電池の温度が 基準温度より低いときに、 負荷への出入力端子間を短絡し、燃料電池の温度 が基準温度以上となったときに、 出入力端子間を開放することができる。 こ こで、 基準温度は一 1 0 °C以上 3 5 °C以下の範囲内とすることができる。 本発明の燃料電池システムにおいて、燃料電池の温度が、基準温度より も 高温の第二の基準温度以上とな.つたときに、警告信号を発する警告信号発信 部をさらに含むことができる。  In the fuel cell system of the present invention, when the temperature of the fuel cell is lower than the reference temperature, the temperature switch short-circuits between the input and output terminals to the load, and when the temperature of the fuel cell becomes higher than the reference temperature, The input and output terminals can be opened. Here, the reference temperature can be in the range of 110 ° C. or more and 35 ° C. or less. The fuel cell system of the present invention may further include a warning signal transmitting unit that generates a warning signal when the temperature of the fuel cell becomes equal to or higher than a second reference temperature that is higher than the reference temperature.
本発明の燃料電池システムにおいて、燃料電池は、燃料極および酸化剤極 を含むことができ、燃料電池システムは、燃料極に燃料を供給する処理を行 う燃料供給処理部と、燃料電池の温度に応じて、燃料供給処理部を制御して、 燃料極に供給する燃料の濃度を調整する制御部とをさらに備えることがで きる。 ここで、 制御部は、 燃料電池の温度が低いほど燃料の濃度が高くなる . ように設定することができる。 これによりクロスオーバーを促進させ、燃料 電池を加熱することができる。 In the fuel cell system according to the present invention, the fuel cell may include a fuel electrode and an oxidizer electrode, and the fuel cell system includes a fuel supply processing unit that performs a process of supplying fuel to the fuel electrode, and a temperature of the fuel cell. And a control unit that controls the fuel supply processing unit in accordance with the control value and adjusts the concentration of the fuel supplied to the fuel electrode. Wear. Here, the control unit can set so that the lower the temperature of the fuel cell is, the higher the concentration of the fuel is. This promotes crossover and heats the fuel cell.
本発明の燃料電池システムにおいて、制御部は、燃料電池の温度が所定温 度以下のときに、燃料電池の温度に応じて燃料極に供給する燃料の濃度を設 定し、燃料電池の温度が所定温度を超えたときに、燃料極に供給する燃料を 所定濃度に設定することができる。制御部は、燃料電池の温度が所定温度を 超えたとき、燃料電池の温度に関わらず、燃料極に供給する燃料を所定濃度 に設定することができる。  In the fuel cell system according to the present invention, when the temperature of the fuel cell is equal to or lower than the predetermined temperature, the control unit sets the concentration of the fuel to be supplied to the fuel electrode according to the temperature of the fuel cell. When the temperature exceeds a predetermined temperature, the fuel supplied to the fuel electrode can be set to a predetermined concentration. When the temperature of the fuel cell exceeds a predetermined temperature, the control unit can set the fuel supplied to the fuel electrode to a predetermined concentration regardless of the temperature of the fuel cell.
本発明の燃料電池システムにおいて、制御部は、燃料電池の温度に応じて、 燃料供給部を制御して、燃料極に供給する燃料の量をさらに調整することが できる。制御部は、燃料電池の温度が低いほど燃料の供給量を低くすること ができる。 これにより、燃料極が燃料により冷却されるのを防ぐことができ る。  In the fuel cell system of the present invention, the control unit can control the fuel supply unit according to the temperature of the fuel cell to further adjust the amount of fuel supplied to the fuel electrode. The control unit can reduce the fuel supply amount as the temperature of the fuel cell decreases. This can prevent the fuel electrode from being cooled by the fuel.
本発明の燃料電池システムにおいて、酸化剤極に酸化剤を供給する処理を 行う酸化剤供給処理部をさらに備えることができ、制御部は、燃料電池の温 度に応じて、酸化剤極を制御して、酸化剤極に供給する酸化剤の量を調整す ることができる。制御部は、燃料電池の温度が低いほど酸化剤の供給量を低 くすることができる。 これにより、酸化剤極が酸化剤により冷却されるのを 防ぐことができる。  In the fuel cell system of the present invention, the fuel cell system may further include an oxidant supply processing unit that performs a process of supplying the oxidant to the oxidant electrode, and the control unit controls the oxidant electrode according to the temperature of the fuel cell. Thus, the amount of the oxidizing agent supplied to the oxidizing agent electrode can be adjusted. The control unit can reduce the supply amount of the oxidant as the temperature of the fuel cell decreases. This can prevent the oxidant electrode from being cooled by the oxidant.
本発明の燃料電池システムにおいて、燃料極に供給する燃料または酸化剤 極に供給する酸化剤の少なく とも一方を加熱するヒータをさらに含むこと ができる。  The fuel cell system of the present invention may further include a heater for heating at least one of the fuel supplied to the fuel electrode and the oxidant supplied to the oxidant electrode.
本発明の燃料電池システムにおいて、燃料電池の燃料極に供給する燃料は 液体燃料とすることができる。  In the fuel cell system of the present invention, the fuel supplied to the fuel electrode of the fuel cell can be a liquid fuel.
本発明によれば、燃料電池を有し、燃料電池に接続された負荷に電力を供 給する燃料電池の使用方法であって、燃料電池の温度に応じて、 負荷への出 入力端子間を短絡または開放することを特徴とする燃料電池システムの使 用方法が提供される。 本発明の燃料電池システムの使用方法において、燃料電池の温度が基準温 度より低いときに、 出入力端子間を短絡し、燃料電池の温度が基準温度以上 となったときに、 出入力端子間を開放することができる。 According to the present invention, there is provided a method of using a fuel cell having a fuel cell and supplying electric power to a load connected to the fuel cell, wherein a connection between input and output terminals of the load is made in accordance with the temperature of the fuel cell. There is provided a method of using a fuel cell system characterized by being short-circuited or opened. In the method of using the fuel cell system according to the present invention, when the temperature of the fuel cell is lower than the reference temperature, the input / output terminals are short-circuited, and when the temperature of the fuel cell becomes higher than the reference temperature, the input / output terminals are connected. Can be opened.
本発明の燃料電池システムの使用方法において、燃料電池は、 燃料極およ び酸化剤極を含むことができ、燃料電池の温度に応じて、燃料極に供給する 燃料の濃度を設定するステップと、濃度を設定するステップで設定された濃 度の燃料を燃料極に供給するステップと、 をさらに含むことができる。  In the method of using the fuel cell system according to the present invention, the fuel cell may include a fuel electrode and an oxidizer electrode, and setting a concentration of fuel supplied to the fuel electrode according to a temperature of the fuel cell. Supplying the fuel of the concentration set in the step of setting the concentration to the fuel electrode.
本発明の燃料電池システムの使用方法において、燃料を燃料極に供給する ステップは、燃料電池の温度が所定温度以下のときに、濃度を設定するステ ップで設定された濃度の燃料を燃料極に供給するステップと、燃料電池の濃 度が所定温度を超えたときに、燃料電池の温度に関わらず、 所定濃度の燃料 を燃料極に供給するステップと、 を含むことができる。  In the method of using the fuel cell system according to the present invention, the step of supplying the fuel to the fuel electrode includes, when the temperature of the fuel cell is equal to or lower than a predetermined temperature, the fuel having the concentration set in the concentration setting step. And supplying the fuel of a predetermined concentration to the fuel electrode regardless of the temperature of the fuel cell when the concentration of the fuel cell exceeds the predetermined temperature.
本発明の燃料電池システムの使用方法において、燃料電池の温度に応じて、 燃料極に供給する燃料の量を設定するステツプをさらに含むことができ、燃 料を燃料極に供給するステップにおいて、燃料の量を調整するステップで設 定された量の燃料を燃料極に供給することができる。  The method of using the fuel cell system according to the present invention may further include a step of setting an amount of fuel to be supplied to the fuel electrode according to a temperature of the fuel cell, and in the step of supplying fuel to the fuel electrode, The amount of fuel set in the step of adjusting the amount of fuel can be supplied to the fuel electrode.
本発明の燃料電池システムの使用方法において、燃料電池の温度に応じて、 酸化剤極に供給する酸化剤の量を設定するステップと、酸化剤の量を設定す るステツプで設定された量の酸化剤を酸化剤極に供給するステップと、をさ らに含むことができる。  In the method of using the fuel cell system according to the present invention, the step of setting the amount of the oxidant to be supplied to the oxidant electrode in accordance with the temperature of the fuel cell, and the step of setting the amount of the oxidant, Supplying an oxidant to the oxidant electrode.
本発明の燃料電池システムの使用方法において、燃料極に供給する燃料ま たは酸化剤極に供給する酸化剤の少なく とも一方を加熱するステツプをさ らに含むことができる。 図面の簡単な説明  The method of using the fuel cell system according to the present invention may further include a step of heating at least one of the fuel supplied to the fuel electrode and the oxidant supplied to the oxidant electrode. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、本発明の実施の形態における燃料電池の回路構成を示す図である。 図 2は、図 1 に示した燃料電池の燃料電池スタ ックの単セル構造を模式的 に示した断面図である。  FIG. 1 is a diagram showing a circuit configuration of a fuel cell according to an embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing a single-cell structure of the fuel cell stack of the fuel cell shown in FIG.
図 3は、本発明の第一の実施の形態における燃枓電池を模式的に示した構 成図である。 FIG. 3 schematically shows a fuel cell according to the first embodiment of the present invention. FIG.
図 4は、本発明の第二の実施の形態における燃料電池を模式的に示した構 成図である。  FIG. 4 is a configuration diagram schematically showing a fuel cell according to the second embodiment of the present invention.
図 5は、 図 1 に示した燃料電池の他の例を示す図である。  FIG. 5 is a diagram showing another example of the fuel cell shown in FIG.
図 6は、 図 5に示した燃料電池の一例を示す図である。  FIG. 6 is a diagram showing an example of the fuel cell shown in FIG.
図 7は、本発明の第三の実施の形態における燃料電池システムを示したブ ロック図である。  FIG. 7 is a block diagram showing a fuel cell system according to the third embodiment of the present invention.
なお、 符号 1 0 1 は、 単セル構造である。 符号 1 0 2は、 燃料極である。 符号 1 0 4は、 基体である。 符号 1 1 0は、 基体である。 符号 1 0 6は、 燃 料極側触媒層である。 符号 1 0 8は、 酸化剤極である。 符号 1 1 2は、 酸化 剤極側触媒層である。 符号 1 1 4は、 固体電解質膜である。 符号 1 2 4は、 燃料である。符号 1 2 6は、酸化剤である。符号 5 3 2は、燃料電池である。 符号 5 3 4は、 燃料電池スタックである。 符号 5 3 6は、 温度スィ ッチであ る。 符号 5 3 8は、 システム負荷である。 符号 5 4 0は、 出力端子である。 符号 5 4 2は、 入力端子である。 符号 5 4 4は、 システムパワースィ ッチで ある。 符号 5 4 5は、 短絡経路である。 符号 5 4 6は、 温度センサである。 符号 5 4 8は、 電源制御部である。 符号 5 5 0は、 支持体である。 符号 5 5 2は、 可動導電体である。 符号 5 5 3は、 接点である。 符号 5 5 4は、 固定 導電体である。 符号 5 5 6は、 警告信号発信部である。 符号 5 6 0は、 温度 スィ ッチである。 符号 6 6 2は、 燃料極タンクである。 符号 6 7 4は、 燃料 供給処理部である。 符号 6 7 6 aは、 第 1 の燃料収容部である。 符号 6 7 6 bは、 第 2の燃料収容部である。 符号 9 0 0は、 燃料電池システムである。 符号 9 0 1 は、 対応値記億部である。 符号 9 0 2は、 制御部である。 符号 9 0 6は、 酸化剤極タンクである。 符号 9 0 8は、 酸化剤供給処理部である。 符号 9 1 0は、 燃料供給管である。 符号 9 1 2は、 酸化剤供給管である。 符 号 9 1 4、 9 1 6は、 ヒータである。 発明を実施するための最良の形態  Note that reference numeral 101 denotes a single cell structure. Reference numeral 102 is a fuel electrode. Reference numeral 104 denotes a substrate. Reference numeral 110 denotes a substrate. Reference numeral 106 denotes a fuel electrode side catalyst layer. Reference numeral 108 denotes an oxidizer electrode. Reference numeral 112 denotes an oxidant electrode side catalyst layer. Reference numeral 114 denotes a solid electrolyte membrane. Reference numeral 124 is fuel. Reference numeral 126 denotes an oxidizing agent. Reference numeral 532 denotes a fuel cell. Reference numeral 534 denotes a fuel cell stack. Reference numeral 536 denotes a temperature switch. Reference numeral 538 is a system load. Reference numeral 540 is an output terminal. Reference numeral 542 denotes an input terminal. Reference numeral 544 denotes a system power switch. Reference numeral 545 denotes a short-circuit path. Reference numeral 546 denotes a temperature sensor. Reference numeral 548 denotes a power supply control unit. Reference numeral 550 denotes a support. Reference numeral 552 denotes a movable conductor. Reference numeral 55 3 is a contact point. Reference numeral 554 denotes a fixed conductor. Reference numeral 556 denotes a warning signal transmission unit. Reference numeral 560 denotes a temperature switch. Reference numeral 662 denotes an anode tank. Reference numeral 674 denotes a fuel supply processing unit. Reference numeral 676a is a first fuel storage unit. Reference numeral 6776b is a second fuel storage unit. Reference numeral 900 denotes a fuel cell system. Reference numeral 90 1 is a corresponding value storage unit. Reference numeral 92 denotes a control unit. Reference numeral 906 denotes an oxidizer electrode tank. Reference numeral 908 denotes an oxidant supply processing unit. Reference numeral 9110 denotes a fuel supply pipe. Reference numeral 912 is an oxidant supply pipe. Reference numerals 914 and 916 denote heaters. BEST MODE FOR CARRYING OUT THE INVENTION
以下の実施の形態で説明する燃料電池の用途は特に限定されないが、たと えば携帯電話、 ノー トパソコン、 P D A (Personal Di gi tal Assi stant) 、 各種カメラ、 ナビゲ一ションシステム、 ポータブル音楽再生プレーヤ一等の 小型電気機器に適切に用いられる。 Although the use of the fuel cell described in the following embodiment is not particularly limited, For example, it can be used appropriately for small electronic devices such as mobile phones, notebook computers, PDAs (Personal Digital Assistants), various cameras, navigation systems, and portable music players.
図 1 は、本発明の実施の形態における燃料電池の回路構成を示す図である。 燃料電池 5 3 2は、燃料電池スタ ック 5 3 4と、 システムパワースィ ッチ 5 4 4 と、 システム負荷 5 3 8への出力端子 5 4 0 と、 システム負荷 5 3 8か らの入力端子 5 4 2と、 温度スィ ッチ 5 3 6と、 短絡経路 5 4 5とを含む。 ここで、 システム負荷 5 3 8とは、 上述した電気機器における抵抗である。 システム負荷 5 3 8への出力端子 5 4 0は、燃料電池スタ ッ ク 5 3 4の燃 料極 1 0 2に接続される。燃料電池スタック 5 3 4の酸化剤極 1 0 8にはシ ステム負荷 5 3 8からの入力端子 5 4 2が接続される。出力端子 5 4 0と入 力端子 5 4 2との間は、システム負荷 5 3 8と並行に設けられた短絡経路 5 FIG. 1 is a diagram showing a circuit configuration of a fuel cell according to an embodiment of the present invention. The fuel cell 532 has a fuel cell stack 534, a system power switch 54, an output terminal 54 to the system load 538, and an input from the system load 538. It includes a terminal 542, a temperature switch 5336, and a short-circuit path 545. Here, the system load 538 is the resistance in the electric device described above. The output terminal 540 to the system load 538 is connected to the fuel electrode 102 of the fuel cell stack 534. The oxidizer electrode 108 of the fuel cell stack 534 is connected to the input terminal 542 from the system load 538. A short-circuit path 5 provided in parallel with the system load 538 between the output terminal 5400 and the input terminal 542
4 5、および短絡経路 5 4 5上に設けられた温度スィ ツチ 5 3 6により接続 される。温度スィ ツチ 5 3 6は、燃料電池スタック 5 3 4の温度が基準温度 より低いときに出力端子 5 4 0と入力端子 5 4 2とを接続する。この状態で システムパワースィ ッチ 5 4 4がオンとされると、短絡経路 5 4 5には短絡 電流が流れる。燃料電池スタ ック 5 3 4の温度が基準温度以上となると、温 度スィ ッチ 5 3 6は、入力端子 5 4 2と出力端子 5 4 0との間の接続を切る。 これにより、システムパワースィ ッチ 5 4 4がオンとされていても短絡経路45 and a short circuit path 545 are connected by a temperature switch 536 provided on the path. The temperature switch 5336 connects the output terminal 540 to the input terminal 542 when the temperature of the fuel cell stack 534 is lower than the reference temperature. When the system power switch 544 is turned on in this state, a short-circuit current flows through the short-circuit path 545. When the temperature of the fuel cell stack 534 becomes equal to or higher than the reference temperature, the temperature switch 536 disconnects the connection between the input terminal 542 and the output terminal 540. As a result, even if the system power switch 5
5 4 5には短絡電流が流れない。温度スィ ッチ 5 3 6は、燃料電池スタック 5 3 4中の酸化剤極 1 0 8の温度に応じてオンオフが切り替わるように設 計されるのが好ましい。酸化剤極 1 0 8において、触媒近傍の温度が低いと、 充分な発電効率を得ることができないからである。 No short circuit current flows through 5 4 5. It is preferable that the temperature switch 5336 be designed so as to be switched on and off according to the temperature of the oxidant electrode 108 in the fuel cell stack 5354. If the temperature near the catalyst is low in the oxidant electrode 108, sufficient power generation efficiency cannot be obtained.
ここで、基準温度は、 システム負荷 5 3 8に電力を供給するのに充分な発 電効率が得られる温度とするのが好ましく、たとえば一 1 0 °C以上 3 5 °C以 下の範囲内である。 これにより、燃料電池スタッ ク 5 3 4の温度が低いとき には温度スィ ツチ 5 3 6が閉じて短絡経路 5 4 5に電流が流れるため、燃料 電池スタック 5 3 4に短絡電流が流れる。 そのため、燃料電池スタック 5 3 4を急速に暖めることができる。 これにより、 周囲温度が低い場合でも、 燃 料電池 5 3 2の起動性を高めることができる。 一方、燃料電池スタック 5 3 4の温度が充分高くなると、温度スィ ッチ 5 3 6が開いて短絡経路 5 4 5に は電流が流れなくなり、システム負荷 5 3 8に電力を供給することができる。 図 1 ( a ) は、 周囲温度が低い場合に、 システムパワースィ ッチ 5 4 4が オフのときの燃料電池 5 3 2の初期状態を示す図である。 このとき、燃料電 池スタック 5 3 4の温度は基準温度より低いものとする。 この場合、 図示し たように、温度スィ ッチ 5 3 6は閉じた状態となり、 出力端子 5 4 0と入力 端子 5 4 2との間を接続する。 このようにしても、 システムパワースィ ッチ 5 4 4をオフにしているときには燃料電池 5 3 2には電流が流れないため、 電池が消耗することはない。 Here, it is preferable that the reference temperature be a temperature at which power generation efficiency sufficient to supply power to the system load 538 is obtained. For example, the reference temperature is in a range of 110 ° C or more and 35 ° C or less. It is. Thus, when the temperature of the fuel cell stack 534 is low, the temperature switch 5336 closes and current flows through the short-circuit path 545, so that a short-circuit current flows through the fuel cell stack 534. Therefore, the fuel cell stack 5 3 4 can be quickly heated. This allows fuel to burn even at low ambient temperatures. The startability of the fuel cell 532 can be improved. On the other hand, when the temperature of the fuel cell stack 5 3 4 becomes sufficiently high, the temperature switch 5 3 6 opens, and no current flows through the short-circuit path 5 4 5, and power can be supplied to the system load 5 3 8 . FIG. 1A is a diagram showing an initial state of the fuel cell 532 when the system power switch 544 is off when the ambient temperature is low. At this time, the temperature of the fuel cell stack 534 is lower than the reference temperature. In this case, as shown, the temperature switch 5336 is in the closed state, and the connection between the output terminal 540 and the input terminal 542 is established. Even in this case, when the system power switch 544 is turned off, no current flows to the fuel cell 532, so that the battery is not consumed.
図 1 ( b ) は、 システムパワースィ ッチ 5 4 4をオンとした直後の燃料電 池 5 3 2の状態を示す図である。システムパワースィ ッチ 5 4 4がオンとな ると、 燃料電池 5 3 2に電流が流れる。 このとき、 温度スィ ツチ 5 3 6がォ ンとなっているので、出力端子 5 4 0と入力端子 5 4 2との間には温度スィ ツチ 5 3 6を介して短絡電流が流れ、短絡電流はそのまま燃料電池スタック 5 3 4に流れ込む。 これにより、燃料電池スタック 5 3 4では自己発熱がお こ り、燃料電池スタ ック 5 3 4が過熱されて燃料電池スタ ック 5 3 4の温度 が上昇する。 したがって、 燃料電池 5 3 2の発電効率も高くなる。  FIG. 1 (b) is a diagram showing a state of the fuel cell 532 immediately after the system power switch 544 is turned on. When the system power switch 544 is turned on, current flows to the fuel cell 532. At this time, since the temperature switch 536 is turned on, a short-circuit current flows between the output terminal 540 and the input terminal 542 via the temperature switch 536, and the short-circuit current flows. Flows into the fuel cell stack 5 3 4 as it is. As a result, the fuel cell stack 534 generates self-heating, the fuel cell stack 534 is overheated, and the temperature of the fuel cell stack 534 rises. Therefore, the power generation efficiency of the fuel cell 532 also increases.
図 1 ( c ) は、 燃料電池スタック 5 3 4の温度が基準温度以上となったと きの燃料電池 5 3 2を示す図である。燃料電池スタ ック 5 3 4が基準温度を 超えると、温度スィ ッチ 5 3 6はオフとなり、入力端子 5 4 2と出力端子 5 4 0の間には短絡電流が流れなくなり、出力端子 5 4 0からの電流はシステ ム負荷 5 3 8に流れ込む。 これにより、 システム負荷 5 3 8に電力を供給す ることができる。  FIG. 1 (c) is a diagram showing the fuel cell 532 when the temperature of the fuel cell stack 5334 has become equal to or higher than the reference temperature. When the temperature of the fuel cell stack 534 exceeds the reference temperature, the temperature switch 536 is turned off, and no short-circuit current flows between the input terminal 542 and the output terminal 540. The current from 40 flows into the system load 538. Thus, power can be supplied to the system load 538.
図 2は、図 1 に示した燃料電池の燃料電池スタック 5 3 4の単セル構造を 模式的に示した断面図である。燃料電池スタック 5 3 4は、複数の単セル構 造 1 0 1 を有する。 各単セル構造 1 0 1 は、 燃料極 1 0 2、 酸化剤極 1 0 8 および固体電解質膜 1 1 4から構成される。  FIG. 2 is a cross-sectional view schematically showing a single cell structure of the fuel cell stack 534 of the fuel cell shown in FIG. The fuel cell stack 5334 has a plurality of single cell structures 101. Each single cell structure 101 is composed of a fuel electrode 102, an oxidant electrode 108, and a solid electrolyte membrane 114.
固体電解質膜 1 1 4は、燃料極 1 0 2と酸化剤極 1 0 8を隔てるとともに、 両者の間で水素イオンを移動させる役割を有する。 このため、 固体電解質膜The solid electrolyte membrane 114 separates the fuel electrode 102 from the oxidant electrode 108, It has a role of transferring hydrogen ions between the two. For this reason, solid electrolyte membrane
1 1 4は、 水素ィオンの伝導性が高い膜であることが好ましい。 また、 化学 的に安定であって機械的強度が高いことが好ましい。固体電解質膜 1 1 4を 構成する材料としては、 スルフォン基、 リン酸基等の強酸基や、 カルボキシ ル基等の弱酸基等の極性基を有する有機高分子が好ましく用いられる。こう した有機高分子として、スルフォン化ポリ(4ーフ: nノキシベンゾィル一 1 , 4一フエ二レン) 、 アルキルスルフォン化ポリべンゾイ ミダゾ一ル等の芳香 族縮合系高分子: スルフォン基含有パーフルォロカーボン (ナフイオン (デ ュポン社製) (登録商標) 、 ァシプレックス (旭化成社製) ) : カルボキシ ル基含有パーフルォロカーボン (フ レミオン S膜 (旭硝子社製) (登録商 標) ) ; 等が例示される。 It is preferable that 114 is a film having high conductivity for hydrogen ions. Further, it is preferable that it is chemically stable and has high mechanical strength. As a material constituting the solid electrolyte membrane 114, an organic polymer having a polar group such as a strong acid group such as a sulfone group or a phosphate group or a weak acid group such as a carboxy group is preferably used. Examples of such organic polymers include aromatic polycondensation polymers such as sulfonated poly (4-f: n-oxybenzoyl-1,4-phenylene) and alkylsulfonated polybenzoylmidazoyl: sulfone group-containing perfume. Fluorocarbon (Naphion (manufactured by Dupont) (registered trademark), Aciplex (manufactured by Asahi Kasei Corporation)): Carboxyl group-containing perfluorocarbon (Fremion S membrane (manufactured by Asahi Glass Co., Ltd.) (registered trademark)); Etc. are exemplified.
燃料極 1 0 2および酸化剤極 1 0 8は、 それぞれ、 触媒を担持した炭素粒 子と固体電解質の微粒子とを含む燃料極側触媒層 1 0 6および酸化剤極側 触媒層 1 1 2を基体 1 0 4および基体 1 1 0上に形成した構成とすること ができる。 基体 1 0 4および基体 1 1 0の表面は撥水処理してもよい。 燃料極側触媒層 1 0 6の触媒としては、 白金、 金、 銀、 ルテニウム、 ロジ ゥム、 パラジウム、 オスミ ウム、 イ リジウム、 コバルト、 ニッケル、 レニゥ ム、 リチウム、 ランタン、 ス トロンチウム、 イ ッ ト リ ウム、 またはこれらの 合金等が例示される。酸化剤極側触媒層 1 1 2の触媒としては、燃料極側触 媒層 1 0 6と同様のものを用いることができ、上記例示物質を使用すること ができる。 なお、 燃料極側触媒層 1 0 6および酸化剤極側触媒層 1 1 2の触 媒は同じものを用いても異なるものを用いてもどちらでもよい。  The fuel electrode 102 and the oxidant electrode 108 respectively include a fuel electrode-side catalyst layer 106 and an oxidant electrode-side catalyst layer 112 containing carbon particles carrying a catalyst and fine particles of solid electrolyte. A structure formed on the substrate 104 and the substrate 110 can be employed. The surfaces of the substrate 104 and the substrate 110 may be subjected to a water-repellent treatment. The catalyst of the anode-side catalyst layer 106 includes platinum, gold, silver, ruthenium, rhodium, palladium, osmium, iridium, cobalt, nickel, rhenium, lithium, lanthanum, strontium, and itt. Examples thereof include lithium and alloys thereof. As the catalyst of the oxidant electrode-side catalyst layer 112, the same catalyst as that of the fuel electrode-side catalyst layer 106 can be used, and the above-mentioned exemplified substances can be used. The catalyst of the fuel electrode side catalyst layer 106 and the catalyst of the oxidant electrode side catalyst layer 112 may be either the same or different.
触媒を担持する炭素粒子としては、 アセチレンブラック (デンカブラック (電気化学社製) (登録商標) 、 X C 7 2 ( V u l c a n社製) 等) 、 ケッ チェンブラック、 カーボンナノチューブ、 カーボンナノホーン等が例示され る。  Examples of the carbon particles carrying the catalyst include acetylene black (Denka Black (manufactured by Denki Kagaku) (registered trademark), XC72 (manufactured by Vulcan), etc.), Ketjen Black, carbon nanotubes, carbon nanohorns, and the like. You.
燃料極側触媒層 1 0 6および酸化剤極側触媒層 1 1 2における固体電解 質の微粒子は、 同一のものであっても異なるものであってもよい。 ここで、 固体電解質の微粒子は、固体電解質膜 1 1 4と同じ材料を用いることができ るが、 固体電解質膜 1 1 4とは異なる材料や、複数の材料を用いることもで ぎる。 The fine particles of the solid electrolyte in the fuel electrode side catalyst layer 106 and the oxidant electrode side catalyst layer 112 may be the same or different. Here, as the solid electrolyte fine particles, the same material as the solid electrolyte membrane 114 can be used. However, a material different from the solid electrolyte membrane 114 or a plurality of materials can be used.
燃料極 1 0 2、 酸化剤極 1 0 8ともに、基体 1 0 4および基体 1 1 0とし ては、カーボンペーパー、カーボンの成形体、カーボンの焼結体、焼結金属、 発泡金属等の多孔性基体を用いることができる。 また、基体 1 0 4および基 体 1 1 0の撥水処理にはポリテ トラフルォロェチレン等の撥水剤を用いる ことができる。  For both the fuel electrode 102 and the oxidizer electrode 108, the base material 104 and the base material 110 may be made of carbon paper, a molded carbon material, a sintered carbon material, a sintered metal, a foamed metal, or the like. A functional substrate can be used. Further, a water repellent such as polytetrafluoroethylene can be used for the water repellent treatment of the substrate 104 and the substrate 110.
次に、 本発明における単セル構造 1 0 1の製造方法を説明する。  Next, a method of manufacturing the single cell structure 101 according to the present invention will be described.
たとえば固体電解質膜 1 1 4を有機高分子材料で構成する場合、固体電解 質膜 1 1 4は、 有機高分子材料を溶媒に溶解ないし分散した液体を、 ポリテ トラフルォロェチレン等の剥離性シート等の上にキャス ト して乾燥させる ことにより得ることができる。  For example, when the solid electrolyte membrane 114 is composed of an organic polymer material, the solid electrolyte membrane 114 is formed of a liquid obtained by dissolving or dispersing the organic polymer material in a solvent by using a peelable sheet such as polytetrafluoroethylene. It can be obtained by casting and drying on the like.
燃料極 1 0 2および酸化剤極 1 0 8は、たとえば以下の方法で得ることが できる。 まず、 一般的に用いられている含浸法によつて炭素粒子に触媒を担 持させる。次に触媒を担持させた炭素粒子と固体電解質の微粒子を溶媒に分 散させ、 ペース ト状としたのち、撥水化処理を行った基体 1 0 4または基体 1 1 0に塗布する。基体 1 0 4または 1 1 0へのペース トの塗布方法につい ては特に制限がないが、 たとえば、 刷毛塗り、 スプレー塗布、 およびスク リ ーン印刷法等の方法を用いることができる。 ペース トを塗布した後、 たとえ ば、加熱温度 1 0 0で〜 2 5 0 °C、加熱時間 3 0秒間〜 3 0分で乾燥させる ことによって燃料極 1 0 2および酸化剤極 1 0 8が得られる。  The fuel electrode 102 and the oxidant electrode 108 can be obtained, for example, by the following method. First, a catalyst is supported on carbon particles by a commonly used impregnation method. Next, the carbon particles carrying the catalyst and the fine particles of the solid electrolyte are dispersed in a solvent to form a paste, and then applied to the substrate 104 or the substrate 110 that has been subjected to the water-repellent treatment. The method for applying the paste to the substrate 104 or 110 is not particularly limited, and for example, methods such as brush coating, spray coating, and screen printing can be used. After applying the paste, for example, the fuel electrode 102 and the oxidizer electrode 108 are dried by heating at a heating temperature of 100 to 250 ° C and a heating time of 30 seconds to 30 minutes. can get.
次に、固体電解質膜 1 1 4を、燃料極 1 0 2および酸化剤極 1 0 8で挟み、 ホッ トプレスすることにより、 単セル構造 1 0 1 を得る。 このとき、 燃料極 側触媒層 1 0 6および酸化剤極側触媒層 1 1 2が固体電解質膜 1 1 4と接 するようにする。たとえば固体電解質膜 1 1 4や燃料極側触媒層 1 0 6およ ぴ酸化剤極側触媒層 1 1 2中の固体電解質の微粒子を有機高分子で構成す る場合、 ホッ トプレスの条件は、 これらの有機高分子の軟化温度やガラス転 位温度を超える温度とすることができる。 具体的には、 たとえば、 温度 1 0 0〜 2 5 0 °C、圧力 1〜 1 0 0 k g / c m 2、時間 1 0秒〜 3 0 0秒とする。 以上のようにして形成された単セル構造 1 0 1 を積み重ねることにより、 複数の単セル構造 1 0 1 が直列に接続された燃料電池スタック 5 3 4を得 ることができる。 Next, the solid electrolyte membrane 114 is sandwiched between the fuel electrode 102 and the oxidant electrode 108, and hot pressed to obtain a single cell structure 101. At this time, the fuel electrode side catalyst layer 106 and the oxidant electrode side catalyst layer 112 are brought into contact with the solid electrolyte membrane 114. For example, when the solid electrolyte fine particles in the solid electrolyte membrane 114, the fuel electrode side catalyst layer 106 and the oxidant electrode side catalyst layer 112 are composed of an organic polymer, the hot pressing conditions are as follows. The temperature can be higher than the softening temperature or glass transition temperature of these organic polymers. Specifically, for example, the temperature is set to 100 to 250 ° C., the pressure is set to 1 to 100 kg / cm 2 , and the time is set to 10 to 300 seconds. By stacking the single cell structures 101 formed as described above, a fuel cell stack 5334 in which a plurality of single cell structures 101 are connected in series can be obtained.
このように構成された燃料電池スタ ック 5 3 4において、各単セル構造 1 0 1 の燃料極 1 0 2には、 燃料 1 2 4が供給される。 また、 各単セル構造 1 0 1 の酸化剤極 1 0 8には、酸化剤 1 2 6が供給される。燃料 1 2 4として は、メタノール、エタノール、ジメチルエーテル、または他のアルコール類、 あるいはシクロパラフ ィ ン等の液体炭化水素等の有機液体燃料を用いるこ とができる。 有機液体燃料は、 水溶液とすることができる。 酸化剤 1 2 6と しては、 通常、 空気を用いることができるが、 酸素ガスを供給してもよい。  In the fuel cell stack 534 configured as above, the fuel 124 is supplied to the fuel electrode 102 of each single cell structure 101. The oxidizer electrode 126 of each single cell structure 101 is supplied with the oxidizer 126. As the fuel 124, an organic liquid fuel such as methanol, ethanol, dimethyl ether, or other alcohols, or a liquid hydrocarbon such as cycloparaffin can be used. The organic liquid fuel can be an aqueous solution. As the oxidizing agent 126, air can be usually used, but oxygen gas may be supplied.
(第一の実施の形態)  (First embodiment)
図 3は、本発明の第一の実施の形態における燃料電池 5 3 2を模式的に示 した構成図である。 本実施の形態において、 温度スィ ツチ 5 3 6は、 電源制 御部 5 4 8により実現することができる。燃料電池 5 3 2は、 図 1 を参照し て説明した構成に加えて、温度センサ 5 4 6をさらに含む。温度センサ 5 4 6としては、 熱電対、 金属測温抵抗体、 サーミ スタ、 I C温度センサ、 磁気 温度センサ、 サーモパイル、 または焦電型温度センサ等を用いることができ る。温度センサ 5 4 6は、燃料電池スタック 5 3 4の構造に応じて種々の配 置を取り得るが、たとえば燃料電池スタック 5 3 4内の端部にある酸化剤極 1 0 8表面に接着される。 これにより、外部温度の影響を最も受ける可能性 の高い燃料電池スタック 5 3 4の端部の温度を反映することができ、良好な 起動性の確保をすることができる。  FIG. 3 is a configuration diagram schematically showing a fuel cell 532 in the first embodiment of the present invention. In the present embodiment, the temperature switch 5336 can be realized by the power supply control unit 548. The fuel cell 532 further includes a temperature sensor 546 in addition to the configuration described with reference to FIG. As the temperature sensor 546, a thermocouple, a metal resistance thermometer, a thermistor, an IC temperature sensor, a magnetic temperature sensor, a thermopile, a pyroelectric temperature sensor, or the like can be used. The temperature sensor 546 can take various arrangements depending on the structure of the fuel cell stack 534, for example, it is bonded to the surface of the oxidant electrode 108 at the end of the fuel cell stack 534. You. This can reflect the temperature of the end of the fuel cell stack 534 that is most likely to be affected by the external temperature, thereby ensuring good startability.
電源制御部 5 4 8は、図示しない A Z D変換器を介して温度センサ 5 4 6 からの信号を受け付け、その信号に応じて短絡経路 5 4 5およびシステム負 荷 5 3 8のいずれに電流を流すかの切り替え制御を行う。温度センサ 5 4 6 により測定された燃料電池スタック 5 3 4の温度が基準温度より低い場合、 電源制御部 5 4 8は、 短絡経路 5 4 5に電流を流す。 これにより、 燃料電池 スタ ック 5 3 4には短絡電流が流れ、燃料電池スタ ック 5 3 4で自己発熱が おこり、燃料電池スタック 5 3 4が過熱されて燃料電池スタック 5 3 4の温 度が上昇する。温度センサ 5 4 6により測定された温度が基準温度以上とな つた場合、 電源制御部 5 4 8は、 システム負荷 5 3 8に電流を流す。 燃料電 池スタ ッ ク 5 3 4の温度が基準温度を超えている場合、燃料電池 5 3 2の発 電効率も高くなっており、システム負荷 5 3 8に充分な電力を供給すること ができる。 The power supply control unit 548 receives a signal from the temperature sensor 546 via an AZD converter (not shown), and supplies a current to either the short-circuit path 545 or the system load 538 according to the signal. The switching control of the room is performed. When the temperature of the fuel cell stack 5 34 measured by the temperature sensor 5 4 6 is lower than the reference temperature, the power supply control section 5 4 8 supplies a current to the short-circuit path 5 4 5. As a result, a short-circuit current flows through the fuel cell stack 5 34, and self-heating occurs in the fuel cell stack 5 3 4, and the fuel cell stack 5 3 4 is overheated and the temperature of the fuel cell stack 5 3 4 is increased. The degree rises. When the temperature measured by the temperature sensor 546 becomes equal to or higher than the reference temperature, the power supply control unit 548 supplies a current to the system load 538. When the temperature of the fuel cell stack 534 exceeds the reference temperature, the power generation efficiency of the fuel cell 532 also increases, and sufficient power can be supplied to the system load 538 .
以上のように、本実施の形態における燃料電池によれば、周囲温度が低く、 燃料電池の起動性が悪い場合には、抵抗の高いシステム負荷 5 3 8には電流 を流さず、燃料電池自体の内部抵抗のみで規定される燃料電池スタック 5 3 4に短絡電流を流す。 これにより、燃料電池スタック 5 3 4の温度を素早く 上昇させることができ、 燃科電池 5 3 2の発電効率を高めることができる。 また、燃料電池スタック 5 3 4の温度が上昇し、 システム負荷 5 3 8に充分 な電力を供給できる状態となると、短絡電流を停止してシステム負荷 5 3 8 に電流を流すように自動的に切り替えることができる。 これにより、周囲温 度が低くても、 起動対象の電気機器を素早く起動することができる。  As described above, according to the fuel cell of the present embodiment, when the ambient temperature is low and the startability of the fuel cell is poor, no current flows to the high-resistance system load 538, and the fuel cell itself does not flow. A short-circuit current flows through the fuel cell stack 5 3 4 defined only by the internal resistance of the fuel cell stack 5. As a result, the temperature of the fuel cell stack 5334 can be quickly increased, and the power generation efficiency of the fuel cell 532 can be increased. In addition, when the temperature of the fuel cell stack 534 rises and sufficient power can be supplied to the system load 538, the short-circuit current is stopped and the current is automatically supplied to the system load 538. You can switch. As a result, even when the ambient temperature is low, the electric device to be started can be started quickly.
(第二の実施の形態)  (Second embodiment)
図 4は、本発明の第二の実施の形態における燃料電池 5 3 2を模式的に示 した構成図である。 本実施の形態において、 温度スィ ッチ 5 3 6は、 温度に より形状が変化する材料により構成することができる。  FIG. 4 is a configuration diagram schematically showing a fuel cell 532 in the second embodiment of the present invention. In the present embodiment, the temperature switch 5336 can be made of a material whose shape changes with temperature.
温度スィ ッチ 5 3 6は、燃料電池スタック 5 3 4の構造に応じて種々の配 置を取り得るが、 たとえば、 図 4 ( a ) に示すように燃料電池スタック 5 3 4内の端部にある酸化剤極 1 0 8表面に接着される。 これにより、外部温度 の影響を最も受ける可能性の高い燃料電池スタック 5 3 4の端部の温度を 反映することができ、 良好な起動性の確保をすることができる。  The temperature switch 5336 can take various arrangements depending on the structure of the fuel cell stack 5334. For example, as shown in FIG. The oxidizer electrode on the surface is bonded to the surface. As a result, the temperature of the end of the fuel cell stack 534, which is most likely to be affected by the external temperature, can be reflected, and good startup performance can be ensured.
図 4 ( b ) は、 図 4 ( a ) に示した温度スィ ッチ 5 3 6の構成を示す拡大 図である。 温度スィ ッチ 5 3 6は、 支持体 5 5 0と、 可動導電体 5 5 2と、 接点 5 5 3と、固定導電体 5 5 4とにより構成される。可動導電体 5 5 2は、 熱膨張係数の異なる金属を接合したパイメタル、 形状記憶合金、 熱膨張剤、 パネ、 または感温フヱライ ト等により構成することができる。燃料電池スタ ック 5 3 4の温度が基準温度より低い場合、 図 4 ( b ) に示すように、 可動 導電体 5 5 2の接点 5 5 3は、 固定導電体 5 5 4に接触する。 これにより、 短絡経路 5 4 5には短絡電流が流れ、燃料電池スタ ック 5 3 4で自己発熱が おこ り、燃料電池スタ ック 5 3 4が過熱されて燃料電池スタ ック 5 3 4の温 度が上昇する。 このようにして、燃料電池スタ ック 5 3 4の温度が基準温度 以上となると、 図 4 ( c ) に示すように、 可動導電体 5 5 2は、 固定導電体 5 5 4から離れるように変形し、 短絡経路 5 4 5には電流が流れなく なる。 これにより、燃料電池スタック 5 3 4からの電流はシステム負荷 5 3 8に供 給される。 このとき、 燃料電池 5 3 2の発電効率も高くなっており、 システ ム負荷 5 3 8に充分な電力を供給することができる。 FIG. 4 (b) is an enlarged view showing the configuration of the temperature switch 5336 shown in FIG. 4 (a). The temperature switch 536 is composed of a support 550, a movable conductor 552, a contact 553, and a fixed conductor 554. The movable conductor 552 can be made of a pie metal, a shape memory alloy, a thermal expansion agent, a panel, a temperature-sensitive filler, or the like in which metals having different thermal expansion coefficients are joined. When the temperature of the fuel cell stack 5 3 4 is lower than the reference temperature, the movable The contact 553 of the conductor 552 contacts the fixed conductor 554. As a result, a short-circuit current flows in the short-circuit path 545, self-heating occurs in the fuel cell stack 533, and the fuel cell stack 533 is overheated and the fuel cell stack 533 is heated. Temperature rises. In this way, when the temperature of the fuel cell stack 534 becomes higher than the reference temperature, the movable conductor 552 moves away from the fixed conductor 554 as shown in FIG. 4 (c). Deformation occurs, and no current flows through the short-circuit path 545. As a result, the current from the fuel cell stack 534 is supplied to the system load 538. At this time, the power generation efficiency of the fuel cell 532 is also high, and sufficient power can be supplied to the system load 538.
以上のように、本実施の形態における燃料電池によれば、周囲温度が低く、 燃料電池の起動性が悪い場合には、抵抗の高いシステム負荷 5 3 8には電流 を流さず、燃料電池自体の内部抵抗のみで規定される燃料電池スタック 5 3 4に短絡電流を流す。 これにより、燃料電池スタック 5 3 4の温度を素早く 上昇させることができ、 燃料電池 5 3 2の発電効率を高めることができる。 また、燃料電池スタック 5 3 4の温度が上昇し、 システム負荷 5 3 8に充分 な電力を供給できる状態となると、短絡電流を停止してシステム負荷 5 3 8 に電流を流すように自動的に切り替えることができる。 これにより、 周囲温 度が低くても、 起動対象の機器を素早く起動することができる。 また、 本実 施の形態において、温度スィツチ 5 3 6を温度により形状が変化する材料に より構成し、温度スィ ツチ 5 3 6自体が周囲の温度に応じて変形することに より、 燃料電池スタック 5 3 4に短絡電流を流すか否かの切り替えを行う。 そのため、温度スィ ッチ 5 3 6を駆動するための構造をより箇略化すること ができる。  As described above, according to the fuel cell of the present embodiment, when the ambient temperature is low and the startability of the fuel cell is poor, no current flows to the high-resistance system load 538, and the fuel cell itself does not flow. A short-circuit current flows through the fuel cell stack 5 3 4 defined only by the internal resistance of the fuel cell stack 5. As a result, the temperature of the fuel cell stack 534 can be quickly raised, and the power generation efficiency of the fuel cell 532 can be increased. In addition, when the temperature of the fuel cell stack 534 rises and sufficient power can be supplied to the system load 538, the short-circuit current is stopped and the current is automatically supplied to the system load 538. You can switch. As a result, even if the ambient temperature is low, the device to be started can be started quickly. Further, in this embodiment, the temperature switch 5336 is made of a material whose shape changes according to the temperature, and the temperature switch 536 itself deforms according to the ambient temperature, so that the fuel cell stack Switch whether or not to supply short circuit current to 5 3 4. Therefore, the structure for driving the temperature switch 536 can be further simplified.
(第三の実施の形態)  (Third embodiment)
図 7は、本発明の第三の実施の形態における燃料電池システム 9 0 0を示 すブロック図である。  FIG. 7 is a block diagram showing a fuel cell system 900 according to the third embodiment of the present invention.
本実施の形態において、燃料電池システム 9 0 0は、 図 3に示した構成に 加えて、 燃料極タンク 6 6 2、 燃料供給処理部 6 7 4、 第 1 の燃料収容部 6 7 6 a、 第 2の燃料収容部 6 7 6 b、 対応値記憶部 9 0 1、 制御部 9 0 2、 酸化剤極タ ンク 9 0 6、 酸化剤供給処理部 9 0 8、 燃料供給管 9 1 0、 酸化 剤供給管 9 1 2、 ヒータ 9 1 4、 9 1 6を含む。 In the present embodiment, in addition to the configuration shown in FIG. 3, the fuel cell system 900 has a fuel electrode tank 662, a fuel supply processing section 674, a first fuel storage section 676a, Second fuel storage section 6 7 6 b, corresponding value storage section 9 01, control section 9 0 2, It includes an oxidizer electrode tank 906, an oxidizer supply processing section 908, a fuel supply pipe 910, an oxidizer supply pipe 912, and heaters 914 and 916.
ここで、 温度センサ 5 4 6は、燃料電池スタック 5 3 4の端部にある酸化 剤極 1 ◦ 8表面、燃料電池スタ ック 5 3 4内、燃料電池スタ ッ ク 5 3 4表面、 廃液の循環経路 (不図示) 、 または廃気の循環経路 (不図示) 等に配置する ことができる。  Here, the temperature sensor 546 is connected to the surface of the oxidant electrode 1 ◦ 8 at the end of the fuel cell stack 534, inside the fuel cell stack 534, the surface of the fuel cell stack 534, and the waste liquid. Or a waste air circulation path (not shown).
制御部 9 0 2は、温度センサ 5 4 6からの信号を受け付け、 その信号に応 じて燃料供給処理部 6 7 4、酸化剤供給処理部 9 0 8、 および電源制御部 5 4 8を制御する。燃料供給処理部 6 7 4は、燃料極タンク 6 6 2に供給する 燃料 1 2 4の濃度および供給量を調整する。酸化剤供給処理部 9 0 8は、酸 化剤極タンク 9 0 6に供給する酸化剤 1 2 6の供給量を調整する。  The control unit 902 receives a signal from the temperature sensor 546, and controls the fuel supply processing unit 704, the oxidant supply processing unit 908, and the power supply control unit 548 according to the signal. I do. The fuel supply processing section 674 adjusts the concentration and supply amount of the fuel 124 supplied to the fuel electrode tank 662. The oxidizing agent supply processing section 908 adjusts the supply amount of the oxidizing agent 126 supplied to the oxidizing agent electrode tank 906.
第 1の燃料収容部 6 7 6 aおよび第 2の燃料収容部 6 7 6 bは、それぞれ 濃度の異なる燃料を収容する。第 1の燃料収容部 6 7 6 aおよび第 2の燃料 収容部 6 7 6 bのいずれか一方は、アルコールを含まない水を収容すること もできる。  The first fuel storage section 676a and the second fuel storage section 676b store fuels having different concentrations, respectively. Either the first fuel storage section 676a or the second fuel storage section 676b can store alcohol-free water.
図示していないが、燃料供給処理部 6 7 4は、 たとえばィンバ一タおよび ポンプを含むことができる。ポンプは第 1の燃料収容部 6 7 6 aおよび第 2 の燃料収容部 6 7 6 bにそれぞれ設けた構成とすることができる。ポンプと しては、 圧電ポンプを用いることができる。 圧電ポンプを用いた場合、 制御 部 9 0 2は、ィ ンパータにおける振動数または電圧を変化させることにより 第 1 の燃料収容部 6 7 6 aおよび第 2の燃料収容部 6 7 6 bからの燃料の 供給量を制御する。 これにより、燃料極タンク 6 6 2に供給する燃料 1 2 4 の濃度および供給量を調整することができる。  Although not shown, the fuel supply processing section 674 can include, for example, an inverter and a pump. The pump can be configured to be provided in each of the first fuel storage section 676a and the second fuel storage section 676b. As the pump, a piezoelectric pump can be used. When a piezoelectric pump is used, the control unit 92 changes the frequency or voltage of the impeller to control the fuel from the first fuel storage unit 676a and the second fuel storage unit 676b. To control the supply of water. Thereby, the concentration and the supply amount of the fuel 124 supplied to the fuel electrode tank 662 can be adjusted.
燃料供給処理部 6 7 4として圧電ポンプおよびイ ンバータを用いること により、従来の電磁ポンプ等を用いた場合に比べ、 ポンプの小型軽量化が可 能となり、 また耐久性も向上する。 また、 ポンプの駆動に必要な電力が低減 する。 また、 ポンプからの燃料の供給量を、 インパータにおける振動数また は電圧を変化させることにより良好に制御することができる。インバータの 振動数を変化させた場合、 単位時間あたりのポンプの吐出頻度が変化する。 また、 これらの電圧を変化させた場合、 圧電素子の変位量の変化により、 1 回の吐出あたりの吐出量が変化する。 したがって、 いずれかを変化させた場 合においても、 燃料の濃度および供給量を調節することができる。 By using a piezoelectric pump and an inverter as the fuel supply processing unit 674, the size and weight of the pump can be reduced and the durability can be improved as compared with the case where a conventional electromagnetic pump or the like is used. Also, the power required to drive the pump is reduced. Also, the amount of fuel supplied from the pump can be controlled well by changing the frequency or voltage of the impeller. When the frequency of the inverter is changed, the discharge frequency of the pump per unit time changes. Also, when these voltages are changed, the discharge amount per discharge changes due to the change in the displacement amount of the piezoelectric element. Therefore, even when either of them is changed, the fuel concentration and supply amount can be adjusted.
圧電ポンプとして、例えばバイモルフ型圧電ポンプが好ましく用いられる。 バイモルフ型圧電ポンプとしては、 例えばバイモルポンプ (極光社製、 登録 商標) や、 F D K社製のパイモルフ型圧電素子等を用いることができる。 ィ ンパータ 4 6 1 としては、例えば松下電子部品株式会社製の E X C Fシリ一 ズ等を用いることができる。  As the piezoelectric pump, for example, a bimorph type piezoelectric pump is preferably used. As the bimorph-type piezoelectric pump, for example, a bimorph pump (manufactured by Kyoko Corporation, a registered trademark), a piemorph-type piezoelectric element manufactured by FDK, or the like can be used. For example, an EXCF series manufactured by Matsushita Electronic Components, Ltd. or the like can be used as the inverter 461.
酸化剤供給処理部 9 0 8は、 フ ァンを含むことができる。 ファンの回転数 を変化させることにより、酸化剤極タンク 9 0 6に供給する酸化剤の供給量 を制御することができる。  The oxidizing agent supply processing section 908 can include a fan. By changing the rotation speed of the fan, the supply amount of the oxidant to be supplied to the oxidant electrode tank 906 can be controlled.
本実施の形態において、 制御部 9 0 2は、温度センサ 5 4 6により測定さ れた燃料電池スタ ック 5 3 4の温度が基準温度より低い場合、電源制御部 5 In the present embodiment, when the temperature of fuel cell stack 5 34 4 measured by temperature sensor 5 46 is lower than the reference temperature, control unit 9
4 8を制御し、 短絡経路 5 4 5に電流を流す。 4 8 is controlled to supply current to the short-circuit path 5 4 5.
また、 これと同時に、燃料電池スタック 5 3 4の温度が基準温度より低い 場合、 以下の低温時処理を行う。 対応値記憶部 9 0 1 は、 制御部 9 0 2が低 温時処理を行う際に参照する対応値を記憶する。 ここで、 対応値とは、 燃料 電池スタック 5 3 4の温度と、その温度のときに燃料極タンク 6 6 2に供給 すべき燃料 1 2 4の濃度および供給量、ならびに酸化剤極タンク 9 0 6に供 給すべき酸化剤 1 2 6の供給量とのそれぞれの関係である。  At the same time, when the temperature of the fuel cell stack 534 is lower than the reference temperature, the following low temperature processing is performed. The corresponding value storage unit 901 stores a corresponding value that is referred to when the control unit 902 performs the low temperature process. Here, the corresponding values are the temperature of the fuel cell stack 5 34, the concentration and supply amount of the fuel 124 to be supplied to the fuel electrode tank 66 2 at that temperature, and the oxidizer electrode tank 90 0 These are the respective relationships with the supply amount of the oxidizing agent 1 26 to be supplied to 6.
燃料極タンク 6 6 2に供給すべき燃料 1 2 4の濃度は、燃料電池スタック The concentration of fuel 1 2 4 to be supplied to the anode tank 6 6 2 depends on the fuel cell stack.
5 3 4の温度が低いほど高くなるように設定される。燃料 1 2 4の濃度を高 くすることにより、燃料極タンク 6 6 2に供給されたメタノール等の燃料 1 2 4が固体電解質膜 1 1 4を介して酸化剤極 1 0 8に達するクロスオーバ が促進され、 酸化剤極タンク 9 0 6が加熱される。 The temperature is set to increase as the temperature of 5 3 4 decreases. By increasing the concentration of the fuel 124, the fuel 124 such as methanol supplied to the fuel electrode tank 66 2 reaches the oxidant electrode 108 via the solid electrolyte membrane 114 and crossover. Is promoted, and the oxidizer electrode tank 906 is heated.
また、燃科極タンク 6 6 2に供給すべき燃料 1 2 4の供給量は、燃料電池 スタック 5 3 4の温度が低いほど低くなるように設定される。このようにす れば、燃料極タンク 6 6 2への燃料 1 2 4の供給速度が低下され、燃料電池 スタック 5 3 4からの放熱を低減することができる。 また、酸化剤極タンク 9 0 6に供給すべき酸化剤 1 2 6の供給量は、燃料 電池スタ ック 5 3 4の温度が低いほど低くなるように設定される。このよう にすれば、 酸化剤極タンク 9 0 6への酸化剤 1 2 6の供給速度が低下され、 酸化剤極タンク 9 0 6が酸化剤 1 2 6により空冷されるのを防ぐことがで きる。 The supply amount of the fuel 124 to be supplied to the fuel electrode tank 662 is set to be lower as the temperature of the fuel cell stack 5334 is lower. In this way, the supply speed of fuel 124 to fuel electrode tank 662 is reduced, and heat radiation from fuel cell stack 5334 can be reduced. Further, the supply amount of the oxidizer 126 to be supplied to the oxidizer electrode tank 906 is set to be lower as the temperature of the fuel cell stack 534 is lower. In this manner, the supply speed of the oxidizer 126 to the oxidizer electrode tank 906 is reduced, and the oxidizer electrode tank 906 is prevented from being air-cooled by the oxidizer 126. Wear.
制御部 9 0 2は、温度センサ 5 4 6により測定された燃料電池スタック 5 3 4の温度に基づき、対応値記億部 9 0 1 を参照して、 その温度のときに燃 料供給処理部 6 7 4から供給されるべき燃料 1 2 4の濃度および供給量、な らぴに酸化剤供給処理部 9 0 8から供給されるべき酸化剤 1 2 6の供給量 に関する情報を取得する。 制御部 9 0 2は、 この情報に基づき、 燃料供給処 理部 6 7 4および酸化剤供給処理部 9 0 8を制御する。  The control unit 902 refers to the corresponding value storage unit 901 based on the temperature of the fuel cell stack 534 measured by the temperature sensor 546, and at that temperature, the fuel supply processing unit Information on the concentration and supply amount of the fuel 124 to be supplied from the oxidizing agent supply section 908 and information on the supply amount of the oxidizing agent 126 to be supplied from the oxidizing agent supply processing section 908 are obtained. The control section 902 controls the fuel supply processing section 694 and the oxidant supply processing section 908 based on this information.
さらに、 制御部 9 0 2は、 ヒータ 9 1 4 , 9 1 6を制御して、 燃料供給管 9 1 0および酸化剤供給管 9 1 2をそれぞれ通過する燃料 1 2 4および酸 化剤 1 2 6を加熱することもできる。  Further, the control section 92 controls the heaters 9 14 and 9 16 so that the fuel 12 4 and the oxidizing agent 12 which pass through the fuel supply pipe 9 10 and the oxidant supply pipe 9 12 respectively. 6 can also be heated.
以上のように、 本実施の形態の燃料電池システム 9 0 0においては、第 1 の実施の形態で説明したのと同様に、周囲温度が低く、燃料電池の起動性が 悪い場合には、燃料電池スタック 5 3 4に燃料電池自体の内部抵抗のみで規 定される短絡電流を流して燃料電池スタ ック 5 3 4の温度を上昇させるこ とができる。  As described above, in the fuel cell system 900 of the present embodiment, as described in the first embodiment, when the ambient temperature is low and the startability of the fuel cell is poor, the fuel The temperature of the fuel cell stack 534 can be increased by flowing a short-circuit current defined only by the internal resistance of the fuel cell itself to the cell stack 534.
これに加えて、周囲温度が低い場合には、燃料電池スタック 5 3 4に供給 する燃料 1 2 4の濃度を高めてクロスオーバーを生じさせて燃料電池スタ ック 5 3 4を加熱する処理も行うので、より一層効率よく燃料電池スタック 5 3 4の発電効率を高めることができる。さらに、周囲温度が低い場合には、 燃料電池スタ ック 5 3 4に供給する燃料 1 2 4および酸化剤 1 2 6の供給 量を低く して燃料電池スタック 5 3 4が燃料 1 2 4や酸化剤 1 2 6により 冷却されるのを防ぐこともできる。 これにより、効率よく燃料電池スタック 5 3 4の発電効率を高めることができる。 さらに、燃料電池スタック 5 3 4 に供給する燃料 1 2 4および酸化剤 1 2 6をヒータにより加熱することも できるので、効率よく燃料電池スタック 5 3 4の温度を上昇させることがで きる。 In addition, when the ambient temperature is low, a process of increasing the concentration of the fuel 124 supplied to the fuel cell stack 534 to generate a crossover and heat the fuel cell stack 534 is also performed. As a result, the power generation efficiency of the fuel cell stack 534 can be more efficiently increased. Further, when the ambient temperature is low, the supply amounts of the fuels 124 and the oxidizing agent 126 to be supplied to the fuel cell stack 534 are reduced so that the fuel cell stack 534 can supply the fuel 124 and Oxidant 126 can also prevent cooling. As a result, the power generation efficiency of the fuel cell stack 534 can be efficiently increased. Further, since the fuel 124 and the oxidant 126 supplied to the fuel cell stack 534 can be heated by the heater, the temperature of the fuel cell stack 534 can be efficiently raised. Wear.
また、 他の例において、 制御部 9 0 2は、 温度センサ 5 4 6により測定さ れた燃料電池スタック 5 3 4の温度が基準温度より低い場合に、まず電源制 御部 5 4 8を制御して短絡経路 5 4 5に電流を流す処理を行い、所定時間の 経過後に燃料供給処理部 6 7 4および酸化剤供給処理部 9 0 8を制御して 上述した低温時処理を行うようにすることもできる。 このようにすれば、燃 料電池スタック 5 3 4を短絡させる時間を短く しても、その後の低温時処理 により燃料電池スタック 5 3 4の温度を上昇させることができ、燃料電池ス タック 5 3 4の温度を効率よく上昇させることができる。 これにより、燃料 電池スタ ック 5 3 4を短絡させることによる燃料電池スタック 5 3 4の固 体電解質 1 1 4へのダメージ等を生じることなく、燃料電池スタック 5 3 4 の温度を上昇させることができる。  In another example, when the temperature of the fuel cell stack 534 measured by the temperature sensor 546 is lower than the reference temperature, the control unit 902 controls the power supply control unit 548 first. Then, a process for flowing a current to the short-circuit path 545 is performed, and after a predetermined time elapses, the fuel supply processing unit 674 and the oxidant supply processing unit 908 are controlled to perform the low-temperature processing described above. You can also. In this way, even if the time for short-circuiting the fuel cell stack 534 is shortened, the temperature of the fuel cell stack 534 can be raised by the subsequent low-temperature processing, and the fuel cell stack 534 can be heated. The temperature of 4 can be raised efficiently. As a result, the temperature of the fuel cell stack 534 can be increased without causing damage to the solid electrolyte 114 of the fuel cell stack 534 by short-circuiting the fuel cell stack 534. Can be.
以上、本発明を実施の形態および実施例をもとに説明した。 この実施の形 態および実施例は例示であり、その各構成要素や各処理プロセスの組合せに いろいろな変形例が可能なこと、またそう した変形例も本発明の範囲にある ことは当業者に理解されるところである。 以下、 そう した例を説明する。 燃料電池スタック 5 3 4において、複数の単セル構造 1 0 1 をセパレータ を介して積層させる構造とした場合、第一の実施の形態における温度センサ 5 4 6、 または第二の実施の形態における温度スィ ツチ 5 3 6は、 セパレー タと酸化剤極 1 0 8との間に配置させることもできる。  The present invention has been described based on the embodiments and the examples. It should be understood by those skilled in the art that the embodiments and examples are exemplifications, and that various modifications can be made to the combination of each component and each processing process, and that such modifications are also within the scope of the present invention. It is understood. Hereinafter, such an example will be described. In the fuel cell stack 5354, when a plurality of single cell structures 101 are laminated with a separator interposed therebetween, the temperature sensor 546 in the first embodiment or the temperature sensor in the second embodiment may be used. The switch 536 may be disposed between the separator and the oxidizer electrode 108.
また、 燃料電池 5 3 2は、 図 5に示すように、 警告信号発信部 5 5 6を含 むように構成することができる。警告信号発生部 5 5 6は、燃料電池スタッ ク 5 3 4の温度が第二の基準温度以上となると、警告信号を発信する。 ここ で、第二の基準温度は、燃料電池スタック 5 3 4や燃料電池 5 3 2が電力を 供給する電気機器内の回路等が破壊されるおそれのある温度、 たとえば 7 0 °C〜 9 0 °Cの範囲内とすることができる。  Further, as shown in FIG. 5, the fuel cell 532 can be configured to include a warning signal transmitting section 556. The warning signal generator 556 transmits a warning signal when the temperature of the fuel cell stack 534 becomes higher than the second reference temperature. Here, the second reference temperature is a temperature at which a circuit or the like in an electric device to which the fuel cell stack 5334 or the fuel cell 532 supplies power may be destroyed, for example, 70 ° C to 90 ° C. ° C.
警告信号発信部 5 5 6は、 たとえば、 第二の実施の形態において温度スィ ツチ 5 3 6に関して説明したのと同様、温度により形状が変化する材料で構 成されたスィ ッチとすることができる。この場合、警告信号発信部 5 5 6は、 温度スィ ツチ 5 3 6 とは異なる温度で形状が変化する材料により構成され る。 また、 第一の実施の形態で説明したように、 燃料電池スタック 5 3 4の 温度が第二の基準温度以上となると、 電源制御部 5 4 8が、 システム負荷 5 3 8への電流の供給を遮断するように構成することもできる。 The warning signal transmitting section 556 may be, for example, a switch made of a material whose shape changes depending on the temperature, similarly to the description of the temperature switch 536 in the second embodiment. it can. In this case, the warning signal transmitter 5 5 6 It is made of a material whose shape changes at a temperature different from that of the temperature switch 536. Further, as described in the first embodiment, when the temperature of the fuel cell stack 534 becomes equal to or higher than the second reference temperature, the power supply control unit 548 supplies the current to the system load 538. Can be shut off.
警告信号は、燃料電池 5 3 2が適用される電気機器の種類に応じて種々の かたちで処理され得るが、 たとえば、制御部を有するシステムに燃料電池 5 3 2を適用する場合、 警告信号発信部 5 5 6は、警告信号をシステムの制御 部に伝達する。 これにより、 システムの制御部は、 燃料電池スタ ック 5 3 4 の温度が過度に上昇した場合に、燃料電池スタック 5 3 4を冷却する等、 何 らかの対策を行うことができる。 また、 警告信号発信部 5 5 6は、 燃料電池 スタ ック 5 3 4の温度が第二の基準温度より低くなると、警告解除の信号を 発信することができる。 これにより、 システムの制御部はシステム全体を通 常の状態に戻す処理を行うことができる。  The warning signal can be processed in various forms according to the type of electrical equipment to which the fuel cell 532 is applied.For example, when the fuel cell 5332 is applied to a system having a control unit, a warning signal is transmitted. The unit 556 transmits a warning signal to the control unit of the system. Thereby, the control unit of the system can take some measures such as cooling the fuel cell stack 534 when the temperature of the fuel cell stack 534 rises excessively. In addition, the warning signal transmitting unit 556 can transmit a warning cancellation signal when the temperature of the fuel cell stack 534 becomes lower than the second reference temperature. As a result, the control unit of the system can perform processing for returning the entire system to a normal state.
さらに、 警告信号発信部 5 5 6は、 警告信号により、 燃料電池スタック 5 3 4からシステム負荷 5 3 8への電流の供給を遮断するようにすることも できる。 このようにすると、 燃料電池 5 3 2は、 燃料電池スタック 5 3 4の 温度が過度に上昇した場合に、 通電を停止することができ、燃料電池スタッ ク 5 3 4等が破壊されるのを防ぐことができる。 また、 この場合、 警告信号 発信部 5 5 6は、燃料電池スタック 5 3 4の温度が第二の基準温度より低く なると、燃料電池スタック 5 3 4とシステム負荷 5 3 8の間の接続を回復す る。 これにより、 燃料電池 5 3 2は、 システム負荷 5 3 8に再び電力を供給 することができる。  Further, the warning signal transmitting section 556 can cut off the supply of current from the fuel cell stack 534 to the system load 538 by the warning signal. In this way, when the temperature of the fuel cell stack 534 rises excessively, the power supply to the fuel cell 532 can be stopped, and the fuel cell stack 533 and the like are not destroyed. Can be prevented. Also, in this case, the warning signal transmitter 556 restores the connection between the fuel cell stack 534 and the system load 538 when the temperature of the fuel cell stack 534 becomes lower than the second reference temperature. You. Thus, the fuel cell 532 can supply power to the system load 538 again.
図 6は、警告信号発信部 5 5 6を、温度スィ ッチ 5 3 6と同様の温度スィ ツチ 5 6 0により実現した場合の燃料電池 5 3 2の回路構成を示す図であ る。 図 1 を参照して説明したのと同様、 図 6 ( a ) は、 システムパワースィ ツチ 5 4 4がオフのときの燃料電池 5 3 2の初期状態を示し、図 6 ( b )は、 システムパワースィ ツチ 5 4 4をオンとした直後の燃料電池 5 3 2の状態 を示し、 図 6 ( c ) は、 燃料電池スタック 5 3 4の温度が基準温度以上とな つたときの燃料電池 5 3 2を示す。 図 6 ( d ) は、 燃料電池スタ ック 5 3 4 の温度が第二の基準温度以上となったときの燃料電池 5 3 2を示す。このと き、 燃料電池ス夕ック 5 3 4とシステム負荷 5 3 8の間が遮断されるので、 システム負荷 5 3 8には電流が流れなくなる。 これにより、燃料電池 5 3 2 の通電を停止することができ、燃料電池スタック 5 3 4等が破壊されるのを 防ぐことができる。 産業上の利用可能性 FIG. 6 is a diagram showing a circuit configuration of the fuel cell 532 in the case where the warning signal transmitting section 5556 is realized by a temperature switch 5600 similar to the temperature switch 536. As described with reference to FIG. 1, FIG. 6 (a) shows the initial state of the fuel cell 532 when the system power switch 544 is off, and FIG. 6 (b) shows the system The state of the fuel cell 532 immediately after the power switch 544 is turned on is shown. FIG. 6 (c) shows the state of the fuel cell 533 when the temperature of the fuel cell stack 534 is higher than the reference temperature. Shows 2. Figure 6 (d) shows the fuel cell stack 5 3 4 5 shows the fuel cell 532 when the temperature of the fuel cell becomes equal to or higher than the second reference temperature. At this time, the connection between the fuel cell battery 534 and the system load 538 is cut off, so that no current flows through the system load 538. As a result, energization of the fuel cell 532 can be stopped, and the fuel cell stack 534 and the like can be prevented from being destroyed. Industrial applicability
以上述べたように、 本発明によれば、 温度が低い場合でも、 燃料電池の温 度を上昇させて起動性を高めることのできる技術を提供することができる。  As described above, according to the present invention, it is possible to provide a technique capable of increasing the temperature of a fuel cell and improving the startability even when the temperature is low.

Claims

請求の範囲 The scope of the claims
1 . 燃料電池を有し、前記燃料電池に接続された負荷に電力を供給す る燃料電池システムであって、 1. A fuel cell system having a fuel cell and supplying power to a load connected to the fuel cell,
前記燃料電池の温度に応じて、前記負荷への出入力端子間を短絡または開 放する温度スィ ッチを備えたことを特徴とする燃料電池システム。  A fuel cell system, comprising: a temperature switch for short-circuiting or opening and closing the input and output terminals to and from the load according to the temperature of the fuel cell.
2 . 請求項 1 に記載の燃料電池システムにおいて、  2. The fuel cell system according to claim 1,
前記負荷と並列に前記燃料電池に接続して形成された短絡経路をさらに 備え、  A short-circuit path formed by being connected to the fuel cell in parallel with the load;
前記温度スィ ツチは、前記短絡経路と前記燃料電池との間を接続または切 断することを特徴とする燃料電池システム。  The fuel cell system according to claim 1, wherein the temperature switch connects or disconnects between the short circuit path and the fuel cell.
3 . 請求項 1 または 2に記載の燃料電池システムにおいて、 前記温度スィ ツチは、温度により形状が変化する材科により構成され、 温 度に応じて、前記出入力端子間を接続または切断することを特徴とする燃料 電池システム。  3. The fuel cell system according to claim 1, wherein the temperature switch is made of a material whose shape changes with temperature, and connects or disconnects the input / output terminals according to temperature. A fuel cell system characterized by the following.
4 . 請求項 2に記載の燃料電池システムにおいて、  4. The fuel cell system according to claim 2,
前記温度スィ ツチは、前記短絡経路に接続された固定導電体と、温度によ り形状が変化する材料により構成され、温度に応じて、前記固定導電体と接 触し、 または前記固定導電体から離脱する可動導電体と、 により構成された ことを特徴とする燃料電池システム。  The temperature switch is composed of a fixed conductor connected to the short-circuit path and a material whose shape changes according to temperature, and is in contact with the fixed conductor according to the temperature, or And a movable conductor detached from the fuel cell system.
5 . 請求項 4に記載の燃料電池システムにおいて、  5. The fuel cell system according to claim 4,
前記可動導電体は、 パイメタル、 形状記憶合金、 熱膨張剤、 パネ、 または 感温フヱライ トにより構成されたことを特徴とする燃料電池システム。  The fuel cell system according to claim 1, wherein the movable conductor is made of a pie metal, a shape memory alloy, a thermal expansion agent, a panel, or a thermosensitive fiber.
6 . 請求項 1 または 2に記載の燃料電池システムにおいて、 前記燃料電池内に設置された温度センサをさらに含み、  6. The fuel cell system according to claim 1, further comprising a temperature sensor installed in the fuel cell,
前記温度スィ ツチは、前記温度センサの出力信号に基づき、 前記出入力端 子間を短絡または開放することを特徴とする燃料電池システム。  The fuel cell system according to claim 1, wherein the temperature switch short-circuits or opens between the input and output terminals based on an output signal of the temperature sensor.
7 . 請求項 1乃至 6いずれかに記載の燃料電池システムにおいて、 前記燃料電池は、燃料極と酸化剤極とが固体電解質膜を挟んで配置された 単セルを複数含み、 7. The fuel cell system according to any one of claims 1 to 6, wherein the fuel cell has a fuel electrode and an oxidant electrode disposed with a solid electrolyte membrane interposed therebetween. Includes multiple single cells,
前記温度スィ ツチは、前記燃料電池の端部に配置された前記酸化剤極の温 度に応じて前記出入力端子間を短絡または開放することを特徴とする燃料 電池システム。  The fuel cell system according to claim 1, wherein the temperature switch short-circuits or opens between the input and output terminals according to the temperature of the oxidant electrode disposed at an end of the fuel cell.
8 . 請求項 1乃至 7いずれかに記載の燃料電池システムにおいて、 前記温度スィ ツチは、前記燃料電池の温度が基準温度より低いときに、前 記負荷への出入力端子間を短絡し、前記燃料電池の温度が前記基準温度以上 となったときに、前記出入力端子間を開放することを特徴とする燃料電池シ ステム。  8. The fuel cell system according to any one of claims 1 to 7, wherein the temperature switch short-circuits the input / output terminals to / from the load when the temperature of the fuel cell is lower than a reference temperature. A fuel cell system, wherein when the temperature of the fuel cell becomes equal to or higher than the reference temperature, the space between the input and output terminals is opened.
9 . 請求項 8に記載の燃料電池システムにおいて、  9. The fuel cell system according to claim 8, wherein
前記基準温度は— 1 0 °C以上 3 5 °C以下の範囲内であることを特徴とす る燃料電池システム。  The fuel cell system according to claim 1, wherein the reference temperature is in a range from −10 ° C. to 35 ° C.
1 0 . 請求項 8または 9に記載の燃料電池システムにおいて、 前記燃料電池の温度が、前記基準温度よりも高温の第二の基準温度以上と なったときに、警告信号を発する警告信号発信部をさらに含むことを特徴と する燃料電池システム。  10. The fuel cell system according to claim 8, wherein a warning signal is issued when the temperature of the fuel cell is equal to or higher than a second reference temperature that is higher than the reference temperature. A fuel cell system, further comprising:
1 1 . 請求項 1乃至 1 0のいずれかに記載の燃料電池システムにおい て、  11. The fuel cell system according to any one of claims 1 to 10,
前記燃料電池は、 燃料極および酸化剤極を含み、  The fuel cell includes a fuel electrode and an oxidizer electrode,
前記燃料電池システムは、  The fuel cell system,
前記燃料極に燃料を供給する処理を行う燃料供給処理部と、  A fuel supply processing unit that performs a process of supplying fuel to the fuel electrode,
前記燃料電池の温度に応じて、前記燃料供給処理部を制御して、前記燃料 極に供給する燃料の濃度を調整する制御部と、  A control unit that controls the fuel supply processing unit according to the temperature of the fuel cell to adjust the concentration of fuel supplied to the fuel electrode;
をさらに備えたことを特徴とする燃料電池システム。  A fuel cell system further comprising:
1 2 . 請求項 1 1 に記載の燃料電池システムにおいて、  12. The fuel cell system according to claim 11,
前記制御部は、前記燃料電池の温度が所定温度以下のときに、 前記燃料電 池の温度に応じて、前記燃料極に供給する燃料の濃度を設定し、前記燃料電 池の温度が所定温度を超えたときに、前記燃料極に供給する燃料を所定濃度 に設定することを特徴とする燃料電池システム。 The controller sets the concentration of fuel supplied to the fuel electrode according to the temperature of the fuel cell when the temperature of the fuel cell is equal to or lower than a predetermined temperature, and sets the temperature of the fuel cell to a predetermined temperature. A fuel cell system, wherein the fuel supplied to the fuel electrode is set to a predetermined concentration when the fuel cell exceeds the limit.
1 3 . 請求項 1 1 または 1 2に記載の燃料電池システムにおいて、 前記制御部は、 燃料電池の温度に応じて、 前記燃料供給部を制御して、 前 記燃料極に供給する燃料の量をさらに調整することを特徴とする燃料電池 システム。 13. The fuel cell system according to claim 11, wherein the control unit controls the fuel supply unit in accordance with a temperature of a fuel cell to supply the fuel to the fuel electrode. A fuel cell system, wherein the fuel cell system is further adjusted.
1 4 . 請求項 1 1乃至 1 3いずれかに記載の燃料電池システムにおい て、  14. In the fuel cell system according to any one of claims 11 to 13,
前記酸化剤極に酸化剤を供給する処理を行う酸化剤供給処理部をさらに 備え、  An oxidant supply processing unit that performs a process of supplying an oxidant to the oxidant electrode, further comprising:
前記制御部は、 燃料電池の温度に応じて、 前記酸化剤極を制御して、 前記 酸化剤極に供給する酸化剤の量を調整することを特徴とする燃料電池シス テム。  The fuel cell system according to claim 1, wherein the control unit controls the oxidant electrode according to a temperature of a fuel cell, and adjusts an amount of the oxidant supplied to the oxidant electrode.
1 5 . 請求項 1 1乃至 1 4いずれかに記載の燃料電池システムにおい て、  15. The fuel cell system according to any one of claims 11 to 14,
前記燃料極に供給する燃料または前記酸化剤極に供給する酸化剤の少な く とも一方を加熱するヒータをさらに含むことを特徴とする燃料電池シス テム。  A fuel cell system further comprising a heater for heating at least one of the fuel supplied to the fuel electrode and the oxidant supplied to the oxidant electrode.
1 6 . 請求項 1乃至 1 5いずれかに記載の燃料電池システムにおいて、 請求項 1乃至 1 5いずれかに記載の燃料電池システムにおいて、  16. The fuel cell system according to any one of claims 1 to 15, wherein the fuel cell system according to any one of claims 1 to 15,
前記燃料電池に供給する燃料が液体燃料であるこ とを特徴とする燃料電 池システム。  A fuel cell system, wherein the fuel supplied to the fuel cell is a liquid fuel.
1 7 . 燃料電池を有し、前記燃料電池に接続された負荷に電力を供給 する燃料電池システムの使用方法であって、  17. A method for using a fuel cell system having a fuel cell and supplying power to a load connected to the fuel cell,
前記燃料電池の温度に応じて、前記負荷への出入力端子間を短絡または開 放することを特徴とする燃料電池システムの使用方法。  A method for using a fuel cell system, wherein a short circuit or an open circuit between the input and output terminals of the load is made in accordance with the temperature of the fuel cell.
1 8 . 請求項 1 7に記載の燃料電池システムの使用方法において、 前記燃料電池の温度が基準温度より低いときに、前記出入力端子間を短絡 し、前記燃料電池の温度が前記基準温度以上となったときに、 前記出入力端 子間を開放することを特徴とする燃料電池システムの使用方法。  18. The method of using a fuel cell system according to claim 17, wherein when the temperature of the fuel cell is lower than a reference temperature, the input / output terminals are short-circuited, and the temperature of the fuel cell is equal to or higher than the reference temperature. The method of using a fuel cell system, wherein the connection between the input and output terminals is opened when
1 9 . 請求項 1 7または 1 8に記載の燃料電池システムの使用方法に おいて、 19. The method for using the fuel cell system according to claim 17 or 18. And
前記燃料電池は、 燃料極および酸化剤極を含み、  The fuel cell includes a fuel electrode and an oxidizer electrode,
前記燃料電池の温度に応じて、前記燃料極に供給する燃料の濃度を設定す るステップと、  Setting the concentration of fuel to be supplied to the fuel electrode according to the temperature of the fuel cell;
前記濃度を設定するステツプで設定された濃度の燃料を前記燃料極に供 給するステップと、  Supplying a fuel having a concentration set in the step of setting the concentration to the fuel electrode;
をさらに含むことを特徴とする燃料電池システムの使用方法。 A method of using a fuel cell system, further comprising:
2 0 . 請求項 1 9に記載の燃料電池システムの使用方法において、 前記燃料を前記燃料極に供給するステツプは、  20. The method of using the fuel cell system according to claim 19, wherein the step of supplying the fuel to the fuel electrode comprises:
前記燃料電池の温度が所定温度以下のときに、前記濃度を設定するステッ プで設定された濃度の燃料を前記燃料極に供給するステップと、  Supplying the fuel having a concentration set in the step of setting the concentration to the fuel electrode when the temperature of the fuel cell is equal to or lower than a predetermined temperature;
前記燃料電池の温度が所定温度を超えたときに、前記燃料電池の温度に関 わらず、 所定濃度の燃料を前記燃料極に供給するステップと、  Supplying a predetermined concentration of fuel to the fuel electrode regardless of the temperature of the fuel cell when the temperature of the fuel cell exceeds a predetermined temperature;
を含むことを特徴とする燃料電池システム。 A fuel cell system comprising:
2 1 . 請求項 1 9または 2 0に記載の燃料電池システムの使用方法に おいて、  21. In the method of using the fuel cell system according to claim 19 or 20,
前記燃料電池の温度に応じて、前記燃料極に供給する燃料の量を設定する ステップをさらに含み、  Setting the amount of fuel to be supplied to the fuel electrode according to the temperature of the fuel cell, further comprising:
前記燃料を前記燃料極に供給するステップにおいて、前記燃料の量を調整 するステツプで設定された量の燃料を前記燃料極に供給することを特徴と する燃料電池システムの使用方法。  The method of using a fuel cell system, wherein in the step of supplying the fuel to the fuel electrode, an amount of fuel set in a step of adjusting the amount of the fuel is supplied to the fuel electrode.
2 2 . 求項 1 9乃至 2 1いずれかに記載の燃料電池システムの使用 方法において、  22. The method of using a fuel cell system according to any one of claims 19 to 21,
前記燃料電池の温度に応じて、前記酸化剤極に供給する酸化剤の量を設定 するステップと、  Setting the amount of oxidant to be supplied to the oxidant electrode according to the temperature of the fuel cell;
前記酸化剤の量を設定するステツプで設定された量の酸化剤を前記酸化 剤極に供給するステップと、  Supplying an amount of the oxidant set in the step of setting the amount of the oxidant to the oxidant electrode;
をさらに含むことを特徴とする燃料電池システムの使用方法。 A method for using a fuel cell system, further comprising:
2 3 . 請求項 1 9乃至 2 2いずれかに記載の燃料電池システムの使用 方法において、 23. Use of the fuel cell system according to any one of claims 19 to 22 In the method,
前記燃料極に供給する燃料または前記酸化剤極に供給する酸化剤の少な く とも一方を加熱するステップをさらに含むことを特徴とする燃料電池シ ステムの使用方法。  A method of using a fuel cell system, further comprising heating at least one of a fuel supplied to the fuel electrode and an oxidant supplied to the oxidant electrode.
PCT/JP2003/011827 2002-09-18 2003-09-17 Fuel cell system and application method therefor WO2004027913A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004537579A JPWO2004027913A1 (en) 2002-09-18 2003-09-17 Fuel cell system and method of using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002271975 2002-09-18
JP2002-271975 2002-09-18

Publications (1)

Publication Number Publication Date
WO2004027913A1 true WO2004027913A1 (en) 2004-04-01

Family

ID=32024890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011827 WO2004027913A1 (en) 2002-09-18 2003-09-17 Fuel cell system and application method therefor

Country Status (3)

Country Link
JP (1) JPWO2004027913A1 (en)
TW (1) TWI228332B (en)
WO (1) WO2004027913A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073501A (en) * 2004-08-05 2006-03-16 Denso Corp Fuel cell system
JP2006156169A (en) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd Fuel cell system, method for controlling the same, and method for detecting fault thereof
JP2006286513A (en) * 2005-04-04 2006-10-19 Denso Corp Fuel cell system
JP2007149574A (en) * 2005-11-30 2007-06-14 Toyota Motor Corp Fuel cell system
WO2007142045A1 (en) * 2006-05-26 2007-12-13 Canon Kabushiki Kaisha Fuel cell system
JP2009054308A (en) * 2007-08-23 2009-03-12 Honda Motor Co Ltd Fuel cell system
JP2009205997A (en) * 2008-02-28 2009-09-10 Toto Ltd Solid oxide fuel cell system
US8263283B2 (en) 2004-08-31 2012-09-11 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and control method thereof
JP2019519908A (en) * 2016-04-14 2019-07-11 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag Varistor element and protection method for varistor element
DE102020115676A1 (en) 2020-06-15 2021-12-16 Audi Aktiengesellschaft Storage humidifier with storage element, fuel cell device and motor vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329349B2 (en) * 2005-12-28 2012-12-11 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and operating method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160469U (en) * 1984-04-02 1985-10-25 三洋電機株式会社 Fuel cell
JPH02273467A (en) * 1989-04-12 1990-11-07 Fuji Electric Co Ltd Starting method for fuel cell
JPH031449A (en) * 1989-05-30 1991-01-08 Shin Kobe Electric Mach Co Ltd Liquid fuel cell
JP2000512068A (en) * 1996-06-07 2000-09-12 バラード パワー システムズ インコーポレイティド Method and apparatus for starting operation of a fuel cell power generator at a temperature lower than the coagulation temperature of water
WO2000065677A1 (en) * 1999-04-26 2000-11-02 Siemens Aktiengesellschaft Operating concept for direct methanol fuel cells
WO2001052339A1 (en) * 2000-01-08 2001-07-19 Daimlerchrysler Ag Liquid-fuel-cell system
JP2003109636A (en) * 2001-09-30 2003-04-11 Equos Research Co Ltd Fuel cell stack
JP2003132922A (en) * 2001-10-26 2003-05-09 Sharp Corp Fuel cell power generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160469U (en) * 1984-04-02 1985-10-25 三洋電機株式会社 Fuel cell
JPH02273467A (en) * 1989-04-12 1990-11-07 Fuji Electric Co Ltd Starting method for fuel cell
JPH031449A (en) * 1989-05-30 1991-01-08 Shin Kobe Electric Mach Co Ltd Liquid fuel cell
JP2000512068A (en) * 1996-06-07 2000-09-12 バラード パワー システムズ インコーポレイティド Method and apparatus for starting operation of a fuel cell power generator at a temperature lower than the coagulation temperature of water
WO2000065677A1 (en) * 1999-04-26 2000-11-02 Siemens Aktiengesellschaft Operating concept for direct methanol fuel cells
WO2001052339A1 (en) * 2000-01-08 2001-07-19 Daimlerchrysler Ag Liquid-fuel-cell system
JP2003109636A (en) * 2001-09-30 2003-04-11 Equos Research Co Ltd Fuel cell stack
JP2003132922A (en) * 2001-10-26 2003-05-09 Sharp Corp Fuel cell power generator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073501A (en) * 2004-08-05 2006-03-16 Denso Corp Fuel cell system
US8263283B2 (en) 2004-08-31 2012-09-11 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and control method thereof
JP5074032B2 (en) * 2004-08-31 2012-11-14 ヤマハ発動機株式会社 Fuel cell system and control method thereof
JP2006156169A (en) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd Fuel cell system, method for controlling the same, and method for detecting fault thereof
JP2006286513A (en) * 2005-04-04 2006-10-19 Denso Corp Fuel cell system
JP2007149574A (en) * 2005-11-30 2007-06-14 Toyota Motor Corp Fuel cell system
WO2007142045A1 (en) * 2006-05-26 2007-12-13 Canon Kabushiki Kaisha Fuel cell system
JP2009054308A (en) * 2007-08-23 2009-03-12 Honda Motor Co Ltd Fuel cell system
JP2009205997A (en) * 2008-02-28 2009-09-10 Toto Ltd Solid oxide fuel cell system
JP2019519908A (en) * 2016-04-14 2019-07-11 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag Varistor element and protection method for varistor element
US11443876B2 (en) 2016-04-14 2022-09-13 Tdk Electronics Ag Varistor component and method for securing a varistor component
DE102020115676A1 (en) 2020-06-15 2021-12-16 Audi Aktiengesellschaft Storage humidifier with storage element, fuel cell device and motor vehicle

Also Published As

Publication number Publication date
TW200406945A (en) 2004-05-01
TWI228332B (en) 2005-02-21
JPWO2004027913A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
US8288045B2 (en) Apparatus and method for heating fuel cells
CN107949944B (en) Self-heating fuel cell system
JP4352826B2 (en) Fuel cell system and method of using the same
JPWO2007010834A1 (en) FUEL CELL AND FUEL CELL OPERATING METHOD
WO2004027913A1 (en) Fuel cell system and application method therefor
KR100609270B1 (en) Fuel battery, electric device, portable computer, and fuel battery drive method
KR100911964B1 (en) Air breathing type polymer electrolyte membrane fuel cell and operation method thereof
US7972735B2 (en) Fuel cell system and activation method for fuel cell
JP2007317517A (en) Fuel cell system
WO2007105291A1 (en) Fuel cell
JP4867347B2 (en) Fuel cell
US7914936B2 (en) Fuel cell system
JP3724470B2 (en) FUEL CELL SYSTEM, PORTABLE ELECTRIC DEVICE USING FUEL CELL SYSTEM, AND METHOD FOR DRIVING FUEL CELL
JP4879428B2 (en) Fuel cell power generator
JP2012160442A (en) Fuel cell system and method for controlling the same
JP2010170895A (en) Method and device for manufacturing membrane electrode assembly
JP5452135B2 (en) Fuel cell power generation system
JP2009037742A (en) Fuel cell device
JP2005327587A (en) Fuel cell and fuel cell system
JP2006520995A (en) Electrochemical energy sources and electronic devices incorporating such energy sources
JP2005531112A (en) Fuel cell starting method, fuel cell system, and vehicle equipped with fuel cell system
JP2006092842A (en) Fuel cell and power generating apparatus using same
JP2008210548A (en) Fuel cell
JP2004327202A (en) Fuel cell
JP2007242341A (en) Fuel cell system, and control method of fuel cell system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004537579

Country of ref document: JP

122 Ep: pct application non-entry in european phase