JP5434001B2 - Polishing method, polishing condition calculation method and polishing apparatus - Google Patents

Polishing method, polishing condition calculation method and polishing apparatus Download PDF

Info

Publication number
JP5434001B2
JP5434001B2 JP2008189938A JP2008189938A JP5434001B2 JP 5434001 B2 JP5434001 B2 JP 5434001B2 JP 2008189938 A JP2008189938 A JP 2008189938A JP 2008189938 A JP2008189938 A JP 2008189938A JP 5434001 B2 JP5434001 B2 JP 5434001B2
Authority
JP
Japan
Prior art keywords
polishing
polished
value
predetermined
undulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008189938A
Other languages
Japanese (ja)
Other versions
JP2010023211A (en
Inventor
進 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008189938A priority Critical patent/JP5434001B2/en
Publication of JP2010023211A publication Critical patent/JP2010023211A/en
Application granted granted Critical
Publication of JP5434001B2 publication Critical patent/JP5434001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

本発明は、研磨方法、研磨条件計算方法および研磨装置に関する。   The present invention relates to a polishing method, a polishing condition calculation method, and a polishing apparatus.

光学素子等の研磨対象物の表面(被研磨面)を仕上げるための鏡面研磨等を行う際には、被研磨物の仕上げ面の表面粗さ、また研磨対象物の性能を著しく低下させるうねりやクラックの平滑化等を目的として、球状の研磨部材を有した研磨工具を用いて研磨をする研磨方法、および研磨装置が知られている(例えば、特許文献1を参照)。   When performing mirror polishing to finish the surface (surface to be polished) of an object to be polished such as an optical element, surface roughness of the surface of the object to be polished and waviness that significantly reduces the performance of the object to be polished For the purpose of smoothing cracks and the like, a polishing method and a polishing apparatus for polishing using a polishing tool having a spherical polishing member are known (see, for example, Patent Document 1).

上述した研磨を実行する際には、研磨部材を被研磨面に押圧させるとともに、被研磨面に沿って被研磨面の両端間を主走査方向に直線移動させ、端部まで移動し終える毎に所定ピッチだけ、主走査方向と直交する副走査方向に移動させながら、被研磨面に倣うようにして研磨を行い、被研磨面が所望の形状となるように研磨部材を押圧、走査させながら研磨を行う。   When performing the above-described polishing, the polishing member is pressed against the surface to be polished, and is linearly moved between the both ends of the surface to be polished along the surface to be polished in the main scanning direction. While moving in the sub-scanning direction perpendicular to the main scanning direction by a predetermined pitch, polishing is performed following the surface to be polished, and polishing is performed while pressing and scanning the polishing member so that the surface to be polished has a desired shape. I do.

このような研磨方法および研磨装置においては、研磨部材の形状により、この研磨部材を被研磨面に押圧させて研磨を実行した時点で被研磨面上にうねりが発生する。このうねりを低減させる方法として、研磨部材の大きさ、または前述した所定ピッチの値を小さくし研磨する方法が周知となっている。
特開2007−144568号公報
In such a polishing method and polishing apparatus, due to the shape of the polishing member, undulation occurs on the surface to be polished when the polishing member is pressed against the surface to be polished and polishing is performed. As a method for reducing this waviness, a method of polishing by reducing the size of the polishing member or the above-mentioned predetermined pitch value is well known.
JP 2007-144568 A

しかしながら、上述した研磨方法では所定ピッチの値を小さくすることによりうねりを低減させることはできるものの、研磨部材の走査距離が長くなることで、1枚の研磨対象物の研磨を行う際にかかる時間が長くなり、研磨効率が低下するという問題があった。   However, although the waviness can be reduced by reducing the value of the predetermined pitch in the above-described polishing method, the time required for polishing one polishing object by increasing the scanning distance of the polishing member. However, there was a problem that the polishing efficiency was lowered.

本発明は、このような問題に鑑みてなされたものであり、研磨効率を低下させずに、大きなうねりの発生を回避する研磨方法、研磨条件計算方法、研磨装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a polishing method, a polishing condition calculation method, and a polishing apparatus that avoid the occurrence of large waviness without reducing polishing efficiency. .

このような目的達成のため、第1の発明に係る研磨方法は、球形の研磨部材を回転させながら研磨対象物の被研磨面に押圧させるとともに、前記被研磨面に沿って主走査方向に所定の距離を相対移動させ、前記所定の距離を相対移動し終える毎に所定ピッチだけ前記主走査方向と直交する副走査方向に相対移動させながら前記被研磨面の研磨を行う研磨方法において、前記所定ピッチの値と、研磨を実行することにより形成される前記被研磨面の凹凸を表すうねりについての許容値とを含む研磨条件を入力する入力ステップと、前記入力ステップにおいて入力された前記研磨条件に基づいて前記うねりの最大凹凸差を算出する計算ステップと、前記計算ステップにおいて算出された前記うねりの最大凹凸差が、前記入力ステップにおいて入力された前記許容値より大きいか否かを判定する判定ステップとを有する。そして前記判定ステップにおいて、前記うねりの最大凹凸差が前記許容値以下であると判定された場合には研磨を許可し、前記うねりの最大凹凸差が前記許容値より大きいと判定された場合には研磨を許可しないことを特徴とする。 For this purpose achieved, the polishing method according to the first invention, together to press the polished surface of the polishing object while rotating the polishing member spherical, predetermined in the main scanning direction along the polished surface the distance moved relative a polishing method of polishing the surface to be polished while the sub-scanning direction are moved relative to perpendicular to the main scanning direction by a predetermined pitch of the predetermined distance for each finishes relative movement, the predetermined the value of the pitch, an input step of inputting the polishing conditions including the allowable values for waviness representing the unevenness of the polished surface formed by performing the polishing, the polishing condition inputted in the input step a calculation step of calculating the maximum unevenness difference of the undulation on the basis of the maximum unevenness difference of the undulation calculated in said calculating step, an input at said input step To Yes and determining steps were whether the greater than the allowable value. Then, in the determination step, the maximum unevenness difference of the undulation allow polishing when it is determined to be equal to or less than the allowable value, when the maximum unevenness difference of the undulation is determined to be greater than the allowable value Is characterized by not allowing polishing.

また、第2の発明に係る研磨方法は、球形の研磨部材を回転させながら研磨対象物の被研磨面に押圧させるとともに、前記被研磨面に沿って主走査方向に所定の距離を相対移動させ、前記所定の距離を相対移動し終える毎に所定ピッチだけ前記主走査方向と直交する副走査方向に相対移動させながら前記被研磨面の研磨を行う研磨方法において、前記研磨部材により研磨を行った前記被研磨面の表面の測定結果から前記研磨部材を前記被研磨面に押圧させた際に形成される接触円の半径の値を取得する測定ステップと、前記測定ステップにおいて取得された前記接触円の半径を、入力した前記所定ピッチの値で除した値を表すうねり係数を算出する計算ステップと、前記計算ステップにおいて算出された前記うねり係数が、研磨を実行することにより形成される前記被研磨面の凹凸を表すうねりの最大凹凸差がピークになる数値の前後の所定範囲内であるか否かを判定する判定ステップとを有する。そして前記判定ステップにおいて、前記うねり係数が前記所定範囲内ではないと判定された場合には研磨を許可し、前記所定範囲内であると判定された場合には前記うねり係数を所定の演算により補正することを特徴とする。 The polishing method according to the second invention, together to press the polished surface of the polishing object while rotating the polishing member spherical, are relatively moved a predetermined distance in the main scanning direction along the polished surface a polishing method of polishing the surface to be polished while relatively moved in the sub-scanning direction orthogonal to the main scanning direction by a predetermined pitch of the predetermined distance for each finishes relative movement, was polished by the polishing member a measurement step of obtaining the radius values of the contact circle formed the abrasive member from the measurement results of the surface of the polished surface when the is pressed against the surface to be polished, the contact circle obtained in the measuring step child and calculating step of calculating a swell factor radius represents a value obtained by dividing the value of the predetermined pitch input of the waviness factor calculated in said calculating step, a polishing run Maximum unevenness difference of undulation representing the unevenness of the polished surface formed by is closed and a determination step of determining whether it is within a predetermined range before and after the numerical value becomes a peak. Then , in the determination step, when it is determined that the undulation coefficient is not within the predetermined range, polishing is permitted, and when it is determined that the undulation coefficient is within the predetermined range, the undulation coefficient is determined by a predetermined calculation. It is characterized by correcting.

また、本発明に係る研磨条件算出方法は、球形の研磨部材を回転させながら研磨対象物の被研磨面に押圧させるとともに、前記被研磨面に沿って主走査方向に所定の距離を相対移動させ、前記所定の距離を相対移動し終える毎に所定ピッチだけ前記主走査方向と直交する副走査方向に相対移動させながら前記被研磨面の研磨を行う研磨条件計算方法において、前記研磨部材のヤング率およびポアソン比、前記研磨部材の半径、前記研磨部材を前記被研磨面に押圧する圧力の値、並びに、研磨を実行することにより形成される前記被研磨面の凹凸を表すうねりについての許容値を含む研磨条件を入力する入力ステップと、前記入力ステップにおいて入力された前記研磨条件に基づいて、前記研磨部材を前記被研磨面に押圧させた際に形成される接触円の半径、前記接触円の半径を前記所定ピッチの値で除した値を表すうねり係数、および、前記うねりの最大凹凸差を算出する第1計算ステップと、前記第1計算ステップにおいて算出された前記接触円の半径、前記うねり係数および前記うねりの最大凹凸差に基づいて、前記許容値を満たすうちの最も大きなピッチの値を算出する第2計算ステップとを有することを特徴とする。 The polishing condition calculating method according to the present invention, together to press the polished surface of the polishing object while rotating the polishing member spherical, are relatively moved a predetermined distance in the main scanning direction along the polished surface a polishing condition calculation process of polishing of the polished surface while the sub-scanning direction are moved relative to perpendicular to the main scanning direction by a predetermined pitch of the predetermined distance for each finishes relative movement, the Young's modulus of the polishing member and Poisson's ratio, the radius of the polishing member, the value of the pressure for pressing the polishing member to the surface to be polished, as well, the allowable values for waviness representing the unevenness of the polished surface formed by performing polishing an input step of inputting the polishing conditions including, based on the polishing condition inputted in the input step, are formed when the is pressed against the polishing member to the surface to be polished Radius of Sawaen, undulation coefficient representing the value obtained by dividing the radius of the osculating circle at the value of the predetermined pitch, and a first calculation step of calculating the maximum unevenness difference of the undulation, is calculated in the first calculation step And a second calculation step of calculating a maximum pitch value that satisfies the allowable value based on a radius of the contact circle, the undulation coefficient, and the maximum unevenness difference of the undulation .

そして、第1の発明に係る研磨装置は、研磨対象物と対向するように設けられたヘッド部と、前記研磨対象物を研磨するための球形の研磨部材を有し、前記ヘッド部に回転可能に保持された研磨工具と、前記研磨工具を所定の回転速度で回転駆動する回転駆動機構と、前記研磨部材を前記研磨対象物の被研磨面に所定の圧力で押圧させる押圧機構と、前記押圧機構により前記被研磨面に押圧された前記研磨部材を前記被研磨面において所定の移動速度で相対移動させる移動機構と、前記回転駆動機構、前記押圧機構、および前記移動機構の作動を制御することにより、前記研磨部材を回転させながら前記被研磨面に押圧させるとともに、前記被研磨面に沿って主走査方向に所定の距離を相対移動させ、前記所定の距離を相対移動し終える毎に所定ピッチだけ前記主走査方向と直交する副走査方向に相対移動させながら前記被研磨面の研磨を行う制御部と、前記制御部に指示を与え、前記制御部からの出力を得るための入出力装置を備えて構成される。そして前記制御部は、前記入出力装置から入力された前記所定ピッチの値と研磨を実行することにより形成される前記被研磨面の凹凸を表すうねりについての許容値とを含む研磨条件に基づいて前記うねりの最大凹凸差を算出し算出した前記うねりの最大凹凸差が前記入出力装置から入力された前記許容値より大きいか否かを判定し、前記うねりの最大凹凸差が前記許容値以下である場合には研磨を許可し、前記うねりの最大凹凸差が前記許容値より大きい場合には研磨を許可しないように構成されるThe polishing apparatus according to a first invention includes a head portion provided so as to polish the object facing the polishing member spherical for polishing said polishing object, rotatable in said head portion a polishing tool held in a rotary drive mechanism for rotating the polishing tool at a predetermined rotational speed, and a pressing mechanism for pressing at a predetermined pressure the abrasive member to the surface to be polished of the polishing object, the pressing a moving mechanism for relatively moving at a predetermined moving speed the polishing member which is pressed against the surface to be polished in the surface to be polished by a mechanism, the rotation driving mechanism, controlling the operation of the pressing mechanism, and the moving mechanism by the while rotating the polishing member with to press the polished surface, said predetermined distance in the main scanning direction along the polished surface are relatively moved, for each finishes relatively moves the predetermined distance And a control unit for performing polishing of the polished surface while relatively moved in the sub-scanning direction orthogonal to the main scanning direction by a constant pitch, gives instructions to the controller, input and output to obtain the output from the control unit It is configured with a device . Then, the control unit, the polishing conditions including the allowable values for waviness representing the value of said predetermined pitch which is input from the input device, the unevenness of the polished surface formed by performing polishing based calculates the maximum unevenness difference of the swell, the maximum unevenness difference of the calculated the undulation determines whether the greater than the allowable value inputted from the input-output device, the maximum unevenness difference of the undulation is the allowable allow polishing if the value below configured not to allow polishing when the maximum unevenness difference of the undulation is larger than the allowable value.

また、第2の発明に係る研磨装置は、研磨対象物と対向するように設けられたヘッド部と、前記研磨対象物を研磨するための球形の研磨部材を有し、前記ヘッド部に回転可能に保持された研磨工具と、前記研磨工具を所定の回転速度で回転駆動する回転駆動機構と、前記研磨部材を前記研磨対象物の被研磨面に所定の圧力で押圧させる押圧機構と、前記押圧機構により前記被研磨面に押圧された前記研磨部材を前記被研磨面において所定の移動速度で相対移動させる移動機構と、前記回転駆動機構、前記押圧機構、および前記移動機構の作動を制御することにより、前記研磨部材を回転させながら前記被研磨面に押圧させるとともに、前記被研磨面に沿って主走査方向に所定の距離を相対移動させ、前記所定の距離を相対移動し終える毎に所定ピッチだけ前記主走査方向と直交する副走査方向に相対移動させながら前記被研磨面の研磨を行う制御部と、前記制御部に指示を与え、前記制御部からの出力を得るための入出力装置を備えて構成される。そして前記制御部は、前記研磨部材により研磨を行った前記被研磨面の表面の測定結果から前記研磨部材を前記被研磨面に押圧させた際に形成される接触円の半径を取得し、取得した前記接触円の半径を前記入出力装置から入力された前記所定ピッチの値で除した値を表すうねり係数を算出し、算出した前記うねり係数が、前記うねりの最大凹凸差がピークになる数値の前後の所定範囲内であるか否かを判定し、前記うねり係数が前記所定範囲内ではない場合には研磨を許可し、前記所定範囲内である場合には前記うねり係数を所定の演算により補正するように構成されるThe polishing apparatus according to the second invention includes a head portion provided so as to polish the object facing the polishing member spherical for polishing said polishing object, rotatable in said head portion a polishing tool held in a rotary drive mechanism for rotating the polishing tool at a predetermined rotational speed, and a pressing mechanism for pressing at a predetermined pressure the abrasive member to the surface to be polished of the polishing object, the pressing a moving mechanism for relatively moving at a predetermined moving speed the polishing member which is pressed against the surface to be polished in the surface to be polished by a mechanism, the rotation driving mechanism, controlling the operation of the pressing mechanism, and the moving mechanism Accordingly, said while the polishing member is rotated together to press the polished surface, along said polished surface are relatively moved a predetermined distance in the main scanning direction, Tokoro the predetermined distance for each finishes relative movement And a control unit for performing polishing of the surface to be polished while the sub-scanning direction are moved relative to perpendicular to the main scanning direction by a pitch, gives instructions to the control unit, input and output device for obtaining an output from the control unit It is configured with. Then, the control unit obtains the radius of the contact circle formed in the polishing member from the measurement results of the surface of the polished surface was polished by the polishing member is pressed against the surface to be polished, A waviness coefficient representing a value obtained by dividing the acquired radius of the contact circle by the predetermined pitch value input from the input / output device is calculated, and the calculated waviness coefficient has a peak of the maximum unevenness of the waviness. determines whether it is within a predetermined range before and after the number, the waviness factor permits the polishing if not within the predetermined range, the predetermined operation of the undulation coefficient when the is within a predetermined range It is comprised so that it may correct | amend by.

そして、第3の発明に係る研磨装置は、研磨対象物と対向するように設けられたヘッド部と、前記研磨対象物を研磨するための球形の研磨部材を有し、前記ヘッド部に回転可能に保持された研磨工具と、前記研磨工具を所定の回転速度で回転駆動する回転駆動機構と、前記研磨部材を前記研磨対象物の被研磨面に所定の圧力で押圧させる押圧機構と、前記押圧機構により前記被研磨面に押圧された前記研磨部材を前記被研磨面において所定の移動速度で相対移動させる移動機構と、前記回転駆動機構、前記押圧機構、および前記移動機構の作動を制御することにより、前記研磨部材を回転させながら前記被研磨面に押圧させるとともに、前記被研磨面に沿って主走査方向に所定の距離を相対移動させ、前記所定の距離を相対移動し終える毎に所定ピッチだけ前記主走査方向と直交する副走査方向に相対移動させながら前記被研磨面の研磨を行う制御部と、前記制御部に指示を与え、前記制御部からの出力を得るための入出力装置を備えて構成される。そして前記制御部は、前記入出力装置から入力された前記研磨部材のヤング率およびポアソン比、前記研磨部材の半径、前記研磨部材を前記被研磨面に押圧する圧力の値、並びに、研磨を実行することにより形成される前記被研磨面の凹凸を表すうねりについての許容値を含む研磨条件に基づいて、前記研磨部材を前記被研磨面に押圧させた際に形成される接触円の半径と、前記接触円の半径を前記所定ピッチの値で除した値を表すうねり係数と、前記うねりの最大凹凸差とを算出し、算出した前記接触円の半径、前記うねり係数および前記うねりの最大凹凸差に基づいて、前記許容値を満たすうちの最も大きなピッチの値を算出するように構成されるThe polishing apparatus according to a third invention includes a head portion provided so as to polish the object facing the polishing member spherical for polishing said polishing object, rotatable in said head portion a polishing tool held in a rotary drive mechanism for rotating the polishing tool at a predetermined rotational speed, and a pressing mechanism for pressing at a predetermined pressure the abrasive member to the surface to be polished of the polishing object, the pressing a moving mechanism for relatively moving at a predetermined moving speed the polishing member which is pressed against the surface to be polished in the surface to be polished by a mechanism, the rotation driving mechanism, controlling the operation of the pressing mechanism, and the moving mechanism by the while rotating the polishing member with to press the polished surface, said predetermined distance in the main scanning direction along the polished surface are relatively moved, for each finishes relatively moves the predetermined distance And a control unit for performing polishing of the polished surface while relatively moved in the sub-scanning direction orthogonal to the main scanning direction by a constant pitch, gives instructions to the controller, input and output to obtain the output from the control unit It is configured with a device . The control unit receives the Young's modulus and Poisson's ratio of the polishing member input from the input / output device , the radius of the polishing member, the value of the pressure that presses the polishing member against the surface to be polished, and polishing. A radius of a contact circle formed when the polishing member is pressed against the surface to be polished , based on polishing conditions including an allowable value for waviness representing irregularities of the surface to be polished formed by Calculating the undulation coefficient representing the value obtained by dividing the radius of the contact circle by the value of the predetermined pitch and the maximum unevenness difference of the undulation, and calculating the calculated radius of the contact circle, the undulation coefficient, and the maximum unevenness of the undulation. Based on the difference , the largest pitch value that satisfies the allowable value is calculated .

本発明に係る研磨方法、研磨条件計算方法および研磨装置によれば、研磨効率を低下させることなく、大きなうねりの発生を回避することができる。   According to the polishing method, the polishing condition calculation method, and the polishing apparatus according to the present invention, it is possible to avoid the occurrence of large waviness without reducing the polishing efficiency.

以下、図面を参照して本発明の好ましい実施形態について説明する。本発明を適用した研磨装置1の概略構成を図1に示す。研磨装置1は、研磨対象物であるワーク10を支持するXYZステージ20と、XYZステージ20と対向するように設けられたヘッド部30と、ヘッド部30に回転可能に保持された研磨工具40と、研磨工具40の先端部に設けられた研磨部材42を平面になっているワーク10の上面(被研磨面11)に押圧させる押圧機構50と、XYZステージ20の移動速度、研磨工具40の回転速度、押圧機構50による研磨荷重等、研磨装置1の作動制御を行う制御部60と、制御部60との情報の入出力を行うインタフェース70と、被研磨面11の表面プロファイル測定を行う表面測定部80等で構成される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. A schematic configuration of a polishing apparatus 1 to which the present invention is applied is shown in FIG. The polishing apparatus 1 includes an XYZ stage 20 that supports a workpiece 10 that is an object to be polished, a head unit 30 that is provided to face the XYZ stage 20, and a polishing tool 40 that is rotatably held by the head unit 30. The pressing mechanism 50 that presses the polishing member 42 provided at the tip of the polishing tool 40 against the flat upper surface (surface 11 to be polished), the moving speed of the XYZ stage 20, and the rotation of the polishing tool 40 A control unit 60 for controlling the operation of the polishing apparatus 1 such as speed and polishing load by the pressing mechanism 50, an interface 70 for inputting / outputting information to / from the control unit 60, and a surface measurement for measuring the surface profile of the surface 11 to be polished. Part 80 and the like.

XYZステージ20は、ワーク10の下面を真空吸着する真空吸着機構(図示せず)を内部に有し、被研磨面11が上側を向くようにワーク10を略水平な状態で吸着保持する。なお、ここで被研磨面11に対して垂直上方向をZ軸正方向とし、図1に示すように、研磨工具40の長手方向と平行な方向をX軸、また、被研磨面11に対して平行かつX軸に対して垂直な方向をY軸とする(図1〜4参照)。また、XYZステージ20は、図示しないサーボモータやボールネジ等を用いてX,Y,Z方向に平行移動可能に構成され、XYZステージ20に吸着保持されたワーク10を研磨工具40に対して所望の位置にX,Y,Z方向に相対移動させることができるようになっている。   The XYZ stage 20 has a vacuum suction mechanism (not shown) that vacuum-sucks the lower surface of the workpiece 10 and holds the workpiece 10 in a substantially horizontal state so that the surface 11 to be polished faces upward. Here, the direction perpendicular to the surface 11 to be polished is defined as the positive direction of the Z axis, and as shown in FIG. 1, the direction parallel to the longitudinal direction of the polishing tool 40 is the X axis. The direction parallel to and perpendicular to the X axis is taken as the Y axis (see FIGS. 1 to 4). Further, the XYZ stage 20 is configured to be movable in the X, Y, and Z directions using a servo motor, a ball screw, or the like (not shown), and the workpiece 10 sucked and held by the XYZ stage 20 is desired with respect to the polishing tool 40. The position can be relatively moved in the X, Y, and Z directions.

ヘッド部30は、ヘッド本体31と、ヘッド本体31に回転可能に取り付けられたチャック32とを有して構成される。ヘッド本体31には、ベアリング機構(図示せず)等が内蔵され、チャック32が回転可能に取り付けられる。チャック32は、研磨工具40を着脱可能に保持し、これにより研磨工具40がヘッド部30に回転可能に保持される。また、ヘッド本体31にはサーボモータ33が取り付けられており、このサーボモータ33は、チャック32とともにチャック32に保持された研磨工具40を回転駆動する。   The head unit 30 includes a head main body 31 and a chuck 32 that is rotatably attached to the head main body 31. The head body 31 incorporates a bearing mechanism (not shown) and the like, and a chuck 32 is rotatably attached. The chuck 32 detachably holds the polishing tool 40, whereby the polishing tool 40 is rotatably held by the head unit 30. A servo motor 33 is attached to the head main body 31, and the servo motor 33 rotates the polishing tool 40 held on the chuck 32 together with the chuck 32.

研磨工具40は、図2に示すように、棒状の支持部材41と、球状の研磨部材42とを有して構成される。支持部材41は、棒状に延びるように形成され、先端部に研磨部材42が取り付けられるとともに、基端部はチャック32に連結保持される。そのため、研磨工具40は、ヘッド部30により、支持部材41の長手方向に延びる中心軸Aを中心にサーボモータ33で回転させることが可能な状態に保持され、支持部材41の先端側で回転する研磨部材42により、被研磨面11に対する研磨加工が行われる。研磨部材42は、不織布ベースの連続発泡構造をもった硬質ウレタンを用いて球状に形成され、接着等により支持部材41の先端側に取り付けられる。   As shown in FIG. 2, the polishing tool 40 includes a rod-shaped support member 41 and a spherical polishing member 42. The support member 41 is formed so as to extend in a rod shape, and the polishing member 42 is attached to the distal end portion, and the proximal end portion is connected and held to the chuck 32. Therefore, the polishing tool 40 is held by the head unit 30 in a state where it can be rotated by the servo motor 33 around the central axis A extending in the longitudinal direction of the support member 41, and rotates on the front end side of the support member 41. A polishing process is performed on the surface 11 to be polished by the polishing member 42. The polishing member 42 is formed into a spherical shape using hard urethane having a nonwoven fabric-based continuous foam structure, and is attached to the distal end side of the support member 41 by adhesion or the like.

押圧機構50は、ヘッド部30を介して、空気圧シリンダ(図示せず)により研磨工具40の研磨部材42をワーク10の被研磨面11に押圧する。なお、空気圧シリンダは、電空レギュレータ(図示せず)を介してエアタンク等の空気圧源(図示せず)と接続されている。電空レギュレータは空気の圧力や流量を電子的に制御することが可能な機器であり、空気圧源からこの電空レギュレータにより圧力調整された空気が空気圧シリンダに供給されることにより、研磨部材42を被研磨面11に押圧する圧力を調整することができる。   The pressing mechanism 50 presses the polishing member 42 of the polishing tool 40 against the surface to be polished 11 of the workpiece 10 by a pneumatic cylinder (not shown) through the head portion 30. The pneumatic cylinder is connected to an air pressure source (not shown) such as an air tank via an electropneumatic regulator (not shown). The electropneumatic regulator is a device capable of electronically controlling the pressure and flow rate of air, and the air pressure-adjusted by the electropneumatic regulator is supplied from a pneumatic source to the pneumatic cylinder. The pressure pressed against the surface 11 to be polished can be adjusted.

制御部60は、図1に示すように、XYZステージ20(サーボモータ等)、ヘッド部30のサーボモータ33と電気的に接続されており、XYZステージ20に駆動信号を出力してXYZステージの、ヘッド部30や研磨工具40に対するX,Y,Z軸上における位置、及びX,Y,Z方向への移動速度を制御したり、サーボモータ33に回転駆動信号を出力してサーボモータ33の回転速度を制御することで、XYZステージ20に押圧されている研磨工具40のX,Y,Z方向への移動速度や回転速度を制御することができる。また、制御部60は、押圧機構50と電気的に接続されており、電空レギュレータに圧力制御信号を出力して空気圧シリンダに供給する空気圧力(ワーク10に対する研磨荷重)を制御することで、研磨部材42を被研磨面11に押圧する圧力を調整することができる。   As shown in FIG. 1, the control unit 60 is electrically connected to the XYZ stage 20 (servo motor, etc.) and the servo motor 33 of the head unit 30, and outputs a drive signal to the XYZ stage 20 to The position of the head unit 30 and the polishing tool 40 on the X, Y, and Z axes and the moving speed in the X, Y, and Z directions are controlled, and a rotation drive signal is output to the servo motor 33 to output the servo motor 33. By controlling the rotational speed, the moving speed and rotational speed of the polishing tool 40 pressed by the XYZ stage 20 in the X, Y, and Z directions can be controlled. In addition, the control unit 60 is electrically connected to the pressing mechanism 50, and outputs a pressure control signal to the electropneumatic regulator to control the air pressure supplied to the pneumatic cylinder (polishing load on the workpiece 10). The pressure for pressing the polishing member 42 against the surface 11 to be polished can be adjusted.

前述したように押圧機構50により研磨部材42に荷重が下方向(−Z方向)に加えられた場合、図4に示すように、研磨部材42は被研磨面11に押し付けられた状態となる。そこで、研磨部材42が被研磨面11に下方向(−Z方向)に押し付けられることにより、研磨部材42が変形し、研磨部材42の下面と被研磨面11との間に接触円81が形成される。ここで、この接触円81の半径をr、研磨部材42に−Z方向に加えられる荷重をPとする。   As described above, when a load is applied to the polishing member 42 in the downward direction (−Z direction) by the pressing mechanism 50, the polishing member 42 is pressed against the surface 11 to be polished as shown in FIG. 4. Therefore, when the polishing member 42 is pressed downward (−Z direction) against the surface 11 to be polished, the polishing member 42 is deformed, and a contact circle 81 is formed between the lower surface of the polishing member 42 and the surface 11 to be polished. Is done. Here, the radius of the contact circle 81 is r, and the load applied to the polishing member 42 in the −Z direction is P.

表面測定部80は、制御部60と電気的に接続されており、研磨加工前後に被研磨面11の表面プロファイル測定を行い、上述した接触円81の半径r等、被研磨面11の凹凸に関する情報が制御部60に取り込まれるようになっている。   The surface measurement unit 80 is electrically connected to the control unit 60, measures the surface profile of the surface 11 to be polished before and after polishing, and relates to the unevenness of the surface 11 to be polished such as the radius r of the contact circle 81 described above. Information is taken into the control unit 60.

また、制御部60がXYZステージ20を移動させることにより、回転する研磨部材42を被研磨面11に押圧し相対移動させることで被研磨面11を研磨加工し、研磨部材42は被研磨面11上を、図3に示すように被研磨面11の左下端である点90から+Y方向に移動する。そして、研磨部材42が被研磨面11の上端まで達した後、後に詳述するピッチ82の値だけ+X方向に移動して、その後−Y方向に移動する。研磨部材42が被研磨面の下端にまで達した後は、ピッチ82の値だけ+X方向に移動して、その後再度+Y方向に移動していく。このように、回転する研磨部材42が被研磨面11上を移動することで研磨加工が行われる(後に詳述)。   In addition, the controller 60 moves the XYZ stage 20 to press and rotate the rotating polishing member 42 against the surface 11 to be polished, thereby polishing the surface 11 to be polished. As shown in FIG. 3, the top moves in the + Y direction from a point 90 which is the lower left end of the surface 11 to be polished. Then, after the polishing member 42 reaches the upper end of the surface 11 to be polished, the polishing member 42 moves in the + X direction by the value of the pitch 82 described in detail later, and then moves in the -Y direction. After the polishing member 42 reaches the lower end of the surface to be polished, it moves in the + X direction by the value of the pitch 82 and then moves in the + Y direction again. Thus, the polishing process is performed by the rotating polishing member 42 moving on the surface 11 to be polished (detailed later).

インタフェース70は、図示しない操作画面、オペレータがデータ入力を行うキーボード等の入出力機器で構成されており、制御部60は、インタフェース70から入力されたデータに基づき、研磨加工をする際に必要なパラメータの値等の計算処理を行う。そして、制御部60により計算された計算結果、または研磨加工を実行した際の実行結果等が、インタフェース70により画面表示される。   The interface 70 includes input / output devices such as an operation screen (not shown) and a keyboard on which an operator inputs data, and the control unit 60 is necessary for polishing based on data input from the interface 70. Performs parameter value calculation processing. Then, the calculation result calculated by the control unit 60 or the execution result when the polishing process is executed is displayed on the screen by the interface 70.

以上のように概略構成される研磨装置1において、上述した研磨部材42を被研磨面11に押圧する際に形成される接触円の半径rをピッチ82で除した値をうねり係数ρとして定義すると、このうねり係数ρが0.5の整数倍のときにうねりの大きさがピーク値をとる虞がある。そこで、このうねり係数ρが0.5の整数倍にならないよう、ピッチ82の値を調整してから研磨加工をする方法として、本発明に係る研磨方法が用いられる。以下で第1実施形態における研磨方法について説明する。第1実施形態では、インタフェース70から入力したピッチ82の値の妥当性を判定し、その結果に応じて研磨加工を行うか否かを判定する研磨方法であり詳細について図8を参照しながら説明する。   In the polishing apparatus 1 schematically configured as described above, a value obtained by dividing the radius r of the contact circle formed when the above-described polishing member 42 is pressed against the surface 11 to be polished by the pitch 82 is defined as the undulation coefficient ρ. When the undulation coefficient ρ is an integer multiple of 0.5, the undulation may have a peak value. Therefore, the polishing method according to the present invention is used as a method of performing polishing after adjusting the value of the pitch 82 so that the undulation coefficient ρ does not become an integral multiple of 0.5. The polishing method in the first embodiment will be described below. The first embodiment is a polishing method for determining the validity of the value of the pitch 82 input from the interface 70 and determining whether or not to perform polishing according to the result. The details will be described with reference to FIG. To do.

まず、オペレータがピッチ82の値をインタフェース70から入力した後、研磨部材42の材質を表すヤング率Eとポアソン比νの両方が既知である場合(ステップS101でYesの場合)は、オペレータは、そのヤング率Eとポアソン比νをインタフェース70上から入力する。次に、インタフェース70上から荷重P、パッド半径R、また後に説明するうねり許容値(単位%)の入力を行う(ステップS102)。そこで、荷重P、パッド半径R、うねり許容値の入力が完了すると、制御部60は、前述した接触円81の接触円半径r、うねり係数ρ、うねりの大きさを表す指標となるうねりRangeW(単位%)の理論計算を、後述する式(1),(2),(3)を用いて行う(ステップS103)。   First, after the operator inputs the value of the pitch 82 from the interface 70, when both the Young's modulus E representing the material of the polishing member 42 and the Poisson's ratio ν are known (Yes in step S101), the operator The Young's modulus E and Poisson's ratio ν are input from the interface 70. Next, a load P, a pad radius R, and an allowable waviness value (unit%) described later are input from the interface 70 (step S102). Therefore, when the input of the load P, the pad radius R, and the allowable waviness value is completed, the control unit 60 uses the waviness RangeW (serving as an index representing the contact circle radius r, the waviness coefficient ρ, and the waviness size of the contact circle 81 described above. (Unit%) is calculated using the equations (1), (2), and (3) described later (step S103).

上述した接触円半径r、うねり係数ρ、またうねりRangeWは、ピッチ82の値と、ヤング率E、ポアソン比ν、1枚のワーク10を研磨した際における研磨除去量の最大値、最小値、平均値を用いて、それぞれ式(1),(2),(3)のように表すことができる。なお、前述したうねり許容値は、うねりRangeWの値の許容できる閾値をうねりRangeWと同様にパーセンテージで表わしたものである。   The contact circle radius r, the undulation coefficient ρ, and the undulation RangeW described above are the value of the pitch 82, the Young's modulus E, the Poisson's ratio ν, the maximum value and the minimum value of the polishing removal amount when one workpiece 10 is polished. Using the average values, they can be expressed as equations (1), (2), and (3), respectively. The swell allowable value described above represents the allowable threshold value of the swell RangeW as a percentage in the same manner as the swell RangeW.

Figure 0005434001
ρ=r /(ピッチ82の値) (2)
W=((除去量の最大値−除去量の最小値)/(除去量の平均値))×100 (3)
Figure 0005434001
ρ = r / (value of pitch 82) (2)
W = ((maximum value of removal amount−minimum value of removal amount) / (average value of removal amount)) × 100 (3)

上記のように、接触円半径r、うねり係数ρ、うねりRangeWを算出した後、制御部60は、うねりRangeWが入力されたうねり許容値より大きい値か否かを判定する(ステップS104)。そして制御部60が、うねりRangeWがうねり許容値より大きい値であると判定した場合は、制御部60は、入力したピッチ82を修正すべき旨の警報と、最適化したピッチ82の値をインタフェース70に画面出力させる(ステップS105)。なお、このときはピッチ82の最適値がインタフェース70に画面表示されるのみで研磨加工は開始されない。また制御部60が、うねりRangeWがうねり許容値以下であると判定した場合は、制御部60は、ピッチ82の最適値をインタフェース70上に画面表示させず、ワーク10に対して研磨加工を開始する(ステップS106)。   As described above, after calculating the contact circle radius r, the undulation coefficient ρ, and the undulation RangeW, the control unit 60 determines whether or not the undulation RangeW is larger than the input undulation allowable value (step S104). When the control unit 60 determines that the swell RangeW is larger than the swell allowable value, the control unit 60 provides an interface indicating that the input pitch 82 should be corrected and the optimized pitch 82 value. The screen is output to 70 (step S105). At this time, the optimum value of the pitch 82 is only displayed on the screen of the interface 70, and the polishing process is not started. Further, when the control unit 60 determines that the undulation RangeW is equal to or less than the undulation allowable value, the control unit 60 does not display the optimum value of the pitch 82 on the interface 70 and starts polishing the workpiece 10. (Step S106).

上記のような過程を経て研磨加工が開始された時点(ステップS106)で、図示しない搬送装置がワーク10をXYZステージ20上に搬送し、XYZステージ20はワーク10を吸着保持する。その後、制御部60はXYZステージ20を移動させてワーク10を所定の研磨開始位置に位置させる。ワーク10が研磨開始位置に位置されると、制御部60の作動制御によって、サーボモータ33が研磨部材42を回転させながら、被研磨面11の左下端である点90に押圧させる(図3参照)。   When the polishing process is started through the above process (step S106), a transfer device (not shown) transfers the workpiece 10 onto the XYZ stage 20, and the XYZ stage 20 holds the workpiece 10 by suction. Thereafter, the control unit 60 moves the XYZ stage 20 to position the workpiece 10 at a predetermined polishing start position. When the workpiece 10 is positioned at the polishing start position, the servo motor 33 presses the point 90 which is the lower left corner of the surface 11 to be polished while rotating the polishing member 42 by the operation control of the control unit 60 (see FIG. 3). ).

上記のように、制御部60が回転する研磨部材42を被研磨面11上の点90に押圧させた後、制御部60は、XYZステージ20を下方向(−Y方向)へ移動させる。これにより、ワーク10の研磨が開始され、例えば図3の場合、研磨部材42は被研磨面11の左下端である点90から上方向(+Y方向)に相対移動する。その後、研磨部材42が被研磨面11の上端に位置すると、制御部60は、XYZステージ20を左方向(−X方向)へ、ピッチ82の値だけ移動させ、このとき研磨部材42は、被研磨面11の上端をピッチ82の値だけ+X方向に相対移動する。その後、研磨部材42は−Y方向に相対移動し、研磨部材42が被研磨面11の下端まで達した後、ピッチ82の値だけ+X方向に相対移動して、その後+Y方向に相対移動していく。このように、研磨部材42が相対移動を繰り返すことで被研磨面11の全面を研磨加工していく。   As described above, after the polishing member 42 rotating by the control unit 60 is pressed against the point 90 on the surface 11 to be polished, the control unit 60 moves the XYZ stage 20 downward (−Y direction). Thereby, polishing of the workpiece 10 is started. For example, in the case of FIG. 3, the polishing member 42 relatively moves upward (+ Y direction) from the point 90 which is the lower left end of the surface 11 to be polished. After that, when the polishing member 42 is positioned at the upper end of the surface 11 to be polished, the control unit 60 moves the XYZ stage 20 leftward (−X direction) by the value of the pitch 82. The upper end of the polishing surface 11 is relatively moved in the + X direction by the value of the pitch 82. Thereafter, the polishing member 42 relatively moves in the −Y direction. After the polishing member 42 reaches the lower end of the surface 11 to be polished, the polishing member 42 relatively moves in the + X direction by the value of the pitch 82 and then moves in the + Y direction. Go. As described above, the polishing member 42 repeats relative movement to polish the entire surface 11 to be polished.

また、研磨加工を開始する時点でオペレータがピッチ82の値をインタフェース70から入力した後、研磨部材42のヤング率Eとポアソン比νの値が不明である場合(ステップS101でNoの場合)は、制御部60は、研磨部材42を被研磨面11の左下端である点90に押圧させXYZステージ20を下方向(−Y方向)に移動させる。このとき研磨部材42は、被研磨面11の左下端である点90から上方向(+Y方向)に相対移動し、研磨部材42が被研磨面11の上端に達するまで研磨加工を行う。このとき、表面測定部80が表面プロファイル測定をし、その結果、制御部60は、接触円半径rの値を取得し(ステップS107)、その後、ピッチ82の値と半径rの値から式(2)を用いてうねり係数ρの値を算出する(ステップS108)。   Further, when the operator inputs the value of the pitch 82 from the interface 70 at the time of starting the polishing process, and the values of the Young's modulus E and the Poisson's ratio ν of the polishing member 42 are unknown (in the case of No in step S101). Then, the control unit 60 presses the polishing member 42 against the point 90 which is the lower left end of the surface 11 to be polished, and moves the XYZ stage 20 downward (−Y direction). At this time, the polishing member 42 relatively moves upward (+ Y direction) from the point 90 that is the lower left end of the surface 11 to be polished, and performs polishing until the polishing member 42 reaches the upper end of the surface 11 to be polished. At this time, the surface measurement unit 80 measures the surface profile, and as a result, the control unit 60 acquires the value of the contact circle radius r (step S107), and then calculates the equation (from the value of the pitch 82 and the value of the radius r ( 2) is used to calculate the value of the swell coefficient ρ (step S108).

制御部60は、うねり係数ρの値を算出した後、このρの値が0.5の整数倍プラスマイナス0.05の範囲内であるか否かを判定する(ステップS109)。ここで、うねり係数ρが0.5の整数倍プラスマイナス0.05の範囲内であると制御部60が判定した場合(ステップS109でYesの場合)は、制御部60は、うねり係数ρの補正を行い、補正後のうねり係数ρ´は、ρに0.2を加算した値とする。またこのとき、補正後のうねり係数ρ´を用いて、ピッチ82の値も式(2)により補正する。この後補正後のうねり係数ρ´とピッチ82の値をパラメータとして、研磨加工を開始する(ステップS106)。また、制御部60が、うねり係数ρの値が0.5の整数倍プラスマイナス0.05の範囲内でないと判定した場合(ステップS109でNoの場合)は、制御部60は、上述したうねり係数等の補正を行うことなく、補正前のうねり係数ρと入力したピッチ82の値をパラメータとして、研磨加工を開始する(ステップS106)。   After calculating the value of the swell coefficient ρ, the control unit 60 determines whether the value of ρ is in the range of an integral multiple of 0.5 plus or minus 0.05 (step S109). Here, when the control unit 60 determines that the undulation coefficient ρ is in the range of an integral multiple of 0.5 plus or minus 0.05 (Yes in step S109), the control unit 60 determines the undulation coefficient ρ. Correction is performed, and the corrected waviness coefficient ρ ′ is a value obtained by adding 0.2 to ρ. At this time, the value of the pitch 82 is also corrected by the equation (2) using the corrected undulation coefficient ρ ′. Thereafter, polishing is started using the corrected undulation coefficient ρ ′ and the value of pitch 82 as parameters (step S106). In addition, when the control unit 60 determines that the value of the undulation coefficient ρ is not in the range of an integer multiple of 0.5 plus or minus 0.05 (in the case of No in step S109), the control unit 60 performs the swell described above. Polishing is started without correcting the coefficient or the like, using the undulation coefficient ρ before correction and the input pitch 82 value as parameters (step S106).

また、本発明の第2の実施形態における研磨条件計算方法について、図9を参照しながら以下で説明する。なお、第2実施形態においては、第1実施形態で使用した研磨装置と同様の研磨装置を用いるため、研磨装置の構成については、同一の番号を付して説明を省略する。なお、以下で説明する第2実施形態の研磨条件計算方法は、研磨装置を利用してピッチ82の最適値を算出する方法を示している。   A polishing condition calculation method according to the second embodiment of the present invention will be described below with reference to FIG. In the second embodiment, since the same polishing apparatus as that used in the first embodiment is used, the configuration of the polishing apparatus is assigned the same number and the description thereof is omitted. Note that the polishing condition calculation method of the second embodiment described below shows a method of calculating the optimum value of the pitch 82 using a polishing apparatus.

まず、研磨部材42のヤング率Eとポアソン比νの値が不明である場合(ステップS201でNoの場合)には、制御部60は、インタフェース70上にピッチ82の値を算出できない旨のメッセージを画面表示させて、ピッチ82の最適値の計算を中止する(ステップS202)。また、研磨部材42のヤング率Eとポアソン比νの値が既知である場合(ステップS201でYesの場合)には、オペレータは、そのヤング率Eとポアソン比νをインタフェース70から入力し、その後、荷重P、パッド半径R、うねり許容値(単位%)の入力を行う(ステップS203)。荷重P、パッド半径R、うねり許容値の入力が完了すると、制御部60は、接触円半径r、うねり係数ρ、うねりRangeW(単位%)を、前述した式(1),(2),(3)を用いて算出する(ステップS204)。こうしてステップS204で算出した接触円半径r、うねり係数ρ、うねりRangeWを用いて、制御部60はピッチ82の最適値を計算し、このピッチ82の最適値をインタフェース70上に画面表示させる(ステップS205)。   First, when the values of the Young's modulus E and the Poisson's ratio ν of the polishing member 42 are unknown (No in step S201), the control unit 60 has a message that the value of the pitch 82 cannot be calculated on the interface 70. Is displayed on the screen, and the calculation of the optimum value of the pitch 82 is stopped (step S202). If the values of the Young's modulus E and Poisson's ratio ν of the polishing member 42 are known (Yes in step S201), the operator inputs the Young's modulus E and Poisson's ratio ν from the interface 70, and then , Load P, pad radius R, and waviness tolerance (unit%) are input (step S203). When the input of the load P, the pad radius R, and the allowable waviness value is completed, the control unit 60 sets the contact circle radius r, the waviness coefficient ρ, and the waviness RangeW (unit%) to the above-described equations (1), (2), ( 3) (Step S204). Thus, using the contact circle radius r, the undulation coefficient ρ, and the undulation RangeW calculated in step S204, the control unit 60 calculates the optimum value of the pitch 82, and displays the optimum value of the pitch 82 on the interface 70 (step 70). S205).

なお、本発明の発明者は、上述した各実施形態の研磨方法、研磨条件計算方法および研磨装置を用いて、うねりRangeWを算出するシミュレーションを行っている。以下でこのシミュレーションの内容について説明する。なお、このときのヤング率E、ポアソン比ν、荷重P、研磨部材42の半径R、うねり許容値を以下に示す(研磨条件Aとする)。   The inventor of the present invention performs a simulation for calculating the undulation RangeW using the polishing method, the polishing condition calculation method, and the polishing apparatus of each of the above-described embodiments. The contents of this simulation will be described below. The Young's modulus E, Poisson's ratio ν, load P, radius R of the polishing member 42, and waviness tolerance are shown below (referred to as polishing condition A).

研磨部材42のヤング率E :3.00MPa
研磨部材42のポアソン比ν :0.35
研磨部材42の半径R :50.0mm
研磨荷重P :2.00kg
うねり許容値 :5.00%
Young's modulus E of the polishing member 42: 3.00 MPa
Poisson's ratio ν of polishing member 42: 0.35
Radius R of polishing member 42: 50.0 mm
Polishing load P: 2.00kg
Swell tolerance: 5.00%

上記の研磨条件Aでシミュレーションを実行した結果、うねりRangeWとうねり係数ρの関係について図5に示すグラフが得られた。この結果より、ピッチ82の値が減少しうねり係数ρの値が大きくなるほどうねりRangeWは小さくなっていることがわかるが、そのことに加えて、うねり係数ρが0.5の整数倍のときにうねりRangeWがピーク値をとっていることもわかる。この結果より、上述した各実施形態の研磨方法、研磨条件計算方法および研磨装置により、うねり係数ρが0.5の整数倍にならないようピッチ82の値を調整した後に研磨加工をすれば、ピッチ82の値を必要以上に小さくして研磨効率を下げなくてもうねりRangeWの値を低減させることができる。   As a result of executing the simulation under the above polishing condition A, a graph shown in FIG. From this result, it can be seen that as the value of the pitch 82 decreases and the value of the undulation coefficient ρ increases, the undulation RangeW decreases, but in addition, when the undulation coefficient ρ is an integral multiple of 0.5, It can also be seen that the swell RangeW has a peak value. From this result, if the polishing process is performed after adjusting the value of the pitch 82 so that the waviness coefficient ρ does not become an integral multiple of 0.5 by the polishing method, the polishing condition calculation method, and the polishing apparatus of each embodiment described above, the pitch The value of waviness RangeW can be reduced without reducing the polishing efficiency by reducing the value of 82 more than necessary.

また、図6、図7は前述した研磨条件Aにおいて、ピッチ82の値をそれぞれ2.0mm,2.3mmとしたときの研磨除去量を示したグラフである。これらのグラフにおいて横軸は被研磨面11の左端からの距離、縦軸は研磨除去量を標準化した値を示している。図6のグラフよりピッチ82の値が2.0mm(うねり係数ρの値が3.0)のときはうねりRangeWが9.2%となっているのに対し、図7のグラフよりピッチ82の値が2.3mm(うねり係数ρの値が2.61)のときはうねりRangeWが4.2%となっていることがわかる。このようにピッチ82の値を2.0mmから2.3mmに大きくした場合でもうねりRangeWが9.2%から4.2%に減少しているように、ピッチ82の値を大きくし研磨効率を上げた場合でもうねりRangeWの値を低減させることができる。   FIGS. 6 and 7 are graphs showing the amount of polishing removal when the value of the pitch 82 is 2.0 mm and 2.3 mm, respectively, under the polishing condition A described above. In these graphs, the horizontal axis indicates the distance from the left end of the surface 11 to be polished, and the vertical axis indicates the value obtained by standardizing the polishing removal amount. From the graph of FIG. 6, when the value of the pitch 82 is 2.0 mm (the value of the undulation coefficient ρ is 3.0), the undulation RangeW is 9.2%, whereas the pitch 82 is It can be seen that when the value is 2.3 mm (the value of the undulation coefficient ρ is 2.61), the undulation RangeW is 4.2%. As described above, when the pitch 82 value is increased from 2.0 mm to 2.3 mm, the pitch range 82 is increased to increase the polishing efficiency so that the waviness RangeW is decreased from 9.2% to 4.2%. When the value is raised, the value of the waviness RangeW can be reduced.

以上、うねり係数ρが0.5の整数倍のときにうねりRangeWがピーク値をとる例を示したが、うねり係数ρが0.5の整数倍でないときにピーク値をとる場合についても、本発明に係る研磨方法、研磨条件計算方法および研磨装置を用いてピッチ82の値を調整することにより、うねりRangeWの値を低減させることができる。   As described above, the example in which the undulation RangeW takes a peak value when the undulation coefficient ρ is an integer multiple of 0.5 is shown. However, the present invention also applies to the case where the peak value is taken when the undulation coefficient ρ is not an integer multiple of 0.5. By adjusting the value of the pitch 82 using the polishing method, the polishing condition calculation method, and the polishing apparatus according to the invention, the value of the waviness RangeW can be reduced.

上述の各実施形態において、研磨工具40を被研磨面11と平行に配設した場合の例について示したが、これに限られることなく、ヘッド部30を被研磨面11に対して上方向(Z軸正方向)に持ち上げて、研磨工具40の中心軸をワーク10の被研磨面11に対して斜めに配設してもよい。   In each of the above-described embodiments, an example in which the polishing tool 40 is disposed in parallel with the surface to be polished 11 has been described. However, the present invention is not limited thereto, and the head portion 30 is directed upward with respect to the surface to be polished 11 ( The center axis of the polishing tool 40 may be disposed obliquely with respect to the surface 11 to be polished of the workpiece 10 by lifting in the positive direction (Z-axis).

また、上述の各実施形態において、XYZステージ20およびワーク10を移動させることで研磨部材42を被研磨面11上で移動させるようにしているが、これに限られるものではなく、ワーク10を固定として、ヘッド部30および研磨工具40を移動させるようにしてもよい。   Further, in each of the above-described embodiments, the polishing member 42 is moved on the surface 11 to be polished by moving the XYZ stage 20 and the workpiece 10. However, the present invention is not limited to this, and the workpiece 10 is fixed. As an alternative, the head unit 30 and the polishing tool 40 may be moved.

そして、上述の各実施形態において、被研磨面11が平面になっているワーク10を研磨対象物として説明をしたが、これに限られることなく、被研磨面11が曲面である研磨対象物に対しても、本発明に係る研磨方法を用いて研磨加工をすることができる。   In each of the above-described embodiments, the workpiece 10 having the planar surface 11 to be polished has been described as an object to be polished. However, the present invention is not limited thereto, and the object to be polished 11 has a curved surface. In contrast, polishing can be performed using the polishing method according to the present invention.

本発明に係る研磨装置の概略図である。1 is a schematic view of a polishing apparatus according to the present invention. 研磨工具の近傍を示す研磨工具横方向から見た拡大図である。It is the enlarged view seen from the polishing tool horizontal direction which shows the vicinity of the polishing tool. 研磨工具の近傍を示す研磨工具上方向から見た拡大図である。It is the enlarged view seen from the polishing tool upper direction which shows the vicinity of the polishing tool. 研磨を行う際の被研磨面11上の研磨部材42付近における拡大図である。It is an enlarged view in the vicinity of the polishing member 42 on the surface 11 to be polished when polishing. 研磨条件Aでシミュレーションを行った際における、うねり係数ρとうねりRangeWの関係を示すグラフである。6 is a graph showing a relationship between a waviness coefficient ρ and a waviness Range W when a simulation is performed under a polishing condition A. ピッチ82の値を2.00mm、うねり係数ρを3.00とした場合におけるワーク10の研磨除去量を示すグラフである。It is a graph which shows the grinding | polishing removal amount of the workpiece | work 10 when the value of the pitch 82 is 2.00 mm and the waviness coefficient (rho) is 3.00. ピッチ82の値を2.30mm、うねり係数ρを2.61とした場合におけるワーク10の研磨除去量を示すグラフである。It is a graph which shows the grinding | polishing removal amount of the workpiece | work 10 when the value of the pitch 82 is 2.30 mm and the wave | undulation coefficient (rho) is 2.61. 入力したピッチ82の値の妥当性をチェックする処理を示すフローチャートである。It is a flowchart which shows the process which checks the validity of the value of the input pitch 82. FIG. ピッチ82の最適値を計算する処理を示すフローチャートである。It is a flowchart which shows the process which calculates the optimal value of the pitch.

符号の説明Explanation of symbols

1 研磨装置 10 ワーク(研磨対象物)
11 被研磨面 20 XYZステージ(移動機構)
30 ヘッド部 33 サーボモータ(回転駆動機構)
40 研磨工具 41 支持部材
42 研磨部材 50 押圧機構
60 制御部 70 インタフェース(入出力装置)
80 表面測定部
1 Polishing device 10 Workpiece (polishing object)
11 Surface to be polished 20 XYZ stage (movement mechanism)
30 head part 33 servo motor (rotary drive mechanism)
Reference Signs List 40 polishing tool 41 support member 42 polishing member 50 pressing mechanism 60 control unit 70 interface (input / output device)
80 Surface measurement unit

Claims (17)

球形の研磨部材を回転させながら研磨対象物の被研磨面に押圧させるとともに、前記被研磨面に沿って主走査方向に所定の距離を相対移動させ、前記所定の距離を相対移動し終える毎に所定ピッチだけ前記主走査方向と直交する副走査方向に相対移動させながら前記被研磨面の研磨を行う研磨方法において、
前記所定ピッチの値と、研磨を実行することにより形成される前記被研磨面の凹凸を表すうねりについての許容値とを含む研磨条件を入力する入力ステップと、
前記入力ステップにおいて入力された前記研磨条件に基づいて前記うねりの最大凹凸差を算出する計算ステップと、
前記計算ステップにおいて算出された前記うねりの最大凹凸差が、前記入力ステップにおいて入力された前記許容値より大きいか否かを判定する判定ステップとを有し、
前記判定ステップにおいて、前記うねりの最大凹凸差が前記許容値以下であると判定された場合には研磨を許可し、前記うねりの最大凹凸差が前記許容値より大きいと判定された場合には研磨を許可しないことを特徴とする研磨方法。
Together to press the polished surface of the polishing object while the polishing member is rotated spherical, along said polished surface are relatively moved a predetermined distance in the main scanning direction, the predetermined distance for each finishes relative movement In a polishing method for polishing the surface to be polished while relatively moving in a sub-scanning direction orthogonal to the main scanning direction by a predetermined pitch,
An input step for inputting a polishing condition including a value of the predetermined pitch and an allowable value for waviness representing the unevenness of the surface to be polished formed by performing polishing;
A calculation step of calculating the maximum unevenness difference of the undulation on the basis of the polishing condition inputted in the input step,
A determination step of determining whether a maximum unevenness difference of the undulation calculated in the calculation step is larger than the allowable value input in the input step ;
Polished in the determination step, when the maximum unevenness difference of the undulation allow polishing when it is determined to be equal to or less than the allowable value, the maximum unevenness difference of the undulation is determined to be greater than the allowable value A polishing method characterized by not permitting .
前記判定ステップにおいて前記うねりの最大凹凸差が前記許容値より大きいと判定された場合には前記許容値を満たすうちの最も大きなピッチの値を出力することを特徴とする請求項1に記載の研磨方法。 2. The maximum pitch value that satisfies the allowable value is output when the maximum unevenness difference of the undulation is determined to be larger than the allowable value in the determining step . Polishing method. 前記判定ステップにおいて前記うねりの最大凹凸差が前記許容値より大きいと判定された場合には前記入力ステップにおいて入力された前記所定ピッチの値の修正を促すことを特徴とする請求項1または2に記載の研磨方法。 3. The correction of the value of the predetermined pitch input in the input step is urged when it is determined in the determination step that the maximum unevenness difference of the undulation is larger than the allowable value. The polishing method according to 1. 前記入力ステップにおいて入力する研磨条件は、前記所定ピッチの値と、前記研磨部材のヤング率およびポアソン比と、前記研磨部材の半径と、前記研磨部材を前記被研磨面に押圧する圧力の値と、前記うねりについての許容値であることを特徴とする請求項1〜3のいずれかに記載の研磨方法。 The polishing conditions input in the input step include the value of the predetermined pitch, the Young's modulus and Poisson's ratio of the polishing member, the radius of the polishing member, and the value of the pressure that presses the polishing member against the surface to be polished. The polishing method according to claim 1, wherein the polishing method is an allowable value for the waviness. 前記計算ステップでは、前記入力ステップにおいて入力された前記研磨条件に基づいて前記研磨のシミュレーションを行うことにより、前記うねりの最大凹凸差と、前記研磨部材を前記被研磨面に押圧させた際に形成される接触円の半径と、前記接触円の半径を前記所定ピッチの値で除した値を表すうねり係数の計算を行うことを特徴とする請求項1〜4のいずれかに記載の研磨方法。 Wherein the calculation step, by performing a simulation of the polishing based on the polishing condition inputted in the input step, the maximum unevenness difference of the swell, forming the abrasive member when the is pressed against the surface to be polished 5. The polishing method according to claim 1, wherein a undulation coefficient representing a radius of the contact circle and a value obtained by dividing the radius of the contact circle by the value of the predetermined pitch is calculated. 球形の研磨部材を回転させながら研磨対象物の被研磨面に押圧させるとともに、前記被研磨面に沿って主走査方向に所定の距離を相対移動させ、前記所定の距離を相対移動し終える毎に所定ピッチだけ前記主走査方向と直交する副走査方向に相対移動させながら前記被研磨面の研磨を行う研磨方法において、
前記研磨部材により研磨を行った前記被研磨面の表面の測定結果から前記研磨部材を前記被研磨面に押圧させた際に形成される接触円の半径の値を取得する測定ステップと、
前記測定ステップにおいて取得された前記接触円の半径を、入力した前記所定ピッチの値で除した値を表すうねり係数を算出する計算ステップと、
前記計算ステップにおいて算出された前記うねり係数が、研磨を実行することにより形成される前記被研磨面の凹凸を表すうねりの最大凹凸差がピークになる数値の前後の所定範囲内であるか否かを判定する判定ステップとを有し、
前記判定ステップにおいて、前記うねり係数が前記所定範囲内ではないと判定された場合には研磨を許可し、前記所定範囲内であると判定された場合には前記うねり係数を所定の演算により補正することを特徴とする研磨方法。
Together to press the polished surface of the polishing object while the polishing member is rotated spherical, along said polished surface are relatively moved a predetermined distance in the main scanning direction, the predetermined distance for each finishes relative movement In a polishing method for polishing the surface to be polished while relatively moving in a sub-scanning direction orthogonal to the main scanning direction by a predetermined pitch,
A measurement step of obtaining a value of a radius of a contact circle formed when the polishing member is pressed against the surface to be polished from a measurement result of the surface of the surface to be polished that has been polished by the polishing member ;
A calculation step of calculating a swell coefficient representing a value obtained by dividing the radius of the contact circle obtained in the measurement step by the value of the input predetermined pitch;
Whether or not the undulation coefficient calculated in the calculation step is within a predetermined range before and after the numerical value at which the maximum unevenness of undulation representing the unevenness of the surface to be polished formed by polishing is peaked and a determination step of determining,
In the determination step, when it is determined that the undulation coefficient is not within the predetermined range, polishing is permitted, and when it is determined that the undulation coefficient is within the predetermined range, the undulation coefficient is corrected by a predetermined calculation. A polishing method characterized by the above.
前記研磨部材を前記被研磨面の一端部に押圧させるとともに前記被研磨面に沿って前記被研磨面の他端部まで相対移動させながら研磨を行う研磨ステップを更に有することを特徴とする請求項6に記載の研磨方法。 Claim, characterized by further comprising a polishing step of polishing while relatively moving to the other end of the surface to be polished along the surface to be polished with to press the abrasive member at one end of the surface to be polished 6. The polishing method according to 6. 前記判定ステップにおいて、前記うねり係数が0.5の整数倍±0.05の範囲内であるか否かを判定することを特徴とする請求項6または7に記載の研磨方法。 8. The polishing method according to claim 6 , wherein in the determination step, it is determined whether or not the undulation coefficient is in a range of an integer multiple of 0.5 ± 0.05 . 球形の研磨部材を回転させながら研磨対象物の被研磨面に押圧させるとともに、前記被研磨面に沿って主走査方向に所定の距離を相対移動させ、前記所定の距離を相対移動し終える毎に所定ピッチだけ前記主走査方向と直交する副走査方向に相対移動させながら前記被研磨面の研磨を行う研磨条件計算方法において、
前記研磨部材のヤング率およびポアソン比、前記研磨部材の半径、前記研磨部材を前記被研磨面に押圧する圧力の値、並びに、研磨を実行することにより形成される前記被研磨面の凹凸を表すうねりについての許容値を含む研磨条件を入力する入力ステップと、
前記入力ステップにおいて入力された前記研磨条件に基づいて、前記研磨部材を前記被研磨面に押圧させた際に形成される接触円の半径、前記接触円の半径を前記所定ピッチの値で除した値を表すうねり係数、および、前記うねりの最大凹凸差を算出する第1計算ステップと、
前記第1計算ステップにおいて算出された前記接触円の半径、前記うねり係数および前記うねりの最大凹凸差に基づいて、前記許容値を満たすうちの最も大きなピッチの値を算出する第2計算ステップとを有することを特徴とする研磨条件計算方法。
Together to press the polished surface of the polishing object while the polishing member is rotated spherical, along said polished surface are relatively moved a predetermined distance in the main scanning direction, the predetermined distance for each finishes relative movement In a polishing condition calculation method for polishing the surface to be polished while relatively moving in a sub-scanning direction orthogonal to the main scanning direction by a predetermined pitch,
It represents the Young's modulus and Poisson's ratio of the polishing member, the radius of the polishing member, the value of the pressure that presses the polishing member against the surface to be polished, and the irregularities of the surface to be polished formed by performing polishing. An input step for inputting polishing conditions including a tolerance for waviness;
Based on the polishing conditions input in the input step , the radius of the contact circle formed when the polishing member is pressed against the surface to be polished, and the radius of the contact circle divided by the value of the predetermined pitch. A undulation coefficient representing a value, and a first calculation step of calculating a maximum unevenness difference of the undulation ;
A second calculation step of calculating a maximum pitch value out of the allowable values based on the radius of the contact circle calculated in the first calculation step , the waviness coefficient, and the maximum unevenness difference of the waviness ; A polishing condition calculation method comprising:
研磨対象物と対向するように設けられたヘッド部と、
前記研磨対象物を研磨するための球形の研磨部材を有し、前記ヘッド部に回転可能に保持された研磨工具と、
前記研磨工具を所定の回転速度で回転駆動する回転駆動機構と、
前記研磨部材を前記研磨対象物の被研磨面に所定の圧力で押圧させる押圧機構と、
前記押圧機構により前記被研磨面に押圧された前記研磨部材を前記被研磨面において所定の移動速度で相対移動させる移動機構と、
前記回転駆動機構、前記押圧機構、および前記移動機構の作動を制御することにより、前記研磨部材を回転させながら前記被研磨面に押圧させるとともに、前記被研磨面に沿って主走査方向に所定の距離を相対移動させ、前記所定の距離を相対移動し終える毎に所定ピッチだけ前記主走査方向と直交する副走査方向に相対移動させながら前記被研磨面の研磨を行う制御部と、
前記制御部に指示を与え、前記制御部からの出力を得るための入出力装置を備えた研磨装置において、
前記制御部は、前記入出力装置から入力された前記所定ピッチの値と研磨を実行することにより形成される前記被研磨面の凹凸を表すうねりについての許容値とを含む研磨条件に基づいて前記うねりの最大凹凸差を算出し算出した前記うねりの最大凹凸差が前記入出力装置から入力された前記許容値より大きいか否かを判定し、前記うねりの最大凹凸差が前記許容値以下である場合には研磨を許可し、前記うねりの最大凹凸差が前記許容値より大きい場合には研磨を許可しないように構成されることを特徴とする研磨装置。
A head portion provided to face the object to be polished;
A polishing tool having a spherical polishing member for polishing the polishing object, and rotatably held by the head part;
A rotational drive mechanism for rotationally driving the polishing tool at a predetermined rotational speed;
A pressing mechanism for pressing the polishing member against the surface to be polished of the object to be polished with a predetermined pressure;
A moving mechanism for relatively moving the polishing member pressed against the polished surface by the pressing mechanism at a predetermined moving speed on the polished surface;
By controlling the operations of the rotation drive mechanism, the pressing mechanism, and the moving mechanism, the polishing member is pressed against the surface to be polished while rotating, and a predetermined scanning direction is set along the surface to be polished. distance moved relative, and a control unit for performing polishing of the surface to be polished while the sub-scanning direction are moved relative to perpendicular to the main scanning direction by a predetermined pitch of the predetermined distance for each finishes relative movement,
In a polishing apparatus provided with an input / output device for giving an instruction to the control unit and obtaining an output from the control unit,
Wherein, based on the polishing conditions including the allowable values for waviness representing the value of said predetermined pitch which is input from the input device, the unevenness of the polished surface formed by performing polishing The maximum unevenness difference of the undulation is calculated , it is determined whether the calculated maximum unevenness difference of the undulation is larger than the allowable value input from the input / output device, and the maximum unevenness difference of the undulation is equal to or less than the allowable value. In the polishing apparatus, polishing is permitted, and when the maximum unevenness difference of the waviness is larger than the allowable value, polishing is not permitted .
前記制御部は、前記うねりの最大凹凸差が前記許容値より大きいと判定した場合には前記許容値を満たすうちの最も大きなピッチの値を出力するように構成されることを特徴とする請求項10に記載の研磨装置。 The control unit is configured to output a value of a maximum pitch that satisfies the allowable value when it is determined that a maximum unevenness difference of the undulation is larger than the allowable value. Item 11. The polishing apparatus according to Item 10 . 前記制御部は、前記うねりの最大凹凸差が前記許容値より大きいと判定した場合には前記入出力装置から入力された前記所定ピッチの値の修正を促すように構成されることを特徴とする請求項10または11に記載の研磨装置。 The control unit is configured to prompt correction of the value of the predetermined pitch input from the input / output device when it is determined that the maximum unevenness difference of the undulation is larger than the allowable value. The polishing apparatus according to claim 10 or 11 . 前記入出力装置から入力される研磨条件、前記所定ピッチの値と、前記研磨部材のヤング率およびポアソン比と、前記研磨部材の半径と、前記研磨部材を前記被研磨面に押圧する圧力の値と、前記うねりについての許容値であることを特徴とする請求項10〜12のいずれかに記載の研磨装置。 The polishing conditions input from the input / output device include the value of the predetermined pitch , the Young's modulus and Poisson's ratio of the polishing member, the radius of the polishing member, and the pressure for pressing the polishing member against the surface to be polished . the polishing apparatus according to any one of claims 10 to 12, wherein the value, to be a permissible value for the undulation. 前記制御部は、前記入出力装置から入力された前記研磨条件に基づいて、前記うねりの最大凹凸差と、前記研磨部材を前記被研磨面に押圧させた際に形成される接触円の半径と、前記接触円の半径を前記所定ピッチの値で除した値を表すうねり係数を算出するように構成されることを特徴とする請求項10〜13のいずれかに記載の研磨装置。 The control unit, based on the polishing conditions input from the input / output device , the maximum unevenness difference of the undulation, and the radius of a contact circle formed when the polishing member is pressed against the surface to be polished The polishing apparatus according to claim 10 , wherein a waviness coefficient representing a value obtained by dividing the radius of the contact circle by the value of the predetermined pitch is calculated . 研磨対象物と対向するように設けられたヘッド部と、
前記研磨対象物を研磨するための球形の研磨部材を有し、前記ヘッド部に回転可能に保持された研磨工具と、
前記研磨工具を所定の回転速度で回転駆動する回転駆動機構と、
前記研磨部材を前記研磨対象物の被研磨面に所定の圧力で押圧させる押圧機構と、
前記押圧機構により前記被研磨面に押圧された前記研磨部材を前記被研磨面において所定の移動速度で相対移動させる移動機構と、
前記回転駆動機構、前記押圧機構、および前記移動機構の作動を制御することにより、前記研磨部材を回転させながら前記被研磨面に押圧させるとともに、前記被研磨面に沿って主走査方向に所定の距離を相対移動させ、前記所定の距離を相対移動し終える毎に所定ピッチだけ前記主走査方向と直交する副走査方向に相対移動させながら前記被研磨面の研磨を行う制御部と、
前記制御部に指示を与え、前記制御部からの出力を得るための入出力装置を備えた研磨装置において、
前記制御部は、前記研磨部材により研磨を行った前記被研磨面の表面の測定結果から前記研磨部材を前記被研磨面に押圧させた際に形成される接触円の半径を取得し、取得した前記接触円の半径を前記入出力装置から入力された前記所定ピッチの値で除した値を表すうねり係数を算出し、算出した前記うねり係数が、研磨を実行することにより形成される前記被研磨面の凹凸を表すうねりの最大凹凸差がピークになる数値の前後の所定範囲内であるか否かを判定し、前記うねり係数が前記所定範囲内ではない場合には研磨を許可し、前記所定範囲内である場合には前記うねり係数を所定の演算により補正するように構成されることを特徴とする研磨装置。
A head portion provided to face the object to be polished;
A polishing tool having a spherical polishing member for polishing the polishing object, and rotatably held by the head part;
A rotational drive mechanism for rotationally driving the polishing tool at a predetermined rotational speed;
A pressing mechanism for pressing the polishing member against the surface to be polished of the object to be polished with a predetermined pressure;
A moving mechanism for relatively moving the polishing member pressed against the polished surface by the pressing mechanism at a predetermined moving speed on the polished surface;
By controlling the operations of the rotation drive mechanism, the pressing mechanism, and the moving mechanism, the polishing member is pressed against the surface to be polished while rotating, and a predetermined scanning direction is set along the surface to be polished. distance moved relative, and a control unit for performing polishing of the surface to be polished while the sub-scanning direction are moved relative to perpendicular to the main scanning direction by a predetermined pitch of the predetermined distance for each finishes relative movement,
In a polishing apparatus provided with an input / output device for giving an instruction to the control unit and obtaining an output from the control unit,
The control unit acquires and acquires the radius of a contact circle formed when the polishing member is pressed against the surface to be polished from the measurement result of the surface of the surface to be polished that has been polished by the polishing member . A waviness coefficient representing a value obtained by dividing the radius of the contact circle by the value of the predetermined pitch input from the input / output device is calculated, and the calculated waviness coefficient is formed by performing polishing. maximum unevenness difference of undulation representing the unevenness of the surface is equal to or within a predetermined range before and after the numerical value becomes a peak, to allow polishing when the swell factor is not within the predetermined range, the predetermined A polishing apparatus configured to correct the waviness coefficient by a predetermined calculation when it is within a range .
前記制御部は、前記うねり係数が0.5の整数倍±0.05の範囲内であるか否かを判定するように構成されることを特徴とする請求項15に記載の研磨装置。 The polishing apparatus according to claim 15 , wherein the control unit is configured to determine whether or not the waviness coefficient is within a range of an integer multiple of 0.5 ± 0.05 . 研磨対象物と対向するように設けられたヘッド部と、
前記研磨対象物を研磨するための球形の研磨部材を有し、前記ヘッド部に回転可能に保持された研磨工具と、
前記研磨工具を所定の回転速度で回転駆動する回転駆動機構と、
前記研磨部材を前記研磨対象物の被研磨面に所定の圧力で押圧させる押圧機構と、
前記押圧機構により前記被研磨面に押圧された前記研磨部材を前記被研磨面において所定の移動速度で相対移動させる移動機構と、
前記回転駆動機構、前記押圧機構、および前記移動機構の作動を制御することにより、前記研磨部材を回転させながら前記被研磨面に押圧させるとともに、前記被研磨面に沿って主走査方向に所定の距離を相対移動させ、前記所定の距離を相対移動し終える毎に所定ピッチだけ前記主走査方向と直交する副走査方向に相対移動させながら前記被研磨面の研磨を行う制御部と、
前記制御部に指示を与え、前記制御部からの出力を得るための入出力装置を備えた研磨装置において、
前記制御部は、前記入出力装置から入力された前記研磨部材のヤング率およびポアソン比、前記研磨部材の半径、前記研磨部材を前記被研磨面に押圧する圧力の値、並びに、研磨を実行することにより形成される前記被研磨面の凹凸を表すうねりについての許容値を含む研磨条件に基づいて、前記研磨部材を前記被研磨面に押圧させた際に形成される接触円の半径と、前記接触円の半径を前記所定ピッチの値で除した値を表すうねり係数と、前記うねりの最大凹凸差とを算出し、算出した前記接触円の半径、前記うねり係数および前記うねりの最大凹凸差に基づいて、前記許容値を満たすうちの最も大きなピッチの値を算出するように構成されることを特徴とする研磨装置。
A head portion provided to face the object to be polished;
A polishing tool having a spherical polishing member for polishing the polishing object, and rotatably held by the head part;
A rotational drive mechanism for rotationally driving the polishing tool at a predetermined rotational speed;
A pressing mechanism for pressing the polishing member against the surface to be polished of the object to be polished with a predetermined pressure;
A moving mechanism for relatively moving the polishing member pressed against the polished surface by the pressing mechanism at a predetermined moving speed on the polished surface;
By controlling the operations of the rotation drive mechanism, the pressing mechanism, and the moving mechanism, the polishing member is pressed against the surface to be polished while rotating, and a predetermined scanning direction is set along the surface to be polished. distance moved relative, and a control unit for performing polishing of the surface to be polished while the sub-scanning direction are moved relative to perpendicular to the main scanning direction by a predetermined pitch of the predetermined distance for each finishes relative movement,
In a polishing apparatus provided with an input / output device for giving an instruction to the control unit and obtaining an output from the control unit,
The control unit executes the Young's modulus and Poisson's ratio of the polishing member input from the input / output device , the radius of the polishing member, the value of the pressure pressing the polishing member against the surface to be polished, and polishing A radius of a contact circle formed when the polishing member is pressed against the surface to be polished , based on polishing conditions including an allowable value for waviness representing the unevenness of the surface to be polished formed by A waviness coefficient representing a value obtained by dividing the radius of the contact circle by the value of the predetermined pitch and a maximum unevenness difference of the waviness are calculated, and the calculated radius of the contact circle, the waviness coefficient, and the maximum unevenness difference of the waviness are calculated. Based on this, the polishing apparatus is configured to calculate the largest pitch value out of the allowable values .
JP2008189938A 2008-07-23 2008-07-23 Polishing method, polishing condition calculation method and polishing apparatus Active JP5434001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008189938A JP5434001B2 (en) 2008-07-23 2008-07-23 Polishing method, polishing condition calculation method and polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008189938A JP5434001B2 (en) 2008-07-23 2008-07-23 Polishing method, polishing condition calculation method and polishing apparatus

Publications (2)

Publication Number Publication Date
JP2010023211A JP2010023211A (en) 2010-02-04
JP5434001B2 true JP5434001B2 (en) 2014-03-05

Family

ID=41729526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008189938A Active JP5434001B2 (en) 2008-07-23 2008-07-23 Polishing method, polishing condition calculation method and polishing apparatus

Country Status (1)

Country Link
JP (1) JP5434001B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126765A (en) * 1997-10-22 1999-05-11 Toshiba Corp Method for simulating polishing, recording media for recording the same method and method for polishing
JP2000246633A (en) * 1999-02-25 2000-09-12 Nikon Corp Grinding device and grinding method
US6667239B2 (en) * 2001-01-23 2003-12-23 Asml Us, Inc. Chemical mechanical polishing of copper-oxide damascene structures
JP2003062751A (en) * 2001-08-23 2003-03-05 Ricoh Co Ltd Waviness removing method, polishing device, workpiece, mold for molding optical element, optical element and printing processor
JP2004167634A (en) * 2002-11-20 2004-06-17 Central Glass Co Ltd Pressure surface plate and single-side polishing apparatus using the same
JP2004314220A (en) * 2003-04-15 2004-11-11 Olympus Corp Polishing method and apparatus therefor

Also Published As

Publication number Publication date
JP2010023211A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP6196858B2 (en) Polishing method and polishing apparatus
WO2016117485A1 (en) Polishing-amount simulation method for buffing process, and buffing device
JP2007019434A (en) Polishing pad profile modification equipment and polishing equipment
JP5434001B2 (en) Polishing method, polishing condition calculation method and polishing apparatus
WO2013046785A1 (en) Tool path-calculating device, tool path-calculating method, and processing equipment
JP6823541B2 (en) Calibration method and calibration program
JP5369478B2 (en) Polishing equipment
JP4967410B2 (en) Welding robot controller
JP4702765B2 (en) Vibration polishing method and apparatus
JP5522628B2 (en) Surface treatment equipment
JP6323744B2 (en) Polishing robot and its control method
KR101432018B1 (en) Apparatus and method for grinding glass panel
JP2011036974A (en) Polishing method and polishing device
JP2013166202A (en) Automatic polishing device
JP6620401B2 (en) Robot tool maintenance judgment device
CN114269515B (en) Polishing system and polishing method
JP2008302458A (en) Polishing device and polishing method
JP2014012338A (en) Polishing device
JP2005177925A (en) Polishing method
JP2001260020A (en) Pressurizing force variable polishing device
JP2000052211A (en) Excess weld metal removing method for welding bead and its device
CN112792698B (en) Method and system for cleaning welding head
WO2023166846A1 (en) Remote operating system and remote operating method
JP2018020414A (en) Automatic polishing method for vehicle body panel
JP2002103202A (en) Polishing method and polishing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5434001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250