WO2013046785A1 - Tool path-calculating device, tool path-calculating method, and processing equipment - Google Patents

Tool path-calculating device, tool path-calculating method, and processing equipment Download PDF

Info

Publication number
WO2013046785A1
WO2013046785A1 PCT/JP2012/061551 JP2012061551W WO2013046785A1 WO 2013046785 A1 WO2013046785 A1 WO 2013046785A1 JP 2012061551 W JP2012061551 W JP 2012061551W WO 2013046785 A1 WO2013046785 A1 WO 2013046785A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
grinding
path
data
processing
Prior art date
Application number
PCT/JP2012/061551
Other languages
French (fr)
Japanese (ja)
Inventor
敏夫 山中
武尚 吉川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2013046785A1 publication Critical patent/WO2013046785A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37258Calculate wear from workpiece and tool material, machining operations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45161Grinding machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50311Compensate tool wear by grinding tool to a known position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to technologies such as computer-aided manufacturing (CAM: Computer Aided Manufacturing) and numerical control (NC: Numerical Control) of a processing apparatus.
  • CAM Computer Aided Manufacturing
  • NC numerical control
  • the present invention relates to information processing for generating CAM and NC data for a processing apparatus including a step of grinding a material (workpiece) with a grinding tool (grinding stone or the like).
  • the present invention relates to a technique for coping with wear generated on a tool (grinding stone) during grinding and a technique for calculating / correcting a movement path of the tool (grinding stone).
  • Patent Document 1 JP-A-2-65971
  • Patent Document 2 JP-A-2003-315992
  • Patent Document 3 JP-A-10-15800
  • Patent Document 1 has the following description.
  • grinding wheels wear out during grinding. At this time, the grinding process is stopped, and the grinding wheel is dressed with a dresser embedded with diamond, which is a grinding and shaping tool, and then again. Grind.
  • this method cannot perform efficient grinding because dressing is performed by interrupting the grinding process every time the grindstone is worn.
  • the said dresser is arrange
  • Patent Document 2 has the following description.
  • the relationship between the grindstone drive motor load current value and the grindstone actual cutting amount is obtained in advance and converted into a mathematical formula, while the required removal amount in the longitudinal direction of the roll is obtained for each processing position, and grinding is performed.
  • the removal amount necessary for the processing position to be processed that is, the grinding wheel cutting amount is controlled so as to match the above formula, and the grinding wheel actual cutting amount for the roll as the work material is corrected during grinding.
  • processing can be performed with high accuracy without measuring the roll dimensions during the grinding process.
  • Patent Document 3 has the following description.
  • the wear amount of the grindstone after a certain process is experimentally determined and stored in advance in the memory of the control device of the processing machine, and this grindstone wear amount is stored in the machining process.
  • a technique for correcting and processing with high accuracy is shown.
  • Patent Documents 1, 2, 3, etc. are techniques for performing correction to cope with the wear of the tool (grinding stone) during grinding. Can be caught. That is, the material (work material) to be processed by the grindstone (tool) and the production / machining process of the actual workpiece (product) using the grindstone (tool) are the same as the product (work material). Data on the amount of wear of the grinding wheel (tool) when processing in the same processing procedure as the production and processing of products, that is, the same processing equipment using the same processing equipment or processing equipment with specifications almost equivalent to this equipment. And this data is used as a correction amount for the position of the tool (grindstone) in actual machining.
  • processes (conditions) that include the order of tools (grindstone) used for processing to obtain correction data, tool trajectory, tool rotation speed (grinding speed), tool feed speed, tool cutting depth, etc. And the process (condition) for processing the product reflecting the correction data.
  • problems problems for such technology.
  • a dresser is disposed on the opposite side of the processing point of the grindstone, and grinding is performed while dressing the grindstone (a method called an in-process dress) ), It is necessary to process the grinding wheel while removing a larger amount than the amount that the grinding wheel naturally wears by grinding (otherwise, the dresser does not come into contact with the grinding wheel). Waste that reduces more than necessary occurs.
  • the main object of the present invention is to solve the above-mentioned problems (1) to (3) in CAM, NC, etc., relating to a processing apparatus using the above-described grinding tool (grinding stone, etc.). That is, to provide a technology that can realize the following points: (1) Relax the constraints to make the conditions of trial processing and actual processing the same, and reduce costs, etc. (2) Eliminates or reduces the need for testing each time a product is changed, reducing costs and time, (3) It is not necessary to reduce the number of tools (grinding stones) more than necessary, and the cost is reduced.
  • a representative embodiment of the present invention is to deal with wear generated in a tool during grinding in a CAM, NC, etc. related to a processing apparatus using the above-described grinding tool (grinding stone, etc.).
  • the present invention when generating NC data for controlling the grinding process of the processing apparatus, corrects / calculates a path along which the grindstone moves in consideration of wear generated on the grindstone during grinding (including a path after correction).
  • An apparatus having a function of generating NC data) and a corresponding method are provided.
  • data (whetstone wear amount) obtained by performing trial machining (such as a simple straight groove machining test) with a grindstone (tool) used for the work material and data created based on that data
  • the apparatus of this embodiment performs, for example, information processing for generating NC data (machining data) including a path of the tool for controlling the operation of a machining apparatus provided with a tool (grinding stone) that grinds a workpiece.
  • a tool path calculation device for performing a function of calculating a path in consideration of wear generated in a tool during grinding.
  • the processing unit includes (1) a first condition (working form) for a work material having a first shape and a size with respect to a combination of a work material (specific material type) and a tool (specific material type). Based on the data of the result of performing the first grinding process (trial process) according to, data including relation information between the grinding specification value of the first grinding process and the tool wear amount (reduction amount) is stored in the database.
  • NC data for processing and (2) second grinding (actual machining) under a second condition (machining form) for a workpiece having the second shape and size A process for calculating a tool wear amount of the second grinding process on the basis of the grinding specification values of the grinding process 2 and the relational information of the database; and (3) a tool of the second grinding process.
  • the second grinding tool calculated above for the path not considering wear Reflecting the wear amount, the tool path or diameter corrected so as to cancel the machining error due to the tool wear amount is calculated, and NC data corresponding to the machining data including the corrected path or diameter is generated.
  • the following effects corresponding to the above-described conventional problems (1) to (3) are provided: (1) Relax the constraints to make the conditions of trial processing and actual processing the same, and reduce costs, etc. (2) Eliminates or reduces the need for testing each time a product is changed, reducing costs and time, (3) It is not necessary to reduce the number of tools (grinding stones) more than necessary, and the cost is reduced.
  • FIG. 1 is a diagram showing an overall schematic configuration of a system (tool path calculation system) according to an embodiment of the present invention.
  • a system tool path calculation system
  • route calculation apparatus it is a figure which shows the structure of a CAM system (tool path
  • a CAM system tool path
  • route calculation apparatus it is a figure which shows the hardware constitutions of a CAM system (tool path
  • it is a figure which shows the hardware constitutions of the processing apparatus (machining center) (an example of the processing apparatus of an I / F connection destination (NC control object)).
  • machining center an example of the processing apparatus of an I / F connection destination (NC control object)
  • machining center an example of the processing apparatus of an I / F connection destination (NC control object)
  • (A)-(c) is explanatory drawing shown about the processing form containing the contact state of a grindstone and a work material in this Embodiment,
  • (a) is the 1st processing form (straight line)
  • (b ) Shows the second machining mode (arc outer side)
  • (c) shows the third machining mode (arc inner side).
  • (A), (b) is explanatory drawing which shows an example of the method and result of a trial processing by the system according to a prior art
  • (a) is a processing form (straight line)
  • (b) is a result by (a). (Relationship between grinding specification value ( ⁇ ) and grinding wheel radius reduction amount (W)).
  • (A), (b) is explanatory drawing which shows an example of the prediction result of the grinding wheel radius reduction
  • (a) is a processing form (arc outer side) and grinding conditions (grinding wheel)
  • (B) shows the result of (a) (relationship between cutting amount ( ⁇ ) and grinding wheel wear radius (W)).
  • (A), (b) is explanatory drawing which shows the 2nd system which estimates the grindstone radius reduction amount (W) in this Embodiment, (a) is a contact arc of a grindstone and a workpiece.
  • the length ratio, (b) shows the result of prediction based on (a) (the relationship between the cutting amount ( ⁇ ) and the grinding wheel radius reduction amount (W1)).
  • (A)-(d) is explanatory drawing which shows the influence which the radius (R) of the grindstone to use has on the grindstone radius reduction amount (W).
  • (A), (b) is explanatory drawing which shows the 1st system which estimates the grinding wheel radius reduction
  • (B) shows the result of prediction based on (a) (relation between the cutting depth ( ⁇ ) and the grinding wheel wear radius (W2)). It is explanatory drawing which shows the path
  • the tool path calculation device (CAD system) of the system according to the present embodiment includes a path that takes into account wear during grinding of the grinding tool (grinding stone) of the processing device.
  • This function calculates (predicts) actual machining data (grindstone wear radius, etc.) based on trial machining data (grindstone wear volume, etc.).
  • trial machining is executed by the machining device based on the first NC data under the first condition with a combination of the work material and the grinding tool (grinding wheel).
  • the trial processing (first condition) can be a simple test such as linear groove processing of a small-sized flat plate, for example.
  • the result data of the trial machining is obtained, and for example, data including relation information indicating the relation between the grinding specification value and the grinding wheel wear volume is stored in the database.
  • the actual machining is executed by the machining device using the second NC data under the second condition with the combination of the work material and the grinding tool (grinding stone) using the same material as that at the time of actual machining and trial machining.
  • the actual machining (second condition) can be a circular arc machining of a large product.
  • a grinding wheel reduction volume of the work material-grinding tool (grinding wheel) is used (DB50 in FIGS. 11 and 1).
  • DB50 grinding wheel reduction volume of the work material-grinding tool
  • the contact arc length ratio of the work material-grinding tool (grinding wheel) is used as a second method regarding data (related information) used for correction (prediction) (FIG. 9).
  • prediction error of grinding wheel wear is greatly reduced as compared with the prior art.
  • FIG. 1 shows an overall configuration of a system (tool path calculation system) 100 according to the present embodiment and a schematic configuration of a CAD system 30 as a main part.
  • the system 100 includes an information processing apparatus (computer system) constituting the design / processing data creation system 101 and a processing apparatus 20 to be controlled by the information processing apparatus.
  • the system 100 includes a CAD system 30 (shape design device), design data (design data storage device) 51, a CAM system 10 (tool path calculation device), NC data (NC data storage device) 52, and an NC simulator. 40 and a machining center (processing apparatus) 20 controlled by NC data 52, and these are connected by communication.
  • Reference numerals 51 and 52 denote data or storage devices for the data.
  • the shape of an arbitrary part (target product) to be obtained is designed by the user's operation using the processing of the CAD system 30, and when the design is completed, the corresponding design data 51 is stored and output.
  • NC data 52 for processing (manufacturing) the target product is generated, stored, and output to the processing apparatus 20 based on the design data 51 using the processing of the CAM system 10 by user operation. Is done. In the processing apparatus 20, the processing operation is automatically controlled according to the NC data 52.
  • the CAD system 30 is a shape design device, and is a device such as a PC that realizes information processing including a shape design function by CAD (Computer Aided Design).
  • the CAD system 30 creates, holds, and outputs design data 51 based on the operation of a user (CAD operator or the like).
  • the design data 51 is CAD data, and includes data such as the shape and material of the product to be manufactured (processed).
  • the design data 51 is held in a memory in the CAD system 30 and the CAM system 10 or may be held in another storage device.
  • the CAM system 10 is a tool path calculation device, and is a device such as a PC that realizes information processing including a tool path calculation function by the CAM.
  • the CAM system 10 creates, holds, and outputs NC data 52 from the design data 51 based on the operation of the user (CAM operator or the like).
  • the CAM system 10 includes a processing unit 201, a storage unit 202, an I / F unit 203, a trial processing unit 204A, an actual processing unit 204B, and the like.
  • the NC data 52 is NC data including an NC program for controlling the target machining apparatus 20.
  • the NC data 52 is held in a memory in the CAM system 10 and the processing apparatus 20, or may be held in another storage device.
  • the NC simulator 40 performs a process for verifying the operation of the NC data 52 before outputting the NC data 52 from the CAM system 10 to the machining apparatus 20, and the verified NC data 52 is transferred to the machining apparatus 20.
  • the verification (NC simulator 40) can be omitted.
  • the design data 51 may be created by the CAM system 10.
  • the processing unit 201 performs information processing such as steps S1 to S6 shown schematically (described later).
  • S3 and S4 are characteristic processes.
  • the storage unit 202 holds necessary data information.
  • design data 51, condition information 53, DB 50, NC data 52, and the like are held.
  • the I / F unit 203 is a part that performs communication interface processing for connection with the outside (particularly including the processing device 20) (using the communication I / F device 308 of FIG. 3 and the like).
  • the I / F unit 203 performs communication processing such as transmitting NC data 52 and instruction information to the machining apparatus 20 and the NC simulator 40 through the communication network based on instructions from the trial machining unit 204A and the actual machining unit 204B. Do.
  • the machining apparatus 20 when the NC data 52 is transmitted from the CAM system 10 to the machining apparatus 20, the machining apparatus 20 automatically performs a machining operation according to the NC data 52. Further, it is possible to measure the state of machining or the result of machining using the measuring device 4 according to the NC data 52 (manual measurement is also possible). Thereby, result data (k1, k2 in FIG. 2) of trial processing and actual processing including at least grinding wheel wear data and the like are obtained. In addition, it is good also as a form which transmits data information (for example, data, such as a processing state and a processing result) from the processing apparatus 20 to the CAM system 10 etc. according to the form of the processing apparatus 20 or a system.
  • data information for example, data, such as a processing state and a processing result
  • the trial processing unit 204A uses the processing unit 201, the I / F unit 203, and the like to perform processing during trial processing. Also, a predetermined user interface (screen or the like) for trial machining is provided.
  • the actual machining unit 204B uses the processing unit 201, the I / F unit 203, and the like to perform processing during actual machining. Also, a predetermined user interface (screen or the like) for actual machining is provided.
  • the DB 50 is a database that stores data necessary for the CAM system 10 (processing unit 201) to perform a tool path calculation process and the like (amount of grinding wheel wear, relationship information 211, and the like). Particularly in the first method, the wheel wear volume DB 50 stores wheel wear volume data and the like (in the second method, the DB 50 includes contact arc length ratio information).
  • the grinding wheel wear volume data as the relationship information 211 is created and stored in a format such as a function (prediction formula) or a correspondence table (table) (described later).
  • the DB 50 is created based on the trial processing result data k1 (FIG. 2) in the processing apparatus 20.
  • the entire result data k1 may be stored in the DB 50, or only a part of information related to the relationship information 211 may be stored.
  • the result data k1 of the trial machining including the measurement result by the measuring device 4 (FIG. 2) in the machining device 20 is input / acquired to the CAM system 10 and stored in the DB 50.
  • a function (prediction formula) or a correspondence table serving as the relationship information 211 is created (set) and stored in the DB 50 by the user or partial calculation.
  • FIG. 2 shows a connection configuration between the CAM system 10 and the machining apparatus 20 regarding trial machining and actual machining in the system of the present embodiment shown in FIG.
  • the CAM system 10 and the processing apparatus 20 are connected by a LAN 90, for example.
  • trial machining is performed using the combination of the grinding tool (grindstone) 1A and the work material (part) 2A in the machining apparatus 20 using the first condition, NC data d1, As a result, data k1 is obtained.
  • first condition it is possible to make a simple test by using a workpiece 2A having a simple shape such as a small size flat plate.
  • the result data k1 is obtained by measuring the machining state and the machining result with the measuring device 4. Note that the result data k1 may be acquired by a device (means) different from the processing device 20 (measurement device 4) or by the user's work.
  • the relationship information 211 is information indicating the relationship between, for example, the grinding specification value ( ⁇ ) and the grindstone wear volume (M) (in the case of the first method).
  • actual machining is performed based on the second condition, NC data d2, using a combination of a grinding tool (grinding stone) 1B and a work material (part) 2B in the machining apparatus 20.
  • data k2 is obtained.
  • the result data k2 is obtained by the measuring device 4 or the like.
  • the material (type) of the combination of the grinding tool 1B and the work material 2B is the same as the trial machining combination (1A, 2A), and the shape (eg, arc) and size (eg, arc) different from the trial machining are used.
  • a large size) work material 2B can be used, and different machining forms can be obtained.
  • the NC data d2 corresponds to the NC data 52 generated by the processing unit 201.
  • the result data (k1, k2) in the processing apparatus 20 is input to the CAM system 10 and stored in the DB 50 or the like. Input of the result data (k1, k2) may be performed by automatic communication processing via the I / F unit 203 or the like, or may be input by a user.
  • both the trial machining and the actual machining are executed by the machining apparatus 20.
  • the trial machining may be executed by another device (means) as long as necessary data stored in the DB 50 can be obtained.
  • the trial machining can be performed with a simple configuration, since the basic conditions such as the material of the combination can be made the same and a simple test different from the actual machining conditions can be performed.
  • processing unit 201 The processing flow in the processing unit 201 in FIG. 1 is as follows (S1 and the like represent processing steps).
  • S1 and the like represent processing steps).
  • a data input unit 11 corresponding to S1
  • a condition selecting unit 12 corresponding to S2
  • an arithmetic unit 13 corresponding to S3 and S4
  • NC data setting unit 14 corresponding to S5 is shown.
  • (S1) As data input processing by the data input unit 11, based on the design data 51 from the CAD system 30, design data (data such as target product shape), material data (material of the work material, etc.) Data) and material shape data (data such as the shape of the work material) are input / acquired. Note that the material data and the material shape data may be created by the user (CAM operator) in the CAM system 10.
  • S2 performs a process of selecting (setting) general conditions related to processing (manufacturing) using the input data of S1, as the condition selecting process by the condition selecting unit 12.
  • a processing site work material
  • a grinding tool to be used grinding stone
  • processing conditions here, various conditions regarding the target grinding process (part)
  • S2 some information is selected by user input.
  • the selection of S2 may be input by the user each time, or may be automatically performed using information from the outside or information set in advance.
  • Each piece of information selected in S2 is stored in the storage unit 202 as condition information 53 and used in subsequent calculations.
  • a machining mode may be selected as one of the conditions.
  • the machining mode here includes the mode of movement of the tool (grinding stone) according to the shape (flat plate, arc, etc.) of the work material (whether the trajectory of the axis is a straight line or an arc) (described later, FIG. 6 etc. ).
  • the calculation unit 13 calculates the path of the tool (grindstone) that does not consider wear based on the selection conditions of S2. .
  • the processing distance (grinding distance) (FIG. 12) of the corresponding tool (grinding stone) from the determined tool (grinding stone) path while the one form of machining is continuing is changed every time the machining form is changed. calculate.
  • a determination regarding a processing form is included (unnecessary when the processing is up to S2).
  • the processing unit 13 performs grinding wheel processing data correction processing based on the result of S3. That is, referring to the relation information 211 of the DB 50, the grinding wheel at the time of actual machining based on the relation information ( ⁇ , M) of the grinding wheel wear at the time of trial machining and the grinding specification value ( ⁇ ) at the actual machining. Calculation to predict the volume (M) of wear and the like is performed. As a result, the machining data including the tool path not considering the pre-correction wear obtained in S3 is corrected so as to include the tool path considering the wear.
  • the NC data setting unit 14 generates an NC program based on the results up to S4, and performs processing for setting the NC data 52.
  • the setting here means that NC data 52 for setting (reflecting) the machining apparatus 20 is generated, temporarily stored in the storage unit 202 and then output to the machining apparatus 20.
  • the processing unit 201 determines whether or not a series of all NC data 52 necessary for processing (control) of the target product has been generated and set. When there is another processing part or process (N), the process returns to S2 and the processes of S2 to S5 are repeated.
  • the NC data 52 in the storage unit 202 is output (transferred) to the processing apparatus 20 via the processing of the I / F unit 203 and the LAN 90. The Then, the machining apparatus 20 receives the NC data 52 through the I / F unit 5, and the machining operation is automatically controlled according to the NC data 52. That is, in actual machining, the target portion (work material) 2B is machined into a desired shape based on the design data 51 by the grinding tool (grinding stone) 1B based on the NC data d2.
  • a partial NC data 52 corresponding only to a part (process) using a grinding tool (grinding stone) may be generated and set in the processing apparatus 20.
  • the hardware configuration of the CAM system 10 includes a CPU 301, a ROM 302, a RAM 303, a magnetic disk drive 304, a magnetic disk 305, an optical disk drive 306, an optical disk 307, a communication I / F device 308, a printer 309, a keyboard 310, and a mouse 311. , A display 312 and a bus.
  • the storage unit 202 is realized by a ROM 302, a RAM 303, a magnetic disk 305, an optical disk 307, and the like and control processing thereof.
  • a part of the magnetic disk 305 stores a program 321 for realizing the CAM function (conventional technology), the function of the processing unit 201, and the like, and each data 322 including the DB 50.
  • the communication I / F device 308 is a known element that performs processing for data communication with other devices via a communication network (LAN) 90.
  • a mouse 311 and a keyboard 310 are used by a user to input data and instructions.
  • the display 312 and the printer 309 display / print out various data (50 to 52) and user interface information on the screen / paper based on the processing of the trial processing unit 204A and the actual processing unit 204B.
  • the user interface information includes, for example, data information and instruction input / output of each process such as S1, S2, etc., input / output of data stored in the DB 50, and the like. For example, it is possible to set the formula or table of the relationship information 211 by the user.
  • the machining center 20 which is a processing apparatus will be described.
  • the I / F unit 203 (communication I / F device 308) of the CAM system 10 is connected to the I / F unit 5 of the processing device 20 via a communication network (LAN) 90.
  • the I / F unit 5 performs connection / communication processing with a communication network (LAN) 90, receives, stores, and processes NC data 52 from the outside.
  • the processing device 20 automatically operates according to the processing of the NC data 52 received from the CAM system 10.
  • the processing apparatus 20 moves each part including the grinding tool 1 and the cutting tool 3 according to a path based on the NC data 52.
  • the mechanism that operates by processing the NC data 52 in the processing apparatus 20 can be applied with a known technique, and thus the description thereof is omitted.
  • the processing apparatus 20 includes a grinding tool 1, a cutting tool 3, a measuring device 4, and the like as mechanisms for various processes including grinding, cutting, and measurement.
  • the grinding tool 1 corresponds to 1A and 1B in FIG.
  • an object to be subjected to characteristic processing is a grinding process (part) using a grinding tool (grinding stone) 1. Needless to say, machining using the cutting tool 3 can be similarly performed by instructing the NC data 52.
  • the grinding tool 1 is a tool for grinding a work material (2A, 2B), and is, for example, a cylindrical grindstone.
  • the shape and operation of the grindstone are shown in FIG.
  • the measuring device 4 provided in the processing device 20 measures dimensions such as a length and a diameter of the grinding tool (grinding stone) 1 in a processing result using the grinding tool (grinding stone) 1 or the like. Similarly, a measuring device for measuring dimensions such as the length and diameter of the work material may be provided. Result data including the result measured by the measuring device 3 is input to and acquired by the CAM system 10. The measurement may be realized by another device or system, and the measurement result may be input to the CAM system 10 or the like.
  • a form in which the function of the CAM system 30 (corresponding to the processing unit 201) is integrated with the processing apparatus 20 is also possible. That is, in this embodiment, the NC data including the existing tool path (the path not considering the wear of the grindstone) is converted into the NC data including the path considering the wear of the grindstone by the function (corresponding to the processing unit 201) included in the processing apparatus 20. Correct so that
  • the data input unit 11 and the condition selection unit 12 are used to input / acquire design data 51, condition information 53, and the like.
  • it includes information such as the shape of the work material before processing, the shape of the work material (product) after processing, and the shape of the grinding tool 1 used for processing.
  • the processing unit 201 determines whether the corresponding process in the entire manufacturing process (consisting of a plurality of processes) of the target product is a part in which the tool to be used is a grindstone (grinding tool 1). When the tool is not a grindstone (for example, in the case of a part by the cutting tool 3), this characteristic process (the process of S103 to S105 by the calculation unit 13) is not performed, so the process proceeds to S106, and a general CAM is NC data in S106. The same processing as that for generating is performed.
  • S104 In S104, first, an actual machining grinding specification value ⁇ (psi) is calculated using the calculation unit 13. ⁇ is shown in FIG. Further, by using the calculation unit 13, the stored data (relation information 211) of the DB 50 is referred to, and the actual processing grinding wheel wear volume (M) is predicted (calculated) from the actual processing grinding value ⁇ . Then, the calculation unit 13 is used to convert the resulting volume (M) into a grinding wheel radius reduction amount (W).
  • the relation information 211 of the DB 50 is data necessary for calculating the grinding wheel radius reduction amount (W), and the relationship between the grinding specification value ⁇ and the grinding wheel wear volume (M) at the time of trial machining is a function or correspondence table format. (For example, exponential functions of ⁇ and W2 shown in FIG. 11A).
  • the calculation unit 13 is used to determine the tool path (or corresponding diameter) before correction in S103, and the path (or corresponding diameter) in consideration of wear using the result (W) in S104. Correct so that That is, the position of the tool (grinding stone) on the path is corrected so as to approach the work material by the grinding wheel radius reduction amount (W). Note that the path and diameter of the tool (grindstone) related to the NC data 52 can be converted by a simple calculation.
  • the route after correction in S105 should be smooth as a whole along the time axis (not to be a stepped route).
  • the amount of the grinding wheel radius reduction amount (W) is moved. It is distributed in proportion to the distance (processing distance), and is corrected so that a smooth (continuously changing) path is obtained.
  • the route P1 before correction in FIG. 12 becomes the route P2 after correction (in the case of a flat plate).
  • S106 the processing unit 13 is used to generate an NC program corresponding to the corrected machining data including the corrected tool path based on the results up to S105. Then, it is stored as NC data 52 including the generated NC program.
  • S107 the processing unit 201 determines the presence or absence of the next processing site. If there is (N), the processing returns to S101 and repeats the processing in the same manner. If not (Y), the processing ends.
  • FIG. 6 schematically shows various processing modes and conditions.
  • the trial machining data (relation information 211) in the form of a straight line (flat plate) as shown in FIG. 6A
  • an arc (outside as shown in FIGS. 6B and 6C) Predict actual machining data in the (/ inner) form.
  • FIG. 6A shows the case of a flat plate (processing a straight groove) as a first processing form (corresponding to FIG. 7A).
  • 1a shows a grindstone (grinding tool 1) in the shape of a cylinder (or disk or the like).
  • 2a shows a flat plate-shaped work material (processed part).
  • this machining mode is used in trial machining, it corresponds to the aforementioned 1A and 2A.
  • the grindstone 1a shown in FIGS. 6A, 6B, and 6C is the same.
  • R radius
  • ⁇ (delta) cutting depth
  • V peripheral speed
  • v feed speed (moving speed) as symbols corresponding to Equation 1. While the grindstone 1a having a radius R rotates at a peripheral speed V, a cutting of ⁇ is given to the work material 2a, and the grindstone 1a moves linearly at a moving speed v.
  • FIG. 6B shows a case where the outer side of the arc (convex surface) is processed as the second processing form (also corresponds to FIG. 8A).
  • 2b shows a cylindrical work material having a circular arc outside (convex surface) shape.
  • this processing form can be used in actual processing, it corresponds to the above-described 1B and 2B.
  • FIG. 6C shows the case of machining the inside of the arc (concave surface) as the third machining mode.
  • 2c shows the work material of circular arc inner side (concave surface) shape.
  • this processing form can be used in actual processing, it corresponds to the above-described 1B and 2B.
  • r is a radius on the workpiece 2b side. While the grindstone 1a having a radius R rotates at a peripheral speed V, a cutting of ⁇ is given to the work material 2b having a radius r, and the grindstone 1a moves while drawing an arc locus at a moving speed v. In this state, the center of the cylindrical workpiece 2b coincides with the center of the arc locus of the grindstone 1a.
  • Equation 2 The symbols shown in FIG. 6B correspond to Equation 2.
  • FIG. 6 (c) contrary to FIG. 6 (b), a grinding wheel 1a having a radius R is rotated at a peripheral speed V to give a notch of ⁇ to the work material 2c having an arc-inner shape at a moving speed v. It shows a state of motion while drawing an arc locus. In this state, the center of the arc-shaped work material 2c and the center of the arc locus of the grindstone 1a coincide.
  • the symbol shown in FIG. 6C corresponds to Equation 3.
  • the center of the arc-shaped trajectory (path) of the grindstone 1a is coincident with the center of the arc-shaped shape of the work materials 2b and 2c before grinding.
  • the centers of the two do not coincide.
  • the grinding specification value ⁇ is a part of an approximate expression for obtaining the thickness of the chip of the work material. In the case of the same grindstone, as ⁇ increases, the resistance acting on the grindstone increases, and thus the wear of the grindstone tends to increase (FIG. 7B, etc.).
  • the test (trial processing) is performed several times (at least twice) by changing the conditions (grinding specification value ⁇ ) in the flat plate (straight line) processing form of FIG. Then, the relationship between the grinding specification value ⁇ and the wear amount of the grindstone 1a can be obtained. Further, the relationship between this ⁇ and the grinding wheel wear amount can be organized as an exponential function (FIG. 7B, etc.). Therefore, trial machining as in the example of FIG. 6A is performed with a combination of a certain tool (grindstone) 1A and the work material 2A, and an exponential function formula (prediction formula) based on the result data (k1) is obtained. , Stored as relation information 211 in the DB 50.
  • the wear amount of the grindstone 1a can be predicted using this formula (relation information 211) (S104).
  • the wear of the grindstone 1a corresponding to ⁇ calculated from Expression 2 or Expression 3 The amount can be predicted by an equation (relation information 211) obtained by trial processing of the straight line.
  • the amount of wear is in the form of volume (M).
  • the format in which the relationship information 211 is stored in the DB 50 may be a format in which the above exponential function formula is converted into a correspondence table.
  • FIG. 7 (a) shows a case where straight groove processing (trial processing) is performed on the flat work material 2a as shown in FIG. 6 (a) with a cylindrical grindstone 1a.
  • FIG. 7B is a diagram showing the grinding conditions and results (relationship between ⁇ and W). ⁇ is according to Equation 1. W is a grinding wheel radius reduction amount (grinding wheel wear radius).
  • a grindstone (grinding tool 1) is a ceramic grindstone having a grain size of 46, a hardness of H, a structure of 10, a size of a radius of 60 mm, and a thickness of 6 mm.
  • the grinding distance is 70 mm.
  • the work material 2a is an Inconel 718AG material (aging treatment material). Then, the value of the grinding wheel radius reduction amount W [mm] was obtained from the following formula 4 (exponential function), and used as a database.
  • the grinding wheel radius reduction amount W indicates a reduction amount of the radius R of the grinding wheel 1a due to wear such as a change from FIG. 10 (a) to FIG. 10 (b). Or similarly, the reduction
  • FIG. 8B shows the result when the cylindrical work material 2b is machined with the grindstone 1a and the work material 2b being actually within the grinding conditions shown in FIG. 8A. .
  • the grindstone 1a used in FIG. 8 is the same ceramic grindstone as used in FIG.
  • the grinding specification ( ⁇ ) has a peripheral speed V of 30 m / sec and a feed speed v of 420 mm / min at the contact point between the grindstone 1a and the work material 2b.
  • the work material 2b is the same Inconel 718AG material used in FIG. 7 (2a).
  • the method of simply predicting the machining data in the case of the arc shape based on the machining data in the case of the flat plate shape has a large prediction error, and an appropriate tool path cannot be corrected.
  • FIG. 9 shows the second method
  • FIG. 11 shows the more effective first method.
  • the grinding wheel wear radius (W) is calculated using the ratio (L2 / L1) of the contact length (contact arc length) between the grindstone 1a and the work material 2 (2a, 2b). Calculate (predict). As a result, the effect of reducing the prediction error to 18% was obtained as shown in FIG.
  • (1) shows a state in which the grindstone 1a linearly moves and grinds the flat work material 2a as in FIG. 6 (a).
  • (2) shows a state in which the grindstone 1a moves on the outer circumference of the work piece 2b having an arcuate outer shape along a circular locus and is ground as in FIG. 6 (b).
  • the contact arc length L1 between the grindstone 1a and the work material 2a in (1) is longer than the contact length L2 between the grindstone 1a and the work material 2b in (2) (L1> L2). That is, the contact arc lengths (L1, L2) are shorter in the case (L2) outside the arc of (2) than in the case (L1) of the straight line (1).
  • the contact time of the abrasive grains serving as the cutting edge of the grinding tool (grinding stone) 1 is shorter when (2) grinding the outer circumference of the arc than (1) straight grinding.
  • the contact arc length (L1, L2) has little influence on the radius reduction (W) due to wear of the grindstone 1, but it is difficult to cut
  • the contact arc length (L1, L2) between the work material 2 and the grindstone 1 is considered to greatly affect the abrasive wear.
  • the above-mentioned contact arc length ratio (L2 / L1) is introduced to the formula for calculating the grinding wheel wear radius (W) based on the above-described conventional method (FIGS. 7 and 8) (
  • the grinding wheel wear radius (referred to as W1) corrected by the contact arc length ratio is calculated by the following formula 5.
  • FIG. 9B shows the result of W1 (relationship between ⁇ and W1).
  • the prediction error is greatly reduced from 107% (conventional) to 18% at a position where the cutting depth ⁇ is 2.0 mm, for example. That is, it was possible to reduce the conventional excessive prediction error and to improve the prediction accuracy of the grinding wheel radius reduction amount (W).
  • the first method is a method that includes the contact arc length ratio (L2 / L1) of the second method as an element, and is a method of calculating (predicting) using the grinding wheel reduction volume (M).
  • L2 / L1 the contact arc length ratio
  • M the grinding wheel reduction volume
  • FIGS. 10A to 10D show the influence of the radius (R) of the grindstone used on the grinding wheel radius reduction amount (W).
  • the grindstone 1a of (a) is the same cylindrical shape as described above, and has a radius R1.
  • a point pq indicates a surface (line) when the work material 2a (flat plate) is ground with a cutting depth ⁇ , and indicates a corresponding machining distance.
  • the grindstone 1a rotates at a peripheral speed V, performs a linear motion with a cutting depth ⁇ with respect to the work material 2a at a moving speed v, and tries to remove the portion pq.
  • (B) is the processing result of (a).
  • the grindstone 1a 'in (b) shows a state after being ground by the grindstone 1a in (a), and the grindstone 1a is worn during the grinding process. is doing.
  • ⁇ ( ⁇ 1) represents the uncut thickness (error) due to the influence of wear.
  • P indicates a path of movement of the grindstone 1a.
  • (C) is the same arrangement as (a), but the grindstone 1a of (c) has a radius R3 smaller than the radius R1 of the grindstone 1a of (a) (R1> R3).
  • (D) shows the position (state) where grinding was started with the arrangement of (c) similar to (a) with the grindstone 1a of (c), and grinding was completed in the same manner as (b).
  • the radius R4 of the grindstone 1a 'in (d) is reduced from the radius R3 of the grindstone 1a in (c).
  • the error is ⁇ 2, which is larger than ⁇ 1 ( ⁇ 1 ⁇ 2).
  • the amount of radius reduction increases and the uncut material ( ⁇ ) also increases when a grindstone having a small radius R is used. This is because the number of abrasive grains existing on the working surface of the grindstone (the surface on which grinding is performed) is smaller in the grindstone having a smaller radius R, so the length of one abrasive grain in contact with the work material. This is because the wear of the grindstone increases.
  • DB50 data (relation information 211) used for predicting the magnitude of grinding wheel wear is not the grinding wheel radius reduction amount (conventional W) with respect to the grinding specification value ⁇ , but the grinding wheel volume reduction amount (M). Is more appropriate. Since the volume of the work material that can be removed before one abrasive grain becomes ungrindable is the same, if the removal volume of the work material is the same, the volume that the grindstone is reduced is the same regardless of the radius of the grindstone. Can be estimated.
  • FIG. 11A shows a diagram in which the relationship (diagram) between ⁇ and W according to the conventional method shown in FIGS. 7 and 8 is converted into the relationship between ⁇ and the grinding wheel reduction volume M.
  • FIG. ⁇ is the same value as described above, and M is the volume reduction amount ([mm 3 / mm]) per unit width of the grindstone.
  • W2 represents the grinding wheel reduction radius W corrected based on the grinding wheel reduction volume M.
  • FIG. 11 (b) is a diagram showing the grinding wheel radius reduction amount W2 calculated from the grinding wheel reduction volume M using Equation 6 above and compared with the experimental value of FIG. 9 (b).
  • the prediction of the grinding wheel wear radius could be realized with a prediction error of 8% or less. The error could be further reduced with respect to the second method.
  • the relationship information 211 indicating the relationship between ⁇ and M is applied as data stored in the DB 50 (grinding wheel wear volume DB), and the relationship information 211 is referred to in S4 (S104).
  • the wheel wear radius W (W2) is predicted (calculated). Based on the first method as described above, even in the grinding (actual processing) of the curved surface (arc) as shown in FIGS. 6B and 6C, the grinding wheel wears with a small prediction error as shown in FIG. A radius (W2) can be obtained and the corresponding tool path (or tool radius) data can be corrected.
  • the configuration of the CAM system 10 or the like using the first method generates and outputs a tool path that is accurately corrected in consideration of the wear of the tool (grinding stone) 1, suitably controls the grinding operation of the processing apparatus 20, Quality processed products can be obtained.
  • FIG. 12 shows a tool path before and after correction, a machining distance, a tool radius correction amount, and the like as a supplement to the present embodiment.
  • paths P (P1, P2) corresponding to FIGS. 10A and 10B are shown. From the state before machining the work material 2a (flat plate) in FIG. 10 (a), before the grinding wheel 1a is worn (radius R1), after machining in FIG. 10 (b), after the grinding wheel 1a is worn (radius R2). To respond to changes. For the sake of simplicity, a case of processing a flat plate (straight line) is shown.
  • P1 is a path (path before correction) (from point a to point b) that does not consider the wear of the grindstone 1a, corresponding to the change from FIG. 10 (a) to (b).
  • the work material 2a cannot obtain an ideal depth of cut ⁇ , resulting in uncut material ( ⁇ 1).
  • the radius reduction amount (difference: R1-R2) is indicated by X.
  • P2 is a path (corrected path) (from point a to point c) in consideration of wear (R1 ⁇ R2) of the grindstone 1a according to the present embodiment (first method).
  • the position of the grindstone 1a is moved closer to the work material 2a by the radius reduction amount X of the grindstone 1a.
  • the work material 2a has an ideal depth of cut ⁇ .
  • the radius reduction amount X corresponds to the correction amount of the tool diameter corresponding to the correction (P1 ⁇ P2) of the path.
  • the correction target is the same for the path or the diameter.
  • the correction of the path from P1 to P2 is based on the grinding wheel diameter (R).
  • the reduction amount X from the radius R1 to R2 is used as the tool radius correction amount. This corresponds to correcting the position of the central axis of the grindstone (point a, etc.) toward the work material side (lower side in FIG. 12) with the decrease amount at each time point.
  • the path becomes P2.
  • a curved path is obtained.
  • the grinding wheel wear amount (radius W) at the time of actual machining is calculated (predicted) from the DB50 data obtained by trial machining (simple test), and used to correct the tool path (or diameter). Therefore, the man-hours and materials necessary for the conventional method in which the correction data needs to be acquired under the same conditions as the actual machining become unnecessary.
  • grinding wheel wear compensation (tool path compensation) is automatically realized. Therefore, as in the prior art example, the operation of the processing device is temporarily stopped during grinding, and the grinding wheel is formed, or the grinding wheel wear amount is measured by measuring the dimensions of the grinding wheel and work material. There is no need for data correction work, etc., reducing labor and reducing the processing efficiency.
  • the present invention can be used for a system such as a CAM, NC, or a processing apparatus for grinding.

Abstract

Provided is technology, which relates to the control of processing equipment with a grinding tool (grindstone) and which is able to limit cost, etc. by calculating an ideal path for coping with tool wear. The tool path-calculating device (10) has a function for calculating a path that takes into consideration the wear that occurs in a tool during grinding with the processing equipment (20). For a combination of a work material and a tool, the processing unit (201) performs: (1) processing for storing in a DB (50) data that includes relational information between various grinding specifications and tool wear on the basis of results data for a first grinding process (test process); (2) processing for calculating tool wear for a second grinding process on the basis of said various grinding specifications and a DB (50) when generating NC data (52) for performing the second grinding process (actual process); and (3) processing for calculating a tool path, which corrects the path that does not take tool wear into consideration and reflects the amount of tool wear for the second grinding process.

Description

工具経路算出装置、工具経路算出方法、及び加工装置Tool path calculation device, tool path calculation method, and machining apparatus
 本発明は、コンピュータ支援製造(CAM:Computer Aided Manufacturing)や加工装置の数値制御(NC:Numerical Control)等の技術に関する。特に、研削工具(砥石等)で材料(被削材)を研削する工程を含む加工装置に対するCAM及びNCデータ生成の情報処理に関する。特に、研削中に工具(砥石)に生じる磨耗に対処するための技術、工具(砥石)の移動の経路を算出・補正する技術に関する。 The present invention relates to technologies such as computer-aided manufacturing (CAM: Computer Aided Manufacturing) and numerical control (NC: Numerical Control) of a processing apparatus. In particular, the present invention relates to information processing for generating CAM and NC data for a processing apparatus including a step of grinding a material (workpiece) with a grinding tool (grinding stone or the like). In particular, the present invention relates to a technique for coping with wear generated on a tool (grinding stone) during grinding and a technique for calculating / correcting a movement path of the tool (grinding stone).
 CAM等に係わる先行技術例として、特開平2-65971号公報(特許文献1)、特開2003-311592号公報(特許文献2)、特開平10-15800号公報(特許文献3)等がある。 Prior art examples relating to CAM and the like include JP-A-2-65971 (Patent Document 1), JP-A-2003-315992 (Patent Document 2), JP-A-10-15800 (Patent Document 3), and the like. .
 特許文献1では、以下のような記載がある。従来の技術として、研削加工では砥石(工具)が磨耗するが、この際、研削加工を停止して、砥石の成形・目立てツールであるダイヤモンドを埋め込んだドレッサにより砥石をドレッシングして、その後に再度研削加工する。課題として、この方法では、砥石が磨耗する度に研削加工を中断してドレッシングを行うために効率の良い研削加工ができない。これに対し、特許文献1では、上記ドレッサを砥石の加工点の反対側に配置して、砥石をドレッシングしながら研削加工する。砥石をドレッシングすると砥石の直径が小さくなるので、その減少分、被削材に対する砥石とドレッサの位置を補正しながら研削加工する。砥石が直線的に移動して研削加工を行う平面研削加工では、砥石が磨耗して減少する砥石直径を予め把握しておき、砥石直径減少に伴いその減少分を被削材に近接させながら研削加工する。それと共に、ドレッサについては砥石の軌跡(経路)を補正したのと同じ量を砥石に近接させるようにしている。これにより、機械を停止せずに研削加工しながらドレッシングを行うことで、効率良く、精度の良好な研削加工が達成できることが示されている。 Patent Document 1 has the following description. As a conventional technique, grinding wheels wear out during grinding. At this time, the grinding process is stopped, and the grinding wheel is dressed with a dresser embedded with diamond, which is a grinding and shaping tool, and then again. Grind. As a problem, this method cannot perform efficient grinding because dressing is performed by interrupting the grinding process every time the grindstone is worn. On the other hand, in patent document 1, the said dresser is arrange | positioned on the opposite side of the processing point of a grindstone, and it grinds, grind | polishing a grindstone. When the grindstone is dressed, the diameter of the grindstone is reduced, and therefore the grinding is performed while correcting the positions of the grindstone and the dresser with respect to the work material. In surface grinding, in which the grinding wheel moves linearly, the grinding wheel diameter that decreases as the grinding wheel wears is grasped in advance, and grinding is performed while the decrease is closer to the work piece as the grinding wheel diameter decreases. Process. At the same time, with respect to the dresser, the same amount as that for correcting the trajectory (path) of the grindstone is brought close to the grindstone. Thus, it is shown that efficient and accurate grinding can be achieved by performing dressing while grinding without stopping the machine.
 また、特許文献2には、以下のような記載がある。従来の技術では、軸方向に長いロール材(円筒形状)を研削加工する場合、1回のパス(経路)の中で砥石(工具)の磨耗が進行するので、研削加工開始側のロール径と研削加工終了側のロール径とに仕上がり寸法が異なる。このため研削パスを増やして経験的に寸法を確保しなければならない。これに対し、特許文献2では、砥石駆動モータ負荷電流値と砥石実切込み量の関係を予め求めて数式化しておき、また一方でロールの長手方向の必要除去量を加工位置ごとに求め、研削加工する加工位置に必要な除去量すなわち砥石切込み量を上記の数式に合致するように制御して、研削加工中に被削材であるロールに対する砥石実切込み量を補正していく。これにより、研削加工の過程でロールの寸法を測定せずとも精度良く加工できることが示されている。 Patent Document 2 has the following description. In the conventional technique, when grinding a roll material (cylindrical shape) that is long in the axial direction, since the wear of the grindstone (tool) proceeds in one pass, the roll diameter on the grinding start side The finished dimensions differ from the roll diameter on the grinding end side. Therefore, it is necessary to empirically secure the dimensions by increasing the number of grinding passes. On the other hand, in Patent Document 2, the relationship between the grindstone drive motor load current value and the grindstone actual cutting amount is obtained in advance and converted into a mathematical formula, while the required removal amount in the longitudinal direction of the roll is obtained for each processing position, and grinding is performed. The removal amount necessary for the processing position to be processed, that is, the grinding wheel cutting amount is controlled so as to match the above formula, and the grinding wheel actual cutting amount for the roll as the work material is corrected during grinding. Thus, it is shown that processing can be performed with high accuracy without measuring the roll dimensions during the grinding process.
 さらに、特許文献3では、以下のような記載がある。非球面レンズ用金型を砥石によって製作するにあたり、ある工程後の砥石の磨耗量を実験により求めて予め加工機の制御装置のメモリに格納しておき、この砥石磨耗量分を加工工程内で補正して精度良く加工する技術が示されている。 Furthermore, Patent Document 3 has the following description. When manufacturing the aspherical lens mold with a grindstone, the wear amount of the grindstone after a certain process is experimentally determined and stored in advance in the memory of the control device of the processing machine, and this grindstone wear amount is stored in the machining process. A technique for correcting and processing with high accuracy is shown.
特開平2-65971号公報Japanese Patent Laid-Open No. 2-65971 特開2003-311592号公報JP 2003-315992 A 特開平10-15800号公報Japanese Patent Laid-Open No. 10-15800
 背景技術(特許文献1,2,3等)に示される手法は、研削加工中の工具(砥石)の磨耗に対処するための補正を行う手法であるが、いずれも、以下のような技術と捉えることができる。即ち、砥石(工具)が加工対象とする材料(被削材)と砥石(工具)を用いた実際の工作物(製品)の製作・加工の工程に対し、当該製品(被削材)と同じ材質の物を用いて同じ加工装置あるいはこの装置とほぼ同等の仕様の加工装置により、製品の製作・加工と同じ加工手順、すなわち同じ加工工程で加工した際の砥石(工具)の磨耗量のデータを得て、このデータを実際の加工にあたって工具(砥石)の位置などの補正量として使用する技術である。言い換えると、補正用のデータを得る加工のための使用工具(砥石)の順序、工具の軌跡、工具の回転数(研削速度)、工具の送り速度、工具の切込み量などである工程(条件)と、補正用のデータを反映して製品を加工する工程(条件)とを同じとする技術である。製品を用いずにデータ取得のためだけに準備した材料を用いて行う加工である試験(試加工)と製品の加工(実加工)とに分けて繰り返す場合を含む。このような技術について、以下の課題(問題)がある。 The techniques shown in the background art ( Patent Documents 1, 2, 3, etc.) are techniques for performing correction to cope with the wear of the tool (grinding stone) during grinding. Can be caught. That is, the material (work material) to be processed by the grindstone (tool) and the production / machining process of the actual workpiece (product) using the grindstone (tool) are the same as the product (work material). Data on the amount of wear of the grinding wheel (tool) when processing in the same processing procedure as the production and processing of products, that is, the same processing equipment using the same processing equipment or processing equipment with specifications almost equivalent to this equipment. And this data is used as a correction amount for the position of the tool (grindstone) in actual machining. In other words, processes (conditions) that include the order of tools (grindstone) used for processing to obtain correction data, tool trajectory, tool rotation speed (grinding speed), tool feed speed, tool cutting depth, etc. And the process (condition) for processing the product reflecting the correction data. This includes the case where the test is performed using a material prepared only for data acquisition without using the product (trial processing) and the processing of the product (actual processing) is repeated. There are the following problems (problems) for such technology.
 (1)第一の問題として、補正用データを得るための試験(試加工)において、製品の加工(実加工)の際と同じ加工装置、研削工具(砥石)の材料・形状など、被削材の材料・形状など、研削工程(パート:刃物による切削と砥石による研削の両方が可能な装置によるいずれかの加工で本例では研削)、及び砥石回転数・送り速度や砥石ドレス間隔などの諸加工条件(以下「条件」と総称する)により、製品と同じ形状の試験品を製作しないと、工具(砥石)の位置等の補正に必要なデータが得られない。試験品の被削材が比較的小さくて安価な場合は、このような手法も可能であるが、実際に製作しようとする物が大きくて高価な場合には、それに応じて費用と時間がかかり、実現困難である。 (1) As a first problem, in the test (trial processing) for obtaining correction data, the same processing equipment as the product processing (actual processing), the material and shape of the grinding tool (grinding stone), etc. Grinding process (part: grinding in this example with any device capable of both cutting with a blade and grinding with a grinding wheel), grinding wheel rotation speed, feed speed, grinding wheel dressing interval, etc. Data necessary for correcting the position of the tool (grinding stone) cannot be obtained unless a test product having the same shape as the product is manufactured under various processing conditions (hereinafter collectively referred to as “conditions”). This method is also possible if the material to be tested is relatively small and inexpensive. However, if the material to be manufactured is large and expensive, the cost and time will be increased accordingly. It is difficult to realize.
 (2)第二の問題として、実際に製作(実加工)する製品の形状に変更が加えられると、当該変更後の形状による試験片(被削材)を対象として再度試験(試加工)を実行して補正用データを取得する必要が生じる。製品の設計変更が発生する度に試験(試加工)が必要になるので、材料費、工数、及び生産開始までの時間などが多くかかる。 (2) As a second problem, when a change is made to the shape of the product that is actually manufactured (actual processing), the test (work material) with the changed shape is again tested (trial processing). It is necessary to execute the correction to acquire correction data. Each time a product design change occurs, a test (trial process) is required, which requires a lot of material costs, man-hours, and time to start production.
 (3)第三の課題として、特許文献1に記載があるような、ドレッサを砥石の加工点の反対側に配置して砥石をドレッシングしながら研削加工する方法(インプロセスドレスと称される方法)においては、砥石が研削加工によって自然に磨耗する量よりも多くの量をドレッサによって除去させながら加工する必要があり(そうしないとドレッサが砥石に接触しない状態が発生してしまう)、砥石を必要以上に減少させる無駄が生じる。 (3) As a third problem, as described in Patent Document 1, a dresser is disposed on the opposite side of the processing point of the grindstone, and grinding is performed while dressing the grindstone (a method called an in-process dress) ), It is necessary to process the grinding wheel while removing a larger amount than the amount that the grinding wheel naturally wears by grinding (otherwise, the dresser does not come into contact with the grinding wheel). Waste that reduces more than necessary occurs.
 まとめると以下のような課題(問題)がある:
 (1)試加工と実加工の条件を同じにする制約による費用等の問題、
 (2)製品の設計変更の度の試験による費用や時間等の問題、
 (3)インプロセスドレスによる工具(砥石)の必要以上の減少の問題。
In summary, there are the following issues (problems):
(1) Costs and other problems due to constraints that make the conditions of trial processing and actual processing the same.
(2) Cost, time, and other problems due to testing each time a product is changed
(3) The problem of unnecessarily reducing the number of tools (grinding stones) due to in-process dressing.
 以上を鑑み、本発明の主な目的は、上述の研削工具(砥石等)を使用する加工装置に関するCAM,NC等において、上述の問題(1)~(3)等を解決することができる技術、即ち以下のような点を実現できる技術を提供することである:
 (1)試加工と実加工の条件を同じにする制約を緩和し、費用等を抑える、
 (2)製品の設計変更の度の試験を不必要化または低減し、費用や時間等を抑える、
 (3)工具(砥石)を必要以上に減少させないで済み、費用等を抑える。
In view of the above, the main object of the present invention is to solve the above-mentioned problems (1) to (3) in CAM, NC, etc., relating to a processing apparatus using the above-described grinding tool (grinding stone, etc.). That is, to provide a technology that can realize the following points:
(1) Relax the constraints to make the conditions of trial processing and actual processing the same, and reduce costs, etc.
(2) Eliminates or reduces the need for testing each time a product is changed, reducing costs and time,
(3) It is not necessary to reduce the number of tools (grinding stones) more than necessary, and the cost is reduced.
 上記目的を達成するため、本発明のうち代表的な形態は、上述の研削工具(砥石等)を使用する加工装置に関するCAM,NC等において、研削加工中に工具に生じる磨耗に対処するために工具の移動の位置・経路等を算出・補正する情報処理を行う方法・装置、等であって、以下に示す構成を有することを特徴とする。 In order to achieve the above object, a representative embodiment of the present invention is to deal with wear generated in a tool during grinding in a CAM, NC, etc. related to a processing apparatus using the above-described grinding tool (grinding stone, etc.). A method / apparatus for performing information processing for calculating / correcting the position / path of tool movement, etc., having the following configuration.
 本発明は、加工装置の研削加工を制御するためのNCデータを生成するにあたり、研削中に砥石に生じる磨耗を考慮して砥石が移動する経路を補正・算出する機能(補正後の経路を含むNCデータを生成する機能)を備える装置及び対応方法などを提供する。本装置では、被削材に対して使用する砥石(工具)により試加工(簡単な直線溝加工の試験など)を行うことによって得たデータ(砥石磨耗量)及びそれをもとに作成したデータ(予測式や対応表)を用いて、試加工とは条件(形状やサイズなど)が異なる研削加工(実加工)に対応した砥石磨耗量(半径など)を予測により算出する。これにより、研削中の砥石の磨耗を考慮した好適な経路になるように補正し、当該補正後の経路を含むNCデータを生成・出力し、当該NCデータにより加工装置を好適に制御する。 The present invention, when generating NC data for controlling the grinding process of the processing apparatus, corrects / calculates a path along which the grindstone moves in consideration of wear generated on the grindstone during grinding (including a path after correction). An apparatus having a function of generating NC data) and a corresponding method are provided. In this equipment, data (whetstone wear amount) obtained by performing trial machining (such as a simple straight groove machining test) with a grindstone (tool) used for the work material and data created based on that data Using the (prediction formula and correspondence table), a grinding wheel wear amount (radius, etc.) corresponding to a grinding process (actual machining) having a different condition (shape, size, etc.) from the trial machining is calculated by prediction. Thereby, it correct | amends so that it may become a suitable path | route which considered abrasion of the grindstone in grinding, produces | generates and outputs NC data containing the path | route after the said correction | amendment, and controls a processing apparatus suitably by the said NC data.
 本形態の装置は、例えば、被削材に対して研削加工する工具(砥石)を備える加工装置の動作を制御するための前記工具の経路を含むNCデータ(加工データ)を生成する情報処理を行う工具経路算出装置であって、研削中に工具に生じる磨耗を考慮した経路を算出する機能を実現する処理部を有する。前記処理部は、被削材(特定の材料種類)と工具(特定の材料種類)との組合せについて、(1)第1の形状及びサイズを持つ被削材に対する第1の条件(加工形態)による第1の研削加工(試加工)を行った結果のデータに基づき、当該第1の研削加工の研削諸元値と工具磨耗量(減少量)との関係情報を含むデータをデータベースに格納する処理と、(2)第2の形状及びサイズを持つ被削材に対する第2の条件(加工形態)による第2の研削加工(実加工)を行うためのNCデータを生成する際に、当該第2の研削加工の研削諸元値と、前記データベースの関係情報とをもとに、当該第2の研削加工の工具磨耗量を算出する処理と、(3)上記第2の研削加工の工具の磨耗を考慮しない経路に対し、上記算出した第2の研削加工の工具磨耗量を反映して、当該工具磨耗量による加工誤差をキャンセルするように補正した当該工具の経路または径を算出し、当該補正後の経路または径を含む加工データに応じたNCデータを生成する処理とを行う。 The apparatus of this embodiment performs, for example, information processing for generating NC data (machining data) including a path of the tool for controlling the operation of a machining apparatus provided with a tool (grinding stone) that grinds a workpiece. A tool path calculation device for performing a function of calculating a path in consideration of wear generated in a tool during grinding. The processing unit includes (1) a first condition (working form) for a work material having a first shape and a size with respect to a combination of a work material (specific material type) and a tool (specific material type). Based on the data of the result of performing the first grinding process (trial process) according to, data including relation information between the grinding specification value of the first grinding process and the tool wear amount (reduction amount) is stored in the database. When generating NC data for processing and (2) second grinding (actual machining) under a second condition (machining form) for a workpiece having the second shape and size, A process for calculating a tool wear amount of the second grinding process on the basis of the grinding specification values of the grinding process 2 and the relational information of the database; and (3) a tool of the second grinding process. The second grinding tool calculated above for the path not considering wear Reflecting the wear amount, the tool path or diameter corrected so as to cancel the machining error due to the tool wear amount is calculated, and NC data corresponding to the machining data including the corrected path or diameter is generated. Process.
 本発明のうち代表的な形態によれば、前述の従来の課題(1)~(3)等に対応した以下のような効果を有する:
 (1)試加工と実加工の条件を同じにする制約を緩和し、費用等を抑える、
 (2)製品の設計変更の度の試験を不必要化または低減し、費用や時間等を抑える、
 (3)工具(砥石)を必要以上に減少させないで済み、費用等を抑える。
According to typical embodiments of the present invention, the following effects corresponding to the above-described conventional problems (1) to (3) are provided:
(1) Relax the constraints to make the conditions of trial processing and actual processing the same, and reduce costs, etc.
(2) Eliminates or reduces the need for testing each time a product is changed, reducing costs and time,
(3) It is not necessary to reduce the number of tools (grinding stones) more than necessary, and the cost is reduced.
本発明の一実施の形態のシステム(工具経路算出システム)の全体の概要構成を示す図である。1 is a diagram showing an overall schematic configuration of a system (tool path calculation system) according to an embodiment of the present invention. 本実施の形態で、CAMシステム(工具経路算出装置)の構成を示す図である。In this Embodiment, it is a figure which shows the structure of a CAM system (tool path | route calculation apparatus). 本実施の形態で、CAMシステム(工具経路算出装置)のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of a CAM system (tool path | route calculation apparatus) in this Embodiment. 本実施の形態で、加工装置(マシニングセンタ)(I/F接続先(NC制御対象)の加工装置の例)のハードウェア構成を示す図である。In this embodiment, it is a figure which shows the hardware constitutions of the processing apparatus (machining center) (an example of the processing apparatus of an I / F connection destination (NC control object)). 本実施の形態で、CAMシステム(処理部)による工具経路算出処理のフローを示す図である。It is a figure which shows the flow of the tool path | route calculation process by a CAM system (processing part) in this Embodiment. (a)~(c)は、本実施の形態で、砥石と被削材との接触状態を含む加工形態について示す説明図であり、(a)は第1の加工形態(直線)、(b)は第2の加工形態(円弧外側)、(c)は第3の加工形態(円弧内側)を示す。(A)-(c) is explanatory drawing shown about the processing form containing the contact state of a grindstone and a work material in this Embodiment, (a) is the 1st processing form (straight line), (b ) Shows the second machining mode (arc outer side), and (c) shows the third machining mode (arc inner side). (a),(b)は、従来技術に従う方式での、試加工の方法と結果の一例を示す説明図であり、(a)は加工形態(直線)、(b)は(a)による結果(研削諸元値(ψ)と砥石半径減少量(W)との関係)を示す。(A), (b) is explanatory drawing which shows an example of the method and result of a trial processing by the system according to a prior art, (a) is a processing form (straight line), (b) is a result by (a). (Relationship between grinding specification value (ψ) and grinding wheel radius reduction amount (W)). (a),(b)は、従来技術に従う方式での、砥石半径減少量(W)の予測結果の一例を示す説明図であり、(a)は加工形態(円弧外側)及び研削条件(砥石仕様、周速度、送り速度、切込み量、被削材のサイズなど)、(b)は(a)による結果(切込み量(Δ)と砥石磨耗半径(W)との関係)を示す。(A), (b) is explanatory drawing which shows an example of the prediction result of the grinding wheel radius reduction | decrease amount (W) by the system according to a prior art, (a) is a processing form (arc outer side) and grinding conditions (grinding wheel) (B) shows the result of (a) (relationship between cutting amount (Δ) and grinding wheel wear radius (W)). (a),(b)は、本実施の形態での、砥石半径減少量(W)を予測する第2の方式を示す説明図であり、(a)は砥石と被削材との接触弧長さ比率、(b)は(a)に基づく予測の結果(切込み量(Δ)と砥石半径減少量(W1)との関係)を示す。(A), (b) is explanatory drawing which shows the 2nd system which estimates the grindstone radius reduction amount (W) in this Embodiment, (a) is a contact arc of a grindstone and a workpiece. The length ratio, (b), shows the result of prediction based on (a) (the relationship between the cutting amount (Δ) and the grinding wheel radius reduction amount (W1)). (a)~(d)は、使用する砥石の半径(R)が砥石半径減少量(W)に与える影響について示す説明図である。(A)-(d) is explanatory drawing which shows the influence which the radius (R) of the grindstone to use has on the grindstone radius reduction amount (W). (a),(b)は、本実施の形態での、砥石半径減少量(W)を予測する第1の方式を示す説明図であり、(a)は砥石単位幅あたり体積減少量(ψとMの関係)、(b)は(a)に基づく予測の結果(切込み量(Δ)と砥石磨耗半径(W2)との関係)を示す。(A), (b) is explanatory drawing which shows the 1st system which estimates the grinding wheel radius reduction | decrease amount (W) in this Embodiment, (a) is the volume reduction | decrease amount ((psi) per grindstone unit width). (B) shows the result of prediction based on (a) (relation between the cutting depth (Δ) and the grinding wheel wear radius (W2)). 本実施の形態での、経路(P)や砥石半径減少量(W)等を示す説明図である。It is explanatory drawing which shows the path | route (P), the grindstone radius reduction amount (W), etc. in this Embodiment.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一符号を付し、その繰り返しの説明は省略する。なお説明上、適宜、W:半径、M:体積、といった記号を使用する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted. In the description, symbols such as W: radius and M: volume are used as appropriate.
 [概要等]
 本実施の形態のシステム(図1,図2等)の工具経路算出装置(CADシステム)は、加工装置の研削工具(砥石)の研削加工中の磨耗を考慮した経路を含む、加工装置の制御用の加工データ(NCデータ)を自動的に算出・補正する機能を有する。補正用データを得るための試加工と、補正用データを反映する実加工とで異なる条件(材料の形状やサイズなど)にすることができる。本機能は、試加工のデータ(砥石磨耗体積等)をもとに実加工のデータ(砥石磨耗半径等)を算出(予測)する。
[Summary]
The tool path calculation device (CAD system) of the system according to the present embodiment (FIG. 1, FIG. 2, etc.) includes a path that takes into account wear during grinding of the grinding tool (grinding stone) of the processing device. Has a function to automatically calculate and correct machining data (NC data). Different conditions (such as the shape and size of the material) can be used for trial machining for obtaining correction data and actual machining reflecting the correction data. This function calculates (predicts) actual machining data (grindstone wear radius, etc.) based on trial machining data (grindstone wear volume, etc.).
 試加工時、被削材-研削工具(砥石)の組合せで、第1の条件で、第1のNCデータにより、加工装置で試加工を実行する。試加工(第1の条件)は、例えば小サイズの平板の直線溝加工などの簡易な試験にすることができる。そして試加工の結果データを得て、例えば研削諸元値と砥石磨耗体積との関係を示す関係情報を含むデータをデータベースに格納する。 At the time of trial machining, trial machining is executed by the machining device based on the first NC data under the first condition with a combination of the work material and the grinding tool (grinding wheel). The trial processing (first condition) can be a simple test such as linear groove processing of a small-sized flat plate, for example. Then, the result data of the trial machining is obtained, and for example, data including relation information indicating the relation between the grinding specification value and the grinding wheel wear volume is stored in the database.
 実加工時、上記データベースの格納データ(関係情報)をもとに、工具の磨耗を考慮した好適な経路を算出し、当該経路を含む対応する加工データを補正し、対応するNCデータを生成・出力する。実加工時、試加工時と同じ材料による、被削材-研削工具(砥石)の組合せで、第2の条件で、第2のNCデータにより、加工装置で実加工を実行する。実加工(第2の条件)は、大サイズの製品の円弧形状の加工などが可能である。 During actual machining, based on the data stored in the database (related information), calculate a suitable path considering tool wear, correct the corresponding machining data including the path, and generate the corresponding NC data. Output. The actual machining is executed by the machining device using the second NC data under the second condition with the combination of the work material and the grinding tool (grinding stone) using the same material as that at the time of actual machining and trial machining. The actual machining (second condition) can be a circular arc machining of a large product.
 また特に、補正(予測)に用いるデータ(関係情報)に関する、第1の方式として、被削材-研削工具(砥石)の砥石減少体積を用いる(図11,図1のDB50等)。これにより従来技術よりも砥石磨耗の予測誤差を大幅に低減する。 In particular, as a first method relating to data (related information) used for correction (prediction), a grinding wheel reduction volume of the work material-grinding tool (grinding wheel) is used (DB50 in FIGS. 11 and 1). As a result, the prediction error of grinding wheel wear is greatly reduced as compared with the prior art.
 また特に、補正(予測)に用いるデータ(関係情報)に関する、第2の方式として、被削材-研削工具(砥石)の接触弧長さ比率を用いる(図9)。これにより従来技術よりも砥石磨耗の予測誤差を大幅に低減する。 In particular, the contact arc length ratio of the work material-grinding tool (grinding wheel) is used as a second method regarding data (related information) used for correction (prediction) (FIG. 9). As a result, the prediction error of grinding wheel wear is greatly reduced as compared with the prior art.
 なお第1の方式の方が第2の方式よりも効果が高い(予測誤差が小さい)ため、代表的な形態(図1等)として説明する。 Since the first method is more effective than the second method (the prediction error is small), it will be described as a representative form (FIG. 1 and the like).
 [システム]
 図1において、本実施の形態のシステム(工具経路算出システム)100の全体、及び主要部であるCADシステム30の概要構成について示す。本システム100は、設計・加工データ作成システム101を構成する情報処理装置(コンピュータシステム)、及びそれによる制御対象の加工装置20を含んでいる。本システム100は、CADシステム30(形状設計装置)と、設計データ(設計データ記憶装置)51と、CAMシステム10(工具経路算出装置)と、NCデータ(NCデータ記憶装置)52と、NCシミュレータ40と、NCデータ52で制御されるマシニングセンタ(加工装置)20とを有し、これらが通信接続される構成である。51,52は、データまたはそのデータの記憶装置を示す。
[system]
FIG. 1 shows an overall configuration of a system (tool path calculation system) 100 according to the present embodiment and a schematic configuration of a CAD system 30 as a main part. The system 100 includes an information processing apparatus (computer system) constituting the design / processing data creation system 101 and a processing apparatus 20 to be controlled by the information processing apparatus. The system 100 includes a CAD system 30 (shape design device), design data (design data storage device) 51, a CAM system 10 (tool path calculation device), NC data (NC data storage device) 52, and an NC simulator. 40 and a machining center (processing apparatus) 20 controlled by NC data 52, and these are connected by communication. Reference numerals 51 and 52 denote data or storage devices for the data.
 設計・加工の一般的な流れとしては、まずユーザの操作によりCADシステム30の処理を用いて、入手したい任意の部品(対象製品)の形状などが設計され、設計が完了すると、対応する設計データ51が記憶、出力される。次に、ユーザの操作により、CAMシステム10の処理を用いて、設計データ51をもとに、対象製品を加工(製造)するためのNCデータ52が生成され、記憶され、加工装置20へ出力される。加工装置20ではNCデータ52に従って自動的に加工の動作が制御される。 As a general flow of design and processing, first, the shape of an arbitrary part (target product) to be obtained is designed by the user's operation using the processing of the CAD system 30, and when the design is completed, the corresponding design data 51 is stored and output. Next, NC data 52 for processing (manufacturing) the target product is generated, stored, and output to the processing apparatus 20 based on the design data 51 using the processing of the CAM system 10 by user operation. Is done. In the processing apparatus 20, the processing operation is automatically controlled according to the NC data 52.
 (30) CADシステム30は、形状設計装置であり、CAD(Computer Aided Design)による形状設計機能を含む情報処理を実現する例えばPC等の装置である。CADシステム30は、ユーザ(CADオペレータ等)の操作に基づき、設計データ51を作成し保持し出力する。 (30) The CAD system 30 is a shape design device, and is a device such as a PC that realizes information processing including a shape design function by CAD (Computer Aided Design). The CAD system 30 creates, holds, and outputs design data 51 based on the operation of a user (CAD operator or the like).
 (51) 設計データ51は、CADデータであり、製作(加工)対象の製品の形状、材質などのデータを含む。設計データ51は、CADシステム30及びCAMシステム10内のメモリに保持され、また他の記憶装置に保持されてもよい。 (51) The design data 51 is CAD data, and includes data such as the shape and material of the product to be manufactured (processed). The design data 51 is held in a memory in the CAD system 30 and the CAM system 10 or may be held in another storage device.
 (10) CAMシステム10は、工具経路算出装置であり、CAMによる工具経路算出機能を含む情報処理を実現する例えばPC等の装置である。CAMシステム10は、ユーザ(CAMオペレータ等)の操作に基づき、設計データ51からNCデータ52を作成し保持し出力する。 (10) The CAM system 10 is a tool path calculation device, and is a device such as a PC that realizes information processing including a tool path calculation function by the CAM. The CAM system 10 creates, holds, and outputs NC data 52 from the design data 51 based on the operation of the user (CAM operator or the like).
 CAMシステム10は、処理部201、記憶部202、I/F部203、試加工部204A、実加工部204Bなどを備える。 The CAM system 10 includes a processing unit 201, a storage unit 202, an I / F unit 203, a trial processing unit 204A, an actual processing unit 204B, and the like.
 (52) NCデータ52は、対象の加工装置20を制御するためのNCプログラムを含んで成るNCデータである。NCデータ52は、CAMシステム10及び加工装置20内のメモリに保持され、また他の記憶装置に保持されてもよい。 (52) The NC data 52 is NC data including an NC program for controlling the target machining apparatus 20. The NC data 52 is held in a memory in the CAM system 10 and the processing apparatus 20, or may be held in another storage device.
 (40) NCシミュレータ40は、CAMシステム10から加工装置20へNCデータ52を出力する前に、NCデータ52を動作検証する処理を行い、検証が終了したNCデータ52が加工装置20に転送される。なお当該検証(NCシミュレータ40)は省略も可能である。 (40) The NC simulator 40 performs a process for verifying the operation of the NC data 52 before outputting the NC data 52 from the CAM system 10 to the machining apparatus 20, and the verified NC data 52 is transferred to the machining apparatus 20. The The verification (NC simulator 40) can be omitted.
 なお図1のCADシステム30とCAMシステム10を1つに統合した形態や、各機能を別の装置へ分離した形態などが適宜可能である。例えばCAMシステム10にCAD機能を備える場合、CAMシステム10で設計データ51を作成してもよい。 It should be noted that a form in which the CAD system 30 and the CAM system 10 in FIG. 1 are integrated into one, or a form in which each function is separated into different devices, etc. are possible as appropriate. For example, when the CAM system 10 has a CAD function, the design data 51 may be created by the CAM system 10.
 (201) 処理部201は、概略、図示するステップS1~S6のような情報処理を行う(後述)。特にS3,S4は特徴的な処理である。 (201) The processing unit 201 performs information processing such as steps S1 to S6 shown schematically (described later). In particular, S3 and S4 are characteristic processes.
 (202) 記憶部202は、必要なデータ情報を保持する。本実施の形態では、設計データ51、条件情報53、DB50、NCデータ52などを保持する。 (202) The storage unit 202 holds necessary data information. In this embodiment, design data 51, condition information 53, DB 50, NC data 52, and the like are held.
 (203) I/F部203は、外部(特に加工装置20を含む)との接続の通信インタフェース処理を行う部分である(図3の通信I/F装置308などを用いる)。I/F部203は、試加工部204Aや実加工部204Bからの指示に基づき、通信ネットワークを通じて、加工装置20やNCシミュレータ40などに対しNCデータ52や指示情報を送信する等の通信処理を行う。 (203) The I / F unit 203 is a part that performs communication interface processing for connection with the outside (particularly including the processing device 20) (using the communication I / F device 308 of FIG. 3 and the like). The I / F unit 203 performs communication processing such as transmitting NC data 52 and instruction information to the machining apparatus 20 and the NC simulator 40 through the communication network based on instructions from the trial machining unit 204A and the actual machining unit 204B. Do.
 なお本実施の形態では、CAMシステム10から加工装置20へNCデータ52を送信すると、自動的に加工装置20がNCデータ52に従って加工動作する。またNCデータ52に従って計測装置4を用いて加工中または加工結果の状態の計測も可能とする(手動での計測も可能)。これにより少なくとも砥石磨耗データ等を含む試加工や実加工の結果データ(図2のk1,k2)が得られる。なお、加工装置20やシステムの形態に応じて、加工装置20からCAMシステム10等へデータ情報(例えば加工状態や加工結果等のデータ)を送信する形態としてもよい。 In the present embodiment, when the NC data 52 is transmitted from the CAM system 10 to the machining apparatus 20, the machining apparatus 20 automatically performs a machining operation according to the NC data 52. Further, it is possible to measure the state of machining or the result of machining using the measuring device 4 according to the NC data 52 (manual measurement is also possible). Thereby, result data (k1, k2 in FIG. 2) of trial processing and actual processing including at least grinding wheel wear data and the like are obtained. In addition, it is good also as a form which transmits data information (for example, data, such as a processing state and a processing result) from the processing apparatus 20 to the CAM system 10 etc. according to the form of the processing apparatus 20 or a system.
 (204A) 試加工部204Aは、処理部201、I/F部203等を用いて、試加工の際の処理を行う。また試加工のための所定のユーザインタフェース(画面等)を提供する。 (204A) The trial processing unit 204A uses the processing unit 201, the I / F unit 203, and the like to perform processing during trial processing. Also, a predetermined user interface (screen or the like) for trial machining is provided.
 (204B) 実加工部204Bは、処理部201、I/F部203等を用いて、実加工の際の処理を行う。また実加工のための所定のユーザインタフェース(画面等)を提供する。 (204B) The actual machining unit 204B uses the processing unit 201, the I / F unit 203, and the like to perform processing during actual machining. Also, a predetermined user interface (screen or the like) for actual machining is provided.
 なお、試加工部204A、実加工部204Bのいずれも基本的な処理の流れは処理部201を用いて同様に実現される。加工の条件や処理詳細などは異なる。 Note that the basic processing flow of both the trial processing unit 204A and the actual processing unit 204B is similarly realized using the processing unit 201. Processing conditions and processing details are different.
 (50) DB50は、CAMシステム10(処理部201)が工具経路算出処理などを行うにあたって必要なデータ(砥石磨耗量、関係情報211など)を格納するデータベースである。特に第1の方式では、砥石磨耗体積データなどを格納する砥石磨耗体積DB50である(第2の方式では接触円弧長さ比率情報を含むDB50)。関係情報211となる砥石磨耗体積データは、関数(予測式)や対応表(テーブル)などの形式で作成され格納される(後述)。 (50) The DB 50 is a database that stores data necessary for the CAM system 10 (processing unit 201) to perform a tool path calculation process and the like (amount of grinding wheel wear, relationship information 211, and the like). Particularly in the first method, the wheel wear volume DB 50 stores wheel wear volume data and the like (in the second method, the DB 50 includes contact arc length ratio information). The grinding wheel wear volume data as the relationship information 211 is created and stored in a format such as a function (prediction formula) or a correspondence table (table) (described later).
 DB50は、加工装置20での試加工の結果データk1(図2)をもとに作成される。なお結果データk1全体をDB50に格納してもよいし、関係情報211に係わる一部の情報のみを格納してもよい。例えば加工装置20での測定装置4(図2)による測定結果を含む試加工の結果データk1がCAMシステム10に入力・取得され、DB50に格納される。そしてユーザまたは一部計算により、関係情報211となる関数(予測式)または対応表が作成(設定)されDB50に格納される。 The DB 50 is created based on the trial processing result data k1 (FIG. 2) in the processing apparatus 20. The entire result data k1 may be stored in the DB 50, or only a part of information related to the relationship information 211 may be stored. For example, the result data k1 of the trial machining including the measurement result by the measuring device 4 (FIG. 2) in the machining device 20 is input / acquired to the CAM system 10 and stored in the DB 50. Then, a function (prediction formula) or a correspondence table serving as the relationship information 211 is created (set) and stored in the DB 50 by the user or partial calculation.
 [試加工・実加工]
 図2において、図1の本実施の形態のシステムにおける、試加工と実加工に関する、CAMシステム10と加工装置20との接続構成などを示す。CAMシステム10と加工装置20とが例えばLAN90で接続される。
[Trial processing / actual processing]
FIG. 2 shows a connection configuration between the CAM system 10 and the machining apparatus 20 regarding trial machining and actual machining in the system of the present embodiment shown in FIG. The CAM system 10 and the processing apparatus 20 are connected by a LAN 90, for example.
 試加工部204Aを用いる試加工では、加工装置20での研削工具(砥石)1Aと被削材(部位)2Aとの組合せを用いて、第1の条件、NCデータd1により試加工を行い、その結果データk1を得る。試加工(第1の条件)では、例えば小さいサイズの平板のような単純な形状の被削材2Aを使用して簡易な試験にすることができる。結果データk1は、測定装置4により加工状態や加工結果を測定すること等により得られる。なお加工装置20(測定装置4)とは別の装置(手段)やユーザの作業によって結果データk1を取得してもよい。試加工では、異なる研削諸元値(ψ)を用いて2回以上の試験を実行する。これにより、結果データk1からDB50に格納するための関係情報211などを得る。関係情報211は、例えば研削諸元値(ψ)と砥石磨耗体積(Mとする)との関係を示す情報である(第1の方式の場合)。 In the trial machining using the trial machining unit 204A, trial machining is performed using the combination of the grinding tool (grindstone) 1A and the work material (part) 2A in the machining apparatus 20 using the first condition, NC data d1, As a result, data k1 is obtained. In the trial machining (first condition), it is possible to make a simple test by using a workpiece 2A having a simple shape such as a small size flat plate. The result data k1 is obtained by measuring the machining state and the machining result with the measuring device 4. Note that the result data k1 may be acquired by a device (means) different from the processing device 20 (measurement device 4) or by the user's work. In the trial machining, two or more tests are executed using different grinding specification values (ψ). Thereby, the relationship information 211 for storing in the DB 50 is obtained from the result data k1. The relationship information 211 is information indicating the relationship between, for example, the grinding specification value (ψ) and the grindstone wear volume (M) (in the case of the first method).
 実加工部204Bを用いる実加工では、加工装置20での研削工具(砥石)1Bと被削材(部位)2Bとの組合せを用いて、第2の条件、NCデータd2により実加工を行い、その結果データk2を得る。結果データk2は、同様に測定装置4等により得られる。実加工では、研削工具1Bと被削材2Bの組合せの材質(種別)を試加工の組合せ(1A,2A)と同じとした上で、試加工とは異なる形状(例えば円弧)やサイズ(例えば大きいサイズ)の被削材2Bを使用し、異なる加工形態とすることができる。NCデータd2は、処理部201で生成したNCデータ52に対応する。 In actual machining using the actual machining unit 204B, actual machining is performed based on the second condition, NC data d2, using a combination of a grinding tool (grinding stone) 1B and a work material (part) 2B in the machining apparatus 20. As a result, data k2 is obtained. Similarly, the result data k2 is obtained by the measuring device 4 or the like. In actual machining, the material (type) of the combination of the grinding tool 1B and the work material 2B is the same as the trial machining combination (1A, 2A), and the shape (eg, arc) and size (eg, arc) different from the trial machining are used. A large size) work material 2B can be used, and different machining forms can be obtained. The NC data d2 corresponds to the NC data 52 generated by the processing unit 201.
 加工装置20での結果データ(k1,k2)は、CAMシステム10に入力され、DB50等に格納される。結果データ(k1,k2)の入力は、I/F部203等を介した自動的な通信処理によるものとしてもよいし、ユーザ入力としてもよい。 The result data (k1, k2) in the processing apparatus 20 is input to the CAM system 10 and stored in the DB 50 or the like. Input of the result data (k1, k2) may be performed by automatic communication processing via the I / F unit 203 or the like, or may be input by a user.
 なお本実施の形態では、加工装置20で試加工と実加工の両方を実行する。これに限らず、試加工は、DB50に格納する必要なデータを得ることができるのであれば、別の装置(手段)で実行してもよい。試加工は、組合せの材質などの基本的な条件を同じにした上で、実加工の条件とは異なる簡易な試験にできるので、簡易な構成の加工装置でも可能である。 In the present embodiment, both the trial machining and the actual machining are executed by the machining apparatus 20. However, the trial machining may be executed by another device (means) as long as necessary data stored in the DB 50 can be obtained. The trial machining can be performed with a simple configuration, since the basic conditions such as the material of the combination can be made the same and a simple test different from the actual machining conditions can be performed.
 [処理部201]
 図1の処理部201での処理フローは以下である(S1等は処理ステップを表す)。また図2では、図1の処理部201(処理フロー)に対応する各処理部として、データ入力部11(S1対応),条件選定部12(S2対応),演算部13(S3,S4対応),NCデータ設定部14(S5対応)を有する構成を示している。
[Processing unit 201]
The processing flow in the processing unit 201 in FIG. 1 is as follows (S1 and the like represent processing steps). In FIG. 2, as each processing unit corresponding to the processing unit 201 (processing flow) of FIG. 1, a data input unit 11 (corresponding to S1), a condition selecting unit 12 (corresponding to S2), and an arithmetic unit 13 (corresponding to S3 and S4). , NC data setting unit 14 (corresponding to S5) is shown.
 (S1) S1では、データ入力部11によるデータ入力処理として、CADシステム30からの設計データ51等をもとに、設計データ(対象製品形状などのデータ)、材料データ(被削材の材料などのデータ)、素材形状データ(被削材の形状などのデータ)などの必要なデータ情報を入力/取得する。なお材料データと素材形状データに関してはCAMシステム10でユーザ(CAMオペレータ)が作成する場合もある。 (S1) In S1, as data input processing by the data input unit 11, based on the design data 51 from the CAD system 30, design data (data such as target product shape), material data (material of the work material, etc.) Data) and material shape data (data such as the shape of the work material) are input / acquired. Note that the material data and the material shape data may be created by the user (CAM operator) in the CAM system 10.
 またS1では、併せて、必要な加工装置20や工具(砥石)等に関するデータを入力してもよい(S2で入力してもよい)。 In S1, data relating to the necessary processing device 20, tool (grinding stone), etc. may be input together (may be input in S2).
 (S2) S2は、条件選定部12による条件選定処理として、S1の入力データを用いた加工(製作)に係わる全般的な条件を選定(設定)する処理を行う。特に、加工部位(被削材)、使用する研削工具(砥石)、加工条件(ここでは対象の研削工程(パート)に関する諸条件)などを選定する。S2で、一部の情報の選定についてはユーザ入力により行う。S2の選定は、ユーザがその都度入力してもよいし、外部からの情報や予め設定された情報を用いて自動的に行ってもよい。S2で選定した各情報は条件情報53として記憶部202に保持され以後の演算で使用される。 (S2) S2 performs a process of selecting (setting) general conditions related to processing (manufacturing) using the input data of S1, as the condition selecting process by the condition selecting unit 12. In particular, a processing site (work material), a grinding tool to be used (grinding stone), processing conditions (here, various conditions regarding the target grinding process (part)), and the like are selected. In S2, some information is selected by user input. The selection of S2 may be input by the user each time, or may be automatically performed using information from the outside or information set in advance. Each piece of information selected in S2 is stored in the storage unit 202 as condition information 53 and used in subsequent calculations.
 またS2では、条件の1つとして加工形態を選定してもよい。ここでの加工形態とは、被削材の形状(平板、円弧等)に応じた、工具(砥石)の移動の形態(軸の軌跡が直線か円弧か等)を含む(後述、図6等)。 In S2, a machining mode may be selected as one of the conditions. The machining mode here includes the mode of movement of the tool (grinding stone) according to the shape (flat plate, arc, etc.) of the work material (whether the trajectory of the axis is a straight line or an arc) (described later, FIG. 6 etc. ).
 (S3) S3では、演算部13により、実加工の加工装置20の工具が砥石であるパート(工程)について、S2の選定条件に基づき、磨耗を考慮しない工具(砥石)の経路の算出を行う。また、求めた工具(砥石)の経路から、一種類の加工の形態が継続している間に対応した工具(砥石)の加工距離(研削距離)(図12)を、加工形態が変わるごとに算出する。なおS3では、算出の前提として、加工形態(直線/円弧外側/円弧内側などの違い)に関する決定も含む(S2までで済んでいる場合は不要)。 (S3) In S3, for the part (process) in which the tool of the actual processing apparatus 20 is a grindstone, the calculation unit 13 calculates the path of the tool (grindstone) that does not consider wear based on the selection conditions of S2. . In addition, the processing distance (grinding distance) (FIG. 12) of the corresponding tool (grinding stone) from the determined tool (grinding stone) path while the one form of machining is continuing is changed every time the machining form is changed. calculate. In S3, as a premise of calculation, a determination regarding a processing form (difference between straight line / circular arc outer side / circular arc inner side) is included (unnecessary when the processing is up to S2).
 (S4) S4では、演算部13により、S3の結果をもとに、砥石加工データ補正処理を行う。即ち、DB50の関係情報211等を参照しながら、試加工時の砥石磨耗の関係情報(ψ,M)と、実加工の研削諸元値(ψ)とをもとに、実加工時の砥石磨耗の体積(M)等を予測する計算をする。これにより、S3で求めた補正前の磨耗を考慮しない工具経路を含む加工データを、磨耗を考慮した工具経路を含む内容となるように補正する。 (S4) In S4, the processing unit 13 performs grinding wheel processing data correction processing based on the result of S3. That is, referring to the relation information 211 of the DB 50, the grinding wheel at the time of actual machining based on the relation information (ψ, M) of the grinding wheel wear at the time of trial machining and the grinding specification value (ψ) at the actual machining. Calculation to predict the volume (M) of wear and the like is performed. As a result, the machining data including the tool path not considering the pre-correction wear obtained in S3 is corrected so as to include the tool path considering the wear.
 (S5) S5では、NCデータ設定部14により、S4までの結果をもとに、NCプログラムを生成し、NCデータ52を設定する処理を行う。尚ここでの設定とは、加工装置20に対して設定(反映)するためのNCデータ52を生成して記憶部202に一旦格納してから加工装置20へ出力することを指す。 (S5) In S5, the NC data setting unit 14 generates an NC program based on the results up to S4, and performs processing for setting the NC data 52. The setting here means that NC data 52 for setting (reflecting) the machining apparatus 20 is generated, temporarily stored in the storage unit 202 and then output to the machining apparatus 20.
 (S6) S6では、処理部201は、対象製品の加工(制御)のために必要な一連の全てのNCデータ52が生成及び設定されたかどうかを判定する。別の加工部位や工程がある場合(N)、S2に戻ってS2~S5の処理を繰り返す。全てのNCデータ52の生成及び設定を終えた時点で(Y)、記憶部202のNCデータ52は、I/F部203の処理、及びLAN90を介して、加工装置20へ出力(転送)される。そして加工装置20でI/F部5を通じて当該NCデータ52を受け取り、当該NCデータ52に従って自動的に加工の動作が制御される。即ち、実加工の際、NCデータd2により、対象部位(被削材)2Bが研削工具(砥石)1Bにより設計データ51に基づく所望の形状に加工される。 (S6) In S6, the processing unit 201 determines whether or not a series of all NC data 52 necessary for processing (control) of the target product has been generated and set. When there is another processing part or process (N), the process returns to S2 and the processes of S2 to S5 are repeated. When the generation and setting of all the NC data 52 is completed (Y), the NC data 52 in the storage unit 202 is output (transferred) to the processing apparatus 20 via the processing of the I / F unit 203 and the LAN 90. The Then, the machining apparatus 20 receives the NC data 52 through the I / F unit 5, and the machining operation is automatically controlled according to the NC data 52. That is, in actual machining, the target portion (work material) 2B is machined into a desired shape based on the design data 51 by the grinding tool (grinding stone) 1B based on the NC data d2.
 なお上記処理例に限らず、研削工具(砥石)を用いるパート(工程)のみに対応した部分的なNCデータ52を生成して加工装置20へ設定する形態としてもよい。 Note that the present invention is not limited to the above processing example, and a partial NC data 52 corresponding only to a part (process) using a grinding tool (grinding stone) may be generated and set in the processing apparatus 20.
 [CAMシステム]
 図3で、CAMシステム10のハードウェア構成として、CPU301、ROM302、RAM303、磁気ディスクドライブ304、磁気ディスク305、光ディスクドライブ306、光ディスク307、通信I/F装置308、プリンタ309、キーボード310、マウス311、ディスプレイ312、及びバスなどを備える構成である。
[CAM system]
3, the hardware configuration of the CAM system 10 includes a CPU 301, a ROM 302, a RAM 303, a magnetic disk drive 304, a magnetic disk 305, an optical disk drive 306, an optical disk 307, a communication I / F device 308, a printer 309, a keyboard 310, and a mouse 311. , A display 312 and a bus.
 図2の処理部201等は、CPU301が磁気ディスク305や光ディスク307やROM302からデータをRAM303へロードしてプログラム処理を実行することにより実現される。記憶部202は、ROM302やRAM303や磁気ディスク305や光ディスク307など及びその制御処理により実現される。例えば磁気ディスク305の一部に、CAM機能(従来技術)や処理部201の機能などを実現するプログラム321や、DB50を含む各データ322が記憶される。 2 is realized when the CPU 301 loads data from the magnetic disk 305, the optical disk 307, or the ROM 302 to the RAM 303 and executes program processing. The storage unit 202 is realized by a ROM 302, a RAM 303, a magnetic disk 305, an optical disk 307, and the like and control processing thereof. For example, a part of the magnetic disk 305 stores a program 321 for realizing the CAM function (conventional technology), the function of the processing unit 201, and the like, and each data 322 including the DB 50.
 通信I/F装置308は、通信ネットワーク(LAN)90を通じて他の装置とデータ通信する処理を行う公知の要素である。マウス311やキーボード310は、ユーザがデータや指示の入力に用いる。ディスプレイ312やプリンタ309は、試加工部204Aや実加工部204Bの処理に基づき、画面/紙面に各種データ(50~52)やユーザインタフェース情報を表示/印刷出力する。ユーザインタフェース情報としては、例えばS1,S2等の各処理のデータ情報や指示の入出力や、DB50の格納データの入出力などを含む。例えばユーザによる関係情報211の式や表の設定も可能とする。 The communication I / F device 308 is a known element that performs processing for data communication with other devices via a communication network (LAN) 90. A mouse 311 and a keyboard 310 are used by a user to input data and instructions. The display 312 and the printer 309 display / print out various data (50 to 52) and user interface information on the screen / paper based on the processing of the trial processing unit 204A and the actual processing unit 204B. The user interface information includes, for example, data information and instruction input / output of each process such as S1, S2, etc., input / output of data stored in the DB 50, and the like. For example, it is possible to set the formula or table of the relationship information 211 by the user.
 [加工装置]
 図4で、加工装置であるマシニングセンタ20について説明する。CAMシステム10のI/F部203(通信I/F装置308)から、通信ネットワーク(LAN)90を経由して、加工装置20のI/F部5と接続される。I/F部5は、通信ネットワーク(LAN)90との接続・通信処理を行い、外部からNCデータ52を受信し、記憶し、処理する。加工装置20は、CAMシステム10から受信したNCデータ52の処理に従って自動的に動作する。加工装置20は、研削工具1や切削工具3を含む各部を、NCデータ52による経路に従って動かす。なお加工装置20におけるNCデータ52を処理して動作する機構は公知技術を適用可能であるため説明は省略する。
[Processing equipment]
With reference to FIG. 4, the machining center 20 which is a processing apparatus will be described. The I / F unit 203 (communication I / F device 308) of the CAM system 10 is connected to the I / F unit 5 of the processing device 20 via a communication network (LAN) 90. The I / F unit 5 performs connection / communication processing with a communication network (LAN) 90, receives, stores, and processes NC data 52 from the outside. The processing device 20 automatically operates according to the processing of the NC data 52 received from the CAM system 10. The processing apparatus 20 moves each part including the grinding tool 1 and the cutting tool 3 according to a path based on the NC data 52. The mechanism that operates by processing the NC data 52 in the processing apparatus 20 can be applied with a known technique, and thus the description thereof is omitted.
 加工装置20は、研削、切削、測定などを含む各種の工程のための機構として、研削工具1、切削工具3、計測装置4などを備える。研削工具1は、図1の1A,1Bに対応する。本実施の形態では、特徴的な処理を行う対象は、研削工具(砥石)1を用いた研削の工程(パート)である。なお当然ながら切削工具3を用いた加工もNCデータ52の指示により同様に可能となっている。 The processing apparatus 20 includes a grinding tool 1, a cutting tool 3, a measuring device 4, and the like as mechanisms for various processes including grinding, cutting, and measurement. The grinding tool 1 corresponds to 1A and 1B in FIG. In the present embodiment, an object to be subjected to characteristic processing is a grinding process (part) using a grinding tool (grinding stone) 1. Needless to say, machining using the cutting tool 3 can be similarly performed by instructing the NC data 52.
 研削工具1は、被削材(2A,2B)を研削加工するための工具であり、例えば円筒形状の砥石である。砥石の形状や動作については図6等に示される。 The grinding tool 1 is a tool for grinding a work material (2A, 2B), and is, for example, a cylindrical grindstone. The shape and operation of the grindstone are shown in FIG.
 加工装置20に備える測定装置4は、研削工具(砥石)1等を用いた加工結果における研削工具(砥石)1の長さや径などの寸法を計測する。同様に、被削材の長さや径などの寸法を計測する測定装置を設けてもよい。測定装置3で計測した結果を含む結果データがCAMシステム10に入力・取得される。なお上記計測は、別の装置やシステムで実現し、当該計測結果をCAMシステム10等に入力する形としてもよい。 The measuring device 4 provided in the processing device 20 measures dimensions such as a length and a diameter of the grinding tool (grinding stone) 1 in a processing result using the grinding tool (grinding stone) 1 or the like. Similarly, a measuring device for measuring dimensions such as the length and diameter of the work material may be provided. Result data including the result measured by the measuring device 3 is input to and acquired by the CAM system 10. The measurement may be realized by another device or system, and the measurement result may be input to the CAM system 10 or the like.
 また他の実施の形態として、CAMシステム30の機能(処理部201相当)を加工装置20に一体化した形態も可能である。即ちこの形態では、既存の工具経路(砥石の磨耗を考慮しない経路)を含むNCデータを、加工装置20の備える機能(処理部201相当)により、砥石の磨耗を考慮した経路を含むNCデータとなるように補正する。 As another embodiment, a form in which the function of the CAM system 30 (corresponding to the processing unit 201) is integrated with the processing apparatus 20 is also possible. That is, in this embodiment, the NC data including the existing tool path (the path not considering the wear of the grindstone) is converted into the NC data including the path considering the wear of the grindstone by the function (corresponding to the processing unit 201) included in the processing apparatus 20. Correct so that
 [処理]
 図5では、CAMシステム10の処理部201における図1のS3,S4を含む処理に関する詳細処理例について説明する。前提として試加工によるデータ(関係情報211)がDB50に格納済みであり、実加工のためのNCデータ51(d2)を得るために本処理を実行する。
[processing]
In FIG. 5, a detailed processing example regarding the processing including S3 and S4 in FIG. 1 in the processing unit 201 of the CAM system 10 will be described. As a premise, data (relation information 211) by trial machining is already stored in the DB 50, and this processing is executed to obtain NC data 51 (d2) for actual machining.
 (S101) まずS101では、データ入力部11や条件選定部12を用いて、設計データ51や条件情報53等を入力/取得する。ここでは、加工前の被削材の形状、加工後の被削材(製品)の形状、及び加工に使用する研削工具1の形状、等の情報を含む。 (S101) First, in S101, the data input unit 11 and the condition selection unit 12 are used to input / acquire design data 51, condition information 53, and the like. Here, it includes information such as the shape of the work material before processing, the shape of the work material (product) after processing, and the shape of the grinding tool 1 used for processing.
 (S102) S102では、処理部201は、対象製品の製作工程全体(複数の工程から成る)のうちの該当工程が、使用する工具が砥石(研削工具1)であるパートかどうかを判定する。工具が砥石でない場合(例えば切削工具3によるパートの場合)、本特徴的な処理(演算部13によるS103~S105等の処理)は行わないため、S106に進み、S106で一般のCAMがNCデータを生成するのと同様の内容の処理を行う。 (S102) In S102, the processing unit 201 determines whether the corresponding process in the entire manufacturing process (consisting of a plurality of processes) of the target product is a part in which the tool to be used is a grindstone (grinding tool 1). When the tool is not a grindstone (for example, in the case of a part by the cutting tool 3), this characteristic process (the process of S103 to S105 by the calculation unit 13) is not performed, so the process proceeds to S106, and a general CAM is NC data in S106. The same processing as that for generating is performed.
 (S103) S103では、演算部13を用いて、設計データ51や条件情報53をもとに、実加工における工具(砥石)の磨耗を考慮しない経路(基本的な経路、補正前の経路)を算出する。またこの算出の際、関連する加工形態(直線/円弧外側/円弧内側など)や加工距離の決定も含む。 (S103) In S103, using the calculation unit 13, based on the design data 51 and the condition information 53, a route (basic route, route before correction) that does not consider the wear of the tool (grindstone) in actual machining is used. calculate. In addition, the calculation includes determination of a related machining mode (straight line / arc outer side / arc inner side, etc.) and a machining distance.
 (S104) S104では、演算部13を用いて、まず実加工の研削諸元値ψ(プサイ)を算出する。ψについては後述の図7等で示される。また、演算部13を用いて、DB50の格納データ(関係情報211)を参照し、上記実加工の研削諸元値ψから、実加工の砥石磨耗体積(M)を予測(算出)する。そして、演算部13を用いて、その結果の体積(M)を砥石半径減少量(Wとする)に換算する。DB50の関係情報211は、砥石半径減少量(W)を計算するために必要なデータとして、試加工時の研削諸元値ψと砥石磨耗体積(M)との関係が関数または対応表の形式で記述されている(例えば図11(a)に示すψとW2の指数関数)。 (S104) In S104, first, an actual machining grinding specification value ψ (psi) is calculated using the calculation unit 13. ψ is shown in FIG. Further, by using the calculation unit 13, the stored data (relation information 211) of the DB 50 is referred to, and the actual processing grinding wheel wear volume (M) is predicted (calculated) from the actual processing grinding value ψ. Then, the calculation unit 13 is used to convert the resulting volume (M) into a grinding wheel radius reduction amount (W). The relation information 211 of the DB 50 is data necessary for calculating the grinding wheel radius reduction amount (W), and the relationship between the grinding specification value ψ and the grinding wheel wear volume (M) at the time of trial machining is a function or correspondence table format. (For example, exponential functions of ψ and W2 shown in FIG. 11A).
 (S105) S105では、演算部13を用いて、S103の補正前の工具の経路(または対応する径)を、S104の結果(W)を用いて、磨耗を考慮した経路(または対応する径)となるように補正する。即ち、経路上の工具(砥石)の位置を、砥石半径減少量(W)の分、被削材の方へ近付けるように修正する。なおNCデータ52に係わる工具(砥石)の経路と径は、簡単な計算で換算可能である。 (S105) In S105, the calculation unit 13 is used to determine the tool path (or corresponding diameter) before correction in S103, and the path (or corresponding diameter) in consideration of wear using the result (W) in S104. Correct so that That is, the position of the tool (grinding stone) on the path is corrected so as to approach the work material by the grinding wheel radius reduction amount (W). Note that the path and diameter of the tool (grindstone) related to the NC data 52 can be converted by a simple calculation.
 またS105での補正後の経路を定めるに際しては、時間軸に沿って全体的になめらかな経路となるようにする(階段状の経路にはしないようにする)。設計データ51に基づく基本の経路における一点から次の移動点への経路(例えば図12の点pからqに対応する経路)に対して、上記の砥石半径減少量(W)の分を、移動距離(加工距離)に比例して配分して、なめらかな(連続的に変化する)経路となるように補正する。例えば図12の補正前の経路P1から補正後の経路P2となる(平板の場合)。 Also, when the route after correction in S105 is determined, the route should be smooth as a whole along the time axis (not to be a stepped route). For the route from one point to the next moving point in the basic route based on the design data 51 (for example, the route corresponding to the point p to q in FIG. 12), the amount of the grinding wheel radius reduction amount (W) is moved. It is distributed in proportion to the distance (processing distance), and is corrected so that a smooth (continuously changing) path is obtained. For example, the route P1 before correction in FIG. 12 becomes the route P2 after correction (in the case of a flat plate).
 (S106) S106では、演算部13を用いて、上記S105までの結果をもとに、補正後の工具経路を含む補正後の加工データに対応するNCプログラムを生成する処理を行う。そして生成されたNCプログラムを含むNCデータ52として記憶する。 (S106) In S106, the processing unit 13 is used to generate an NC program corresponding to the corrected machining data including the corrected tool path based on the results up to S105. Then, it is stored as NC data 52 including the generated NC program.
 (S107) S107では、処理部201は、次の加工部位の有無を判定し、有る場合(N)はS101へ戻って同様に処理を繰り返し、無い場合(Y)は終了する。 (S107) In S107, the processing unit 201 determines the presence or absence of the next processing site. If there is (N), the processing returns to S101 and repeats the processing in the same manner. If not (Y), the processing ends.
 [研削諸元値ψ]
 前記S104の研削諸元値ψを算出する処理に関して、研削諸元値ψは、加工形態に応じて、以下の数式1~数式3によって算出される:
 (1)直線の加工の場合(第1の加工形態):
  ψ=(v/V)(Δ/2R)   ・・・(数式1)
 (2)円弧外側の加工の場合(第2の加工形態):
  ψ=(v/V)[Δ{(1/2R)+(1/2r)}   ・・・(数式2)
 (3)円弧内側の加工の場合(第3の加工形態):
  ψ=(v/V)[Δ{(1/2R)-(1/2r)}   ・・・(数式3)。
[Grinding value ψ]
Regarding the process of calculating the grinding specification value ψ in S104, the grinding specification value ψ is calculated by the following formulas 1 to 3 according to the processing form:
(1) In the case of straight line machining (first machining mode):
ψ = (v / V) (Δ / 2R) (Formula 1)
(2) In the case of machining outside the arc (second machining mode):
ψ = (v / V) [Δ {(1 / 2R) + (1 / 2r)} (Expression 2)
(3) In the case of machining inside the arc (third machining mode):
ψ = (v / V) [Δ {(1 / 2R) − (1 / 2r)} (Formula 3).
 上記数式における記号の意味については下記の図6等で説明する。 The meaning of the symbols in the above formula will be described with reference to FIG. 6 below.
 [加工形態]
 図6は、各種の加工形態や条件などについて模式的に示している。本システムの特徴の1つとして、図6(a)のような直線(平板)の形態の試加工のデータ(関係情報211)から、図6(b),(c)のような円弧(外側/内側)の形態の実加工のデータを予測する。
[Processing form]
FIG. 6 schematically shows various processing modes and conditions. As one of the features of this system, from the trial machining data (relation information 211) in the form of a straight line (flat plate) as shown in FIG. 6A, an arc (outside as shown in FIGS. 6B and 6C) Predict actual machining data in the (/ inner) form.
 図6(a)は、第1の加工形態として、平板(直線の溝の加工)の場合である(図7(a)とも対応する)。1aは、円筒(ないし円盤等)の形状の砥石(研削工具1)を示す。2aは、平板形状の被削材(加工部位)を示す。特に試加工でこの加工形態を用いるので前述の1A,2Aと対応する。図6(a),(b),(c)の砥石1aは同じである。 FIG. 6A shows the case of a flat plate (processing a straight groove) as a first processing form (corresponding to FIG. 7A). 1a shows a grindstone (grinding tool 1) in the shape of a cylinder (or disk or the like). 2a shows a flat plate-shaped work material (processed part). In particular, since this machining mode is used in trial machining, it corresponds to the aforementioned 1A and 2A. The grindstone 1a shown in FIGS. 6A, 6B, and 6C is the same.
 図6(a)で、数式1に対応する記号として、R:半径、Δ(デルタ):切込み量、V:周速度、v:送り速度(移動速度)を示す。半径Rの砥石1aが周速度Vで回転しながら、被削材2aに対してΔの切込みを与え、移動速度vで直線運動している状態を示している。 6A, R: radius, Δ (delta): cutting depth, V: peripheral speed, v: feed speed (moving speed) as symbols corresponding to Equation 1. While the grindstone 1a having a radius R rotates at a peripheral speed V, a cutting of Δ is given to the work material 2a, and the grindstone 1a moves linearly at a moving speed v.
 図6(b)は、第2の加工形態として、円弧外側(凸面)の加工の場合である(図8(a)とも対応する)。2bは、円弧外側(凸面)形状の円筒の被削材を示す。特に実加工でこの加工形態を用いることができるので、前述の1B,2Bと対応する。 FIG. 6B shows a case where the outer side of the arc (convex surface) is processed as the second processing form (also corresponds to FIG. 8A). 2b shows a cylindrical work material having a circular arc outside (convex surface) shape. In particular, since this processing form can be used in actual processing, it corresponds to the above-described 1B and 2B.
 図6(c)は、第3の加工形態として、円弧内側(凹面)の加工の場合である。2cは、円弧内側(凹面)形状の被削材を示す。特に実加工でこの加工形態を用いることができるので、前述の1B,2Bと対応する。 FIG. 6C shows the case of machining the inside of the arc (concave surface) as the third machining mode. 2c shows the work material of circular arc inner side (concave surface) shape. In particular, since this processing form can be used in actual processing, it corresponds to the above-described 1B and 2B.
 図6(b)では、rは被削材2b側の半径である。半径Rの砥石1aが周速度Vで回転しながら、半径rの被削材2bに対して、Δの切込みを与え、移動速度vで円弧軌跡を描きながら運動している状態を示している。本状態では、円筒形状の被削材2bの中心と砥石1aの円弧軌跡の中心とが一致している。図6(b)に示す記号が数式2と対応する。 In FIG. 6B, r is a radius on the workpiece 2b side. While the grindstone 1a having a radius R rotates at a peripheral speed V, a cutting of Δ is given to the work material 2b having a radius r, and the grindstone 1a moves while drawing an arc locus at a moving speed v. In this state, the center of the cylindrical workpiece 2b coincides with the center of the arc locus of the grindstone 1a. The symbols shown in FIG. 6B correspond to Equation 2.
 図6(c)では、図6(b)と逆で、円弧内側形状の被削材2cに対して、半径Rの砥石1aが周速度Vで回転しながらΔの切込みを与え移動速度vで円弧軌跡を描きながら運動している状態を示している。本状態では、円弧内側形状の被削材2cの中心と砥石1aの円弧軌跡の中心とが一致している。図6(c)に示す記号が数式3と対応する。 In FIG. 6 (c), contrary to FIG. 6 (b), a grinding wheel 1a having a radius R is rotated at a peripheral speed V to give a notch of Δ to the work material 2c having an arc-inner shape at a moving speed v. It shows a state of motion while drawing an arc locus. In this state, the center of the arc-shaped work material 2c and the center of the arc locus of the grindstone 1a coincide. The symbol shown in FIG. 6C corresponds to Equation 3.
 なお簡単のために、図6(b),(c)では、砥石1aの円弧状の軌跡(経路)の中心と、被削材2b,2cの研削前の円弧形状の中心とが一致の場合を示しているが、両者の中心が一致していない場合も可能である。 For brevity, in FIGS. 6B and 6C, the center of the arc-shaped trajectory (path) of the grindstone 1a is coincident with the center of the arc-shaped shape of the work materials 2b and 2c before grinding. However, it is also possible that the centers of the two do not coincide.
 研削諸元値ψは、被削材の切り屑の厚さを求める近似式の一部である。同じ砥石の場合、ψが大きくなるほど砥石に作用する抵抗が大きくなり、よって砥石の磨耗が大きくなる傾向を示す(図7(b)等)。 The grinding specification value ψ is a part of an approximate expression for obtaining the thickness of the chip of the work material. In the case of the same grindstone, as ψ increases, the resistance acting on the grindstone increases, and thus the wear of the grindstone tends to increase (FIG. 7B, etc.).
 ここで、図6(a)の平板(直線)の加工形態で、条件(研削諸元値ψ)を変えて数回(少なくとも2回)の試験(試加工)を行う。すると、研削諸元値ψと砥石1aの磨耗量との関係を得ることができる。また、このψと砥石磨耗量との関係は、指数関数として整理することができる(図7(b)等)。よって、ある工具(砥石)1Aと被削材2Aとの組合せで、図6(a)の例のような試加工を行い、その結果データ(k1)による、指数関数の式(予測式)を、DB50に関係情報211として格納しておく。これにより、別の加工(実加工)に際し、この式(関係情報211)を用いて、砥石1aの磨耗量を予測することができる(前記S104)。特に、図6(b),(c)のように円弧状の軌跡(経路)で砥石1aが移動する形態の場合にも、数式2や数式3から計算されるψに対応する砥石1aの磨耗量を、上記直線の試加工による式(関係情報211)によって予測することができる。第1の方式では上記磨耗量として体積(M)の形式である。関係情報211をDB50に格納する形式は、上記の指数関数の式を対応表(テーブル)にした形式としてもよい。 Here, the test (trial processing) is performed several times (at least twice) by changing the conditions (grinding specification value ψ) in the flat plate (straight line) processing form of FIG. Then, the relationship between the grinding specification value ψ and the wear amount of the grindstone 1a can be obtained. Further, the relationship between this ψ and the grinding wheel wear amount can be organized as an exponential function (FIG. 7B, etc.). Therefore, trial machining as in the example of FIG. 6A is performed with a combination of a certain tool (grindstone) 1A and the work material 2A, and an exponential function formula (prediction formula) based on the result data (k1) is obtained. , Stored as relation information 211 in the DB 50. Thereby, in another process (actual process), the wear amount of the grindstone 1a can be predicted using this formula (relation information 211) (S104). In particular, even in the case where the grindstone 1a moves along an arcuate locus (path) as shown in FIGS. 6B and 6C, the wear of the grindstone 1a corresponding to ψ calculated from Expression 2 or Expression 3 The amount can be predicted by an equation (relation information 211) obtained by trial processing of the straight line. In the first method, the amount of wear is in the form of volume (M). The format in which the relationship information 211 is stored in the DB 50 may be a format in which the above exponential function formula is converted into a correspondence table.
 [課題(従来方式)]
 ここで、従来技術に従い、被削材としてDAIDO-SPECIAL METALS LTD.から市販されているインコネル718(登録商標)(図7、研削条件)に代表されるような耐熱合金に上述の方式、すなわち、図7に示す平板形状の加工データから得た、研削諸元値ψと砥石半径減少量Wの関係の実験式に、円弧形状の加工に適用するψの値を数式2あるいは数式3から求めて単純に代入する方式、を適用する試みを行ったところ、以下のような課題があった。以下図7,図8を用いてこの従来方式の課題について詳述する。
[Problem (conventional method)]
Here, according to the conventional technique, the above-described method is applied to a heat-resistant alloy represented by Inconel 718 (registered trademark) (FIG. 7, grinding conditions) commercially available from DAIDO-SPECIAL METALS LTD. The value of ψ to be applied to arc-shaped machining is obtained from Equation 2 or Equation 3 based on the experimental equation of the relationship between the grinding specification value ψ and the grinding wheel radius reduction amount W obtained from the flat plate machining data shown in FIG. When an attempt was made to apply a simple substitution method, there were the following problems. Hereinafter, the problems of this conventional method will be described in detail with reference to FIGS.
 図7(a)は、図6(a)のような平板の被削材2aに対して円筒状の砥石1aにより直線溝加工(試加工)を行う場合を示す。図7(b)は、その研削条件と、結果(ψとWの関係)を示す線図である。ψは数式1による。Wは砥石半径減少量(砥石磨耗半径)である。 FIG. 7 (a) shows a case where straight groove processing (trial processing) is performed on the flat work material 2a as shown in FIG. 6 (a) with a cylindrical grindstone 1a. FIG. 7B is a diagram showing the grinding conditions and results (relationship between ψ and W). ψ is according to Equation 1. W is a grinding wheel radius reduction amount (grinding wheel wear radius).
 図7(b)に示すように、研削条件として、砥石(研削工具1)は、粒度が46、硬さがH、組織が10で、サイズは半径が60mm、厚さが6mmのセラミック砥石を用いる。そして、砥石の周速度Vが30m/sec、送り速度vが210~630mm/min、切込み量Δが0.2~6.0mmといった条件としてデータを得た。研削距離は70mmである。被削材2aはインコネル718AG材(時効処理材)である。そして、次の数式4(指数関数)による、砥石半径減少量W[mm]の値を得て、データベースとした。 As shown in FIG. 7B, as a grinding condition, a grindstone (grinding tool 1) is a ceramic grindstone having a grain size of 46, a hardness of H, a structure of 10, a size of a radius of 60 mm, and a thickness of 6 mm. Use. Data was obtained under the conditions that the peripheral speed V of the grindstone was 30 m / sec, the feed speed v was 210 to 630 mm / min, and the cutting depth Δ was 0.2 to 6.0 mm. The grinding distance is 70 mm. The work material 2a is an Inconel 718AG material (aging treatment material). Then, the value of the grinding wheel radius reduction amount W [mm] was obtained from the following formula 4 (exponential function), and used as a database.
 W=0.0069e0.698ψ   ・・・(数式4)
 砥石半径減少量Wは、例えば図10(a)から図10(b)への変化のような磨耗による砥石1aの半径Rの減少量を示す。あるいは同様に図12のような砥石1aの半径Rの減少量を示す。
W = 0.0069e 0.698ψ (Formula 4)
The grinding wheel radius reduction amount W indicates a reduction amount of the radius R of the grinding wheel 1a due to wear such as a change from FIG. 10 (a) to FIG. 10 (b). Or similarly, the reduction | decrease amount of the radius R of the grindstone 1a like FIG. 12 is shown.
 ここで、数式2から図6(b)のような円弧外側を加工する場合のψを求め、数式4に代入することで、砥石磨耗半径(W)を求めた。また、対応して実際に砥石1aと被削材2bを図8(a)に示す研削条件内の物として、円筒形状の被削材2bを加工した場合の結果が図8(b)である。 Here, ψ for machining the outer side of the circular arc as shown in FIG. 6B is obtained from Equation 2 and is substituted into Equation 4 to obtain the grinding wheel wear radius (W). Correspondingly, FIG. 8B shows the result when the cylindrical work material 2b is machined with the grindstone 1a and the work material 2b being actually within the grinding conditions shown in FIG. 8A. .
 図8で用いた砥石1aは、図7(a)で用いたのと同じセラミック砥石である。研削諸元(ψ)は、周速度Vが30m/sec、送り速度vが砥石1aと被削材2bとの接触点で420mm/minである。被削材2bは、図7(2a)で使用したのと同じインコネル718AG材である。 The grindstone 1a used in FIG. 8 is the same ceramic grindstone as used in FIG. The grinding specification (ψ) has a peripheral speed V of 30 m / sec and a feed speed v of 420 mm / min at the contact point between the grindstone 1a and the work material 2b. The work material 2b is the same Inconel 718AG material used in FIG. 7 (2a).
 図8(b)の結果に示すように、切込み量Δが例えば2.0mmの箇所において、予測誤差が107%と大きくなった。この結果をもとに工具経路を補正すると、切込み過大となってしまう。なお[予測誤差]=([予測値]-[実験値])/[実験値]である。 As shown in the result of FIG. 8 (b), the prediction error was as large as 107% when the cutting depth Δ was 2.0 mm, for example. If the tool path is corrected based on this result, the depth of cut will be excessive. Note that [prediction error] = ([prediction value] − [experimental value]) / [experimental value].
 上述のように、従来技術に従い、平板形状の場合の加工データをもとに、円弧形状の場合の加工データを単純に予測する方式では、予測誤差が大きく、適切な工具経路の補正ができない。 As described above, according to the conventional technique, the method of simply predicting the machining data in the case of the arc shape based on the machining data in the case of the flat plate shape has a large prediction error, and an appropriate tool path cannot be corrected.
 [第2の方式]
 次に、図9以下を用いて、上記の従来技術に従う方式(図7,図8)による過大な予測誤差を縮小する(言い換えると砥石半径減少量(W)の予測精度を向上する)、本実施の形態の第1、第2の方式について説明する。図9では第2の方式に関して示し、図11ではより効果の大きい第1の方式について示す。
[Second method]
Next, using FIG. 9 and subsequent figures, the excessive prediction error by the method according to the above-described prior art (FIGS. 7 and 8) is reduced (in other words, the prediction accuracy of the grinding wheel radius reduction amount (W) is improved). The first and second methods of the embodiment will be described. FIG. 9 shows the second method, and FIG. 11 shows the more effective first method.
 図9で、第2の方式として、砥石1aと被削材2(2a,2b)との接触長(接触弧長さ)の比率(L2/L1)を用いて、砥石磨耗半径(W)を計算(予測)する。これにより、図9(b)に示すように、予測誤差を18%に減少させる効果が得られた。 In FIG. 9, as a second method, the grinding wheel wear radius (W) is calculated using the ratio (L2 / L1) of the contact length (contact arc length) between the grindstone 1a and the work material 2 (2a, 2b). Calculate (predict). As a result, the effect of reducing the prediction error to 18% was obtained as shown in FIG.
 図9(a)で、(1)は、前述の図6(a)と同様に、砥石1aが平板の被削材2aを直線移動して研削する状態を示している。一方、(2)は、前述の図6(b)と同様に、砥石1aが円弧外側の形状の被削材2bの外周を円軌跡で移動して研削する状態を示している。(1)における砥石1aと被削材2aとの接触弧長さL1は、(2)における砥石1aと被削材2bとの接触長さL2よりも長い(L1>L2)。即ち、接触弧長さ(L1,L2)は、(2)の円弧外側の場合(L2)の方が(1)の直線の場合(L1)よりも短い。 9 (a), (1) shows a state in which the grindstone 1a linearly moves and grinds the flat work material 2a as in FIG. 6 (a). On the other hand, (2) shows a state in which the grindstone 1a moves on the outer circumference of the work piece 2b having an arcuate outer shape along a circular locus and is ground as in FIG. 6 (b). The contact arc length L1 between the grindstone 1a and the work material 2a in (1) is longer than the contact length L2 between the grindstone 1a and the work material 2b in (2) (L1> L2). That is, the contact arc lengths (L1, L2) are shorter in the case (L2) outside the arc of (2) than in the case (L1) of the straight line (1).
 研削工具(砥石)1の切れ刃となる砥粒の接触時間は、(1)の直線の研削よりも(2)円弧外周を研削した場合のほうが短くなる。被削性が良い材料(被削材2)の研削にあたっては、この接触弧長さ(L1,L2)は砥石1の磨耗による半径減少量(W)に与える影響が小さいが、難削材であるインコネル718のようにNi基の耐熱合金を研削した場合、この被削材2と砥石1の接触弧長さ(L1,L2)は砥粒の磨耗に大きく影響を与えると考えられる。 The contact time of the abrasive grains serving as the cutting edge of the grinding tool (grinding stone) 1 is shorter when (2) grinding the outer circumference of the arc than (1) straight grinding. When grinding a material with good machinability (work material 2), the contact arc length (L1, L2) has little influence on the radius reduction (W) due to wear of the grindstone 1, but it is difficult to cut When a Ni-based heat-resistant alloy is ground as in Inconel 718, the contact arc length (L1, L2) between the work material 2 and the grindstone 1 is considered to greatly affect the abrasive wear.
 そこで、第2の方式として、前述の従来の手法(図7,図8)に基づく砥石磨耗半径(W)の算出式に対して、上述の接触弧長さ比率(L2/L1)を導入(掛算)する、以下の数式5により、当該接触弧長さ比率により補正した砥石磨耗半径(W1とする)を計算する。 Therefore, as the second method, the above-mentioned contact arc length ratio (L2 / L1) is introduced to the formula for calculating the grinding wheel wear radius (W) based on the above-described conventional method (FIGS. 7 and 8) ( The grinding wheel wear radius (referred to as W1) corrected by the contact arc length ratio is calculated by the following formula 5.
 W1=(L2/L1)W   ・・・(数式5)
 図9(b)は、上記W1による結果(ΔとW1との関係)である。この第2の方式では、上記比率を導入したことにより、切込み量Δが例えば2.0mmの箇所において、予測誤差が107%(従来)から18%まで大きく縮小した。即ち、従来の過大な予測誤差を縮小し、砥石半径減少量(W)の予測精度を向上できた。
W1 = (L2 / L1) W (Expression 5)
FIG. 9B shows the result of W1 (relationship between Δ and W1). In the second method, by introducing the above ratio, the prediction error is greatly reduced from 107% (conventional) to 18% at a position where the cutting depth Δ is 2.0 mm, for example. That is, it was possible to reduce the conventional excessive prediction error and to improve the prediction accuracy of the grinding wheel radius reduction amount (W).
 [第1の方式]
 上記の第2の方式によって大きな向上の効果が得られたが、まだ18%の予測誤差がある。この予測誤差をさらに縮小する第1の方式について、以下図11等を用いて説明する。第1の方式は、第2の方式の接触弧長さ比率(L2/L1)を要素として内包した方式であり、砥石減少体積(M)を用いて計算(予測)する方式である。第1の方式により、図11に示すように、更に予測誤差を8%に縮小させる効果が得られた。なお従来の方式の砥石磨耗半径W、第2の方式の補正による砥石磨耗半径W1に対し、第1の方式では、砥石磨耗体積M、補正による砥石磨耗半径W2、で表す。
[First method]
Although the above-mentioned second method has a great improvement effect, it still has a prediction error of 18%. A first method for further reducing the prediction error will be described below with reference to FIG. The first method is a method that includes the contact arc length ratio (L2 / L1) of the second method as an element, and is a method of calculating (predicting) using the grinding wheel reduction volume (M). By the first method, as shown in FIG. 11, the effect of further reducing the prediction error to 8% was obtained. In contrast to the conventional grinding wheel wear radius W and the grinding wheel wear radius W1 corrected by the second system, the first system represents the grinding wheel wear volume M and the grinding wheel wear radius W2 by correction.
 [半径R,砥石磨耗半径W]
 まず図10(a)~(d)は、使用する砥石の半径(R)が砥石半径減少量(W)に与える影響について示す。各記号は図9までと同様である。(a)の砥石1aは前述同様の円筒形状の場合であり、半径R1である。点p-qは、被削材2a(平板)を切込み量Δで研削する際の面(線)を示し、対応する加工距離を示す。砥石1aは、周速度Vで回転し移動速度vで被削材2aに対して切込み量Δで直線運動を行い、p-qの部分を除去しようとしている。
[Radius R, grinding wheel wear radius W]
First, FIGS. 10A to 10D show the influence of the radius (R) of the grindstone used on the grinding wheel radius reduction amount (W). Each symbol is the same as in FIG. The grindstone 1a of (a) is the same cylindrical shape as described above, and has a radius R1. A point pq indicates a surface (line) when the work material 2a (flat plate) is ground with a cutting depth Δ, and indicates a corresponding machining distance. The grindstone 1a rotates at a peripheral speed V, performs a linear motion with a cutting depth Δ with respect to the work material 2a at a moving speed v, and tries to remove the portion pq.
 (b)は(a)の加工結果である。(b)の砥石1a’は、(a)の砥石1aにより研削した後の状態を示し、研削加工中に砥石1aが磨耗するので、加工開始前の半径R1から加工終了後の半径R2へ減少している。ε(ε1)は磨耗の影響による削り残し厚さ(誤差)を示す。Pは砥石1aの移動の経路を示す。 (B) is the processing result of (a). The grindstone 1a 'in (b) shows a state after being ground by the grindstone 1a in (a), and the grindstone 1a is worn during the grinding process. is doing. ε (ε1) represents the uncut thickness (error) due to the influence of wear. P indicates a path of movement of the grindstone 1a.
 (c)は(a)と同様の配置であるが、(c)の砥石1aは半径R3が(a)の砥石1aの半径R1よりも小さい(R1>R3)。 (C) is the same arrangement as (a), but the grindstone 1a of (c) has a radius R3 smaller than the radius R1 of the grindstone 1a of (a) (R1> R3).
 (d)は、(c)の砥石1aで(a)と同様の(c)の配置で研削を開始し、(b)と同様に研削が終了した位置(状態)を示す。(d)の砥石1a’の半径R4は、(c)の砥石1aの半径R3から減少している。誤差はε2であり、ε1よりも大きくなる(ε1<ε2)。 (D) shows the position (state) where grinding was started with the arrangement of (c) similar to (a) with the grindstone 1a of (c), and grinding was completed in the same manner as (b). The radius R4 of the grindstone 1a 'in (d) is reduced from the radius R3 of the grindstone 1a in (c). The error is ε2, which is larger than ε1 (ε1 <ε2).
 上記のように、被削材の同じ部分を除去(研削)しようとする場合、半径Rが小さい砥石を用いた方が半径減少量が大きくなり、削り残し(ε)も大きくなる。これは、半径Rの小さい砥石の方が、砥石の作用面(研削を行う面)に存在する砥粒の数が少なくなるため、1個の砥粒が被削材に接触している長さが大きくなり、砥石の磨耗が大きくなるためである。 As described above, when removing (grinding) the same portion of the work material, the amount of radius reduction increases and the uncut material (ε) also increases when a grindstone having a small radius R is used. This is because the number of abrasive grains existing on the working surface of the grindstone (the surface on which grinding is performed) is smaller in the grindstone having a smaller radius R, so the length of one abrasive grain in contact with the work material. This is because the wear of the grindstone increases.
 よって、砥石の磨耗の大きさを予測するために用いるDB50のデータ(関係情報211)としては、研削諸元値ψに対する砥石半径減少量(従来のW)ではなく、砥石体積減少量(M)とした方が、より適切となる。1個の砥粒が研削不能となるまでに除去できる被削材の体積は同じであるから、被削材の除去体積が同じであれば、砥石の半径にかかわらず砥石が減少する体積も同じになると推定できる。 Therefore, DB50 data (relation information 211) used for predicting the magnitude of grinding wheel wear is not the grinding wheel radius reduction amount (conventional W) with respect to the grinding specification value ψ, but the grinding wheel volume reduction amount (M). Is more appropriate. Since the volume of the work material that can be removed before one abrasive grain becomes ungrindable is the same, if the removal volume of the work material is the same, the volume that the grindstone is reduced is the same regardless of the radius of the grindstone. Can be estimated.
 [砥石磨耗体積M]
 図11(a),(b)は、第1の方式について示す。図11(a)では、前記図7,図8で示した従来方式によるψとWの関係(線図)を、ψと砥石減少体積Mとの関係に換算した線図を示す。ψは前述同様の値、Mは砥石単位幅当たり体積減少量([mm3/mm])である。
[Whetstone wear volume M]
11A and 11B show the first method. FIG. 11A shows a diagram in which the relationship (diagram) between ψ and W according to the conventional method shown in FIGS. 7 and 8 is converted into the relationship between ψ and the grinding wheel reduction volume M. FIG. ψ is the same value as described above, and M is the volume reduction amount ([mm 3 / mm]) per unit width of the grindstone.
 図11(a)の線図から、以下の数式6に示す近似式を得ることができる。W2は、砥石減少体積Mに基づき補正した砥石減少半径Wを示す。 From the diagram of FIG. 11 (a), the approximate expression shown in Equation 6 below can be obtained. W2 represents the grinding wheel reduction radius W corrected based on the grinding wheel reduction volume M.
 W2=2.587e0.699ψ   ・・・(数式6)
 図11(b)は、上記の数式6を用いて砥石減少体積Mから砥石半径減少量W2を計算し、図9(b)の実験値と比較して示した線図である。これにより、図11(b)のように、砥石磨耗半径の予測を8%以下の予測誤差で実現することができた。第2の方式に対して更に誤差を縮小できた。
W2 = 2.587e 0.699ψ (Formula 6)
FIG. 11 (b) is a diagram showing the grinding wheel radius reduction amount W2 calculated from the grinding wheel reduction volume M using Equation 6 above and compared with the experimental value of FIG. 9 (b). As a result, as shown in FIG. 11B, the prediction of the grinding wheel wear radius could be realized with a prediction error of 8% or less. The error could be further reduced with respect to the second method.
 前述の図1,図5等の構成では、上記ψとMの関係を示す関係情報211をDB50(砥石磨耗体積DB)の格納データとして適用し、S4(S104)では当該関係情報211を参照して砥石磨耗半径W(W2)を予測(算出)している。このような第1の方式に基づき、図6(b),(c)のような曲面(円弧)の研削(実加工)においても、図11(b)のような小さな予測誤差で、砥石磨耗半径(W2)を得て、対応する工具経路(または工具径)データを補正することができる。第1の方式を用いるCAMシステム10等の構成により、工具(砥石)1の磨耗を考慮して精度良く補正した工具経路を生成・出力し、加工装置20の研削動作を好適に制御し、高品質の加工品を得ることができる。 In the configuration shown in FIGS. 1 and 5 and the like, the relationship information 211 indicating the relationship between ψ and M is applied as data stored in the DB 50 (grinding wheel wear volume DB), and the relationship information 211 is referred to in S4 (S104). The wheel wear radius W (W2) is predicted (calculated). Based on the first method as described above, even in the grinding (actual processing) of the curved surface (arc) as shown in FIGS. 6B and 6C, the grinding wheel wears with a small prediction error as shown in FIG. A radius (W2) can be obtained and the corresponding tool path (or tool radius) data can be corrected. The configuration of the CAM system 10 or the like using the first method generates and outputs a tool path that is accurately corrected in consideration of the wear of the tool (grinding stone) 1, suitably controls the grinding operation of the processing apparatus 20, Quality processed products can be obtained.
 [経路等]
 図12は、本実施の形態の補足として、補正前後の工具経路や加工距離や工具径補正量などについて示す。基本的に図10(a),(b)に対応した経路P(P1,P2)などを示している。図10(a)の被削材2a(平板)の加工前、砥石1aの磨耗前(半径R1)の状態から、図10(b)の加工後、砥石1aの磨耗後(半径R2)の状態への変化に対応している。簡単のため、平板(直線)の加工の場合で示すが、円弧の場合も同様である。
[Route etc.]
FIG. 12 shows a tool path before and after correction, a machining distance, a tool radius correction amount, and the like as a supplement to the present embodiment. Basically, paths P (P1, P2) corresponding to FIGS. 10A and 10B are shown. From the state before machining the work material 2a (flat plate) in FIG. 10 (a), before the grinding wheel 1a is worn (radius R1), after machining in FIG. 10 (b), after the grinding wheel 1a is worn (radius R2). To respond to changes. For the sake of simplicity, a case of processing a flat plate (straight line) is shown.
 P1は、図10(a)から(b)への変化に対応した、砥石1aの磨耗を考慮しない経路(補正前の経路)(点aから点bまで)である。図10(b)のように、被削材2aは理想的な切込み量Δを得られず、削り残し(ε1)が生じる。ここでは半径減少量(差分:R1-R2)をXで示す。 P1 is a path (path before correction) (from point a to point b) that does not consider the wear of the grindstone 1a, corresponding to the change from FIG. 10 (a) to (b). As shown in FIG. 10B, the work material 2a cannot obtain an ideal depth of cut Δ, resulting in uncut material (ε1). Here, the radius reduction amount (difference: R1-R2) is indicated by X.
 P2は、本実施の形態(第1の方式)による、上記の砥石1aの磨耗(R1→R2)を考慮した経路(補正後の経路)(点aから点cまで)である。砥石1aの半径減少量Xの分、砥石1aの位置が被削材2aに近付く方向へ寄せられる。被削材2aは理想的な切込み量Δが得られる。半径減少量Xは、当該経路の補正(P1→P2)に対応した、工具径の補正量に対応する。 P2 is a path (corrected path) (from point a to point c) in consideration of wear (R1 → R2) of the grindstone 1a according to the present embodiment (first method). The position of the grindstone 1a is moved closer to the work material 2a by the radius reduction amount X of the grindstone 1a. The work material 2a has an ideal depth of cut Δ. The radius reduction amount X corresponds to the correction amount of the tool diameter corresponding to the correction (P1 → P2) of the path.
 なお加工データ(NCデータ52)の補正の考え方において、補正対象は経路または径で同様となる。経路をP1からP2のように補正することは、砥石の径(R)で考えると、P1のような基本の経路をもとに、半径R1からR2への減少量Xを工具径補正量として、各時点の減少量で砥石の中心軸の位置(点aなど)を被削材側へ近付ける方向(図12では下側)へと修正することに相当する。結果、直線の加工の場合であればP2のような経路になる。円弧の加工の場合であれば曲線の経路になる。 In the concept of correction of machining data (NC data 52), the correction target is the same for the path or the diameter. The correction of the path from P1 to P2 is based on the grinding wheel diameter (R). Based on the basic path such as P1, the reduction amount X from the radius R1 to R2 is used as the tool radius correction amount. This corresponds to correcting the position of the central axis of the grindstone (point a, etc.) toward the work material side (lower side in FIG. 12) with the decrease amount at each time point. As a result, in the case of straight line processing, the path becomes P2. In the case of arc processing, a curved path is obtained.
 [効果等]
 以上説明したように、本実施の形態によれば、(1)試加工と実加工の条件を同じにする制約を緩和し、費用等を抑えることができ、(2)製品の設計変更の度の試験を不必要化または低減し、費用や時間等を抑えることができ、(3)工具(砥石)を必要以上に減少させないで済み、費用等を抑えることができる。
[Effects]
As described above, according to the present embodiment, (1) it is possible to relax the constraint that the conditions of trial machining and actual machining are the same, and to reduce costs, etc. (2) degree of product design change Therefore, the cost and time can be reduced, and (3) it is not necessary to reduce the tool (grindstone) more than necessary, and the cost can be reduced.
 特に、試加工(簡易な試験)で得たDB50のデータから、実加工時の砥石磨耗量(半径W)を計算(予測)し、工具の経路(または径)の補正に用いる。よって、実加工と同じ条件で補正用データを取得する必要がある従来の方式で必要な工数や材料などが不要になる。 Especially, the grinding wheel wear amount (radius W) at the time of actual machining is calculated (predicted) from the DB50 data obtained by trial machining (simple test), and used to correct the tool path (or diameter). Therefore, the man-hours and materials necessary for the conventional method in which the correction data needs to be acquired under the same conditions as the actual machining become unnecessary.
 また、試加工が困難な大サイズの製品を製作する場合にも、砥石の磨耗を考慮して補正した経路を実サイズの試験片の研削加工をせずに得られるので、加工開始準備時間を大幅に短縮できる。 In addition, even when manufacturing large-size products that are difficult to test, a path corrected in consideration of wear of the grinding wheel can be obtained without grinding the actual size test piece, so the preparation time for starting the process can be reduced. Can be greatly shortened.
 さらに、砥石磨耗補正(工具経路補正)の機能を自動的に実現している。よって、先行技術例のように、研削加工中に加工装置の動作を一旦停止させて、砥石を成形する作業、あるいは、砥石や被削材の寸法を測定して砥石磨耗量を把握して加工データを補正する作業、等の必要が無く、人の手間が減少し、加工能率の低下を招かない。 Furthermore, the function of grinding wheel wear compensation (tool path compensation) is automatically realized. Therefore, as in the prior art example, the operation of the processing device is temporarily stopped during grinding, and the grinding wheel is formed, or the grinding wheel wear amount is measured by measuring the dimensions of the grinding wheel and work material. There is no need for data correction work, etc., reducing labor and reducing the processing efficiency.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 本発明は、CAMやNC、研削を行う加工装置などのシステムに利用可能である。 The present invention can be used for a system such as a CAM, NC, or a processing apparatus for grinding.

Claims (11)

  1.  被削材に対して研削加工する工具を備える加工装置の動作を制御するための前記工具の経路を含むNCデータを生成する情報処理を行う工具経路算出装置であって、
     研削中に工具に生じる磨耗を考慮した経路を算出する処理部を有し、
     前記処理部は、
     被削材と工具との組合せについて、
     (1)第1の形状及びサイズを持つ被削材に対する第1の条件による第1の研削加工を行った結果のデータに基づき、当該第1の研削加工の研削諸元値と工具磨耗量との関係情報を含むデータをデータベースに格納する処理と、
     (2)第2の形状及びサイズを持つ被削材に対する第2の条件による第2の研削加工を行うためのNCデータを生成する際に、当該第2の研削加工の研削諸元値と、前記データベースの関係情報とをもとに、当該第2の研削加工の工具磨耗量を算出する処理と、
     (3)上記第2の研削加工の工具の磨耗を考慮しない経路に対し、上記算出した第2の研削加工の工具磨耗量を反映して、当該工具磨耗量による加工誤差をキャンセルするように補正した当該工具の経路または径を算出し、当該補正後の経路または径を含む加工データに応じたNCデータを生成する処理と、を行うこと、を特徴とする工具経路算出装置。
    A tool path calculation device for performing information processing for generating NC data including a path of the tool for controlling an operation of a processing apparatus including a tool for grinding a work material,
    It has a processing unit that calculates a path that takes into account wear that occurs in the tool during grinding,
    The processor is
    About the combination of work material and tool,
    (1) Based on the data of the result of performing the first grinding process under the first condition on the work material having the first shape and size, the grinding specification value and the tool wear amount of the first grinding process, Processing to store the data including the related information in the database,
    (2) When generating NC data for performing the second grinding process under the second condition for the work material having the second shape and size, grinding specification values of the second grinding process, Based on the relation information of the database, a process of calculating the amount of tool wear of the second grinding process,
    (3) For the path not considering the wear of the tool of the second grinding process, the calculated tool wear amount of the second grinding process is reflected to correct the machining error due to the tool wear amount. A tool path calculation device that calculates a path or a diameter of the tool and generates NC data according to machining data including the corrected path or diameter.
  2.  請求項1記載の工具経路算出装置において、
     前記工具磨耗量は、円筒形状の工具の体積の減少量とし、
     前記関係情報は、前記研削諸元値と上記工具体積減少量との関係を示す情報であり、
     前記処理部は、前記第2の研削加工の際、研削距離に応じた工具体積減少量を算出し、当該工具体積減少量から工具半径減少量へ換算し、当該工具半径減少量に応じて前記工具経路または径を補正すること、を特徴とする工具経路算出装置。
    In the tool path calculation device according to claim 1,
    The amount of tool wear is the amount by which the volume of the cylindrical tool is reduced,
    The relationship information is information indicating a relationship between the grinding specification value and the tool volume reduction amount,
    In the second grinding process, the processing unit calculates a tool volume reduction amount according to a grinding distance, converts the tool volume reduction amount to a tool radius reduction amount, and converts the tool volume reduction amount according to the tool radius reduction amount. A tool path calculating device, wherein a tool path or a diameter is corrected.
  3.  請求項1記載の工具経路算出装置において、
     前記工具磨耗量は、円筒形状の工具の半径の減少量とし、
     前記関係情報は、前記研削諸元値と上記工具半径減少量との関係を示す情報であり、
     前記処理部は、前記第2の研削加工の際、研削距離に応じた工具半径減少量を算出し、当該工具半径減少量に対して、前記第1の研削加工の工具と第1の被削剤との接触弧長さと前記第2の研削加工の工具と第2の被削剤との接触弧長さとの比率を掛算することにより、補正した工具半径減少量を得て、当該補正した工具半径減少量に応じて前記工具経路または径を補正すること、を特徴とする工具経路算出装置。
    In the tool path calculation device according to claim 1,
    The amount of tool wear is the amount by which the radius of the cylindrical tool is reduced,
    The relationship information is information indicating a relationship between the grinding specification value and the tool radius reduction amount,
    In the second grinding process, the processing unit calculates a tool radius reduction amount according to a grinding distance, and the first grinding tool and the first work are calculated with respect to the tool radius reduction amount. The corrected tool radius reduction amount is obtained by multiplying the ratio of the contact arc length with the agent and the contact arc length between the second grinding tool and the second work material, and the corrected tool A tool path calculation device, wherein the tool path or the diameter is corrected according to a radius reduction amount.
  4.  請求項1記載の工具経路算出装置において、
     前記第1の研削加工は、研削諸元値の異なる2回以上の簡易な試験とし、前記第1の被削材は平板の形状であり、当該平板に対する直線溝加工を行うこと、を特徴とする工具経路算出装置。
    In the tool path calculation device according to claim 1,
    The first grinding process is a simple test of two or more times with different grinding specification values, the first work material has a flat plate shape, and linear groove processing is performed on the flat plate. A tool path calculation device.
  5.  請求項1記載の工具経路算出装置において、
     前記第2の研削加工は、前記第2の被削材は円弧外側の曲面を持つ形状であり、当該曲面に対する円弧状の経路での加工を行うこと、を特徴とする工具経路算出装置。
    In the tool path calculation device according to claim 1,
    In the second grinding process, the second work material has a shape having a curved surface on the outer side of an arc, and performs machining in an arc-shaped path with respect to the curved surface.
  6.  請求項1記載の工具経路算出装置において、
     前記第2の研削加工は、前記第2の被削材は円弧内側の曲面を持つ形状であり、当該曲面に対する円弧状の経路での加工を行うこと、を特徴とする工具経路算出装置。
    In the tool path calculation device according to claim 1,
    In the second grinding process, the second work material has a shape having a curved surface on the inner side of an arc, and machining is performed in an arc-shaped path with respect to the curved surface.
  7.  請求項1記載の工具経路算出装置において、
     前記データベースに格納される関係情報は、前記研削諸元値と工具磨耗量との関係を関数または対応表の形式で表すデータであること、を特徴とする工具経路算出装置。
    In the tool path calculation device according to claim 1,
    The relation information stored in the database is data representing a relation between the grinding specification value and the tool wear amount in the form of a function or a correspondence table.
  8.  請求項1記載の工具経路算出装置において、
     前記処理部は、前記工具磨耗量による加工誤差をキャンセルするように補正した当該工具の経路または径を算出する際、前記工具の磨耗を考慮しない経路における第1の点から第2の点への加工距離において、前記工具磨耗量に対応した工具半径減少量を、時点毎に比例的に配分してなめらかな経路となるように補正すること、を特徴とする工具経路算出装置。
    In the tool path calculation device according to claim 1,
    When calculating the path or diameter of the tool corrected so as to cancel the machining error due to the amount of tool wear, the processing unit changes from the first point to the second point in the path not considering the wear of the tool. A tool path calculation device, wherein a tool radius reduction amount corresponding to the tool wear amount is proportionally distributed for each time point to correct a smooth path at a machining distance.
  9.  被削材に対して研削加工する工具を備える加工装置の動作を制御するための前記工具の経路を含むNCデータを生成する情報処理をコンピュータを用いて行う工具経路算出方法であって、
     研削中に工具に生じる磨耗を考慮した経路を算出する機能を実現する処理において、
     被削材と工具との組合せについて、
     (1)第1の形状及びサイズを持つ被削材に対する第1の条件による第1の研削加工を行った結果のデータに基づき、当該第1の研削加工の研削諸元値と工具磨耗量との関係情報を含むデータをデータベースに格納する第1の処理ステップと、
     (2)第2の形状及びサイズを持つ被削材に対する第2の条件による第2の研削加工を行うためのNCデータを生成する際に、当該第2の研削加工の研削諸元値と、前記データベースの関係情報とをもとに、当該第2の研削加工の工具磨耗量を算出する第2の処理ステップと、
     (3)上記第2の研削加工の工具の磨耗を考慮しない経路に対し、上記算出した第2の研削加工の工具磨耗量を反映して、当該工具磨耗量による加工誤差をキャンセルするように補正した当該工具の経路または径を算出し、当該補正後の経路または径を含む加工データに応じたNCデータを生成する第3の処理ステップと、を有すること、を特徴とする工具経路算出方法。
    A tool path calculation method that uses a computer to perform information processing for generating NC data including a path of the tool for controlling the operation of a processing apparatus including a tool for grinding a workpiece.
    In the process to realize the function to calculate the path considering the wear that occurs in the tool during grinding,
    About the combination of work material and tool,
    (1) Based on the data of the result of performing the first grinding process under the first condition on the work material having the first shape and size, the grinding specification value and the tool wear amount of the first grinding process, A first processing step of storing data including the relationship information in a database;
    (2) When generating NC data for performing the second grinding process under the second condition for the work material having the second shape and size, grinding specification values of the second grinding process, A second processing step of calculating a tool wear amount of the second grinding process based on the relation information of the database;
    (3) For the path not considering the wear of the tool of the second grinding process, the calculated tool wear amount of the second grinding process is reflected to correct the machining error due to the tool wear amount. And a third processing step of generating NC data corresponding to the machining data including the corrected path or diameter, and calculating a path or diameter of the tool.
  10.  請求項9記載の工具経路算出方法において、
     前記研削中に工具に生じる磨耗を考慮した経路を算出する機能を実現する処理において、
     前記研削加工に係わる設計データを入力する処理ステップと、
     前記研削加工に係わる条件を選定する処理ステップと、
     前記第1の研削加工を行う前記第1の処理ステップと、
     前記第2の研削加工を行うための前記第2の処理ステップと、
     前記第2の研削加工を行うための前記第3の処理ステップと、
     前記第3の処理ステップで生成したNCデータを設定し、前記第2の研削加工を行うために前記加工装置へ出力する処理ステップと、
     を有すること、を特徴とする工具経路算出方法。
    In the tool path calculation method according to claim 9,
    In the process of realizing the function of calculating the path in consideration of wear generated in the tool during the grinding,
    A processing step of inputting design data relating to the grinding process;
    A processing step of selecting conditions relating to the grinding process;
    The first processing step of performing the first grinding process;
    The second processing step for performing the second grinding process;
    The third processing step for performing the second grinding process;
    A processing step of setting the NC data generated in the third processing step and outputting the NC data to the processing apparatus in order to perform the second grinding process;
    A tool path calculation method characterized by comprising:
  11.  被削材に対して研削加工する工具を備える加工装置であって、
     当該加工装置の動作を制御するための前記工具の経路を含むNCデータを生成する情報処理を行う処理部を備え、
     前記処理部は、研削中に工具に生じる磨耗を考慮した経路を算出する機能を有し、
     前記処理部は、被削材と工具との組合せについて、
     (1)第1の形状及びサイズを持つ被削材に対する第1の条件による第1の研削加工を行った結果のデータに基づき、当該第1の研削加工の研削諸元値と工具磨耗量との関係情報を含むデータをデータベースに格納する処理と、
     (2)第2の形状及びサイズを持つ被削材に対する第2の条件による第2の研削加工を行うためのNCデータを生成する際に、当該第2の研削加工の研削諸元値と、前記データベースの関係情報とをもとに、当該第2の研削加工の工具磨耗量を算出する処理と、
     (3)上記第2の研削加工の工具の磨耗を考慮しない経路に対し、上記算出した第2の研削加工の工具磨耗量を反映して、当該工具磨耗量による加工誤差をキャンセルするように補正した当該工具の経路または径を算出し、当該補正後の経路または径を含む加工データに応じたNCデータを生成する処理と、を行うこと、を特徴とする加工装置。
    A processing apparatus comprising a tool for grinding a work material,
    A processing unit that performs information processing for generating NC data including a path of the tool for controlling the operation of the machining apparatus;
    The processing unit has a function of calculating a path in consideration of wear generated in the tool during grinding,
    The processing unit is a combination of a work material and a tool,
    (1) Based on the data of the result of performing the first grinding process under the first condition on the work material having the first shape and size, the grinding specification value and the tool wear amount of the first grinding process, Processing to store the data including the related information in the database,
    (2) When generating NC data for performing the second grinding process under the second condition for the work material having the second shape and size, grinding specification values of the second grinding process, Based on the relation information of the database, a process of calculating the amount of tool wear of the second grinding process,
    (3) For the path not considering the wear of the tool of the second grinding process, the calculated tool wear amount of the second grinding process is reflected to correct the machining error due to the tool wear amount. And a process of generating NC data corresponding to the machining data including the corrected path or diameter of the tool and calculating the path or diameter of the tool.
PCT/JP2012/061551 2011-09-26 2012-05-01 Tool path-calculating device, tool path-calculating method, and processing equipment WO2013046785A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-209891 2011-09-26
JP2011209891A JP2013071187A (en) 2011-09-26 2011-09-26 Tool path-calculating device, tool path-calculating method, and processing device

Publications (1)

Publication Number Publication Date
WO2013046785A1 true WO2013046785A1 (en) 2013-04-04

Family

ID=47994852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061551 WO2013046785A1 (en) 2011-09-26 2012-05-01 Tool path-calculating device, tool path-calculating method, and processing equipment

Country Status (2)

Country Link
JP (1) JP2013071187A (en)
WO (1) WO2013046785A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI710425B (en) * 2019-12-10 2020-11-21 財團法人工業技術研究院 Method for capturing tool path and device thereof
EP4275841A1 (en) * 2022-05-11 2023-11-15 Essilor International Method for manufacturing an ophthalmic device comprising machining

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3660610A4 (en) * 2017-07-28 2021-04-21 Domans, Inc. System, method, and program for manufacturing computer-designed part members of furniture using machining equipment
PL234116B1 (en) * 2017-12-21 2020-01-31 Politechnika Rzeszowska Im Ignacego Lukasiewicza Method for elimination of the air area grinding on products that show the shape errors
DE102020203375A1 (en) * 2020-03-17 2021-09-23 Avantec Zerspantechnik Gmbh Method for determining the state of wear of a tool and device therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138497A (en) * 1991-11-14 1993-06-01 Fanuc Ltd Correction of wear of tool
JP2003150216A (en) * 2001-11-15 2003-05-23 Ikegai Corp Curved surface machining system and method for work
JP2009526296A (en) * 2006-02-10 2009-07-16 シーメンス アクチエンゲゼルシヤフト A system for calculating the wear state of machine tools

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138497A (en) * 1991-11-14 1993-06-01 Fanuc Ltd Correction of wear of tool
JP2003150216A (en) * 2001-11-15 2003-05-23 Ikegai Corp Curved surface machining system and method for work
JP2009526296A (en) * 2006-02-10 2009-07-16 シーメンス アクチエンゲゼルシヤフト A system for calculating the wear state of machine tools

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI710425B (en) * 2019-12-10 2020-11-21 財團法人工業技術研究院 Method for capturing tool path and device thereof
CN112947291A (en) * 2019-12-10 2021-06-11 财团法人工业技术研究院 Tool path acquisition method and device
US11511380B2 (en) 2019-12-10 2022-11-29 Industrial Technology Research Institute Method for capturing tool path and device thereof
CN112947291B (en) * 2019-12-10 2024-01-23 财团法人工业技术研究院 Tool path capturing method and device
EP4275841A1 (en) * 2022-05-11 2023-11-15 Essilor International Method for manufacturing an ophthalmic device comprising machining
WO2023217805A1 (en) * 2022-05-11 2023-11-16 Essilor International Method for manufacturing an ophthalmic device comprising machining

Also Published As

Publication number Publication date
JP2013071187A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP6659723B2 (en) Method and apparatus for machining a tool by removing material
JP5680636B2 (en) Method for manufacturing forged parts by adaptive polishing
JP5511263B2 (en) Internal gear machining method and internal gear machining machine
WO2013046785A1 (en) Tool path-calculating device, tool path-calculating method, and processing equipment
JP5308362B2 (en) Tooth profile management system for shaving cutter tooth profile grinder
JP5401757B2 (en) Processing equipment
JP2022547408A (en) Automatic process control in gear processing equipment
JP5272569B2 (en) Chatter simulation apparatus and chatter simulation method
JP2007000945A (en) Grinding method and device
JP2007175815A (en) Correction method and correction device for grinding wheel
JP7225626B2 (en) Learning model generation device, estimation device and operation command data update device for grinding
US10293453B2 (en) Method of grinding a workpiece and method for determining processing parameters
JP5708324B2 (en) Grinding machine and grinding method
JP7380107B2 (en) quality prediction system
JP2020069599A (en) Support device of machine tool and machine tool system
JP4261493B2 (en) Dressing device, grinding device, dressing method, and numerical control program
JP2003340684A (en) Method and device for determining cut capability from saw teeth abrasion
JP7451949B2 (en) Machining quality prediction system
JP5061558B2 (en) Numerical control device program description method, numerical control device, and machining device
JP2012168742A (en) Machining center provided with grindstone wear correction function
JP7172636B2 (en) Machine tool maintenance support device and machine tool system
JP4957153B2 (en) Processing equipment
JP2017177262A (en) Shaving cutter grinder
JP2021074841A (en) Processing quality prediction system
JP2007272706A (en) Tool path determination method and working method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836304

Country of ref document: EP

Kind code of ref document: A1