JP5434296B2 - Plasma ignition device - Google Patents

Plasma ignition device Download PDF

Info

Publication number
JP5434296B2
JP5434296B2 JP2009147246A JP2009147246A JP5434296B2 JP 5434296 B2 JP5434296 B2 JP 5434296B2 JP 2009147246 A JP2009147246 A JP 2009147246A JP 2009147246 A JP2009147246 A JP 2009147246A JP 5434296 B2 JP5434296 B2 JP 5434296B2
Authority
JP
Japan
Prior art keywords
discharge
ground electrode
insulator
space
discharge space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009147246A
Other languages
Japanese (ja)
Other versions
JP2011003482A (en
Inventor
秀一 藤本
美孝 佐藤
憲佳 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009147246A priority Critical patent/JP5434296B2/en
Publication of JP2011003482A publication Critical patent/JP2011003482A/en
Application granted granted Critical
Publication of JP5434296B2 publication Critical patent/JP5434296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

本発明は、燃焼機関の点火に用いられるプラズマ点火装置の信頼性向上に関するものである。   The present invention relates to improving the reliability of a plasma ignition device used for ignition of a combustion engine.

近年、自動車等の燃焼機関においては、燃焼排気中に含まれる、窒素酸化物、二酸化炭素等の環境負荷物質の更なる低減を図るため、更なる燃費の向上、希薄燃焼化が望まれている。
機関の燃焼効率の向上と環境負荷の低減とを同時に実現可能な機関として、機関燃焼室内に高温高圧のプラズマ状態にした気体を噴射して、従来の火花放電による点火プラグでは火炎伝播できないような希薄な混合気を効率的に燃焼させる方法が注目されている。
In recent years, in combustion engines such as automobiles, in order to further reduce environmentally hazardous substances such as nitrogen oxides and carbon dioxide contained in combustion exhaust gas, further improvement in fuel consumption and lean combustion are desired. .
As an engine capable of simultaneously improving the combustion efficiency of the engine and reducing the environmental load, it is impossible to propagate the flame with a spark plug using a conventional spark discharge by injecting gas in a high-temperature and high-pressure plasma state into the engine combustion chamber. A method for efficiently burning a lean air-fuel mixture has attracted attention.

このようなプラズマ点火装置として、特許文献1には、中心電極と、軸線方向に延びる軸孔を有し、前記中心電極の先端面を前記軸孔内先端側に収容すると共に、前記中心電極を保持する絶縁碍子と、当該絶縁碍子の先端部において、前記軸孔の内周面と前記中心電極の先端面とを壁面とする凹部状に形成されたキャビティと、前記絶縁碍子の前記軸線方向に垂直な径方向周囲を取り囲んで保持する主体金具と、前記絶縁碍子の前記先端部よりも前記軸線方向先端側に配置されると共に、前記絶縁碍子の前記先端部と環状に接触し、前記軸線方向から見たときに前記キャビティの開口部が自身の内側にある接触部と、前記キャビティの内部を外気と連通させる連通部とを有する接地電極とを備え、前記接地電極は、前記軸線方向には前記主体金具と非接触である一方、前記径方向には前記主体金具と接触すると共に、自身の外縁部が前記主体金具と接合されて前記主体金具と電気的に接続されていることを特徴とするプラズマジェット点火プラグが開示されている。
特許文献1のプラズマジェット点火プラグでは、接地電極の接触部が絶縁碍子の先端部に接触した状態で主体金具に接合されており、接地電極と絶縁碍子の先端部との間や絶縁碍子と主体金具との間に生じ得る間隙を塞がれた状態とすることによって、エネルギの漏出を防止して着火性の低下の抑制を図っている。
As such a plasma ignition device, Patent Literature 1 has a center electrode and an axial hole extending in the axial direction, and the distal end surface of the central electrode is accommodated on the distal end side in the axial hole, and the central electrode is An insulator to be held; a cavity formed in a concave shape with the inner peripheral surface of the shaft hole and the tip surface of the central electrode at the tip of the insulator; and the axial direction of the insulator A metal shell that surrounds and holds a vertical radial periphery, and is disposed closer to the distal end side in the axial direction than the distal end portion of the insulator, and is in an annular contact with the distal end portion of the insulator, in the axial direction When viewed from above, the cavity has a contact portion in which the opening of the cavity is inside, and a ground electrode having a communication portion that communicates the inside of the cavity with outside air, and the ground electrode is in the axial direction. The subject The plasma is characterized in that it is in non-contact with the tool, and is in contact with the metal shell in the radial direction, and its outer edge is joined to the metal shell and electrically connected to the metal shell. A jet spark plug is disclosed.
In the plasma jet ignition plug of Patent Document 1, the contact portion of the ground electrode is joined to the metal shell in a state of being in contact with the tip portion of the insulator, and between the ground electrode and the tip portion of the insulator or between the insulator and the main body. By setting a gap that may occur between the metal fittings to be closed, energy leakage is prevented and reduction in ignitability is suppressed.

ところが、特許文献1にあるような従来のプラズマ点火装置をガソリン直噴エンジン等の燃料噴霧が直接燃焼室内に噴射され、点火プラグの先端に燃料の噴霧が付着しやすい燃焼機関に適用した場合、以下のような問題が発生する虞があることが判明した。
即ち、低温始動時や、初爆直後等のエンジン全体が冷えた状態では、燃料室内に噴射された霧状の燃料又は混合気の燃焼爆発により発生した水蒸気等が上記点火プラグの接地電極等に触れて冷却・凝縮され液状物となることがある。
このような液状物が、内燃機関の圧縮工程時に燃焼室内の気体と共に上記燃焼室に向かって開口する上記接地電極の開口部を含む上記キャビティ内に侵入すると、上記液状物が油滴等の絶縁性のものである場合には、上記中心電極と上記接地電極との間の絶縁耐圧が上昇して要求電圧が高くなったり、又、上記液状物が水滴等の導電性のものである場合には、上記接地電極と上記中心電極との間の絶縁が該液状物を介して短絡されたりして、中心電極と接地電極との間で放電が起こり難くなり失火に至る虞があることが判明した。
However, when the conventional plasma ignition device as in Patent Document 1 is applied to a combustion engine in which fuel spray such as a gasoline direct injection engine is directly injected into the combustion chamber and the fuel spray easily adheres to the tip of the spark plug, It has been found that the following problems may occur.
That is, when the entire engine is cold, such as at a low temperature start or immediately after the first explosion, water vapor generated by the combustion explosion of the mist-like fuel or air-fuel mixture injected into the fuel chamber is applied to the ground electrode of the spark plug. It may be cooled and condensed by touching it to become liquid.
When such a liquid material enters the cavity including the opening of the ground electrode that opens toward the combustion chamber together with the gas in the combustion chamber during the compression process of the internal combustion engine, the liquid material insulates oil droplets or the like. In the case where the liquid is a liquid, the dielectric strength between the center electrode and the ground electrode is increased to increase the required voltage, or when the liquid is a conductive material such as water droplets. It has been found that the insulation between the ground electrode and the center electrode is short-circuited through the liquid material, and it is difficult for a discharge to occur between the center electrode and the ground electrode, resulting in a misfire. did.

そこで、本願発明はかかる実情に鑑み、燃焼室内に噴射された燃料や燃焼室内に存在する水蒸気等が冷却、凝縮され液状となった液状物が放電空間内に侵入しても、失火に至る虞のない信頼性の高いプラズマ点火装置を提供することを目的とするものである。   Therefore, in view of such a situation, the present invention may cause misfire even if the fuel injected into the combustion chamber or the water vapor existing in the combustion chamber is cooled and condensed to enter the discharge space. It is an object of the present invention to provide a highly reliable plasma ignition device without any problems.

第1の発明では、略長軸状に形成した中心電極と、該中心電極を覆いつつ上記中心電極の下端面よりも下方に向かって伸びる略筒状に形成した絶縁体と、該絶縁体を覆う略筒状に形成したハウジングと、該ハウジングに延設して略環状に形成された接地電極とによって構成したプラズマ点火プラグと、該プラズマ点火プラグに高エネルギを供給する高エネルギ電源とを具備し、上記中心電極と上記接地電極との間に区画された放電空間内に高エネルギを与えて、上記放電空間内の気体を高温・高圧のプラズマ状態として機関燃焼室内に噴射して燃焼機関の点火を行うプラズマ点火装置において、上記燃焼室に向かって開口する上記接地電極の開口部の内側に区画された開口空間及び上記放電空間内に侵入した液状物を上記放電空間から排出する液状物排出手段と、排出された液状物を一時的に貯留する液状物貯留手段と、を具備し、上記液状物貯留手段として、上記絶縁体と上記ハウジングとの間に外部との気密が保持された空隙部を設け、上記絶縁体の下端面と上記接地電極との間に密接して略環状に形成した接地電極放電部を介装すると共に、上記液状物排出手段として、上記空隙部と上記放電空間とを連通する連通路を、上記絶縁体と上記接地電極放電部との境界における上記絶縁体表面、上記絶縁体と上記接地電極放電部との境界における上記接地電極放電部表面、上記接地電極放電部内部、上記接地電極放電部と上記接地電極との境界における上記接地電極放電部表面、上記接地電極放電部と上記接地電極との境界における上記接地電極表面、の少なくともいずれかの位置に設ける(請求項1)。 In the first invention, a center electrode formed in a substantially long axis shape, an insulator formed in a substantially cylindrical shape covering the center electrode and extending downward from the lower end surface of the center electrode, and the insulator A plasma ignition plug configured by a substantially cylindrical housing covering the ground electrode formed in a substantially annular shape extending to the housing; and a high energy power source for supplying high energy to the plasma ignition plug. Then, high energy is given to the discharge space defined between the center electrode and the ground electrode, and the gas in the discharge space is injected into the engine combustion chamber as a high-temperature and high-pressure plasma state to In the plasma ignition device that performs ignition, the liquid space that has entered the discharge space and the opening space defined inside the opening portion of the ground electrode that opens toward the combustion chamber is discharged from the discharge space. Comprising a liquid material discharge means, a liquid material reservoir means for temporarily storing the discharged liquid material, and as the liquid substance reservoir means, airtight with the outside between the insulator and the housing holding A ground electrode discharge portion formed in a substantially annular shape in close contact between the lower end surface of the insulator and the ground electrode, and as the liquid material discharge means, The communication path that communicates with the discharge space includes a surface of the insulator at a boundary between the insulator and the ground electrode discharge portion, a surface of the ground electrode discharge portion at a boundary between the insulator and the ground electrode discharge portion, At least one of the positions inside the ground electrode discharge part, the surface of the ground electrode discharge part at the boundary between the ground electrode discharge part and the ground electrode, and the surface of the ground electrode at the boundary between the ground electrode discharge part and the ground electrode Provided (claim 1).

の発明では、上記連通路は、一つ当たりの断面積を0.1mm2以上に形成する(請求項)。 In a second aspect of the present invention, the communication passage forms a cross-sectional area per one above 0.1 mm @ 2 (claim 2).

の発明では、上記空隙部の容積は、上記放電空間と上記開口空間とを併せた空間の容積の等倍以上に形成する(請求項)。 In the third invention, the volume of the void portion is formed over an equal times the volume of the space combined with the discharge space and the open space (claim 3).

第1の発明によれば、低温始動時等において、燃焼室内に噴射された霧状の燃料や爆発により発生した水蒸気等が冷却され液状化された物質が上記燃焼室に向かって開口する上記接地電極の開口部から上記プラズマ点火プラグ内に区画された上記放電空間内侵入しても、上記放電空間及び上記開口空間内に侵入した液状物が上記液状物排出手段によって排出され上記液状物貯留手段に一時的に貯留されるので、上記中心電極と上記接地電極との間に液体燃料が付着することによって、上記放電空間の絶縁を破壊する要求電圧が上昇したり上記中心電極と上記接地電極との間で短絡したりする虞がない。
具体的には、上記開口空間及び上記放電空間内に液体燃料が侵入しても、上記燃焼機関の圧縮行程において、上記燃焼室内の圧力が急上昇すると液化燃料又は凝縮水等の液状物が放電経路に浸入し易くなり、該液状物によって放電空間が塞がれた状態であると、放電経路の形成が困難となる虞がある。
しかし、本発明のように上記連通路を設けることにより上記液状物が上記空隙部に吸い込まれ、上記中心電極と上記接地電極との間の放電経路が確保され、安定した着火性を示すプラズマ点火装置が実現できることが、本発明者等の鋭意試験により判明した。
また、本発明者等の鋭意試験によって、上記空隙部を上記絶縁体と上記ハウジングとの間に形成した場合に、上記放電空間内に進入した上記液状物を上記空隙内に排出して放電経路を確保して安定した点火を実現する本発明の効果が発揮できることが判明した。
さらに、上記連通路は、上記絶縁体と上記接地電極放電部との境界における上記絶縁体表面、上記絶縁体と上記接地電極放電部との境界における上記接地電極放電部表面、上記接地電極放電部内部、上記接地電極放電部と上記接地電極との境界における上記接地電極放電部表面、上記接地電極放電部と上記接地電極との境界における上記接地電極表面のいずれの位置に形成しても、上記放電空間内に侵入した上記液状物を上記連通路から上記空隙部に排出され、上記中心電極と上記接地電極放電部との間に放電経路を確保する本発明の効果が得られる。
したがって、上記高エネルギ電源から高電圧が印加されたときに、安定した電圧で上記中心電極と上記接地電極との間で放電が起こり、これをトリガとして上記放電空間内に大電流が放出され、上記放電空間内の気体が高温・高圧のプラズマ状態となって上記燃焼室内に噴射され、安定した着火性を示すプラズマ点火装置が実現できる。

According to the first invention, at the time of low temperature starting or the like, the grounding in which a mist-like fuel injected into the combustion chamber, water vapor generated by explosion, etc. is cooled and liquefied is opened toward the combustion chamber. Even if it enters the discharge space defined in the plasma ignition plug from the opening of the electrode, the liquid material that has entered the discharge space and the opening space is discharged by the liquid material discharge means, and the liquid material storage means. Therefore, when liquid fuel adheres between the center electrode and the ground electrode, the required voltage for destroying the insulation of the discharge space increases or the center electrode and the ground electrode There is no risk of short circuiting between the two.
Specifically, even if liquid fuel enters the open space and the discharge space, liquid matter such as liquefied fuel or condensed water is discharged in the discharge path when the pressure in the combustion chamber rises rapidly during the compression stroke of the combustion engine. If the discharge space is blocked by the liquid material, it may be difficult to form a discharge path.
However, by providing the communication path as in the present invention, the liquid material is sucked into the gap, and a discharge path between the center electrode and the ground electrode is secured, and plasma ignition exhibiting stable ignitability. It has been clarified by the inventors' intensive studies that the apparatus can be realized.
In addition, when the gap is formed between the insulator and the housing by the present inventors' earnest test, the liquid material that has entered the discharge space is discharged into the gap to discharge the discharge path. It has been found that the effect of the present invention that achieves stable ignition while ensuring the above can be exhibited.
Further, the communication path includes the insulator surface at the boundary between the insulator and the ground electrode discharge portion, the ground electrode discharge portion surface at the boundary between the insulator and the ground electrode discharge portion, and the ground electrode discharge portion. Internally, the ground electrode discharge part surface at the boundary between the ground electrode discharge part and the ground electrode, the ground electrode surface at the boundary between the ground electrode discharge part and the ground electrode can be formed at any position. The liquid material that has entered the discharge space is discharged from the communication path into the gap, and the effect of the present invention is ensured to secure a discharge path between the center electrode and the ground electrode discharge part.
Therefore, when a high voltage is applied from the high energy power source, a discharge occurs between the center electrode and the ground electrode at a stable voltage, and a large current is released into the discharge space as a trigger, A gas in the discharge space becomes a high-temperature and high-pressure plasma state and is injected into the combustion chamber, thereby realizing a plasma ignition device exhibiting stable ignitability.

の発明の範囲で上記連通路を形成することにより、上記燃焼室内の圧力が上昇したときに、上記液状物が上記放電空間内に侵入しても、上記液状物を上記空隙部に速やかに排出できることが、本発明者等の鋭意試験により判明した。
なお、上記連通路1つ当たりの断面積が0.1mmより小さい場合には、管路抵抗が大きくなり、上記空隙部内に液状物が排出されにくくなると推察される。
By forming the communication path within the scope of the second invention, even if the liquid material enters the discharge space when the pressure in the combustion chamber rises, the liquid material is quickly put into the gap. It has been revealed by the inventors' diligent tests that it can be discharged easily.
In addition, when the cross-sectional area per said communication path is smaller than 0.1 mm < 2 >, it is guessed that pipe resistance becomes large and it becomes difficult to discharge | emit liquid substance in the said space | gap part.

本発明者等の鋭意試験によって、第の発明の範囲で、上記空隙部を形成することにより、上記放電空間内に侵入した上記液状物を上記空隙部に排出して、上記中心電極と上記接地電極放電部との間に放電経路を確保できることが確認された。 The inventors of the present inventors have conducted intensive tests to form the gap within the scope of the third invention, thereby discharging the liquid material that has entered the discharge space into the gap, and the center electrode and the above-mentioned It was confirmed that a discharge path could be secured between the ground electrode discharge part.

本発明の第1の実施形態におけるプラズマ点火装置の概要を示す半断面図。1 is a half sectional view showing an outline of a plasma ignition device in a first embodiment of the present invention. (a)は、本発明の第1の実施形態におけるプラズマ点火装置の要部断面図、(b)は、本発明の要部である接地電極放電部の詳細を示す一部切り欠き斜視図。(A) is principal part sectional drawing of the plasma ignition apparatus in the 1st Embodiment of this invention, (b) is a partially notched perspective view which shows the detail of the ground electrode discharge part which is the principal part of this invention. 本発明の第1の実施形態におけるプラズマ点火装置の効果を示し、(a)は、燃料液滴が付着した状態における要部断面図、(b)は、圧縮行程における要部断面図。The effect of the plasma ignition apparatus in the 1st Embodiment of this invention is shown, (a) is principal part sectional drawing in the state to which the fuel droplet adhered, (b) is principal part sectional drawing in a compression stroke. 本発明の効果を確認するための模擬試験結果を示し、(a)は、液滴が付着した状態を示す図面代用写真、(b)は、加圧時の図面代用写真。The simulation test result for confirming the effect of this invention is shown, (a) is drawing substitute photograph which shows the state which the droplet adhered, (b) is drawing substitute photograph at the time of pressurization. 従来のプラズマ点火装置の問題点を示し、(a)は、燃料液滴が付着した状態における要部断面図、(b)は、圧縮行程における要部断面図。The problem of the conventional plasma ignition device is shown, (a) is the principal part sectional view in the state where the fuel droplet adhered, (b) is the principal part sectional view in the compression stroke. 従来の問題点を確認するための模擬試験結果を示し、(a)は、液滴が付着した状態を示す図面代用写真、(b)は、加圧時の図面代用写真。The simulation test result for confirming the conventional problem is shown, (a) is a drawing substitute photograph showing a state where droplets are attached, and (b) is a drawing substitute photograph at the time of pressurization. 本発明の効果に対する放電空間容積と空隙部容積との関係を示す特性図。The characteristic view which shows the relationship between the discharge space volume with respect to the effect of this invention, and a space | gap part volume. 本発明の第2の実施形態におけるプラズマ点火装置に用いられる接地電極放電部の概要を示し、(a)は上面図、(b)は、断面図、(c)は、下面図、(d)は、組み付け状態における要部断面図。The outline | summary of the ground electrode discharge part used for the plasma ignition apparatus in the 2nd Embodiment of this invention is shown, (a) is a top view, (b) is sectional drawing, (c) is a bottom view, (d). These are principal part sectional drawings in an assembly state. 本発明の第3の実施形態におけるプラズマ点火装置の要部断面図。Sectional drawing of the principal part of the plasma ignition apparatus in the 3rd Embodiment of this invention.

本発明は、放電空間内の気体に高エネルギを与えて高温・高圧のプラズマ状態として機関燃焼室内に噴射して機関燃焼室内の混合気を点火するプラズマ点火装置において、低温始動時などにおいて、燃焼室内に噴射された燃料がプラズマ点火プラグの先端に付着し、冷却され、液滴状となってプラズマ点火プラグに区画された放電空間内侵入したときに、液体燃料を放電空間から排出する液状物排出手段と、排出された液体燃料を一時的に貯留する液状物貯留手段とを設けて、中心電極と接地電極との間の絶縁耐圧の上昇や短絡を防止して、安定した着火を実現するプラズマ点火装置である。   The present invention relates to a plasma ignition device that gives high energy to a gas in a discharge space and injects it into a combustion chamber as a high-temperature and high-pressure plasma to ignite an air-fuel mixture in the engine combustion chamber. Liquid material that discharges liquid fuel from the discharge space when the fuel injected into the chamber adheres to the tip of the plasma spark plug, cools, and enters into the discharge space partitioned by the plasma spark plug. Discharge means and liquid material storage means for temporarily storing the discharged liquid fuel are provided to prevent an increase in insulation withstand voltage and short circuit between the center electrode and the ground electrode, thereby realizing stable ignition. It is a plasma ignition device.

図1、図2を参照して本発明の第1の実施形態におけるプラズマ点火装置1の概要について説明する。
図1に示すように、本実施形態におけるプラズマ点火装置1は、図略の燃焼機関30の燃焼室300内に先端が露出するように装着されたプラズマ点火10とプラズマ点火プラグ10に高電圧の印加と大電流の供給とを行う高エネルギ電源20とによって構成されている。
An outline of the plasma ignition device 1 according to the first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the plasma ignition device 1 according to the present embodiment has a high voltage applied to a plasma ignition 10 and a plasma ignition plug 10 that are mounted so that a tip is exposed in a combustion chamber 300 of a combustion engine 30 (not shown). The high-energy power source 20 is configured to apply and supply a large current.

プラズマ点火プラグ10は、略長軸状に形成した中心電極11と、中心電極11を覆う略筒状に形成した絶縁体12と、絶縁体12を覆う略筒状に形成したハウジング13と、ハウジング13に延設して略環状に形成され燃焼室300に向かって開口する開口部131の形成された接地電極130と、放電チップ150と、絶縁体12の内側に区画された放電空間140と、本発明の要部であり、接地電極130の表面に付着した燃料を一時的に貯留する液状物貯留手段として絶縁体12とハウジング13との間に形成した空隙部160と、放電空間140内に侵入した燃料を排出する液状物排出手段として、放電チップ150に穿設された空隙部160と放電空間140とを連通する連通路161とによって構成されている。   The plasma ignition plug 10 includes a center electrode 11 formed in a substantially long axis shape, an insulator 12 formed in a substantially cylindrical shape covering the center electrode 11, a housing 13 formed in a substantially cylindrical shape covering the insulator 12, and a housing 13, a ground electrode 130 formed in a substantially annular shape and having an opening 131 that opens toward the combustion chamber 300, a discharge chip 150, a discharge space 140 partitioned inside the insulator 12, In the discharge space 140, the gap 160 formed between the insulator 12 and the housing 13 as a liquid material storage means for temporarily storing the fuel adhering to the surface of the ground electrode 130. As a liquid material discharging means for discharging the invading fuel, a gap 160 formed in the discharge chip 150 and a communication path 161 that connects the discharge space 140 are configured.

中心電極11は、先端側に中心電極放電部110が形成され、基端側に外部の高エネルギ電源20に接続される中心電極端子部112が形成され、中心電極放電部110と中心電極端子部112とは中心電極中軸111を介して、一体に接続されている。
中心電極放電部110は、例えばイリジウム、イリジウム合金等の貴金属を含む耐熱性の高い導電性材料によって形成されている。
中心電極中軸111は、耐食性に優れたニッケル合金等によって形成され、内部に銅等の良電導性で高熱伝導性の金属材料が封入されている。
中心電極端子部112は、鉄、アルミニウム等の良電導性の金属材料によって形成されている。
The center electrode 11 has a center electrode discharge portion 110 formed on the distal end side and a center electrode terminal portion 112 connected to the external high energy power source 20 on the proximal end side. The center electrode discharge portion 110 and the center electrode terminal portion 112 is integrally connected through a central electrode middle shaft 111.
The center electrode discharge part 110 is formed of a highly heat-resistant conductive material containing a noble metal such as iridium or an iridium alloy.
The center electrode middle shaft 111 is formed of a nickel alloy or the like having excellent corrosion resistance, and a metal material having good electrical conductivity and high thermal conductivity such as copper is enclosed therein.
The center electrode terminal portion 112 is made of a highly conductive metal material such as iron or aluminum.

絶縁体12は、機械的強度、耐熱性、熱伝導性、高温時の絶縁耐力に優れた高純度のアルミナ等の絶縁性セラミックスを用いて中心電極11を覆うように略筒状に形成されている。
絶縁体12の先端側には、中心電極放電部110の下端面よりも下方に延びる略筒状の放電空間形成部120が形成されている。放電空間形成部120の内側には、中心電極放電部110の下端面と接地電極開口部131とによって、放電空間140が区画されている。
絶縁体12の中腹には、径大となる絶縁体係止部121が形成され、絶縁体係止部121を覆うように略筒状のハウジング13によって固定されている。
ハウジング13から露出する絶縁体12の基端側には、コルゲート状の絶縁体頭部122が形成され、絶縁体頭部122から露出する中心電極端子部112とハウジング13との間で絶縁リークを生じないようになっている。
The insulator 12 is formed in a substantially cylindrical shape so as to cover the center electrode 11 using an insulating ceramic such as high-purity alumina excellent in mechanical strength, heat resistance, thermal conductivity, and dielectric strength at high temperatures. Yes.
A substantially cylindrical discharge space forming portion 120 extending downward from the lower end surface of the center electrode discharge portion 110 is formed on the distal end side of the insulator 12. Inside the discharge space forming part 120, a discharge space 140 is partitioned by the lower end surface of the center electrode discharge part 110 and the ground electrode opening 131.
An insulator locking portion 121 having a large diameter is formed in the middle of the insulator 12, and is fixed by a substantially cylindrical housing 13 so as to cover the insulator locking portion 121.
A corrugated insulator head 122 is formed on the base end side of the insulator 12 exposed from the housing 13, and an insulation leak is caused between the center electrode terminal portion 112 exposed from the insulator head 122 and the housing 13. It does not occur.

接地電極130は、放電空間形成部120の下端面を覆いつつ、放電空間形成部120の下端開口に連通し、燃焼室300に向かって開口し、内側に開口空間141の区画された接地電極開口部131を有する略環状に形成されている。
接地電極130の基端側に連なって、放電空間形成部120の外周を覆うように略筒状の側面電極132が形成されている。
側面電極132の基端側に連なって絶縁体係止部121を覆うようにハウジング13が形成され、さらにハウジング13の先端側外周には、燃焼機関60に螺結するためのネジ部133が形成され、ハウジング13の基端側外周には、ネジ部133をネジ締めするための六角部135が形成され、さらに、ハウジング13に基端側端面には、絶縁体係止部121を加締め固定する加締め部134が形成されている。
接地電極130と側面電極132とハウジング13とは、ニッケル、ニッケル合金、鉄等の金属材料によって形成されている。
The ground electrode 130 covers the lower end surface of the discharge space forming part 120 and communicates with the lower end opening of the discharge space forming part 120, opens toward the combustion chamber 300, and opens the ground electrode with the opening space 141 defined inside. It is formed in a substantially annular shape having a portion 131.
A substantially cylindrical side electrode 132 is formed so as to continue to the base end side of the ground electrode 130 and cover the outer periphery of the discharge space forming portion 120.
The housing 13 is formed so as to be connected to the base end side of the side electrode 132 and cover the insulator locking portion 121, and further, a screw portion 133 to be screwed to the combustion engine 60 is formed on the outer periphery of the distal end side of the housing 13. A hexagonal portion 135 for tightening the screw portion 133 is formed on the outer periphery of the base end side of the housing 13. Further, the insulator locking portion 121 is fixed by crimping to the end face of the housing 13 on the base end side. A caulking portion 134 is formed.
The ground electrode 130, the side electrode 132, and the housing 13 are made of a metal material such as nickel, a nickel alloy, or iron.

側面電極132と絶縁体12との間には、略筒状の空隙部160が形成されている。
空隙部160の基端側は、絶縁体係止部121とハウジング13とが当接する当接部が形成され、絶縁体係止部121とハウジング13との間に機密性保持部材として金属製シール部材170(パッキン)、絶縁性粉末シール部材171、封止部材172等が挿嵌されているので気密性が保持され、空隙部160及び放電空間140内の気体が外部に漏れるのを防止している。
本発明において、空隙部160は、プラズマ点火プラグ10の表面に付着した燃料液滴を放電空間140内から排出させ一時的に貯留する排出燃料貯留手段を構成している。
さらに、空隙部160は、プラズマ点火プラグ10の製造時において放電空間形成部120の側面電極132内への挿入を容易にすると共に、側面電極132と中心電極放電部110との間に形成される浮遊容量を小さくして放電ノイズの発生を抑制している。
A substantially cylindrical void 160 is formed between the side electrode 132 and the insulator 12.
On the proximal end side of the gap 160, a contact portion where the insulator locking portion 121 and the housing 13 are in contact is formed, and a metal seal is used as a confidentiality holding member between the insulator locking portion 121 and the housing 13. Since the member 170 (packing), the insulating powder seal member 171, the sealing member 172 and the like are inserted, the airtightness is maintained, and the gas in the gap 160 and the discharge space 140 is prevented from leaking to the outside. Yes.
In the present invention, the gap 160 constitutes a discharged fuel storage means that discharges fuel droplets adhering to the surface of the plasma spark plug 10 from the discharge space 140 and temporarily stores them.
Further, the gap 160 facilitates the insertion of the discharge space forming part 120 into the side electrode 132 during the manufacture of the plasma spark plug 10 and is formed between the side electrode 132 and the center electrode discharge part 110. The stray capacitance is reduced to suppress discharge noise.

図2(a)に示すように、接地電極130と放電空間形成部120の下端面との境界には、接地電極放電部として放電チップ150が介装されている。
放電チップ150は、耐熱性、耐スパッタリング性に優れた金属材料が用いられ、図2(b)に示すように、略環状に形成されている。
放電チップ150の上面は、絶縁体12の下端面に気密に当接している。放電チップ150の内周面は放電空間140に連なり、放電チップ150の外周面は略筒状の空隙部160に露出し、内周面と外周面とを貫き、放電空間140と空隙部160とを連通する連通路161が穿設されている。
連通路161は、少なくとも1以上穿設してあれば良いが、本図に示すように複数穿設しても良い。
また、連通路161の一つ当たりの断面積Sが、0.1mmより小さい場合には、連通路161の管路抵抗が大きく、空隙部160内に液状燃料等の液状物が流入しにくくなる。したがって、連通路161の1つ当たりの断面積Sは少なくとも0.1mm以上とすることが望ましい。
なお、本実施形態において、放電空間140の容積は4mm程度に形成され、空隙部160の容積は、約20mmに形成されており、放電空間140も容積の5倍以上となっている。
As shown in FIG. 2A, a discharge chip 150 is interposed as a ground electrode discharge portion at the boundary between the ground electrode 130 and the lower end surface of the discharge space forming portion 120.
The discharge chip 150 is made of a metal material excellent in heat resistance and sputtering resistance, and is formed in a substantially annular shape as shown in FIG.
The upper surface of the discharge chip 150 is in airtight contact with the lower end surface of the insulator 12. The inner peripheral surface of the discharge chip 150 is connected to the discharge space 140, the outer peripheral surface of the discharge chip 150 is exposed to the substantially cylindrical gap portion 160, penetrates the inner peripheral surface and the outer peripheral surface, and the discharge space 140 and the gap portion 160 A communication passage 161 that communicates with each other is formed.
It is sufficient that at least one communication passage 161 is formed, but a plurality of communication passages 161 may be formed as shown in the figure.
Further, when the cross-sectional area S per one of the communication passages 161 is smaller than 0.1 mm 2 , the pipe resistance of the communication passage 161 is large, and a liquid material such as liquid fuel does not easily flow into the gap 160. Become. Therefore, it is desirable that the cross-sectional area S per one communication path 161 is at least 0.1 mm 2 or more.
In the present embodiment, the discharge space 140 has a volume of about 4 mm 3 , the gap 160 has a volume of about 20 mm 3 , and the discharge space 140 is also five times or more the volume.

図3及び図4を参照して本発明の効果について説明する。
図3(a)に示すように、低温始動時に燃焼室300内に噴射された燃料が冷却されて接地電極130の開口部131を覆うように燃料液滴DFLが形成された場合であっても、本図(b)に示すように、燃焼サイクルの圧縮工程において、燃焼室300内の圧力PCYLが、例えば、1.0MPaに加圧されると、燃料液滴DFLは、接地電極開口部131から放電空間140内の気体を押圧しながら侵入するが、放電チップ150に連通路161が穿設されているので、キャピラリー効果により、連通路161を介して空隙部160内に燃料液滴DFLが吸い込まれる。
The effects of the present invention will be described with reference to FIGS.
As shown in FIG. 3 (a), the fuel injected into the combustion chamber 300 during the low temperature start is cooled and the fuel droplets DFL are formed so as to cover the opening 131 of the ground electrode 130. However, as shown in FIG. 4B, when the pressure P CYL in the combustion chamber 300 is increased to, for example, 1.0 MPa in the compression step of the combustion cycle, the fuel droplet D FL is The gas in the discharge space 140 enters while pressing the gas in the discharge space 140 from the opening 131. However, since the communication passage 161 is formed in the discharge chip 150, the fuel liquid enters the gap 160 through the communication passage 161 due to the capillary effect. Drop D FL is inhaled.

このとき、燃焼室300内の圧力が急上昇すると燃料液滴DFLを介して放電空間140内の圧力が急上昇し、連通路161の放電空間140側の開口が燃料液滴DFLによって塞がれた状態であると、空隙160内の圧力P160は相対的に放電空間140内の圧力P140よりも低くなるので、 また、空隙部160の容積は放電空間140の容積に比べ遥かに大きいので、圧縮により燃焼室300内の圧力PCYLが上昇すると、放電空間140内の圧力P140は、すぐに燃焼室300内のPCYLと等しい圧力なり、空隙部160内の圧力P160は相対的に低くなり、燃料液滴DFLは瞬間的に空隙部160内に吸い込まれ、中心電極放電部110の下端表面と放電チップ150の内周表面と接地電極130の開口部131の表面とが液状燃料に覆われることなく放電空間140及び開口空間141に露出し、中心電極放電部110の下端表面と放電チップ150の内周表面との間で放電が可能な状態となるものと推察される。 At this time, the pressure in the combustion chamber 300 increases rapidly through the fuel droplets D FL spike pressure in the discharge space 140, closed aperture of the discharge space 140 side of the communication passage 161 by the fuel droplets D FL If it is a state, the pressure P 160 in the gap 160 is lower than the pressure P 140 relatively discharge space 140, and since the volume of the void portion 160 is much larger than the volume of the discharge space 140 When the pressure P CYL in the combustion chamber 300 increases due to compression, the pressure P140 in the discharge space 140 immediately becomes equal to the pressure P CYL in the combustion chamber 300, and the pressure P 160 in the gap 160 is relatively low, fuel droplets D FL is instantaneously sucked into the gap portion 160, the opening 131 of the ground electrode 130 and the inner peripheral surface of the lower end surface and the discharge tip 150 of the center electrode discharge portion 110 The surface is exposed to the discharge space 140 and the opening space 141 without being covered with the liquid fuel, and the discharge is possible between the lower end surface of the center electrode discharge portion 110 and the inner peripheral surface of the discharge chip 150. Inferred.

この状態で、図略の電子制御装置から発信された点火信号にしたがって、項エネルギ電源20から、中心電極放電部110と放電チップ150との間に高電圧が印加されると、放電空間140内の絶縁が破壊され、沿面放電が起こり、これをトリガとして高エネルギ電源20から大電流が流れ、放電空間140及び開口空間141内の気体が高温・高圧のプラズマ状態となって噴射される。
このとき、一時的に空隙部160内に吸い込まれた液体燃料は、プラズマ状態となった気体によって加熱され、燃焼する。あるいは、空隙部160内に残留したとしても、点火後に放電空間140及び開口空間141内の圧力PCYLが減圧したときに、空隙部160内の圧力P160によって放電空間140及び開口空間141内に排出され、次回の点火時に燃焼される。
なお、絶縁体12の下端部と放電チップ150と接地電極130とは密接状態が保たれており、また、気体は液体に比べ濡れ性が悪く、摩擦係数が大きく、連通路161の内径φDは十分に小さいので、点火時に放電空間140及び開口空間141内の気体が高温、高圧のプラズマ状態となったときに、連通路161を介して空隙部160内に漏れる虞はない。
In this state, when a high voltage is applied between the center electrode discharge unit 110 and the discharge chip 150 from the term energy power source 20 in accordance with an ignition signal transmitted from an electronic control device (not shown), the inside of the discharge space 140 As a trigger, a large current flows from the high energy power source 20 and the gas in the discharge space 140 and the open space 141 is injected in a high temperature / high pressure plasma state.
At this time, the liquid fuel temporarily sucked into the gap 160 is heated by the gas in a plasma state and burns. Alternatively, even if it remains in the gap 160, when the pressure P CYL in the discharge space 140 and the opening space 141 is reduced after ignition, the pressure P 160 in the gap 160 causes the discharge space 140 and the opening space 141 to enter the gap 160. It is discharged and burned at the next ignition.
The lower end portion of the insulator 12, the discharge tip 150, and the ground electrode 130 are kept in close contact with each other, and the gas has poor wettability compared to the liquid, has a large coefficient of friction, and the inner diameter φD of the communication path 161 is Since it is sufficiently small, there is no possibility that the gas in the discharge space 140 and the opening space 141 will leak into the gap 160 through the communication path 161 when the gas in the discharge space 140 and the opening space 141 is in a high-temperature and high-pressure plasma state.

図4に、本発明の効果を確認するために行った模擬試験結果を示す。本図(a)に示すように、大気圧、又は、0.1MPaに保った圧力容器内に、本発明のプラズマ点火プラグ10の先端を露出させ、燃料液滴DFLを模して水滴D(0.08ml)をプラズマ点火プラグ10の先端に付着させ、本図(b)に示すように、燃焼機関30の圧縮工程を模して、圧力容器内を1.0MPaに上昇させたところ、水滴Dは、接地電極開口部131から放電空間140及び開口空間141内に吸い込まれ、中心電極11とハウジング13との間に高電圧を印加したところ放電が可能であることが確認された。
(比較例)
FIG. 4 shows the results of a simulation test conducted to confirm the effect of the present invention. As shown in the figure (a), atmospheric pressure, or, to keep the pressure vessel to 0.1 MPa, to expose the tip of the plasma ignition plug 10 of the present invention, the fuel droplets D FL to simulate water droplets D W (0.08 ml) is attached to the tip of the plasma spark plug 10 and the pressure vessel is raised to 1.0 MPa in a manner similar to the compression process of the combustion engine 30 as shown in FIG. The water droplet DW was sucked into the discharge space 140 and the opening space 141 from the ground electrode opening 131, and it was confirmed that discharge was possible when a high voltage was applied between the center electrode 11 and the housing 13. .
(Comparative example)

ここで、図5、図6を参照して、比較例として従来のプラズマ点火プラグ10zを用いた場合の問題点について説明する。
従来のプラズマプラグ10zでは、空隙部160zに放電空間140z内の圧力が漏れないように、放電チップ150zと絶縁体12の下端面とが密接状態となっている。
図5(a)に示すように、接地電極開口部131zを覆うように燃料液滴DFLが付着した場合、図5(b)に示すように、燃焼室300内の圧力PCYLが上昇すると、放電空間140z内に燃料液滴の一部が侵入し、燃料を介して放電空間140z内の圧力P140zが燃焼室300内の圧力PCYLと等しくなるまで放電空間140z内の気体は圧縮される。
このとき、液体燃料は逃げ場がないので、放電空間140z及び開口空間141z内に留まり、放電チップ150zの表面を覆いつくし、中心電極放電部110と放電チップ150zとの間の絶縁耐圧が極めて高くなり、放電できなくなることが判明した。
Here, with reference to FIG. 5, FIG. 6, the problem at the time of using the conventional plasma ignition plug 10z as a comparative example is demonstrated.
In the conventional plasma plug 10z, the discharge chip 150z and the lower end surface of the insulator 12 are in close contact so that the pressure in the discharge space 140z does not leak into the gap 160z.
As shown in FIG. 5 (a), when adhering fuel droplets D FL so as to cover the ground electrode opening 131Z, as shown in FIG. 5 (b), the pressure P CYL in the combustion chamber 300 rises , the discharge portion of the fuel droplets enters the space 140Z, the gas in the discharge spaces 140Z until it equals the pressure P CYL pressure P 140 z combustion chamber 300 within the discharge space 140Z via a fuel compression Is done.
At this time, since the liquid fuel has no escape, it stays in the discharge space 140z and the opening space 141z, covers the surface of the discharge chip 150z, and the withstand voltage between the center electrode discharge part 110 and the discharge chip 150z becomes extremely high. It became clear that it became impossible to discharge.

図6に、かかる問題点を確認するために行った模擬試験の結果を示す。本図(a)に示すように、大気圧、又は、0.1MPaに保った圧力容器内に、従来のプラズマ点火プラグ10zの先端を露出させ、燃料液滴DFLを模して水滴Dz(0.8ml)をプラズマ点火プラグ10zの先端に付着させ、本図(b)に示すように、燃焼機関30の圧縮工程を模して、圧力容器内を1.0MPaに上昇させたところ、水滴Dzは、接地電極開口部131zから放電空間140z内に吸い込まれることなく、水滴Dzにほとんど変化は見られなかった。
また、中心電極11zとハウジング13zとの間に高電圧を印加したところ、中心電極11zとハウジング13zとの間が短絡して、放電できないことが確認された。
FIG. 6 shows the result of a simulation test conducted to confirm such a problem. As shown in FIG. 5A, the tip of a conventional plasma ignition plug 10z is exposed in a pressure vessel maintained at atmospheric pressure or 0.1 MPa, and a water droplet D W is imitated by a fuel droplet D FL. z (0.8 ml) is attached to the tip of the plasma spark plug 10z, and the pressure vessel is raised to 1.0 MPa in a manner similar to the compression process of the combustion engine 30 as shown in FIG. The water droplet D W z was not sucked into the discharge space 140 z from the ground electrode opening 131 z, and almost no change was observed in the water droplet D W z.
Further, when a high voltage was applied between the center electrode 11z and the housing 13z, it was confirmed that the center electrode 11z and the housing 13z were short-circuited and could not be discharged.

図7を参照して、空隙部160の容積を変化させて行った本発明者等の鋭意試験により得られた、本発明の効果に対する放電空間140及び開口空間141の容積と中心電極空隙部160の容積との関係について説明する。
放電空間140と開口空間141とを合わせた容積V(mm)に対し、空隙部160の容積V(mm)を変化させたところ、図7に示すように、空隙部160の容積の放電空間140及び開口空間141の容積に対する容積比(V/V)が0.7以下の比較例においては、液状物質の放電空間140及び開口空間141内への侵入により放電空間140及び開口空間141の絶縁耐圧が上昇し、試験装置の印加電圧上限である35kVでは、放電することができず、図7に比較例として示すようにオープン波形となった。
空隙部160の容積の放電空間140及び開口空間141の容積に対する容積比(V/V)が1.0以上、即ち、放電空間140及び開口空間141の容積Vの等倍以上となるように、空隙部160及び開口空間141の容積Vを設定した場合には、放電空間140及び開口空間141内に侵入した液状物が、空隙部160に排出され、図7に実施例と示すように放電電圧を35kV以下の安定した電圧で放電可能となることが判明した。また、連通路161の断面積Sは、0.1mm以上とするのが望ましいことが判明した。
Referring to FIG. 7, the volume of discharge space 140 and opening space 141 with respect to the effect of the present invention and the center electrode gap 160 obtained by the inventors' diligent tests performed by changing the volume of gap 160. The relationship with the volume of will be described.
To a discharge space 140 and open space 141 and the combined volume V C (mm 3), where changing the volume V V of the gap portion 160 (mm 3), as shown in FIG. 7, the volume of the void portion 160 In the comparative example in which the volume ratio (V V / V C ) to the volume of the discharge space 140 and the opening space 141 is 0.7 or less, the discharge space 140 and the discharge space 140 and the opening space 141 are penetrated by the penetration of the liquid material into the discharge space 140 and the opening space 141. The dielectric strength of the open space 141 increased, and at 35 kV, which is the upper limit of the applied voltage of the test apparatus, discharge was not possible, and an open waveform was obtained as shown as a comparative example in FIG.
Volume to volume ratio of the discharge space 140 and the opening space 141 of the volume of the cavity portion 160 (V V / V C) is 1.0 or more, that is, the more equal volumes of V C of the discharge space 140 and open space 141 As described above, when the volume V V of the gap 160 and the opening space 141 is set, the liquid material that has entered the discharge space 140 and the opening space 141 is discharged into the gap 160, and FIG. 7 shows an embodiment. Thus, it was found that the discharge voltage can be discharged at a stable voltage of 35 kV or less. It has also been found that the cross-sectional area S of the communication passage 161 is desirably 0.1 mm 2 or more.

さらに、上記実施形態において、放電空間140及び開口空間141内に侵入する液状物が放電空間140及び開口空間141内を充満するような量の水滴を用いた試験の結果を用いて、効果を説明したが、このような多量の液状物が放電空間140及び開口空間141内に侵入するような場合にのみならず、燃焼室400内に存在する細かな粒状の液滴が、圧縮行程で数多く侵入し、中心電極放電部110と放電チップ150との間に点在するような場合でも、連通路161のキャピラリー効果によって空隙部160内に吸い込まれるので、放電経路途中の液状物の付着量が減少し、絶縁耐圧の上昇を抑制し、安定した放電電圧で放電可能となる。   Further, in the above embodiment, the effect is described using the results of the test using the amount of water droplets such that the liquid material entering the discharge space 140 and the opening space 141 fills the discharge space 140 and the opening space 141. However, not only when such a large amount of liquid material enters the discharge space 140 and the opening space 141, but many fine granular droplets existing in the combustion chamber 400 enter the compression stroke. Even in the case where it is scattered between the center electrode discharge part 110 and the discharge chip 150, it is sucked into the gap part 160 due to the capillary effect of the communication path 161, so that the amount of liquid substances attached in the middle of the discharge path is reduced. In addition, it is possible to suppress an increase in the withstand voltage and to discharge with a stable discharge voltage.

本発明の第2の実施形態において通路161の形成位置を変えたプラズマ点火装置1a〜1dについて、図8(a)〜(d)を参照して説明する。
上記実施形態のように、連通路161は、放電チップ150の内部に側面を内周面から外周面まで貫通するように形成しても良いが、本図(a)に示すように、放電チップ150aの下端面の一部と外周側面の一部とを溝状に窪ませて略L字形に穿設した連通路161aとしても良い。このような構成とすることにより、放電空間140と空隙部160とが連通状態となり、上記実施形態と同様に、放電空間140及び開口空間141内に侵入した燃料液滴を一時的に空隙部160内に排出させ、中心電極放電部110と放電チップ150aとの間で安定した放電経路が形成され、確実に点火が起こる。
また、本図(b)に示すように、連通路161bを放電チップ150aの表面に溝状に穿設しても良いし、本図(c)に示すように、接地電極130cと放電チップ150cとの境界において接地電極130c側の表面に連通路161cを溝状に穿設しても良いし、本図(d)に示すように、絶縁体放電空間形成部120dと放電チップ150dとの境界において絶縁体放電空間形成部120側の表面に連通路161dを溝状に穿設しても良い。
いずれの実施形態においても、放電空間140及び開口空間141内に侵入した液状物が連通路161a、161b、161c、161dから空隙部160に排出され、中心電極放電部110と接地電極放電部130との間に放電経路を確保する上記実施形態と同様の効果が期待できる。
Plasma ignition devices 1a to 1d in which the formation position of the passage 161 is changed in the second embodiment of the present invention will be described with reference to FIGS. 8 (a) to (d).
As in the above embodiment, the communication path 161 may be formed in the discharge chip 150 so as to penetrate the side surface from the inner peripheral surface to the outer peripheral surface. However, as shown in FIG. A part of the lower end surface of 150a and a part of the outer peripheral side surface may be recessed in a groove shape to form a communication path 161a that is formed in a substantially L shape. With such a configuration, the discharge space 140 and the gap portion 160 are in communication with each other, and the fuel droplets that have entered the discharge space 140 and the opening space 141 are temporarily inserted into the gap portion 160 as in the above embodiment. And a stable discharge path is formed between the center electrode discharge part 110 and the discharge tip 150a, and ignition is reliably caused.
Further, as shown in this figure (b), the communication path 161b may be formed in a groove shape on the surface of the discharge chip 150a, or as shown in this figure (c), the ground electrode 130c and the discharge chip 150c. The communication path 161c may be formed in the shape of a groove on the surface on the ground electrode 130c side at the boundary between the insulating discharge space forming portion 120d and the discharge chip 150d as shown in FIG. In this case, the communication path 161d may be formed in a groove shape on the surface on the insulator discharge space forming portion 120 side.
In any of the embodiments, the liquid material that has entered the discharge space 140 and the opening space 141 is discharged from the communication paths 161a, 161b, 161c, and 161d to the gap portion 160, and the center electrode discharge portion 110, the ground electrode discharge portion 130, and the like. An effect similar to that of the above-described embodiment for securing a discharge path between the two can be expected.

図9を参照して、本発明の第3の実施形態におけるプラズマ点火装置1eについて説明する。上記実施形態においては、液状物貯留手段として空隙部160を絶縁体12とハウジング13との間に形成し、液状物排出手段として空隙部160と放電空間140とを連通する連通路161を設けた場合について説明したが、本実施形態においては、中心電極11と絶縁体12との間に0.02mm以上0.15mm以下の間隙GAPを設けて、液状物貯留手段(空隙部)160e及び液状物排出手段(連通路)161eとした点が相違する。本実施形態において、連通路161eは、空隙部160eと放電空間140とが連通する形状であれば、中心電極110eの先端を絶縁体120eの内周壁が径小となるように縮径する径変部に当接させ、中心電極110eの先端と絶縁体120eの径変部との境界で、中心電極110e側と絶縁体120e側とのいずれかに、上記実施形態と同様の細孔状又は溝状に穿設した構成としても良いし、図9に示すように、中心電極110eの先端と絶縁体120eの径変部と当接しないように間隙を設けた構成としても良い。
このような構成とすることによって、圧縮行程時に放電空間140及び開口空間141内に侵入した液状物が、連通路161eから、空隙部160eに吸い込まれ、中心電極放電部110dと接地電極放電部130との間の放電経路が確保され、安定した着火を実現可能なプラズマ点火装置1eが実現できる。
なお、本実施形態において、空隙部160eの大きさを変化させて行った試験においても、図7に示した結果と同様の結果が得られ、放電空間140及び開口空間141の容積Vの等倍以上の容積で空隙部160eを設ければ、本発明の効果が得られることが判明した。
さらに、本実施形態において、空隙部160eと連通路161eとを中心電極11と絶縁体12との間にのみ設けても良いし、これに加えて、上記実施形態と同様に、絶縁体12とハウジング13との間に空隙部160を設けて、絶縁体120eの先端と接地電極130又は接地電極放電部131との境界に連通路161を形成した構成としても良い。
With reference to FIG. 9, the plasma ignition apparatus 1e in the 3rd Embodiment of this invention is demonstrated. In the above embodiment, the gap 160 is formed between the insulator 12 and the housing 13 as the liquid material storing means, and the communication passage 161 that communicates the gap 160 and the discharge space 140 is provided as the liquid discharge means. In the present embodiment, the gap GAP of 0.02 mm or more and 0.15 mm or less is provided between the center electrode 11 and the insulator 12, and the liquid material storage means (gap part) 160e and the liquid material are described. The difference is that the discharge means (communication path) 161e is used. In the present embodiment, if the communication passage 161e has a shape in which the gap portion 160e and the discharge space 140 communicate with each other, the diameter of the center electrode 110e is reduced so that the inner peripheral wall of the insulator 120e has a smaller diameter. The same pore shape or groove as in the above embodiment at either the center electrode 110e side or the insulator 120e side at the boundary between the tip of the center electrode 110e and the diameter changing portion of the insulator 120e. Alternatively, as shown in FIG. 9, a gap may be provided so as not to contact the tip of the center electrode 110e and the diameter changing portion of the insulator 120e.
With this configuration, the liquid material that has entered the discharge space 140 and the opening space 141 during the compression stroke is sucked into the gap 160e from the communication path 161e, and the center electrode discharge portion 110d and the ground electrode discharge portion 130 are sucked. And a plasma ignition device 1e capable of realizing stable ignition can be realized.
In the present embodiment, even in the test were carried out by varying the size of the gap portion 160e, results similar to the results shown in FIG. 7 is obtained, equal volume V C of the discharge space 140 and open space 141 It has been found that the effect of the present invention can be obtained by providing the gap portion 160e with a volume that is twice or more.
Further, in the present embodiment, the gap 160e and the communication path 161e may be provided only between the center electrode 11 and the insulator 12, and in addition to this, A space 160 may be provided between the housing 13 and the communication path 161 may be formed at the boundary between the tip of the insulator 120e and the ground electrode 130 or the ground electrode discharge part 131.

また、接地電極130、又は、側面電極132に、空隙部160、160a、160b、160c、160dと燃焼室400とを連通し、所定の流路抵抗を有する連通孔を穿設することにより空隙部160、160a、160b、160c、160d内に侵入した液状物を燃焼室400内に排出できるような構成とすることも可能であると推察される。   Further, the gap portion 160, 160a, 160b, 160c, 160d and the combustion chamber 400 are communicated with the ground electrode 130 or the side electrode 132, and a communication hole having a predetermined flow path resistance is formed, thereby forming the gap portion. It is presumed that it is possible to adopt a configuration in which the liquid material that has entered the 160, 160a, 160b, 160c, and 160d can be discharged into the combustion chamber 400.

なお、本発明において、高エネルギ電源20は、特に限定するものではなく、中心電極放電部110と接地電極130との間の絶縁を破壊し、放電空間140内に大電流を放出して、放電空間140内の気体を高温・高圧のプラズマ状態として噴出させることができれば、如何なる構成であっても良く、プラズマ点火装置に用いられる公知の高エネルギ電源を適宜採用し得るものである。   In the present invention, the high energy power source 20 is not particularly limited, and the insulation between the center electrode discharge part 110 and the ground electrode 130 is broken, and a large current is discharged into the discharge space 140 to discharge. Any configuration can be used as long as the gas in the space 140 can be ejected in a high-temperature and high-pressure plasma state, and a known high-energy power source used in a plasma ignition device can be appropriately employed.

1 プラズマ点火装置
10 プラズマ点火プラグ
11 中心電極
110 中心電極放電部
12 絶縁体
13 ハウジング
130 接地電極
131 接地電極開口部
140 放電空間
150 接地電極放電部(放電チップ)
160 空隙部(液状物貯留手段)
161 連通路(液状物排出手段)
170 機密性保持部材(パッキン)
20 高エネルギ電源
30 燃焼機関
DESCRIPTION OF SYMBOLS 1 Plasma ignition apparatus 10 Plasma ignition plug 11 Center electrode 110 Center electrode discharge part 12 Insulator 13 Housing 130 Ground electrode 131 Ground electrode opening part 140 Discharge space 150 Ground electrode discharge part (discharge chip)
160 Cavity (Liquid material storage means)
161 communication path (liquid discharge means)
170 Confidentiality retaining member (packing)
20 High energy power source 30 Combustion engine

特開2008−277257号公報JP 2008-277257 A 特開2007−255374号公報JP 2007-255374 A

Claims (3)

略長軸状に形成した中心電極と、該中心電極を覆いつつ上記中心電極の下端面よりも下方に向かって伸びる略筒状に形成した絶縁体と、該絶縁体を覆う略筒状に形成したハウジングと、該ハウジングに延設して略環状に形成された接地電極とによって構成したプラズマ点火プラグと、該プラズマ点火プラグに高エネルギを供給する高エネルギ電源とを具備し、上記中心電極と上記接地電極との間に区画された放電空間内に高エネルギを与えて、上記放電空間内の気体を高温・高圧のプラズマ状態として機関燃焼室内に噴射して燃焼機関の点火を行うプラズマ点火装置において、
上記燃焼室に向かって開口する上記接地電極の開口部の内側に区画された開口空間及び上記放電空間内に侵入した液状物を上記放電空間から排出する液状物排出手段と、排出された液状物を一時的に貯留する液状物貯留手段と、を具備し、
上記液状物貯留手段として、上記絶縁体と上記ハウジングとの間に外部との気密が保持された空隙部を設け、
上記絶縁体の下端面と上記接地電極との間に密接して略環状に形成した接地電極放電部を介装すると共に、
上記液状物排出手段として、上記空隙部と上記放電空間とを連通する連通路を、
上記絶縁体と上記接地電極放電部との境界における上記絶縁体表面、
上記絶縁体と上記接地電極放電部との境界における上記接地電極放電部表面、
上記接地電極放電部内部、
上記接地電極放電部と上記接地電極との境界における上記接地電極放電部表面、
上記接地電極放電部と上記接地電極との境界における上記接地電極表面、
の少なくともいずれかの位置に設けることを特徴とするプラズマ点火装置。
A center electrode formed in a substantially long axis shape, an insulator formed in a substantially cylindrical shape covering the center electrode and extending downward from the lower end surface of the center electrode, and formed in a substantially cylindrical shape covering the insulator A plasma ignition plug configured to extend to the housing and a ground electrode formed in a substantially annular shape, and a high energy power source for supplying high energy to the plasma ignition plug, A plasma ignition device for igniting a combustion engine by applying high energy to a discharge space partitioned between the ground electrode and injecting the gas in the discharge space into a high temperature / high pressure plasma state into an engine combustion chamber In
An opening space partitioned inside the opening of the ground electrode that opens toward the combustion chamber, a liquid material discharging means for discharging the liquid material that has entered the discharge space from the discharge space, and the discharged liquid material A liquid storage means for temporarily storing
As the liquid material storing means, a gap portion is provided between the insulator and the housing to maintain airtightness with the outside,
While interposing a ground electrode discharge portion formed in a substantially annular shape closely between the lower end surface of the insulator and the ground electrode,
As the liquid material discharge means, a communication path that communicates the gap and the discharge space,
The insulator surface at the boundary between the insulator and the ground electrode discharge part;
The ground electrode discharge portion surface at the boundary between the insulator and the ground electrode discharge portion;
Inside the ground electrode discharge part,
The surface of the ground electrode discharge part at the boundary between the ground electrode discharge part and the ground electrode;
The surface of the ground electrode at the boundary between the ground electrode discharge section and the ground electrode;
A plasma ignition device provided at at least one of the positions.
上記連通路は、一つ当たりの断面積を0.1mm 以上に形成することを特徴とする請求項1に記載のプラズマ点火装置。 2. The plasma ignition device according to claim 1, wherein each of the communication passages has a cross-sectional area of 0.1 mm 2 or more . 上記空隙部の容積は、上記放電空間と上記開口空間とを合わせた空間の容積の等倍以上に形成する請求項1、又は、2に記載のプラズマ点火装置。 3. The plasma ignition device according to claim 1, wherein a volume of the gap is formed to be equal to or greater than a volume of a space obtained by combining the discharge space and the opening space .
JP2009147246A 2009-06-22 2009-06-22 Plasma ignition device Expired - Fee Related JP5434296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147246A JP5434296B2 (en) 2009-06-22 2009-06-22 Plasma ignition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147246A JP5434296B2 (en) 2009-06-22 2009-06-22 Plasma ignition device

Publications (2)

Publication Number Publication Date
JP2011003482A JP2011003482A (en) 2011-01-06
JP5434296B2 true JP5434296B2 (en) 2014-03-05

Family

ID=43561284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147246A Expired - Fee Related JP5434296B2 (en) 2009-06-22 2009-06-22 Plasma ignition device

Country Status (1)

Country Link
JP (1) JP5434296B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101486203B1 (en) * 2013-12-31 2015-01-28 한국기계연구원 Complex ignition plug for using the Dielectric barrier discharge
JPWO2016013615A1 (en) * 2014-07-24 2017-05-25 イマジニアリング株式会社 Spark plug

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132031A (en) * 1978-04-05 1979-10-13 Okamura Corp Ignition plug free from carbon attachment
JPS55113290A (en) * 1979-02-22 1980-09-01 Nissan Motor Ignition plug for internal combustion engine
JP4482589B2 (en) * 2007-03-29 2010-06-16 日本特殊陶業株式会社 Plasma jet ignition plug
US7772752B2 (en) * 2007-03-29 2010-08-10 Ngk Spark Plug Co., Ltd. Plasma-jet spark plug
JP2010118185A (en) * 2008-11-11 2010-05-27 Toyota Motor Corp Plasma igniting device of internal combustion engine

Also Published As

Publication number Publication date
JP2011003482A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP4669486B2 (en) Plasma jet ignition plug and ignition system thereof
JP4778301B2 (en) Plasma jet ignition plug and its ignition device
JP4674219B2 (en) Plasma jet ignition plug ignition system
US20120242215A1 (en) Copper core combustion cup for pre-chamber spark plug
US9951743B2 (en) Plasma ignition device
US8267075B2 (en) Ignition device for internal combustion engine
US20090140623A1 (en) Spark plug
JP2010118185A (en) Plasma igniting device of internal combustion engine
US8243415B2 (en) Ignition plug and ignition system
JP5434296B2 (en) Plasma ignition device
JP6548610B2 (en) Plasma jet plug
JP6034199B2 (en) Plasma jet ignition plug
JP5140718B2 (en) Plasma jet ignition plug
WO2022030072A1 (en) Spark plug
JP2009193737A (en) Spark plug
JP6645168B2 (en) Spark plug
JPWO2013099672A1 (en) Ignition device, ignition method and engine
US10178751B2 (en) Ignition plug
JP6775460B2 (en) Spark plug
JP2009283380A (en) Ignition device
JP4968203B2 (en) Plasma ignition device
JP5217862B2 (en) Plasma ignition device
KR100934903B1 (en) Production method of spark plug
JP2010129367A (en) Plasma ignition device
JP2010116910A (en) Internal combustion engine including plasma igniter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R151 Written notification of patent or utility model registration

Ref document number: 5434296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees