JP5435287B2 - Plasticizer for vinyl chloride resin, vinyl chloride resin composition using the same, and stretch film for food packaging - Google Patents

Plasticizer for vinyl chloride resin, vinyl chloride resin composition using the same, and stretch film for food packaging Download PDF

Info

Publication number
JP5435287B2
JP5435287B2 JP2010131935A JP2010131935A JP5435287B2 JP 5435287 B2 JP5435287 B2 JP 5435287B2 JP 2010131935 A JP2010131935 A JP 2010131935A JP 2010131935 A JP2010131935 A JP 2010131935A JP 5435287 B2 JP5435287 B2 JP 5435287B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
plasticizer
component
ester compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010131935A
Other languages
Japanese (ja)
Other versions
JP2011256270A (en
Inventor
善幸 八百板
明男 豊田
朗 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2010131935A priority Critical patent/JP5435287B2/en
Publication of JP2011256270A publication Critical patent/JP2011256270A/en
Application granted granted Critical
Publication of JP5435287B2 publication Critical patent/JP5435287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Packages (AREA)
  • Wrappers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、塩化ビニル系樹脂用可塑剤、それを用いた塩化ビニル系樹脂組成物及び食品包装用ストレッチフィルムに関する。   The present invention relates to a plasticizer for vinyl chloride resin, a vinyl chloride resin composition using the same, and a stretch film for food packaging.

ポリ塩化ビニルやポリ塩化ビニリデン等の塩化ビニル系樹脂に可塑剤を配合して可塑化した包装用フィルムは、加工食品、青果物、水産物、精肉等の食品の食品包装用ストレッチフィルムや家庭用として広く利用されている。塩化ビニル系樹脂を可塑化するために、従来は主にエポキシ化大豆油系可塑剤やアジピン酸ジイソノニル(以下、「DINA」と略記する。)を可塑剤として使用してフィルム加工してきた。しかしながら、低分子化合物であるDINAは食用油や有機溶剤に対し、容易に溶出する傾向があるため、DINAを含有する塩化ビニル系樹脂組成物を食品包装用ストレッチフィルムに用いた場合、食品等への移行が懸念され、近年の健康志向の高まりの中では、決して好ましい材料と言えなかった。   Packaging films made by plasticizing vinyl chloride resins such as polyvinyl chloride and polyvinylidene chloride with plasticizers are widely used as stretch films for food packaging of processed foods, fruits, marine products, meat, and other household products. It's being used. In order to plasticize a vinyl chloride resin, film processing has been conventionally performed mainly using an epoxidized soybean oil plasticizer or diisononyl adipate (hereinafter abbreviated as “DINA”) as a plasticizer. However, DINA, which is a low molecular weight compound, tends to easily dissolve in edible oils and organic solvents, so when a vinyl chloride resin composition containing DINA is used for a stretch film for food packaging, it can be used as a food. In view of the growing concern about health in recent years, it has never been a favorable material.

食品包装用ストレッチフィルム中の可塑剤の食品等への移行性については、昭和57年厚生省告示20号によりn−ヘプタン抽出蒸発残留物試験法で測定した値が150ppm以下であることとする規格が存在するが、近年ではn−ヘプタンでの抽出量をさらに低減したものが要求されている。   Regarding the transferability of plasticizers in food packaging stretch films to foods, etc., there is a standard that the value measured by the n-heptane extraction evaporation residue test method by Ministry of Health and Welfare Notification No. 20 in 1982 is 150 ppm or less. Although it exists, in recent years, a further reduced amount of extraction with n-heptane has been demanded.

上記以外の塩化ビニル系樹脂に用いる可塑剤としては、例えば、アジピン酸及び1,3−ブタンジオールを原料としたエステル系可塑剤(例えば、特許文献1及び2参照。)、アジピン酸、1,2−プロパンジオール及びラウリン酸の縮合物からなるエステル系可塑剤(例えば、特許文献3参照。)が知られている。しかしながら、これらのエステル系可塑剤は、n−ヘプタン抽出蒸発残留物試験法で測定した値が十分に低減できず、近年の要求を満たすものではなかった。   As plasticizers used for vinyl chloride resins other than the above, for example, ester plasticizers using adipic acid and 1,3-butanediol as raw materials (see, for example, Patent Documents 1 and 2), adipic acid, 1, An ester plasticizer (for example, see Patent Document 3) composed of a condensate of 2-propanediol and lauric acid is known. However, these ester plasticizers cannot sufficiently reduce the value measured by the n-heptane extraction evaporation residue test method, and do not satisfy recent requirements.

そこで、n−ヘプタンでの抽出量をより低減しつつ、可塑剤として要求される物性も満足した塩化ビニル系樹脂用可塑剤が求められている。   Accordingly, a plasticizer for vinyl chloride resin that satisfies the physical properties required as a plasticizer while further reducing the amount of extraction with n-heptane is desired.

特開昭60−243145号公報JP-A-60-243145 特開平10−158450号公報JP-A-10-158450 特開平10−158452号公報Japanese Patent Laid-Open No. 10-158452

本発明が解決しようとする課題は、n−ヘプタン抽出蒸発残留物試験法で測定した値が従来の塩化ビニル系樹脂用可塑剤より低減することができ、可塑剤として要求される物性も満足した塩化ビニル系樹脂用可塑剤、それを用いた塩化ビニル系樹脂組成物及び食品包装用ストレッチフィルムを提供することである。   The problem to be solved by the present invention is that the value measured by the n-heptane extraction evaporation residue test method can be reduced from the conventional plasticizer for vinyl chloride resin, and the physical properties required as a plasticizer are also satisfied. A plasticizer for a vinyl chloride resin, a vinyl chloride resin composition using the plasticizer, and a stretch film for food packaging.

本発明者らは、上記の課題を解決するために鋭意研究した結果、ジカルボン酸成分としてアジピン酸、ジオール成分として1,2−プロパンジオール及び末端封止成分としてn−オクタノールを必須原料として製造され、特定の水酸基価及びエステル基濃度を有するエステル化合物を塩化ビニル系樹脂用可塑剤として用いることにより、課題を解決できることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have produced adipic acid as a dicarboxylic acid component, 1,2-propanediol as a diol component, and n-octanol as an end-capping component as essential raw materials. The inventors have found that the problem can be solved by using an ester compound having a specific hydroxyl value and an ester group concentration as a plasticizer for vinyl chloride resin, and have completed the present invention.

すなわち本発明は、脂肪族系ジカルボン酸成分としてアジピン酸、脂肪族系ジオール成分として1,2−プロパンジオール及び末端封止成分としてn−オクタノールを必須原料として製造されたエステル化合物で、水酸基価が10〜30の範囲で、エステル基濃度が8〜9mmol/gの範囲で、数平均分子量が、1,000〜1,800の範囲であるエステル化合物であり、前記脂肪族系ジオール成分及び末端封止成分中の水酸基の合計モル当量が、脂肪族系ジカルボン酸成分中のカルボキシル基のモル当量に対して1.15〜1.25倍となるように脂肪族系ジカルボン酸成分と脂肪族系ジオール成分と末端封止成分を使用して得られることを特徴とする塩化ビニル系樹脂用可塑剤、それを用いた塩化ビニル系樹脂組成物及び食品包装用ストレッチフィルムに関する。 That is, the present invention is adipic acid as the aliphatic dicarboxylic acid component, an n- octanol ester compounds produced as essential raw materials as 1,2-propanediol and end-capping component as aliphatic diol component, water group The ester compound concentration is in the range of 10 to 30 , the ester group concentration is in the range of 8 to 9 mmol / g, and the number average molecular weight is in the range of 1,000 to 1,800, and the aliphatic diol component and The aliphatic dicarboxylic acid component and the aliphatic group so that the total molar equivalent of the hydroxyl group in the end-capping component is 1.15 to 1.25 times the molar equivalent of the carboxyl group in the aliphatic dicarboxylic acid component. system diol component and the endcapping component plasticizer for vinyl chloride resin which is characterized that you obtained using, for vinyl resin composition chloride and food packaging using the same Torre Tsu about the switch film.

本発明の塩化ビニル系樹脂用可塑剤を用いた塩化ビニル系樹脂組成物は、その中に含有する可塑剤が食用油や有機溶剤によって容易に溶出されないため、食品包装用ストレッチフィルムに用いた場合、食品等へ可塑剤が移行するのを抑制することができる。また、塩化ビニル系樹脂組成物を溶融混練して製造する際、事前に塩化ビニル系樹脂粒子と可塑剤とを混合してドライアップ(可塑剤が塩化ビニル系樹脂粒子に吸収されて、混合物がさらさらになった状態をいう。)するが、このドライアップに要する時間を非常に短くすることができるため、より生産性も向上することができる。   When the vinyl chloride resin composition using the plasticizer for vinyl chloride resin of the present invention is used for a stretch film for food packaging because the plasticizer contained therein is not easily eluted by edible oil or organic solvent. , The plasticizer can be prevented from transferring to foods and the like. When the vinyl chloride resin composition is manufactured by melt-kneading, the vinyl chloride resin particles and the plasticizer are mixed in advance and dried up (the plasticizer is absorbed by the vinyl chloride resin particles, (This is a further state.) However, since the time required for this dry-up can be made very short, the productivity can be further improved.

本発明の塩化ビニル系樹脂用可塑剤は、ジカルボン酸成分としてアジピン酸、ジオール成分として1,2−プロパンジオール及び末端封止成分としてn−オクタノールを必須原料として製造されたエステル化合物である。   The plasticizer for vinyl chloride resin of the present invention is an ester compound produced using adipic acid as a dicarboxylic acid component, 1,2-propanediol as a diol component, and n-octanol as an end-capping component as essential raw materials.

本発明の塩化ビニル系樹脂用可塑剤の原料である脂肪族系ジカルボン酸成分は、アジピン酸を必須とするが、他のジカルボン酸成分として、炭素原子数2〜10の脂肪族系ジカルボン酸を併用しても構わない。この炭素原子数2〜10の脂肪族系ジカルボン酸の具体例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等が挙げられる。また、本発明の塩化ビニル系樹脂用可塑剤の原料として用いる脂肪族系ジカルボン酸成分中のアジピン酸の含有量は、塩化ビニル系樹脂との相溶性が良好なことから、50〜100質量%の範囲が好ましく、80〜100質量%の範囲がより好ましい。   The aliphatic dicarboxylic acid component that is a raw material of the plasticizer for vinyl chloride resin of the present invention requires adipic acid, but as another dicarboxylic acid component, an aliphatic dicarboxylic acid having 2 to 10 carbon atoms is used. You may use together. Specific examples of the aliphatic dicarboxylic acid having 2 to 10 carbon atoms include oxalic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and the like. The content of adipic acid in the aliphatic dicarboxylic acid component used as a raw material for the plasticizer for vinyl chloride resin of the present invention is 50 to 100% by mass because the compatibility with the vinyl chloride resin is good. Is preferable, and the range of 80 to 100% by mass is more preferable.

本発明の塩化ビニル系樹脂用可塑剤の原料である脂肪族系ジオール成分は、1,2−プロパンジオールを必須とするが、他のジオール成分として、炭素原子数2〜12の脂肪族系ジオールを併用しても構わない。この炭素原子数2〜12の脂肪族系ジオールの具体例としては、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール等の直鎖状ジオール;2−メチル−1,3−プロパンジオール、ネオペンチルグリコール、3,3−ジエチル−1,3−プロパンジオール、3,3−ジブチル−1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,2−ペンタンジオール、1,3−ペンタンジオール、2,3−ペンタンジオール、2,4−ペンタンジオール、2−メチル−2,4−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,4−ペンタンジオール、1,2−ヘキサンジオール、1,3−ヘキサンジオール、1,4−ヘキサンジオール、1,5−ヘキサンジオール等の分岐状ジオールなどが挙げられる。1,2−プロパンジオールと他のジオール成分とを併用する場合、他のジオール成分としては、n−ヘプタン抽出量が少なくなることから、エチレングリコール及び1,3−プロパンジオールが好ましい。また、本発明の塩化ビニル系樹脂用可塑剤の原料として用いる脂肪族系ジオール成分中の1,2−プロパンジオールの含有量は、n−ヘプタン抽出量が少なくなること及び塩化ビニル系樹脂との相溶性が良好なことから、50〜100質量%の範囲が好ましく、70〜100質量%の範囲がより好ましい。   The aliphatic diol component that is a raw material of the plasticizer for vinyl chloride resin of the present invention is essentially 1,2-propanediol, but as other diol component, an aliphatic diol having 2 to 12 carbon atoms. May be used in combination. Specific examples of the aliphatic diol having 2 to 12 carbon atoms include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, Linear diols such as 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol; -1,3-propanediol, neopentyl glycol, 3,3-diethyl-1,3-propanediol, 3,3-dibutyl-1,3-propanediol, 1,2-butanediol, 1,3-butane Diol, 1,2-pentanediol, 1,3-pentanediol, 2,3-pentanediol, 2,4-pentanediol, 2-methyl 2,4-pentanediol, 3-methyl-1,5-pentanediol, 1,4-pentanediol, 1,2-hexanediol, 1,3-hexanediol, 1,4-hexanediol, 1, Examples thereof include branched diols such as 5-hexanediol. When 1,2-propanediol and other diol components are used in combination, ethylene glycol and 1,3-propanediol are preferred as the other diol components because the amount of n-heptane extraction is reduced. The content of 1,2-propanediol in the aliphatic diol component used as a raw material for the plasticizer for vinyl chloride resin of the present invention is such that the amount of n-heptane extract decreases and the vinyl chloride resin Since compatibility is favorable, the range of 50-100 mass% is preferable, and the range of 70-100 mass% is more preferable.

本発明の塩化ビニル系樹脂用可塑剤の原料である末端封止成分としては、n−オクタノールを必須とするが、他の末端封止成分として、炭素原子数1〜18の脂肪族系モノアルコールを併用しても構わない。この炭素原子数1〜18の脂肪族系モノアルコールの具体例としては、メタノール、エタノール、イソプロパノール、n−ブタノール、2−ブタノール、2−メチル−1−プロパノール、t−ブタノール、n−ペンタノール、2−ペンタノール、3−ペンタノール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、t−ペンタノール、ヘキサノール、2−ヘキサノール、3−ヘキサノール、4−メチル−2−ペンタノール、2−メチル−1−ペンタノール、3−メチル−1−ペンタノール、4−メチル−1−ペンタノール、ヘプタノール、2−ヘプタノール、3−ヘプタノール、4−ヘプタノール、2−メチル−1−ヘキサノール、3−メチル−1−ヘキサノール、4−メチル−1−ヘキサノール、5−メチル−1−ヘキサノール、オクタノール、2−エチルヘキサノール、ノナノール、イソノナノール、デカノール、イソデカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール等が挙げられる。また、本発明の塩化ビニル系樹脂用可塑剤の原料として用いる末端封止成分中のn−オクタノールの含有量は、可塑化効率及び塩化ビニル系樹脂との相溶性が良好なことから、50〜100質量%の範囲が好ましく、70〜100質量%の範囲がより好ましい。   As the end-capping component that is a raw material of the plasticizer for vinyl chloride resin of the present invention, n-octanol is essential, but as the other end-capping component, an aliphatic monoalcohol having 1 to 18 carbon atoms. May be used in combination. Specific examples of the aliphatic monoalcohol having 1 to 18 carbon atoms include methanol, ethanol, isopropanol, n-butanol, 2-butanol, 2-methyl-1-propanol, t-butanol, n-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, t-pentanol, hexanol, 2-hexanol, 3-hexanol, 4-methyl-2-pentanol, 2-methyl-1-pentanol, 3-methyl-1-pentanol, 4-methyl-1-pentanol, heptanol, 2-heptanol, 3-heptanol, 4-heptanol, 2-methyl-1-hexanol, 3 -Methyl-1-hexanol, 4-methyl-1-hexanol, 5-methyl-1-hexanol , Octanol, 2-ethylhexanol, nonanol, isononanol, decanol, isodecanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, and the like. In addition, the content of n-octanol in the end-capping component used as a raw material for the plasticizer for vinyl chloride resin of the present invention is 50 to 50 because the plasticization efficiency and compatibility with the vinyl chloride resin are good. The range of 100% by mass is preferable, and the range of 70 to 100% by mass is more preferable.

本発明の塩化ビニル系樹脂用可塑剤を製造する際に用いる原料である脂肪族系ジカルボン酸成分、脂肪族系ジオール成分及び末端封止成分のそれぞれの使用量は、目的とする分子量によって適宜決められる。例えば、本発明の塩化ビニル系樹脂用可塑剤であるエステル化合物の理想的な構造は、下記一般式(I)で表されるものであるため、脂肪族系ジカルボン酸成分の使用量は(n+1)モルとなり、脂肪族ジオール成分の使用量はnモルとなり、末端封止成分の使用量は2モルとなる。ここで、nは目的とする分子量より算出することができる。さらに、反応を促進し、可塑剤の水酸基価を10〜30に調整するため、脂肪族系ジオール成分及び末端封止成分中の水酸基の合計モル当量が、脂肪族系ジカルボン酸成分中のカルボキシル基のモル当量に対して1.15〜1.25倍となるように使用するのが好ましい。   The amount of each of the aliphatic dicarboxylic acid component, the aliphatic diol component, and the end-capping component, which are raw materials used in producing the plasticizer for vinyl chloride resin of the present invention, is appropriately determined depending on the target molecular weight. It is done. For example, since the ideal structure of the ester compound which is a plasticizer for vinyl chloride resin of the present invention is represented by the following general formula (I), the amount of the aliphatic dicarboxylic acid component used is (n + 1) ) Mol, the amount of the aliphatic diol component used is n mol, and the amount of the end-capping component used is 2 mol. Here, n can be calculated from the target molecular weight. Furthermore, in order to accelerate the reaction and adjust the hydroxyl value of the plasticizer to 10 to 30, the total molar equivalent of the hydroxyl group in the aliphatic diol component and the end-capping component is the carboxyl group in the aliphatic dicarboxylic acid component. It is preferable to use 1.15 to 1.25 times the molar equivalent of.

Figure 0005435287
(上記一般式(I)中、Rは末端封止成分であるモノアルコールの水酸基を除いたアルキル基を表し、Aは脂肪族系ジカルボン酸成分の2つのカルボキシル基を除いた残基を表し、Gは脂肪族系ジオール成分の2つの水酸基を除いた残基を表す。また、nは繰り返し単位を表し、1以上の整数である。)
Figure 0005435287
(In the above general formula (I), R represents an alkyl group excluding the hydroxyl group of the monoalcohol as a terminal blocking component, A represents a residue excluding two carboxyl groups of the aliphatic dicarboxylic acid component, G represents a residue of the aliphatic diol component excluding two hydroxyl groups, and n represents a repeating unit and is an integer of 1 or more.)

なお、本発明の塩化ビニル系樹脂用可塑剤には、上記一般式(I)で表されるエステル化合物の他、下記一般式(II)〜(IV)で表されるエステル化合物等も含有していても構わない。   In addition, the plasticizer for vinyl chloride resin of the present invention contains an ester compound represented by the following general formulas (II) to (IV) in addition to the ester compound represented by the above general formula (I). It does not matter.

Figure 0005435287
(上記一般式(II)〜(IV)中、Rは末端封止成分であるモノアルコールの水酸基を除いたアルキル基を表し、Aは脂肪族系ジカルボン酸成分の2つのカルボキシル基を除いた残基を表し、Gは脂肪族系ジオール成分の2つの水酸基を除いた残基を表す。また、nは繰り返し単位を表し、1以上の整数である。)
Figure 0005435287
(In the above general formulas (II) to (IV), R represents an alkyl group excluding the hydroxyl group of the monoalcohol, which is a terminal blocking component, and A is a residue obtained by removing two carboxyl groups of the aliphatic dicarboxylic acid component. And G represents a residue obtained by removing two hydroxyl groups of the aliphatic diol component, and n represents a repeating unit and is an integer of 1 or more.)

本発明の塩化ビニル系樹脂用可塑剤は、前記ジカルボン酸成分、前記ジオール成分及び前記末端封止成分を反応器に仕込み、通常のエステル化反応させることにより製造することができる。また、このエステル化反応を促進する目的で、エステル化触媒を用いることが好ましい。   The plasticizer for vinyl chloride resin of the present invention can be produced by charging the dicarboxylic acid component, the diol component, and the end-capping component into a reactor and causing a normal esterification reaction. Moreover, it is preferable to use an esterification catalyst for the purpose of promoting this esterification reaction.

前記エステル化触媒としては、周期律表2族、4族、12族、13族及び14族からなる群より選ばれる少なくとも1種類の金属や有機金属化合物が挙げられる。より具体的には、例えば、チタン、スズ、亜鉛、アルミニウム、ジルコニウム、マグネシウム、ハフニウム、ゲルマニウム等の金属;チタンテトライソプロポキシド、チタンテトラブトキシド、チタンオキシアセチルアセトナート、オクタン酸スズ、2−エチルヘキサンスズ、アセチルアセトナート亜鉛、4塩化ジルコニウム、4塩化ジルコニウムテトラヒドロフラン錯体、4塩化ハフニウム、4塩化ハフニウムテトラヒドロフラン錯体、酸化ゲルマニウム、テトラエトキシゲルマニウム等の金属化合物などが挙げられる。これらの中でも、反応性、取扱いやすさ、エステル化反応により得られたエステル化合物の保存安定性が良好であるチタンアルコキサイド類、具体的にはチタンテトライソプロポキシド、チタンテトラブトキシド、チタンオキシアセチルアセトナート等を用いることが好ましい。   Examples of the esterification catalyst include at least one metal or organometallic compound selected from the group consisting of Group 2, Group 4, Group 12, Group 13, and Group 14 of the Periodic Table. More specifically, for example, metals such as titanium, tin, zinc, aluminum, zirconium, magnesium, hafnium, germanium; titanium tetraisopropoxide, titanium tetrabutoxide, titanium oxyacetylacetonate, tin octoate, 2-ethyl Examples thereof include metal compounds such as hexanetin, zinc acetylacetonate, zirconium tetrachloride, zirconium tetrachloride, tetrahydrofuran complex, hafnium tetrachloride, hafnium tetrachloride tetrahydrofuran complex, germanium oxide, and tetraethoxygermanium. Among these, titanium alkoxides having good reactivity, ease of handling, and storage stability of ester compounds obtained by esterification reaction, specifically titanium tetraisopropoxide, titanium tetrabutoxide, titanium oxy It is preferable to use acetylacetonate or the like.

また、前記エステル化触媒の使用量は、エステル化反応を制御でき、かつ得られるエステル化合物の着色を抑制できる範囲の量であればよく、前記ジカルボン酸成分、前記ジオール成分及び前記末端封止成分の合計量に対し、10〜1,000ppmの範囲が好ましく、20〜500ppmの範囲がより好ましく、30〜100ppmの範囲が特に好ましい。   Further, the amount of the esterification catalyst used may be an amount that can control the esterification reaction and suppress the coloring of the resulting ester compound, and the dicarboxylic acid component, the diol component, and the end-capping component. The range of 10 to 1,000 ppm is preferable, the range of 20 to 500 ppm is more preferable, and the range of 30 to 100 ppm is particularly preferable.

前記エステル化合物を製造する際、前記エステル化触媒を添加する時期は、前記ジカルボン酸成分、前記ジオール成分及び前記末端封止成分を反応器に仕込むのと同時に添加してもよく、昇温途中に添加してもよく、エステル化触媒を分割して添加してもよい。   When the ester compound is produced, the esterification catalyst may be added at the same time as the dicarboxylic acid component, the diol component, and the end-capping component are charged into the reactor. It may be added, or the esterification catalyst may be added separately.

本発明の塩化ビニル系樹脂用可塑剤を製造する際の反応温度は、原料となる前記ジカルボン酸成分、前記ジオール成分及び前記末端封止成分が蒸発や昇華することを抑制しつつ反応を促進し、反応により生成するエステル化合物の熱分解、着色を抑制できることから、140℃〜250℃の範囲が好ましく、180℃〜230℃の範囲がより好ましい。   The reaction temperature when producing the plasticizer for vinyl chloride resin of the present invention promotes the reaction while suppressing the evaporation and sublimation of the dicarboxylic acid component, the diol component and the terminal blocking component as raw materials. The range of 140 ° C. to 250 ° C. is preferable, and the range of 180 ° C. to 230 ° C. is more preferable because thermal decomposition and coloring of the ester compound produced by the reaction can be suppressed.

本発明の塩化ビニル系樹脂用可塑剤の水酸基価は10〜30の範囲であるが、n−ヘプタンでの抽出量をより低減でき、かつ塩化ビニル系樹脂との相溶性をより向上できることから、10〜25の範囲がより好ましい。   The hydroxyl value of the plasticizer for vinyl chloride resin of the present invention is in the range of 10 to 30, but the amount of extraction with n-heptane can be further reduced and the compatibility with the vinyl chloride resin can be further improved. The range of 10-25 is more preferable.

また、本発明の塩化ビニル系樹脂用可塑剤のエステル基濃度は8〜9mmol/gの範囲であるが、n−ヘプタンでの抽出量をより低減できることから、8.5〜9mmol/gの範囲がより好ましい。なお、このエステル基濃度は、下記式(1)により、本発明の塩化ビニル系樹脂用可塑剤であるエステル化合物の原料である脂肪族系ジカルボン酸成分、脂肪族系ジオール成分及び末端封止成分に含まれるカルボキシル基の総モル数と水酸基の総モル数とを比較して少ない方をエステル基のモル数とし、これをこれらの原料から得られたエステル化合物の質量で除して算出した値である。   Further, the ester group concentration of the plasticizer for vinyl chloride resin of the present invention is in the range of 8-9 mmol / g, but the extraction amount with n-heptane can be further reduced, so the range of 8.5-9 mmol / g. Is more preferable. In addition, this ester group density | concentration is an aliphatic dicarboxylic acid component which is a raw material of the ester compound which is a plasticizer for vinyl chloride resins of the present invention, an aliphatic diol component, and a terminal blocking component according to the following formula (1). The value calculated by comparing the total number of moles of carboxyl groups and the total number of moles of hydroxyl groups contained in, and determining the smaller number as the number of moles of ester groups and dividing this by the mass of the ester compound obtained from these raw materials It is.

Figure 0005435287
Figure 0005435287

前記エステル化合物の粘度は、ドライアップ時間を短縮できることから、200〜1,500mPa・sの範囲が好ましく、200〜800mPa・sの範囲がより好ましい。なお、前記エステル化合物の粘度は、B型回転粘度計(No.2ロータ、30rpm)を用いて25℃で測定したものである。また、ドライアップ時間とは、塩化ビニル系樹脂粒子と可塑剤とを混合して乾点(可塑剤が塩化ビニル系樹脂粒子に吸収されて、混合物がさらさらになった状態)に至るまでに要する時間をいう。   The viscosity of the ester compound is preferably in the range of 200 to 1,500 mPa · s, more preferably in the range of 200 to 800 mPa · s, because the dry-up time can be shortened. In addition, the viscosity of the said ester compound is measured at 25 degreeC using the B-type rotational viscometer (No. 2 rotor, 30 rpm). The dry-up time is required for mixing the vinyl chloride resin particles and the plasticizer and reaching the dry point (the plasticizer is absorbed by the vinyl chloride resin particles and the mixture is further improved). Say time.

前記エステル化合物の数平均分子量は、加熱による揮発を効果的に抑制できること、及びn−ヘプタンに抽出されにくくなることから、200〜1,500の範囲が好ましく、200〜800の範囲がより好ましい。   The number average molecular weight of the ester compound is preferably in the range of 200 to 1,500, and more preferably in the range of 200 to 800 because volatilization due to heating can be effectively suppressed and extraction with n-heptane is difficult.

なお、前記エステル化合物の数平均分子量は、テトラヒドロフラン(THF)を溶離液として使用して、ゲルパーミュエ−ションクロマトグラフ(GPC)を用いて測定したもので、標準ポリスチレンに換算した値として得ることができる。測定条件は、下記の通りである。   The number average molecular weight of the ester compound is measured using a gel permeation chromatograph (GPC) using tetrahydrofuran (THF) as an eluent, and can be obtained as a value converted to standard polystyrene. . The measurement conditions are as follows.

[数平均分子量(Mn)の測定条件]
測定装置:東ソー株式会社製ガードカラム「HLC−8330」
カラム:東ソー株式会社製「TSK SuperH−H」
+東ソー株式会社製「TSK gel SuperHZM−M」
+東ソー株式会社製「TSK gel SuperHZM−M」
+東ソー株式会社製「TSK gel SuperHZ−2000」
+東ソー株式会社製「TSK gel SuperHZ−2000」
検出器:RI(示差屈折計)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
カラム温度:40℃
展開溶媒:テトラヒドロフラン(THF)
流速:0.35mL/分
試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
標準試料:前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
[Measurement conditions for number average molecular weight (Mn)]
Measuring device: Guard column "HLC-8330" manufactured by Tosoh Corporation
Column: “TSK SuperH-H” manufactured by Tosoh Corporation
+ "TSK gel SuperHZM-M" manufactured by Tosoh Corporation
+ "TSK gel SuperHZM-M" manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK gel SuperHZ-2000”
+ Tosoh Corporation “TSK gel SuperHZ-2000”
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Column temperature: 40 ° C
Developing solvent: Tetrahydrofuran (THF)
Flow rate: 0.35 mL / min Sample: 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids with a microfilter (100 μl)
Standard sample: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 model II version 4.10”.

(標準試料:単分散ポリスチレン)
東ソー株式会社製「A−300」
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
東ソー株式会社製「F−288」
(Standard sample: monodisperse polystyrene)
“A-300” manufactured by Tosoh Corporation
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
“F-288” manufactured by Tosoh Corporation

本発明の塩化ビニル系樹脂組成物で用いる塩化ビニル系樹脂としては、例えば、ポリ塩化ビニル、塩素化ポリ塩化ビニル、ポリ塩化ビニリテン、塩素化ポリエチレン、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−エチレン共重合体、塩化ビニル−プロピレン共重合体、塩化ビニル−スチレン共重合体、塩化ビニル−イソブチレン共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−スチレン−無水マレイン酸共重合体、塩化ビニル−スチレン−アクリロニリトル共重合体、塩化ビニル−ブタジエン共重合体、塩化ビニル−イソプレン共重合体、塩化ビニル−塩素化プロピレン共重合体、塩化ビニル−塩化ビニリデン−酢酸ビニル共重合体、塩化ビニル−マレイン酸エステル共重合体、塩化ビニル−メタクリル酸エステル共重合体、塩化ビニル−アクリロニトリル共重合体、塩化ビニル−各種ビニルエーテル共重合体等が挙げられる。これらの塩化ビニル系樹脂の中でも、後述するエステル化合物との相溶性が良好なこと、及び機械的特性が優れることから、ポリ塩化ビニルが好ましい。また、これらの塩化ビニル系樹脂は、1種類のみで用いることも2種以上併用することもできる。
上記の塩化ビニル系樹脂は、乳化重合法、懸濁重合法、溶液重合法、塊状重合法などのいずれの重合方法で得られたものでもよい。
Examples of the vinyl chloride resin used in the vinyl chloride resin composition of the present invention include polyvinyl chloride, chlorinated polyvinyl chloride, polyvinyl chloride, chlorinated polyethylene, vinyl chloride-vinyl acetate copolymer, vinyl chloride- Ethylene copolymer, vinyl chloride-propylene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-isobutylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-styrene-maleic anhydride copolymer, Vinyl chloride-styrene-acrylonitrile solution, vinyl chloride-butadiene copolymer, vinyl chloride-isoprene copolymer, vinyl chloride-chlorinated propylene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate copolymer, Vinyl chloride-maleic acid ester copolymer, vinyl chloride-methacrylic acid ester copolymer , Vinyl chloride - acrylonitrile copolymer, vinyl chloride - various vinyl ether copolymers. Among these vinyl chloride resins, polyvinyl chloride is preferred because of its good compatibility with the ester compound described later and excellent mechanical properties. These vinyl chloride resins can be used alone or in combination of two or more.
The vinyl chloride resin may be obtained by any polymerization method such as an emulsion polymerization method, a suspension polymerization method, a solution polymerization method, or a bulk polymerization method.

本発明の塩化ビニル系樹脂組成物中の前記エステル化合物の配合量は、可塑剤としての効果を十分なものとするために、塩化ビニル系樹脂100質量部に対して、20〜80質量部の範囲が好ましく、30〜70質量部の範囲がより好ましく、35〜65質量部の範囲がさらに好ましい。   The compounding amount of the ester compound in the vinyl chloride resin composition of the present invention is 20 to 80 parts by mass with respect to 100 parts by mass of the vinyl chloride resin in order to make the effect as a plasticizer sufficient. The range is preferable, the range of 30 to 70 parts by mass is more preferable, and the range of 35 to 65 parts by mass is more preferable.

また、本発明の塩化ビニル系樹脂組成物には、前記エステル化合物を可塑剤として用いるほか、加工時の熱安定性を高めるため、安定剤としての効果を主目的としてエポキシ化植物油を配合することが好ましい。なお、このエポキシ化植物油は、可塑剤としての働きもある。このエポキシ化植物油としては、例えば、エポキシ化大豆油、エポキシ化ヒマシ油、エポキシ化アマニ油、エポキシ化サフラワー油等が挙げられる。これらの中でも、塩化ビニル系樹脂との相溶性に優れるためエポキシ化大豆油を使用することが好ましい。このエポキシ化大豆油を併用する際のその配合量は、熱安定性を付与でき、かつ塩化ビニル系樹脂との相溶性が良好なことから、塩化ビニル系樹脂100質量部に対して、1〜30質量部の範囲が好ましく、5〜20質量部の範囲がより好ましく、10〜15質量部の範囲がさらに好ましい。   In addition to using the ester compound as a plasticizer, the vinyl chloride resin composition of the present invention is blended with an epoxidized vegetable oil mainly for the effect of a stabilizer in order to increase thermal stability during processing. Is preferred. This epoxidized vegetable oil also functions as a plasticizer. Examples of the epoxidized vegetable oil include epoxidized soybean oil, epoxidized castor oil, epoxidized linseed oil, and epoxidized safflower oil. Among these, it is preferable to use epoxidized soybean oil because of its excellent compatibility with vinyl chloride resins. The blending amount when this epoxidized soybean oil is used in combination can impart heat stability and has good compatibility with the vinyl chloride resin, so that 1 to 100 parts by mass of the vinyl chloride resin. The range of 30 mass parts is preferable, the range of 5-20 mass parts is more preferable, and the range of 10-15 mass parts is further more preferable.

さらに、本発明の塩化ビニル系樹脂組成物には、前記エポキシ化植物油のほか、安定剤として、2−エチルへキシル酸、炭素原子数8〜22の高級脂肪酸、安息香酸、イソデカン酸、ネオデカン酸等のカルボン酸金属塩を配合することがより好ましい。これらのカルボン酸金属塩のカルボン酸としてはステアリン酸が好ましく、金属種としてはカルシウム及び亜鉛が好ましい。また、カルボン酸カルシウム塩の少なくとも1種以上とカルボン酸亜鉛塩の少なくとも1種以上を併用することがさらに好ましい。これら2種以上のカルボン酸金属塩を併用する場合、カルボン酸カルシウム塩の合計量とカルボン酸亜鉛塩との質量比は、70:30〜30:70の範囲が好ましい。これらの安定剤の配合量は、安定剤としての効果及び成形加工時の滑性付与の点で、それぞれ塩化ビニル系樹脂100質量部に対して、0.01〜10質量部の範囲が好ましく、0.1〜5質量部の範囲がより好ましく、0.2〜1質量部の範囲がさらに好ましい。   Furthermore, in addition to the epoxidized vegetable oil, the vinyl chloride resin composition of the present invention includes 2-ethylhexylic acid, higher fatty acids having 8 to 22 carbon atoms, benzoic acid, isodecanoic acid, neodecanoic acid as stabilizers. It is more preferable to add a carboxylic acid metal salt. Stearic acid is preferred as the carboxylic acid of these carboxylic acid metal salts, and calcium and zinc are preferred as the metal species. Further, it is more preferable to use at least one kind of calcium carboxylate and at least one kind of zinc carboxylate in combination. When these two or more carboxylic acid metal salts are used in combination, the mass ratio of the total amount of the carboxylic acid calcium salt and the carboxylic acid zinc salt is preferably in the range of 70:30 to 30:70. The blending amount of these stabilizers is preferably in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the vinyl chloride resin, respectively, in terms of the effect as a stabilizer and the provision of lubricity during molding. The range of 0.1-5 mass parts is more preferable, and the range of 0.2-1 mass part is further more preferable.

また、この他に使用できる安定剤としては、トリスノニルフォスファイトなどの有機フォスファイト類、ハイドロタルサイトなどが挙げられる。   Other stabilizers that can be used include organic phosphites such as trisnonyl phosphite, hydrotalcite, and the like.

さらに、本発明の塩化ビニル系樹脂組成物には、上記で挙げた各成分以外に、防曇剤、抗菌剤、老化防止剤、紫外線防止剤、酸化防止剤、帯電防止剤、充填剤、滑剤等の添加剤を配合することもできる。   Furthermore, in addition to the components listed above, the vinyl chloride resin composition of the present invention includes an antifogging agent, an antibacterial agent, an anti-aging agent, an anti-ultraviolet agent, an antioxidant, an antistatic agent, a filler, and a lubricant. Additives such as can also be blended.

本発明の塩化ビニル系樹脂組成物は、塩化ビニル系樹脂、前記エステル化合物を含む可塑剤及びその他の添加剤を同時に配合し、この配合物をミキシングロール、バンバリーミキサー、ニーダーブレンダー、等の混練機を用いて混練することにより得ることができる。また、混練温度は、活性塩素の脱離の防止、混練時の粘度低下による加工性の低下防止の観点から、150〜180℃が好ましく、160〜170℃がより好ましい。   The vinyl chloride resin composition of the present invention is prepared by simultaneously blending a vinyl chloride resin, a plasticizer containing the ester compound and other additives, and mixing the blend with a mixing roll, a Banbury mixer, a kneader blender, and the like. It can obtain by kneading | mixing using. The kneading temperature is preferably from 150 to 180 ° C, more preferably from 160 to 170 ° C, from the viewpoint of preventing the desorption of active chlorine and preventing the deterioration of workability due to a decrease in viscosity during kneading.

また、本発明の食品包装用ストレッチフィルムは、従来公知の方法、例えばTダイ法、インフレーション法等の成形方法によって製造できる。   Moreover, the stretch film for food packaging of the present invention can be produced by a conventionally known method, for example, a molding method such as a T-die method or an inflation method.

以下、実施例により本発明をより詳細に説明する。なお、下記で合成したエステル化合物の粘度、数平均分子量、酸価及び水酸基価は、下記の条件により測定した。また、エステル基濃度についても下記式(1)によって算出した。   Hereinafter, the present invention will be described in more detail with reference to examples. The viscosity, number average molecular weight, acid value and hydroxyl value of the ester compound synthesized below were measured under the following conditions. The ester group concentration was also calculated by the following formula (1).

[粘度の測定条件]
測定装置:B型粘度計(東京計器株式会社社製「DVM−B型」)
測定条件:温度25℃、No.2ロータ、30rpm
[Measurement conditions for viscosity]
Measuring apparatus: B type viscometer (“DVM-B type” manufactured by Tokyo Keiki Co., Ltd.)
Measurement conditions: temperature 25 ° C. 2 rotors, 30 rpm

[数平均分子量の測定条件]
測定装置:東ソー株式会社製ガードカラム「HLC−8330」
カラム:東ソー株式会社製「TSK SuperH−H」
+東ソー株式会社製「TSK gel SuperHZM−M」
+東ソー株式会社製「TSK gel SuperHZM−M」
+東ソー株式会社製「TSK gel SuperHZ−2000」
+東ソー株式会社製「TSK gel SuperHZ−2000」
検出器:RI(示差屈折計)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
カラム温度:40℃
展開溶媒:テトラヒドロフラン(THF)
流速:0.35mL/分
試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
標準試料:前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
[Measurement conditions for number average molecular weight]
Measuring device: Guard column "HLC-8330" manufactured by Tosoh Corporation
Column: “TSK SuperH-H” manufactured by Tosoh Corporation
+ "TSK gel SuperHZM-M" manufactured by Tosoh Corporation
+ "TSK gel SuperHZM-M" manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK gel SuperHZ-2000”
+ Tosoh Corporation “TSK gel SuperHZ-2000”
Detector: RI (differential refractometer)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Column temperature: 40 ° C
Developing solvent: Tetrahydrofuran (THF)
Flow rate: 0.35 mL / min Sample: 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids with a microfilter (100 μl)
Standard sample: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 model II version 4.10”.

(標準試料:単分散ポリスチレン)
東ソー株式会社製「A−300」
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
東ソー株式会社製「F−288」
(Standard sample: monodisperse polystyrene)
“A-300” manufactured by Tosoh Corporation
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
“F-288” manufactured by Tosoh Corporation

[酸価及び水酸基価の測定条件]
JIS K 0070−1992に準じて測定した。
[Measurement conditions for acid value and hydroxyl value]
The measurement was performed according to JIS K 0070-1992.

[エステル基濃度の算出]
下記式(1)により、本発明の塩化ビニル系樹脂用可塑剤であるエステル化合物の原料である脂肪族系ジカルボン酸成分、脂肪族系ジオール成分及び末端封止成分に含まれるカルボキシル基の総モル数と水酸基の総モル数とを比較して少ない方をエステル基のモル数とし、これをこれらの原料から得られたエステル化合物の質量で除してエステル基濃度として算出した。
[Calculation of ester group concentration]
According to the following formula (1), the total moles of carboxyl groups contained in the aliphatic dicarboxylic acid component, the aliphatic diol component, and the end-capping component that are raw materials of the ester compound that is the plasticizer for vinyl chloride resin of the present invention The smaller number was compared with the total number of moles of hydroxyl groups, and the smaller number was taken as the number of moles of ester groups, and this was divided by the mass of the ester compound obtained from these raw materials to calculate the ester group concentration.

Figure 0005435287
Figure 0005435287

(合成例1)
温度計、攪拌機及び還流冷却器を備えた内容積2リットルの4つ口フラスコに、エチレングリコール(以下、「EG」と略記する。)113g、1,2−プロパンジオール(以下、「1,2PG」と略記する。)138g、アジピン酸(以下、「AA」と略記する。)584g、n−オクタノール(以下、「NOA」と略記する。)302g及びエステル化触媒としてテトライソプロピルチタネート(以下、「TiPT」と略記する。)0.057gを仕込み、窒素気流下で攪拌しながら230℃まで段階的に昇温し、その後230℃で反応させ、合計10時間脱水縮合反応させた。反応後、200℃で未反応のEG、1,2PG及びNOAを減圧留去することによって、エステル化合物(1)870gを得た。このエステル化合物(1)の粘度は280mPa・s、数平均分子量(Mn)は1,320、酸価は0.3、水酸基価は11、エステル基濃度は8.82mmol/gであった。
(Synthesis Example 1)
A 4-liter flask having an internal volume of 2 liters equipped with a thermometer, a stirrer and a reflux condenser was charged with 113 g of ethylene glycol (hereinafter abbreviated as “EG”) and 1,2-propanediol (hereinafter referred to as “1,2PG”). 138 g, adipic acid (hereinafter abbreviated as “AA”) 584 g, n-octanol (hereinafter abbreviated as “NOA”) 302 g and tetraisopropyl titanate (hereinafter “ This is abbreviated as “TiPT.”) 0.057 g was charged, and the temperature was raised stepwise to 230 ° C. while stirring under a nitrogen stream. After the reaction, 870 g of an ester compound (1) was obtained by distilling off unreacted EG, 1,2PG and NOA at 200 ° C. under reduced pressure. The ester compound (1) had a viscosity of 280 mPa · s, a number average molecular weight (Mn) of 1,320, an acid value of 0.3, a hydroxyl value of 11, and an ester group concentration of 8.82 mmol / g.

(合成例2)
温度計、攪拌機及び還流冷却器を備えた内容積2リットルの4つ口フラスコに、1,2PG 277g、AA 584g、NOA 302g及びエステル化触媒としてTiPT 0.058gを仕込み、窒素気流下で攪拌しながら230℃まで段階的に昇温し、その後230℃で反応させ、合計11時間脱水縮合反応させた。反応後、200℃で未反応の1,2PG及びNOAを減圧留去することによって、エステル化合物(2)900gを得た。このエステル化合物(2)の粘度は260mPa・s、数平均分子量(Mn)は1,230、酸価は0.2、水酸基価は16、エステル基濃度は8.62mmol/gであった。
(Synthesis Example 2)
A 2-liter 4-neck flask equipped with a thermometer, stirrer and reflux condenser was charged with 1,277 PG, 277 g of AA, 584 g of AA, 302 g of NOA and 0.058 g of TiPT as an esterification catalyst, and stirred under a nitrogen stream. However, the temperature was raised stepwise to 230 ° C. and then reacted at 230 ° C. for a total of 11 hours for dehydration condensation reaction. After the reaction, 900 g of ester compound (2) was obtained by distilling off unreacted 1,2PG and NOA at 200 ° C. under reduced pressure. The ester compound (2) had a viscosity of 260 mPa · s, a number average molecular weight (Mn) of 1,230, an acid value of 0.2, a hydroxyl value of 16, and an ester group concentration of 8.62 mmol / g.

(合成例3)
温度計、攪拌機及び還流冷却器を備えた内容積2リットルの4つ口フラスコに、1,2PG 83g、1,3−プロパンジオール(以下、「1,3PG」と略記する。)193g、AA 584g、NOA 302g及びエステル化触媒としてTiPT 0.058gを仕込み、窒素気流下で攪拌しながら230℃まで段階的に昇温し、その後230℃で反応させ、合計9時間脱水縮合反応させた。反応後、200℃で未反応の1,2PG、1,3PG及びNOAを減圧留去することによって、エステル化合物(3)890gを得た。このエステル化合物(3)の粘度は250mPa・s、数平均分子量(Mn)は1,280、酸価は0.2、水酸基価は15、エステル基濃度は8.62mmol/gであった。
(Synthesis Example 3)
In a 4-liter flask having an internal volume of 2 liters equipped with a thermometer, a stirrer and a reflux condenser, 1,3 PG 83 g, 1,3-propanediol (hereinafter abbreviated as “1,3PG”) 193 g, AA 584 g In addition, 302 g of NOA and 0.058 g of TiPT as an esterification catalyst were charged, and the temperature was raised stepwise to 230 ° C. while stirring under a nitrogen stream. After the reaction, 890 g of an ester compound (3) was obtained by distilling off unreacted 1,2PG, 1,3PG and NOA at 200 ° C. under reduced pressure. The ester compound (3) had a viscosity of 250 mPa · s, a number average molecular weight (Mn) of 1,280, an acid value of 0.2, a hydroxyl value of 15, and an ester group concentration of 8.62 mmol / g.

(比較合成例1)
温度計、攪拌機及び還流冷却器を備えた内容積1リットルの4つ口フラスコに、AA 292g、イソノニルアルコール(以下、「INA」と略記する。)691g及びエステル化触媒としてTiPT 0.049gを仕込み、窒素気流下で攪拌しながら230℃まで段階的に昇温し、その後230℃で反応させ、合計6時間脱水縮合反応させた。反応後、200℃で未反応のINAを減圧留去することによって、エステル化合物(C1)788gを得た。このエステル化合物(C1)の粘度は20mPa・s、酸価は0.01、水酸基価は0.01、エステル基濃度は5.03mmol/gであった。なお、このエステル化合物(C1)については、数平均分子量を測定していない。
(Comparative Synthesis Example 1)
In a 4-liter flask having an internal volume of 1 liter equipped with a thermometer, a stirrer and a reflux condenser, 292 g of AA, 691 g of isononyl alcohol (hereinafter abbreviated as “INA”) and 0.049 g of TiPT as an esterification catalyst were added. The mixture was charged and gradually heated to 230 ° C. while stirring under a nitrogen stream, and then reacted at 230 ° C. for dehydration condensation reaction for a total of 6 hours. After the reaction, unreacted INA was distilled off under reduced pressure at 200 ° C. to obtain 788 g of an ester compound (C1). This ester compound (C1) had a viscosity of 20 mPa · s, an acid value of 0.01, a hydroxyl value of 0.01, and an ester group concentration of 5.03 mmol / g. In addition, about this ester compound (C1), the number average molecular weight is not measured.

(比較合成例2)
温度計、攪拌機及び還流冷却器を備えた内容積2リットルの4つ口フラスコに、1,2PG 318g、AA 657g、NOA 177g及びエステル化触媒としてTiPT 0.058gを仕込み、窒素気流下で攪拌しながら230℃まで段階的に昇温し、その後230℃で反応させ、合計12時間脱水縮合反応させた。反応後、200℃で未反応の1,2PG及びNOAを減圧留去することによって、エステル化合物(C2)890gを得た。このエステル化合物(C2)の粘度は1,070mPa・s、数平均分子量(Mn)は1,880、酸価は0.5、水酸基価は11、エステル基濃度は9.69mmol/gであった。
(Comparative Synthesis Example 2)
A 2-liter four-necked flask equipped with a thermometer, stirrer and reflux condenser was charged with 1,2 PG 318 g, AA 657 g, NOA 177 g and TiPT 0.058 g as an esterification catalyst and stirred under a nitrogen stream. However, the temperature was raised stepwise to 230 ° C., and then reacted at 230 ° C. for a dehydration condensation reaction for a total of 12 hours. After the reaction, 890 g of ester compound (C2) was obtained by distilling off unreacted 1,2PG and NOA at 200 ° C. under reduced pressure. This ester compound (C2) had a viscosity of 1,070 mPa · s, a number average molecular weight (Mn) of 1,880, an acid value of 0.5, a hydroxyl value of 11, and an ester group concentration of 9.69 mmol / g. .

(比較合成例3)
温度計、攪拌機及び還流冷却器を備えた内容積5リットルの4つ口フラスコに、1,2PG 830g、AA 1,752g、NOA 905g及びエステル化触媒としてTiPT 0.174gを仕込み、窒素気流下で攪拌しながら230℃まで段階的に昇温し、その後230℃で反応させ、合計16時間脱水縮合反応させた。反応後、200℃で未反応の1,2PG及びNOAを減圧留去することによって、エステル化合物(C3)2,760gを得た。このエステル化合物(C3)の粘度は220mPa・s、数平均分子量(Mn)は1,220、酸価は0.3、水酸基価は5、エステル基濃度は8.62mmol/gであった。
(Comparative Synthesis Example 3)
Into a 5-liter four-necked flask equipped with a thermometer, a stirrer and a reflux condenser, was charged 830 g of 1,2PG, 1,752 g of AA, 905 g of NOA, and 0.174 g of TiPT as an esterification catalyst, under a nitrogen stream. While stirring, the temperature was raised stepwise to 230 ° C., followed by reaction at 230 ° C. for a total of 16 hours for dehydration condensation reaction. After the reaction, unreacted 1,2PG and NOA were distilled off at 200 ° C. under reduced pressure to obtain 2,760 g of an ester compound (C3). The ester compound (C3) had a viscosity of 220 mPa · s, a number average molecular weight (Mn) of 1,220, an acid value of 0.3, a hydroxyl value of 5, and an ester group concentration of 8.62 mmol / g.

(比較合成例4)
温度計、攪拌機及び還流冷却器を備えた内容積3リットルの4つ口フラスコに、1,2PG 502g、AA 730g、ラウリン酸(以下、「LA」と略記する。)400g及びエステル化触媒としてTiPT 0.082gを仕込み、窒素気流下で攪拌しながら230℃まで段階的に昇温し、その後230℃で反応させ、合計14時間脱水縮合反応させた。反応後、200℃で未反応の1,2PGを減圧留去することによって、エステル化合物(C4)1,340gを得た。このエステル化合物(C4)の粘度は750mPa・s、数平均分子量(Mn)は1,500、酸価は0.3、水酸基価は15、エステル基濃度は8.76mmol/gであった。
(Comparative Synthesis Example 4)
A 4-liter flask having an internal volume of 3 liters equipped with a thermometer, a stirrer and a reflux condenser was charged with 1,2PG 502g, AA 730g, lauric acid (hereinafter abbreviated as "LA") 400g and TiPT as an esterification catalyst. 0.082 g was charged, and the temperature was raised stepwise to 230 ° C. while stirring under a nitrogen stream, followed by reaction at 230 ° C., and a dehydration condensation reaction was performed for a total of 14 hours. After the reaction, 1,340 g of ester compound (C4) was obtained by distilling off unreacted 1,2PG at 200 ° C. under reduced pressure. The ester compound (C4) had a viscosity of 750 mPa · s, a number average molecular weight (Mn) of 1,500, an acid value of 0.3, a hydroxyl value of 15, and an ester group concentration of 8.76 mmol / g.

(比較合成例5)
温度計、攪拌機及び還流冷却器を備えた内容積2リットルの4つ口フラスコに、1,3−ブタンジオール(以下、「1,3BG」と略記する。)380g、AA 657g、NOA 189g及びエステル化触媒としてTiPT 0.061gを仕込み、窒素気流下で攪拌しながら230℃まで段階的に昇温し、その後230℃で反応させ、合計13時間脱水縮合反応させた。反応後、200℃で未反応の1,3BG及びNOAを減圧留去することによって、エステル化合物(C5)935gを得た。このエステル化合物(C5)の粘度は900mPa・s、数平均分子量(Mn)は2,000、酸価は0.3、水酸基価は16、エステル基濃度は9.14mmol/gであった。
(Comparative Synthesis Example 5)
In a 4-liter flask having an internal volume of 2 liters equipped with a thermometer, a stirrer and a reflux condenser, 380 g of 1,3-butanediol (hereinafter abbreviated as “1,3BG”), 657 g of AA, 189 g of NOA and ester 0.061 g of TiPT was charged as a catalyst, and the temperature was raised stepwise to 230 ° C. while stirring under a nitrogen stream, followed by reaction at 230 ° C., and a dehydration condensation reaction was performed for a total of 13 hours. After the reaction, unreacted 1,3BG and NOA were distilled off at 200 ° C. under reduced pressure to obtain 935 g of an ester compound (C5). The ester compound (C5) had a viscosity of 900 mPa · s, a number average molecular weight (Mn) of 2,000, an acid value of 0.3, a hydroxyl value of 16, and an ester group concentration of 9.14 mmol / g.

(比較合成例6)
温度計、攪拌機及び還流冷却器を備えた内容積2リットルの4つ口フラスコに、1,4−ブタンジオール(以下、「1,4BG」と略記する。)243g、AA 584g、NOA 312g及びエステル化触媒としてTiPT 0.057gを仕込み、窒素気流下で攪拌しながら230℃まで段階的に昇温し、その後230℃で反応させ、合計10時間脱水縮合反応させた。反応後、200℃で未反応の1,4BG及びNOAを減圧留去することによって、エステル化合物(C6)880gを得た。このエステル化合物(C6)は固体であった。また、その数平均分子量(Mn)は1,300、酸価は0.5、水酸基価は12、エステル基濃度は8.25mmol/gであった。
(Comparative Synthesis Example 6)
In a 4-liter flask having an internal volume of 2 liters equipped with a thermometer, a stirrer, and a reflux condenser, 243 g of 1,4-butanediol (hereinafter abbreviated as “1,4BG”), 584 g of AA, 312 g of NOA, and ester 0.057 g of TiPT was charged as a catalyst, and the temperature was raised stepwise to 230 ° C. while stirring under a nitrogen stream, followed by reaction at 230 ° C., and a dehydration condensation reaction was performed for a total of 10 hours. After the reaction, unreacted 1,4BG and NOA were distilled off under reduced pressure at 200 ° C. to obtain 880 g of an ester compound (C6). This ester compound (C6) was a solid. The number average molecular weight (Mn) was 1,300, the acid value was 0.5, the hydroxyl value was 12, and the ester group concentration was 8.25 mmol / g.

上記の合成例1〜4で得られたエステル化合物(1)〜(4)及び比較合成例1〜6で得られたエステル化合物(C1)〜(C6)の原料及び特性値を表1にまとめた。   Table 1 summarizes the raw materials and characteristic values of the ester compounds (1) to (4) obtained in the synthesis examples 1 to 4 and the ester compounds (C1) to (C6) obtained in the comparative synthesis examples 1 to 6. It was.

Figure 0005435287
Figure 0005435287

(実施例1〜4及び比較例1〜6)
合成例1〜4及び比較合成例1〜6で得られたエステル化合物(1)〜(4)及び(C1)〜(C6)を用いて、下記の評価を行った。
(Examples 1-4 and Comparative Examples 1-6)
The following evaluation was performed using the ester compounds (1) to (4) and (C1) to (C6) obtained in Synthesis Examples 1 to 4 and Comparative Synthesis Examples 1 to 6.

[ドライアップ時間の測定]
塩化ビニル系樹脂(新第一塩ビ株式会社製「ZEST1300Z」;平均重合度1,300)を400gと合成例1〜4又は比較合成例1〜6で得られたエステル化合物(1)〜(4)又は(C1)〜(C6)を100gとをプラネタリーミキサーに投入し、温度120℃、撹拌回転数60rpmで撹拌した際の乾点(混合物がさらさらになった時点)までの時間を測定した。得られたドライアップ時間から、下記の基準にしたがってドライアップ性を評価した。なお、この条件でドライアップ時間が90秒以内であれば生産性が良好であると判断できる。
○:ドライアップ時間が90秒以下である。
×:ドライアップ時間が90秒を超える。
[Dry-up time measurement]
400 g of vinyl chloride resin (“ZEST1300Z” manufactured by Shin Daiichi Vinyl Co., Ltd .; average polymerization degree 1,300) and ester compounds (1) to (4) obtained in Synthesis Examples 1 to 4 or Comparative Synthesis Examples 1 to 6 ) Or 100 g of (C1) to (C6) was put into a planetary mixer, and the time until the dry point (at the time when the mixture was further mixed) when stirring at a temperature of 120 ° C. and a stirring speed of 60 rpm was measured. . From the obtained dry-up time, the dry-up property was evaluated according to the following criteria. If the dry-up time is within 90 seconds under these conditions, it can be determined that the productivity is good.
○: Dry-up time is 90 seconds or less.
X: Dry-up time exceeds 90 seconds.

[塩化ビニル系樹脂組成物の調製]
塩化ビニル系樹脂(新第一塩ビ株式会社製「ZEST1300Z」;平均重合度1,300の塩化ビニルのホモポリマー)100質量部、安定剤(日油株式会社製「カルシウムステアレートG」:ステアリン酸カルシウム;以下、「Ca−St」と略記する。)0.3質量部及び安定剤(日油株式会社製「ジンクステアレートG」:ステアリン酸亜鉛;以下、「Zn−St」と略記する。)0.3質量部を高速流動式混合混練機(株式会社カワタ製「スーパーミキサー」)に投入した。次いで、エポキシ化大豆油(DIC株式会社製「エポサイザーW−100−EL」)12質量部及び合成例1〜4又は比較合成例1〜6で得られたエステル化合物(1)〜(4)又は(C1)〜(C6)38質量部(比較合成例1で得られたエステル化合物(C1)は33質量部)の混合物を投入し、110℃で1時間撹拌してドライアップを行った。
[Preparation of vinyl chloride resin composition]
100 parts by weight of vinyl chloride resin (“ZEST1300Z” manufactured by Shin Daiichi Vinyl Co., Ltd .; homopolymer of vinyl chloride having an average polymerization degree of 1,300), stabilizer (“Calcium stearate G” manufactured by NOF Corporation: calcium stearate Hereinafter abbreviated as "Ca-St".) 0.3 parts by mass and stabilizer ("Zinc stearate G" manufactured by NOF Corporation: zinc stearate; hereinafter abbreviated as "Zn-St") 0.3 part by mass was charged into a high-speed fluid mixing and kneading machine ("Supermixer" manufactured by Kawata Corporation). Subsequently, 12 parts by mass of epoxidized soybean oil (“Eposizer W-100-EL” manufactured by DIC Corporation) and ester compounds (1) to (4) obtained in Synthesis Examples 1 to 4 or Comparative Synthesis Examples 1 to 6 or A mixture of 38 parts by mass (C1) to (C6) (33 parts by mass of the ester compound (C1) obtained in Comparative Synthesis Example 1) was added, and the mixture was stirred at 110 ° C. for 1 hour to dry up.

[100%モジュラス及び引張伸び率の測定]
上記で得られたドライアップした組成物を2本ロールにて170℃で5分間混練し、厚さ0.2mmのフィルムを作製した。下記条件にて引張試験を実施し、100%モジュラス(伸び100%時の引張応力)及び引張伸び率を測定した。なお、引張伸び率は、評価用シートが引張破断した時のチャック間距離から初期のチャック間距離20mmを引いた値をチャック間距離20mmで除して百分率で表したものである。
測定機器:株式会社オリエンテック社製「テンシロン万能材料試験機」
サンプル形状:ダンベル状3号型
チャック間距離:20mm
引張速度:200mm/分
測定雰囲気:温度23℃、湿度50%
[Measurement of 100% modulus and tensile elongation]
The dried-up composition obtained above was kneaded with two rolls at 170 ° C. for 5 minutes to produce a film having a thickness of 0.2 mm. A tensile test was performed under the following conditions, and 100% modulus (tensile stress at 100% elongation) and tensile elongation were measured. The tensile elongation is expressed as a percentage by dividing a value obtained by subtracting the initial chuck distance of 20 mm from the chuck distance when the evaluation sheet is pulled and fractured by the chuck distance of 20 mm.
Measuring instrument: “Tensilon Universal Material Testing Machine” manufactured by Orientec Co., Ltd.
Sample shape: Dumbbell-shaped No. 3 Distance between chucks: 20 mm
Tensile speed: 200 mm / min Measurement atmosphere: temperature 23 ° C., humidity 50%

上記で得られたドライアップした配合物を、スクリュー外径40mmの単軸押出機(L/D=25)にて先端温度170℃で押出成形して、得られたストランドをペレタイザー(東洋精機株式会社製)でペレット化し、塩化ビニル系樹脂組成物のペレットを得た。得られたペレットは、真空乾燥機を用いて50℃で2時間乾燥させた。   The dried-up composition obtained above was extruded at a tip temperature of 170 ° C. with a single screw extruder (L / D = 25) having a screw outer diameter of 40 mm, and the resulting strand was pelletized (Toyo Seiki Co., Ltd.) (Made by company) and pelletized by vinyl chloride resin composition. The obtained pellets were dried at 50 ° C. for 2 hours using a vacuum dryer.

次いで、上記で得られたペレットを、Tダイ(東洋精機株式会社製、幅150mm、ギャップ0.5mm)を装着したスクリュー外径40mmの単軸押出機(L/D=25)にて先端温度200〜220℃で押出成形して、厚さ0.01mmのフィルムを得た。得られたフィルムを用いて、下記の耐ブリード性の評価、n−ヘプタン抽出量の測定の測定及び食品衛生性の評価を行った。   Next, the pellet obtained above was subjected to a tip temperature in a single screw extruder (L / D = 25) having a screw outer diameter of 40 mm equipped with a T die (Toyo Seiki Co., Ltd., width 150 mm, gap 0.5 mm). Extrusion was performed at 200 to 220 ° C. to obtain a film having a thickness of 0.01 mm. Using the obtained film, the following bleed resistance evaluation, measurement of n-heptane extract amount, and food hygiene evaluation were performed.

[耐ブリード性の評価]
上記で得られたフィルムを3cm×3cmの大きさに裁断し、70℃で相対湿度95%の条件下で7日間放置した後、フィルムの表面を目視で観察して、可塑剤のしみ出しの有無を確認し、下記の基準にしたがって耐ブリード性を評価した。
○:可塑剤のしみ出し無し。
×:可塑剤のしみ出し有り。
[Evaluation of bleed resistance]
The film obtained above is cut into a size of 3 cm × 3 cm and left at 70 ° C. under a relative humidity of 95% for 7 days, and then the surface of the film is visually observed to remove the plasticizer. The presence or absence was confirmed, and the bleed resistance was evaluated according to the following criteria.
○: No exudation of plasticizer.
×: Exudation of plasticizer.

[n−ヘプタン抽出量の測定及び食品衛生性の評価]
上記で得られたフィルムを45mm×85mmの大きさに裁断したものを2枚用意して、昭和57年厚生省告示20号に定める蒸発残留物試験法でn−ヘプタン抽出量を測定した。得られたn−ヘプタン抽出量から、下記の基準にしたがって食品衛生性を評価した。
○:n−ヘプタン抽出量が60ppm未満である。
×:n−ヘプタン抽出量が60ppm以上である。
[Measurement of n-heptane extract amount and evaluation of food hygiene]
Two pieces of the film obtained above cut to 45 mm × 85 mm were prepared, and the amount of n-heptane extracted was measured by the evaporation residue test method stipulated in Ministry of Health and Welfare Notification No. 20 in 1982. Food hygiene was evaluated according to the following criteria from the obtained n-heptane extract.
○: n-heptane extract amount is less than 60 ppm.
X: n-heptane extraction amount is 60 ppm or more.

上記の測定及び評価の結果を表2に示す。   The results of the above measurement and evaluation are shown in Table 2.

Figure 0005435287
Figure 0005435287

表1に示した結果から、実施例1〜4の本発明の塩化ビニル系樹脂組成物において可塑剤として用いたエステル化合物は、ドライアップ時間が90秒以下と短く、生産性(ドライアップ性)が良好であることが分かった。また、実施例1〜4の本発明の塩化ビニル系樹脂組成物は、100%モジュラス及び引張伸び率の測定結果から、可塑化効率と伸びに優れており、食品用ストレッチフィルムに必要な物性を備えていることが分かった。また、これらの塩化ビニル系樹脂組成物は、耐ブリード性に優れ、n−ヘプタン抽出量も46ppm以下と、現行の規格である150ppmを大幅に下回り、食品衛生的に優れた材料であることが分かった。   From the results shown in Table 1, the ester compound used as a plasticizer in the vinyl chloride resin compositions of Examples 1 to 4 of the present invention has a short dry-up time of 90 seconds or less, and the productivity (dry-up property) Was found to be good. In addition, the vinyl chloride resin compositions of the present invention of Examples 1 to 4 are excellent in plasticization efficiency and elongation from the measurement results of 100% modulus and tensile elongation, and have the physical properties necessary for a stretch film for food. I found out that I have it. In addition, these vinyl chloride resin compositions have excellent bleed resistance, and the n-heptane extract amount is 46 ppm or less, which is well below the current standard of 150 ppm, and is an excellent food hygiene material. I understood.

比較例1は、ジオールを用いず、ジカルボン酸とモノアルコールのみから得られたエステル化合物を可塑剤に用いた例である。このエステル化合物を用いた塩化ビニル系樹脂組成物は、n−ヘプタン抽出量が79ppmであり、食品衛生的に懸念がある材料であることが分かった。   Comparative Example 1 is an example in which an ester compound obtained only from a dicarboxylic acid and a monoalcohol was used as a plasticizer without using a diol. The vinyl chloride resin composition using this ester compound had an n-heptane extraction amount of 79 ppm, and was found to be a material with food hygiene concerns.

比較例2は、本発明で規定したエステル基濃度の範囲から外れるエステル化合物を可塑剤に用いた例である。このエステル化合物は、ドライアップ時間が108秒と長く、生産性(ドライアップ性)に問題があることが分かった。   Comparative Example 2 is an example in which an ester compound deviating from the ester group concentration range defined in the present invention was used as a plasticizer. This ester compound was found to have a problem in productivity (dry-up property) due to a long dry-up time of 108 seconds.

比較例3は、本発明で規定した水酸基価の範囲から外れるエステル化合物を可塑剤に用いた例である。このエステル化合物を用いた塩化ビニル系樹脂組成物は、n−ヘプタン抽出量が63ppmであり、食品衛生的に懸念がある材料であることが分かった。   Comparative Example 3 is an example in which an ester compound deviating from the hydroxyl value range defined in the present invention was used as a plasticizer. The vinyl chloride resin composition using this ester compound had an n-heptane extraction amount of 63 ppm, and was found to be a material with food hygiene concerns.

比較例4は、本発明で用いるエステル化合物の末端封止成分として必須成分であるn−オクタノールをラウリル酸に代えたエステル化合物を可塑剤に用いた例である。このエステル化合物を用いた塩化ビニル系樹脂組成物は、n−ヘプタン抽出量が62ppmであり、食品衛生的に懸念がある材料であることが分かった。   Comparative Example 4 is an example in which an ester compound in which n-octanol, which is an essential component, is replaced with lauric acid as a terminal blocking component of the ester compound used in the present invention, is used as a plasticizer. The vinyl chloride resin composition using this ester compound had an n-heptane extraction amount of 62 ppm, and was found to be a material with food hygiene concerns.

比較例5は、本発明で用いるエステル化合物のジオール成分として必須成分である1,2−プロパンジオールを1,3−ブタンジオールに代えたエステル化合物を可塑剤に用いた例である。このエステル化合物は、ドライアップ時間が96秒と長く、生産性(ドライアップ性)にやや問題があることが分かった。また、このエステル化合物を用いた塩化ビニル系樹脂組成物は、n−ヘプタン抽出量が65ppmであり、食品衛生的に懸念がある材料であることが分かった。   Comparative Example 5 is an example in which an ester compound in which 1,2-propanediol, which is an essential component, is replaced with 1,3-butanediol as a diol component of the ester compound used in the present invention, is used as a plasticizer. It was found that this ester compound has a long dry-up time of 96 seconds and has a slight problem in productivity (dry-up property). Moreover, it turned out that the vinyl chloride-type resin composition using this ester compound is n-heptane extraction amount is 65 ppm, and is a material with food hygiene concern.

比較例6は、本発明で用いるエステル化合物のジオール成分として必須成分である1,2−プロパンジオールを1,4−ブタンジオールに代えたエステル化合物を可塑剤に用いた例である。このエステル化合物を用いた塩化ビニル系樹脂組成物は、n−ヘプタン抽出量が75ppmであり、食品衛生的に懸念がある材料であることが分かった。   Comparative Example 6 is an example in which an ester compound obtained by replacing 1,2-propanediol, which is an essential component as a diol component of the ester compound used in the present invention, with 1,4-butanediol was used as a plasticizer. The vinyl chloride resin composition using this ester compound had an n-heptane extraction amount of 75 ppm, and was found to be a material with food hygiene concerns.

Claims (4)

脂肪族系ジカルボン酸成分としてアジピン酸、脂肪族系ジオール成分として1,2−プロパンジオール及び末端封止成分としてn−オクタノールを必須原料として製造されたエステル化合物で、水酸基価が10〜30の範囲で、エステル基濃度が8〜9mmol/gの範囲で、数平均分子量が、1,000〜1,800の範囲であるエステル化合物であり、前記脂肪族系ジオール成分及び末端封止成分中の水酸基の合計モル当量が、脂肪族系ジカルボン酸成分中のカルボキシル基のモル当量に対して1.15〜1.25倍となるように脂肪族系ジカルボン酸成分と脂肪族系ジオール成分と末端封止成分を使用して得られることを特徴とする塩化ビニル系樹脂用可塑剤。 Adipic acid as the aliphatic dicarboxylic acid component, in aliphatic ester compound prepared a n- octanol as an essential raw material as 1,2-propanediol and end-capping component as the diol component, a hydroxyl group value of 10 to 30 in the range, the range is an ester group concentration of 8~9mmol / g, number average molecular weight of an ester compound ranges from 1,000~1,800, the aliphatic diol component and end-capping component The aliphatic dicarboxylic acid component, the aliphatic diol component, and the terminal so that the total molar equivalent of the hydroxyl group is 1.15 to 1.25 times the molar equivalent of the carboxyl group in the aliphatic dicarboxylic acid component. vinyl chloride resin for plasticizer characterized that you obtained using a sealing component. 前記エステル化合物の粘度(25℃、B型粘度計)が、200〜1,500mPa・sの範囲である請求項1記載の塩化ビニル系樹脂用可塑剤。   The plasticizer for a vinyl chloride resin according to claim 1, wherein the ester compound has a viscosity (25 ° C, B-type viscometer) in a range of 200 to 1,500 mPa · s. 塩化ビニル系樹脂100質量部に対して、請求項1又は2記載の塩化ビニル系樹脂用可塑剤を20〜80質量部含有する塩化ビニル系樹脂組成物。 A vinyl chloride resin composition comprising 20 to 80 parts by mass of the plasticizer for a vinyl chloride resin according to claim 1 or 2 with respect to 100 parts by mass of the vinyl chloride resin. 請求項記載の塩化ビニル系樹脂組成物からなることを特徴とする食品包装用ストレッチフィルム。 A stretch film for food packaging, comprising the vinyl chloride resin composition according to claim 3 .
JP2010131935A 2010-06-09 2010-06-09 Plasticizer for vinyl chloride resin, vinyl chloride resin composition using the same, and stretch film for food packaging Active JP5435287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010131935A JP5435287B2 (en) 2010-06-09 2010-06-09 Plasticizer for vinyl chloride resin, vinyl chloride resin composition using the same, and stretch film for food packaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010131935A JP5435287B2 (en) 2010-06-09 2010-06-09 Plasticizer for vinyl chloride resin, vinyl chloride resin composition using the same, and stretch film for food packaging

Publications (2)

Publication Number Publication Date
JP2011256270A JP2011256270A (en) 2011-12-22
JP5435287B2 true JP5435287B2 (en) 2014-03-05

Family

ID=45472817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010131935A Active JP5435287B2 (en) 2010-06-09 2010-06-09 Plasticizer for vinyl chloride resin, vinyl chloride resin composition using the same, and stretch film for food packaging

Country Status (1)

Country Link
JP (1) JP5435287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379653B2 (en) * 2014-05-15 2018-08-29 日立化成株式会社 Polyvinyl chloride resin composition and small roll wrap film for food packaging using the same
JP6627928B2 (en) * 2018-08-02 2020-01-08 日立化成株式会社 Polyvinyl chloride resin composition and small wrap film for food packaging using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816183B2 (en) * 1987-09-21 1996-02-21 旭電化工業株式会社 Stabilizer for chlorine-containing resin
JPH0559242A (en) * 1991-09-04 1993-03-09 Asahi Denka Kogyo Kk Vinyl chloride resin composition improved in processibility
JP3525133B2 (en) * 2000-05-19 2004-05-10 独立行政法人 科学技術振興機構 Catalyst for at least one of esterification reaction and transesterification reaction and method for producing ester
JP2003277561A (en) * 2002-03-26 2003-10-02 Dainippon Ink & Chem Inc Chlorine-containing paste resin composition and molding
FR2957351B1 (en) * 2010-03-10 2013-06-28 Solvay COPOLYMER COMPOSITION OF VINYLIDENE CHLORIDE

Also Published As

Publication number Publication date
JP2011256270A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP2012031220A (en) Plasticizer for vinyl chloride resin, vinyl chloride resin composition using the same and molded product of the composition
EP2471864B1 (en) Process for the production of a polylactic acid stereocomplex.
JP5860977B2 (en) Plasticizer, plasticizer composition, heat-resistant resin composition and method for producing them
JP2012025851A (en) Plasticizer for vinyl chloride resin, vinyl chloride resin composition using the same, and stretch film for packaging food
US9505908B2 (en) Plasticizer, plasticizer composition, heat-resistant resin composition and method for preparing the same
JP2022046735A (en) Polymer composition containing aliphatic esters as plasticizer
KR20110008631A (en) Ester based plasticizer
JP5435287B2 (en) Plasticizer for vinyl chloride resin, vinyl chloride resin composition using the same, and stretch film for food packaging
WO2018081493A2 (en) Polymer compositions with pbsa plasticizer
EP3369771B1 (en) Plasticizer composition, resin composition, and methods for preparing same
WO2013084707A1 (en) Resin composition, and packaging film and method for producing same
EP3438179B1 (en) Plasticizer composition and resin composition including same
TW201443013A (en) Method for preparing ester composition and resin composition
JP7035867B2 (en) A vinyl chloride resin composition and a molded product formed from the composition.
EP3009373B1 (en) Vinyl chloride-based film for food packaging
JP2013119624A (en) Vinyl chloride-based flexible resin composition and plastic wrap
JPH06100749A (en) Polyvinyl chloride-based resin composition for food warp
JPH0827341A (en) Food packaging material
JP3669764B2 (en) Halogen-containing resin composition
JP2008133372A (en) Polyester-based plasticizer, and vinyl chloride-based resin composition containing the same
JP2013181148A (en) Vinyl chloride-based soft resin composition, and lap film
WO2019080526A1 (en) Biodegradable polyester and use thereof
WO2019080525A1 (en) Biodegradable polyester and use thereof
JP2762156B2 (en) Polyvinyl chloride resin composition for food packaging
KR101992960B1 (en) Plasticizer composition and method for preparing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131127

R150 Certificate of patent or registration of utility model

Ref document number: 5435287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250