JP5433276B2 - Method for producing lithium composite compound - Google Patents

Method for producing lithium composite compound Download PDF

Info

Publication number
JP5433276B2
JP5433276B2 JP2009082317A JP2009082317A JP5433276B2 JP 5433276 B2 JP5433276 B2 JP 5433276B2 JP 2009082317 A JP2009082317 A JP 2009082317A JP 2009082317 A JP2009082317 A JP 2009082317A JP 5433276 B2 JP5433276 B2 JP 5433276B2
Authority
JP
Japan
Prior art keywords
lithium composite
composite compound
coating layer
primary particles
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009082317A
Other languages
Japanese (ja)
Other versions
JP2010238389A (en
Inventor
哲司 鬼頭
正典 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2009082317A priority Critical patent/JP5433276B2/en
Publication of JP2010238389A publication Critical patent/JP2010238389A/en
Application granted granted Critical
Publication of JP5433276B2 publication Critical patent/JP5433276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

この発明は、非水電解液二次電池の電極材料として用いられるリチウム複合化合物の製造方法、及びその方法によって製造されたリチウム複合化合物、並びにそのリチウム複合化合物を電極に用いた非水電解液二次電池に関する。   The present invention relates to a method for producing a lithium composite compound used as an electrode material for a non-aqueous electrolyte secondary battery, a lithium composite compound produced by the method, and a non-aqueous electrolyte 2 using the lithium composite compound as an electrode. Next battery.

ノートブック型パーソナルコンピュータ(ノートPC)や電動工具などの電源として、非水電解液二次電池が多用されている。図1は、一般的に「リチウムイオン二次電池」と呼称されている非水電解液二次電池の蓄電素子の外観を示す透視図であり、図2は図1中のa−a線矢視断面図である。これらの図に示すように、蓄電素子1は、「ラミネート型」であり、シート状の集電体12上に、リチウムイオンを可逆的に吸蔵・放出可能な正極用電極材11が塗布されたシート状の正極10と、同じくシート状の集電体22上にリチウムイオンの吸蔵・放出が可能な負極用電極材21が塗布されたシート状の負極20とを備えている。正極10と負極20とは、セパレータ50を介して対向配置され、それによって1単位の発電要素60aが形成されている。そして、少なくとも1単位以上の発電要素60aがさらに積層されて電極積層体60が形成される。   Non-aqueous electrolyte secondary batteries are frequently used as power sources for notebook personal computers (notebook PCs) and power tools. FIG. 1 is a perspective view showing an external appearance of a storage element of a non-aqueous electrolyte secondary battery generally called “lithium ion secondary battery”, and FIG. 2 is an aa line arrow in FIG. FIG. As shown in these drawings, the electricity storage element 1 is a “laminate type”, and a positive electrode material 11 capable of reversibly occluding and releasing lithium ions is applied on a sheet-like current collector 12. A sheet-like positive electrode 10 and a sheet-like negative electrode 20 in which a negative electrode material 21 capable of inserting and extracting lithium ions is applied on a sheet-like current collector 22 are also provided. The positive electrode 10 and the negative electrode 20 are disposed to face each other with a separator 50 therebetween, thereby forming one unit of power generation element 60a. And the electrode laminated body 60 is formed by further laminating at least one unit of power generation elements 60a.

正極10と負極20の個々の集電体(12,22)には、電力を入出力するためのタブ40が取り付けられている。タブ40は、正極10同士、及び負極20同士でそれぞれ、積層された状態で超音波溶接などによって接続されている。そして、電極積層体60を袋状のラミネートフィルムからなる外装体30内に収納しつつ、タブ40をその外装体30の袋の外部に導出するとともに、外装体30の中にリチウム塩を含む電解液を充填してラミネートフィルムを密封封止することで、ラミネート型の非水電解液二次電池の蓄電素子1が完成する。   Tabs 40 for inputting / outputting electric power are attached to the individual current collectors (12, 22) of the positive electrode 10 and the negative electrode 20. The tabs 40 are connected by ultrasonic welding or the like in a stacked state between the positive electrodes 10 and the negative electrodes 20. And while accommodating the electrode laminated body 60 in the exterior body 30 which consists of a bag-like laminate film, while deriving the tab 40 to the exterior of the bag of the exterior body 30, the electrolysis which contains lithium salt in the exterior body 30 The storage element 1 of the laminate type non-aqueous electrolyte secondary battery is completed by filling the liquid and sealingly sealing the laminate film.

なお、上記1単位の発電要素60aを円筒、もしくは角筒状に巻回し、その筒状の発電要素を筒状の電池缶に挿入した構造を有する非水電解液二次電池もある。本発明は、これらのような非水電解液二次電池の電極材料として用いられるリチウム複合化合物を対象としている。   There is also a non-aqueous electrolyte secondary battery having a structure in which the one unit of power generation element 60a is wound in a cylindrical or rectangular tube shape and the cylindrical power generation element is inserted into a cylindrical battery can. The present invention is directed to a lithium composite compound used as an electrode material for such non-aqueous electrolyte secondary batteries.

非水電解液二次電池の蓄電素子をなす主要構成要素であるシート状電極は、正極を例に挙げると、次の手順で製造される。まず、正極活物質となる遷移金属とリチウムの複合化合物(例えば、コバルト酸リチウムやリン酸鉄リチウム等)を粉末状にしたのち、その粉末状活物質とカーボンブラックなどの導電材との混合物にバインダを加えて攪拌し、スラリー状の正極用電極材を生成する。つぎに、そのスラリー状の電極材を金属箔などのシート状集電体状に塗工する。そして、塗工した電極材を乾燥させた後、圧延してシート状電極を完成させる。   The sheet-like electrode, which is a main component constituting the storage element of the nonaqueous electrolyte secondary battery, is manufactured by the following procedure, taking the positive electrode as an example. First, a composite compound of a transition metal and lithium (for example, lithium cobaltate or lithium iron phosphate) that becomes a positive electrode active material is powdered, and then the mixture of the powdery active material and a conductive material such as carbon black is mixed. A binder is added and stirred to produce a slurry-like electrode material for a positive electrode. Next, the slurry-like electrode material is applied to a sheet-like current collector such as a metal foil. And after drying the applied electrode material, it rolls and completes a sheet-like electrode.

ここで、近年にあっては、非水電解液二次電池は、上述したノートPCやパーソナルコンピュータや電動工具などの電源だけではなく、ハイブリッド自動車(HEV)や電気自動車(EV)などの電源、あるいは定置用大型電源などの高出力型の電源としても期待されている。そして、このような高出力化への要求に応えるための技術として、電極用の活物質の粒径を1μm以下の「ナノ粒子」に微粒子化して活物質の総表面積を増加させるとともに、その微粒子化した活物質の表面に導電物質の被膜層を形成して導電性を確保するという手法が開発されている。   Here, in recent years, non-aqueous electrolyte secondary batteries are not limited to the above-mentioned power sources such as notebook PCs, personal computers, and electric tools, but also power sources such as hybrid vehicles (HEV) and electric vehicles (EV), Alternatively, it is also expected as a high-output power source such as a large stationary power source. As a technique for meeting such demands for higher output, the active material for electrodes is made into “nanoparticles” with a particle size of 1 μm or less to increase the total surface area of the active material, and the fine particles A method has been developed in which a conductive material coating layer is formed on the surface of the activated active material to ensure conductivity.

即ち、当該手法は、一次粒子の粒径が数十〜100nm程である活物質の表面に、炭素等の導電物質からなる導電性の被覆層を形成するものであり、一次粒子の電子伝導度の向上と、粒子間の接触抵抗の低減化とを図り得、もってリチウム二次電池の高出力化に寄与し得るとされている。   That is, in this method, a conductive coating layer made of a conductive material such as carbon is formed on the surface of an active material having a primary particle size of about several tens to 100 nm. It is said that the improvement of the resistance and the reduction of the contact resistance between the particles can be achieved, thereby contributing to the high output of the lithium secondary battery.

しかしながら、上記の一次粒子表面を炭素等の導電物質で被覆した活物質を電極材料として用いてリチウム二次電池を作製してみても、理論容量に相当する容量は得られず、その結果エネルギー密度も低く、しかも充放電サイクル特性についても芳しくなく、更なる改善が望まれていた。   However, even when a lithium secondary battery is fabricated using an active material in which the surface of the primary particles is coated with a conductive material such as carbon as an electrode material, a capacity equivalent to the theoretical capacity cannot be obtained. In addition, the charge / discharge cycle characteristics were not satisfactory, and further improvement was desired.

そこで、本発明者等は種々の実験を行って鋭意研究を進め、考察を重ねたところ、一次粒子の表面を炭素等の導電物質で被覆すると、導電性の可及的な改善が図れて電極の抵抗を下げ得るものの、逆に当該導電物質の被覆層がリチウムイオンの活物質内への出入りを阻む障壁となってしまい、これに起因してリチウム二次電池の高エネルギー密度化と高出力密度化と並びに充放電サイクル特性の向上が阻害されてしまうという知見を得るに至った。   Therefore, the present inventors conducted various experiments and conducted intensive research and repeated studies. As a result, when the surface of the primary particles was coated with a conductive material such as carbon, the conductivity could be improved as much as possible. In contrast, the conductive material coating layer becomes a barrier that prevents lithium ions from entering and exiting the active material, resulting in higher energy density and higher output of the lithium secondary battery. It came to the knowledge that density improvement and the improvement of a charge / discharge cycle characteristic would be inhibited.

本発明は上記の様な知見に基づいて創案されたものであり、その目的は、非水電解液二次電池の電極材料として用いて、その高出力化を図り得るリチウム複合化合物の製造方法、及び当該製造方法によって製造されるリチウム複合化合物、並びに当該リチウム化合物を電極材料として用いたリチウム二次電池を提供することにある。   The present invention was devised based on the above knowledge, and its purpose is to use as an electrode material of a non-aqueous electrolyte secondary battery, and a method for producing a lithium composite compound capable of increasing its output, And a lithium composite compound produced by the production method, and a lithium secondary battery using the lithium compound as an electrode material.

上記目的を達成するために本発明は、非水電解液二次電池の電極材料として用いられるリチウム複合化合物の製造方法であって、
該リチウム複合化合物の一次粒子の粒径が1μm以下であり
該一次粒子の表面に導電物質の被覆層を形成する工程と、
該工程を経た前記一次粒子の粉体を処理することで、該一次粒子の表面に形成されている前記被膜層に欠損部を形成する工程と、
を有し、
該欠損部の形成工程では、導電物質の被覆層が形成されたリチウム複合化合物の一次粒子に熱的衝撃処理が施されて前記欠損部が形成される、
ことを特徴とするリチウム複合化合物の製造方法としている。
To achieve the above object, the present invention provides a method for producing a lithium composite compound used as an electrode material for a non-aqueous electrolyte secondary battery,
The particle size of the primary particles of the lithium composite compound is at 1μm or less,
Forming a coating layer of a conductive material on the surface of the primary particles;
A step of forming a defect in the coating layer formed on the surface of the primary particles by treating the powder of the primary particles that has undergone the step;
Have
In the forming step of the defect portion, the defect portion is formed by performing a thermal shock treatment on the primary particles of the lithium composite compound on which the conductive material coating layer is formed.
This is a method for producing a lithium composite compound.

あるいは、前記欠損部の形成工程では、導電物質の被覆層が形成されたリチウム複合化合物の一次粒子に賦活処理が施されて前記欠損部が形成される構成となし得る。   Alternatively, in the step of forming the defect portion, the primary particle of the lithium composite compound on which the conductive material coating layer is formed may be activated to form the defect portion.

または、前記欠損部の形成工程では、導電物質の被覆層が形成されたリチウム複合化合物の一次粒子に超音波処理が施されて前記欠損部が形成される構成となし得る。   Alternatively, the defect forming step may be configured such that the defect is formed by subjecting primary particles of the lithium composite compound on which the conductive material coating layer is formed to ultrasonic treatment.

また、前記リチウム複合化合物は、その結晶構造がオリビン型またはスピネル型のいずれかであることが望ましい。   The lithium composite compound preferably has a crystal structure of either an olivine type or a spinel type.

本発明に係るリチウム複合化合物の製造方法によれば、非水電解液二次電池の電極材料として用いられるリチウム複合化合物の一次粒子に対して、その表面を被覆する導電物質の被覆層に、欠損部を形成することができる。   According to the method for producing a lithium composite compound according to the present invention, the primary particles of the lithium composite compound used as the electrode material of the non-aqueous electrolyte secondary battery are deficient in the coating layer of the conductive material that covers the surface thereof. The part can be formed.

そして、当該一次粒子の被覆層に欠損部が形成されたリチウム複合化合物にあっては、電解液と接触させると、その欠損部から電解液が浸透し易くなり、電解液と活物質との接触性が向上する。これ故、導電物質の被覆層によるリチウムイオンの活物質に対する拡散抵抗が減少し、もって当該リチウム複合化合物を電極材料に用いて蓄電素子を構成すると、充放電時のリチウムイオン拡散が円滑になって、リチウムイオン伝導度が向上し、エネルギー密度の向上、サイクル特性の改善、高出力化が可及的に図れるようになる。   In the lithium composite compound in which the defect part is formed in the coating layer of the primary particles, when the electrode is brought into contact with the electrolytic solution, the electrolyte solution easily penetrates from the defect part, and the contact between the electrolyte and the active material Improves. Therefore, the diffusion resistance to the active material of lithium ions due to the coating layer of the conductive material is reduced, and when the storage element is configured by using the lithium composite compound as an electrode material, lithium ion diffusion during charge / discharge becomes smooth. As a result, the lithium ion conductivity is improved, and the energy density, cycle characteristics, and output can be increased as much as possible.

従来例と本発明とに共通する非水電解液二次電池の蓄電素子構造を示す透視斜視図図である。It is a see-through | perspective perspective view which shows the electrical storage element structure of the nonaqueous electrolyte secondary battery common to a prior art example and this invention. 図1中のa−a線矢視断面図である。It is an aa arrow directional cross-sectional view in FIG.

===非水電解液二次電池の蓄電素子の構造===
本発明の実施例として、本発明の方法によって製造されたリチウム複合化合物を電極材料として用いた非水電解液二次電池の蓄電素子を挙げる。その具体的な実施形態としては、例えば、図1に示した従来の非水電解液二次電池の蓄電素子1と同様の形態を採用することができる。しかし、本実施例では、正極側のシート状電極10に用いるリチウム複合化合物が従来とは異なる方法で製造されており、それによって、非水電解液二次電池の蓄電素子1の高出力化を達成している。以下、本実施例における非水電解液二次電池の蓄電素子1の具体的な構成について説明する。
=== Structure of power storage element of non-aqueous electrolyte secondary battery ===
As an example of the present invention, a storage element of a non-aqueous electrolyte secondary battery using a lithium composite compound produced by the method of the present invention as an electrode material is given. As a specific embodiment thereof, for example, the same form as that of the power storage element 1 of the conventional nonaqueous electrolyte secondary battery shown in FIG. 1 can be adopted. However, in this embodiment, the lithium composite compound used for the sheet electrode 10 on the positive electrode side is manufactured by a method different from the conventional method, thereby increasing the output of the storage element 1 of the nonaqueous electrolyte secondary battery. Have achieved. Hereinafter, the specific structure of the electrical storage element 1 of the nonaqueous electrolyte secondary battery in a present Example is demonstrated.

===正極活物質について===
本実施例では、正極活物質を従来とは異なる方法で製造している。その正極活物質としては、ニッケル酸リチウム(LiNiO)、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)などがよく知られているが、現在では、LiNiOよりも安全で、LiMnよりも容量特性に優れていることから、LiCoOが採用される場合が多い。
=== About Positive Electrode Active Material ===
In this embodiment, the positive electrode active material is manufactured by a method different from the conventional method. As the positive electrode active material, lithium nickelate (LiNiO 2 ), lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ) and the like are well known, but at present, they are safer than LiNiO 2. LiCoO 2 is often employed because it has better capacity characteristics than LiMn 2 O 4 .

しかし、本実施例では、上記の一般的な正極活物質ではなく、リン酸鉄リチウム(LiFePO)を採用している。このLiFePOは、LiCoOのように、高価なコバルトを含まず、安価で安定供給が見込まれる鉄を含んでいる。また、安全性も高い。現在の環境問題や将来の化石燃料の枯渇などを考えると、非水電解液二次電池の蓄電素子を安定して大量生産することが必要不可欠となり、そのためにもこのLiFePOを正極活物質に採用する意義は大きい。 However, in this example, lithium iron phosphate (LiFePO 4 ) is used instead of the above-described general positive electrode active material. This LiFePO 4 does not contain expensive cobalt like LiCoO 2 , but contains iron that is inexpensive and is expected to be stably supplied. In addition, safety is high. Considering current environmental issues and future depletion of fossil fuels, it is indispensable to stably produce mass storage elements for non-aqueous electrolyte secondary batteries. For this reason, LiFePO 4 is used as a positive electrode active material. Employment is significant.

LiFePOは、上述した利点がある一方で、導電率が他の正極活物質よりも低いという欠点がある。そのために、このLiFePOに対する微粒子化への要求は、他の正極活物質よりも大きい。そして、このLiFePOにおいて微粒子化に関わる問題が解決されれば、他の正極活物質にもその解決方法を適用することが可能となる。このような観点からも、本発明の実施例に係る非水電解液二次電池における蓄電素子の正極活物質としてこのLiFePOを選択した。ここで、本発明はLiFePO等のリチウム複合化合物にあって、特に、オリビン型あるいはスピネル型の結晶構造を有したものに対して適用するとより好適である。 While LiFePO 4 has the advantages described above, it has a drawback that its conductivity is lower than that of other positive electrode active materials. Therefore, the demand for fine particles for LiFePO 4 is greater than that for other positive electrode active materials. And if the problem regarding microparticulation is solved in this LiFePO 4 , the solution can be applied to other positive electrode active materials. Also from this point of view, this LiFePO 4 was selected as the positive electrode active material of the storage element in the non-aqueous electrolyte secondary battery according to the example of the present invention. Here, the present invention is more suitable when applied to a lithium composite compound such as LiFePO 4 , and particularly to a compound having an olivine type or spinel type crystal structure.

===正極活物質の製造方法===
まず、シート状の正極を製造するのに先立って、正極活物質自体を製造する。本実施例では、以下のA〜Fの工程手順で正極活物質を製造した。
(A)シュウ酸鉄二水和物(FeC・2HO)、リン酸二水素アンモニウム(NHPO)、および炭酸リチウム(LiCO)を所定のモル比となるように混合する。
(B)2−プロパノールを溶媒としてボールミルで、上記(A)で得た混合物を10時間粉砕しながら混合する。
(C)上記(B)で粉砕混合したものを真空乾燥して上記溶媒を除去して前駆体を得る。
(D)上記前駆体をアルミナ製の香鉢に入れるとともに、0.5L/minでアルゴンを流通させながら環状焼成炉で300℃、5時間の条件で、仮焼成する。
(E)上記(D)によって仮焼成した前駆体を、0.5L/minでアルゴンを流通させながら、650℃、20時間で焼成して、粒径が数十〜100nm程のLiFePOの一次粒子の表面に導電性炭素の被覆層を形成した粉末(以下、正極活物質)を合成する。
(F)上記(E)で合成されたLiFePO粉末の一次粒子の表面を覆っている被覆層に欠損部を形成する。ここで、当該欠損部を形成するに当たっては、その手法の代表的なものとして、熱的衝撃処理、賦活処理、超音波処理、機械的衝撃処理の4種を挙げることができる。以下に、上記LiFePO粉末の一次粒子表面における被覆層に、当該4種類の各手法によって欠損部を形成する具体例を第1〜第4実施形態として示す。
=== Production Method of Positive Electrode Active Material ===
First, prior to manufacturing the sheet-like positive electrode, the positive electrode active material itself is manufactured. In this example, a positive electrode active material was produced by the following process steps A to F.
(A) Iron oxalate dihydrate (FeC 2 O 4 .2H 2 O), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), and lithium carbonate (Li 2 CO 3 ) are in a predetermined molar ratio. Mix like so.
(B) The mixture obtained in the above (A) is mixed while pulverizing for 10 hours with a ball mill using 2-propanol as a solvent.
(C) The material pulverized and mixed in (B) above is vacuum dried to remove the solvent and obtain a precursor.
(D) The precursor is placed in an alumina casserole and calcined in an annular firing furnace at 300 ° C. for 5 hours while flowing argon at 0.5 L / min.
(E) The primary precursor of LiFePO 4 having a particle size of about several tens to 100 nm is calcined at 650 ° C. for 20 hours while circulating argon at 0.5 L / min. A powder (hereinafter, positive electrode active material) in which a conductive carbon coating layer is formed on the surface of the particles is synthesized.
(F) A defective part is formed in the coating layer covering the surface of the primary particles of the LiFePO 4 powder synthesized in (E). Here, in forming the defect portion, representative examples of the technique include four types of thermal shock treatment, activation treatment, ultrasonic treatment, and mechanical shock treatment. Hereinafter, the coating layer in the surface of the primary particles of the LiFePO 4 powder shows a specific example of forming the defect by the methods of the four types as the first to fourth embodiments.

《第1実施形態》
この第1実施形態では、上記欠損部の形成工程において、導電物質の被覆層が形成されたリチウム複合化合物の一次粒子に熱的衝撃処理を施して、導電物質からなる被覆層に欠損部を形成する。即ち、上記(E)で合成されたLiFePO粉末を、所定温度の恒温槽の不活性ガス雰囲気中に入れて、LiFePO粉末の温度が均一に当該所定温度に上昇する迄しばらく放置する。爾後、恒温槽から取り出したLiFePO粉末を液体窒素中に浸漬して急冷する。
するとこの急冷により、LiFePOの一次粒子とその表面の被覆層とに急激な温度差が生じて、これに伴う相対的な体積差により導電性炭素の被覆層にクラックが発生して、当該被覆層の欠損部が形成されることになる。
<< First Embodiment >>
In the first embodiment, in the step of forming the defect, the primary particle of the lithium composite compound on which the conductive material coating layer is formed is subjected to a thermal shock treatment to form the defect in the coating layer made of the conductive material. To do. That is, the LiFePO 4 powder synthesized in the above (E) is placed in an inert gas atmosphere of a constant temperature bath at a predetermined temperature and left for a while until the temperature of the LiFePO 4 powder uniformly rises to the predetermined temperature. Thereafter, the LiFePO 4 powder taken out from the thermostatic bath is immersed in liquid nitrogen and rapidly cooled.
Then, this rapid cooling causes a rapid temperature difference between the primary particles of LiFePO 4 and the coating layer on the surface thereof, and cracks are generated in the coating layer of conductive carbon due to the relative volume difference. Defects in the layer will be formed.

ここで、当該第1実施形態にあっては、上記所定温度は、200℃、400℃、600℃、800℃、1000℃の5種類に設定し、当該各設定温度で個々に熱的衝撃処理を施してLiFePOの一次粒子表面の被覆層にクラックを発生させた5種類の試料を作製した。即ち、200℃から急冷させた試料1と、400℃から急冷させた試料2と、600℃から急冷させた試料3と、800℃から急冷させた試料4と、1000℃から急冷させた試料5の5種類を作製した。 Here, in the first embodiment, the predetermined temperature is set to five types of 200 ° C., 400 ° C., 600 ° C., 800 ° C., and 1000 ° C., and thermal shock treatment is individually performed at each set temperature. Thus, five types of samples in which cracks were generated in the coating layer on the primary particle surface of LiFePO 4 were prepared. That is, Sample 1 quenched from 200 ° C., Sample 2 quenched from 400 ° C., Sample 3 quenched from 600 ° C., Sample 4 quenched from 800 ° C., and Sample 5 quenched from 1000 ° C. 5 types were produced.

《第2実施形態》
この第2実施形態では、上記欠損部の形成工程において、導電物質の被覆層が形成されたリチウム複合化合物の一次粒子に賦活処理を施して、その表面を被覆する導電物質からなる被覆層に欠損部を形成する。即ち、上記(E)で合成されたLiFePO粉末に、賦活触媒の水酸化カリウム(KOH)を添加し、アルコールを溶媒として強制混合する。KOHの添加量は活物質の炭素重量に対して1〜2倍とし、400℃で2時間の脱水工程の後、700℃で0.5〜4時間の賦活処理を行う。
するとこの賦活処理により、LiFePO粉末における一次粒子表面の被覆層が、その活性化された部分においてエッチングされてその被覆層の膜厚が薄くなり、欠損部としての凹部、若しくは空孔が形成されることになる。
<< Second Embodiment >>
In the second embodiment, in the step of forming the defect portion, the primary particles of the lithium composite compound on which the conductive material coating layer is formed are subjected to an activation treatment, and the coating layer made of the conductive material covering the surface is defective. Forming part. That is, potassium hydroxide (KOH) as an activation catalyst is added to the LiFePO 4 powder synthesized in (E), and forced mixing is performed using alcohol as a solvent. The amount of KOH added is 1 to 2 times the carbon weight of the active material, and an activation treatment is performed at 700 ° C. for 0.5 to 4 hours after a dehydration step at 400 ° C. for 2 hours.
Then, by this activation treatment, the coating layer on the surface of the primary particles in the LiFePO 4 powder is etched in the activated portion to reduce the thickness of the coating layer, and a recess or a void as a defective portion is formed. Will be.

ここで、当該第2実施形態においては、上記賦活処理時間を0.5時間、1時間、2時間、3時間、4時間の5種に設定して、5種類の試料を作製した。即ち、0.5時間の賦活処理を施した試料6と、1時間の賦活処理を施した試料7と、2時間の賦活処理を施した試料8と、3時間の賦活処理を施した試料9と、4時間の賦活処理を施した試料10とを作製した。   Here, in the said 2nd Embodiment, the said activation process time was set to five types, 0.5 hours, 1 hour, 2 hours, 3 hours, 4 hours, and 5 types of samples were produced. That is, the sample 6 subjected to the activation treatment for 0.5 hours, the sample 7 subjected to the activation treatment for 1 hour, the sample 8 subjected to the activation treatment for 2 hours, and the sample 9 subjected to the activation treatment for 3 hours. And the sample 10 which performed the activation process for 4 hours was produced.

《第3実施形態》
この第3実施形態では、上記欠損部の形成工程において、導電物質の被覆層が形成されたリチウム複合化合物の一次粒子に超音波処理を施して、導電物質からなる被覆層に欠損部を形成する。即ち、上記(E)で合成されたLiFePO粉末をアルゴンガスで脱気した2−プロパノール溶媒の中に入れ、アルゴンガス雰囲気下で所定時間、超音波(周波数100kHz)処理を施す。
するとその超音波の高周波振動により、物理的にその被覆層の導電性炭素の一部にクラックまたは剥離が生じて、被覆層に欠損部が形成されることになる。なお、この超音波処理後には、真空乾燥機によってLiFePO粉末中の溶媒を除去する。
<< Third Embodiment >>
In the third embodiment, in the defect forming step, the primary particles of the lithium composite compound on which the conductive material coating layer is formed are subjected to ultrasonic treatment to form the defect in the coating layer made of the conductive material. . That is, the LiFePO 4 powder synthesized in (E) above is placed in a 2-propanol solvent degassed with argon gas, and subjected to ultrasonic treatment (frequency 100 kHz) for a predetermined time in an argon gas atmosphere.
Then, due to the high-frequency vibration of the ultrasonic wave, a crack or peeling occurs physically in a part of the conductive carbon of the coating layer, and a defect portion is formed in the coating layer. Note that after this ultrasonic treatment, the solvent in the LiFePO 4 powder is removed by a vacuum dryer.

ここで、当該第3実施形態においては、超音波処理時間を6時間、12時間、24時間、36時間、48時間に設定して5種の試料を作製した。即ち、6時間の超音波処理を施した試料11と、12時間の超音波処理を施した試料12と、24時間の超音波処理を施した試料13と、36時間の超音波処理を施した試料14と、48時間の超音波処理を施した試料15とを作製した。   Here, in the third embodiment, five types of samples were prepared by setting the ultrasonic treatment time to 6 hours, 12 hours, 24 hours, 36 hours, and 48 hours. That is, the sample 11 subjected to the ultrasonic treatment for 6 hours, the sample 12 subjected to the ultrasonic treatment for 12 hours, the sample 13 subjected to the ultrasonic treatment for 24 hours, and the ultrasonic treatment for 36 hours were applied. Sample 14 and Sample 15 that had been subjected to ultrasonic treatment for 48 hours were prepared.

《第4実施形態》
この第4実施形態では、上記欠損部の形成工程において、導電物質の被覆層が形成されたリチウム複合化合物の一次粒子に機械的衝撃処理を施して、導電物質からなる被覆層に欠損部を形成する。即ち、上記(E)で合成されたLiFePO粉末を、窒素雰囲気下で乾式ジェットミルを用いて所定時間に亘って強制撹拌混合させる。
すると、LiFePO粉末の一次粒子に機械的衝撃が加わって粒子表面が研磨され、その表面の導電性炭素の被覆層の一部に、クラックまたは剥離が物理的に生じることになる。
<< 4th Embodiment >>
In the fourth embodiment, in the step of forming the defect portion, the primary particles of the lithium composite compound on which the conductive material coating layer is formed are subjected to mechanical impact treatment, and the defect portion is formed in the coating layer made of the conductive material. To do. That is, the LiFePO 4 powder synthesized in (E) is forcibly stirred and mixed for a predetermined time using a dry jet mill in a nitrogen atmosphere.
Then, mechanical impact is applied to the primary particles of the LiFePO 4 powder to polish the particle surface, and cracks or peeling are physically generated in a part of the conductive carbon coating layer on the surface.

ここで、当該第4実施形態においては、機械的衝撃処理時間を6時間、12時間、18時間、24時間、30時間に設定して5種の試料を作製した。即ち、6時間の機械的衝撃処理を施した試料16と、12時間の機械的衝撃処理を施した試料17と、18時間の機械的衝撃処理を施した試料18と、24時間の機械的衝撃処理を施した試料19と、30時間の機械的衝撃処理を施した試料20とを作製した。   Here, in the fourth embodiment, five types of samples were prepared by setting the mechanical impact treatment time to 6 hours, 12 hours, 18 hours, 24 hours, and 30 hours. That is, the sample 16 subjected to the mechanical impact treatment for 6 hours, the sample 17 subjected to the mechanical impact treatment for 12 hours, the sample 18 subjected to the mechanical impact treatment for 18 hours, and the mechanical impact for 24 hours. Sample 19 subjected to the treatment and Sample 20 subjected to the mechanical impact treatment for 30 hours were produced.

===正極の製造方法===
本実施例におけるシート状正極は、上記正極活物質と、導電材となるアセチレンブラックと、バインダ(結着剤)であるポリフッ化ビニリデンとを、それらの重量比が90:5:5となるように調整混合して、これに更にNメチルピロリドンを加えて正極スラリーとなしたものを、シート状集電体に塗布してなるものである。
即ち、上記のように調製混合したスラリー状の正極材料は、正極のシート状集電体であるアルミニウム箔12上に塗布されて乾燥される。そして、塗布面を圧延ローラーによって圧延し、さらに、集電体12にタブ40を取り付けるとシート状正極10が完成する。
=== Production Method of Positive Electrode ===
In the sheet-like positive electrode in this example, the positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride as a binder (binder) are in a weight ratio of 90: 5: 5. The mixture is adjusted and mixed, and N-methylpyrrolidone is further added to form a positive electrode slurry, which is applied to a sheet-like current collector.
That is, the slurry-like positive electrode material prepared and mixed as described above is applied onto the aluminum foil 12 which is a positive electrode sheet-like current collector and dried. Then, when the coated surface is rolled by a rolling roller and the tab 40 is attached to the current collector 12, the sheet-like positive electrode 10 is completed.

ここで、シート状正極としては、上述した試料1〜20のLiFePO粉末(正極活物質)をそれぞれ個々に単独で用いて20種類を作製した。即ち、これらのシート状正極は、熱的衝撃処理によって被覆層に欠損部を形成した第1実施形態の試料1〜5を正極活物質とする第1実施形態グループの5種類の正極、賦活処理によって被覆層に欠損部を形成した第2実施形態の試料6〜10を正極活物質とする第2実施形態グループの5種類の正極、超音波処理によって被覆層に欠損部を形成した第3実施形態の試料11〜15を正極活物質とする第3実施形態グループの5種類の正極、機械的衝撃処理によって被覆層に欠損部を形成した第4実施形態の試料16〜20を正極活物質とする第4実施形態グループの5種類の正極とに分類される。 Here, 20 types of LiFePO 4 powders (positive electrode active materials) of Samples 1 to 20 described above were individually used individually as the sheet-like positive electrode. That is, these sheet-like positive electrodes are the five types of positive electrodes in the first embodiment group using the samples 1 to 5 of the first embodiment in which the defect portion is formed in the coating layer by thermal shock treatment, and the activation treatment. Five types of positive electrodes of the second embodiment group using the samples 6 to 10 of the second embodiment in which the defect portion is formed in the coating layer by the positive electrode active material, and the third embodiment in which the defect portion is formed in the coating layer by ultrasonic treatment Five types of positive electrodes of the third embodiment group using samples 11 to 15 of the form as the positive electrode active material, and samples 16 to 20 of the fourth embodiment in which the defect portion is formed in the coating layer by mechanical impact treatment are used as the positive electrode active material The fourth embodiment group is classified into five types of positive electrodes.

===負極の製造方法===
本実施例の非水電解液蓄電素子の負極は、従来の非水電解液蓄電素子と同様にして作製されたものである。具体的には、負極活物質である黒鉛とバインダ(ポリフッ化ビニリデン)との混合物に溶剤(Nメチルピロリドン)を加えてスラリー状の負極材料とした。なお、黒鉛とバインダと溶剤の重量比は、95:3:2とした。
このようにして調製したスラリー状の負極材料は、負極のシート状集電体である銅箔22上に塗布されて乾燥される。そして、塗布面を圧延ローラーを用いて圧延し、さらに、集電タブ40を取り付けるとシート状負極20が完成する。
=== Method for Producing Negative Electrode ===
The negative electrode of the nonaqueous electrolyte storage element of this example is manufactured in the same manner as the conventional nonaqueous electrolyte storage element. Specifically, a solvent (N-methylpyrrolidone) was added to a mixture of graphite and a binder (polyvinylidene fluoride) as a negative electrode active material to obtain a slurry-like negative electrode material. The weight ratio of graphite, binder and solvent was 95: 3: 2.
The slurry-like negative electrode material thus prepared is applied onto the copper foil 22 which is a negative electrode sheet-like current collector and dried. Then, when the coated surface is rolled using a rolling roller and the current collecting tab 40 is attached, the sheet-like negative electrode 20 is completed.

===組立===
次に、上述したシート状正極10とシート状負極20とを用いて、図1と図2とに示した非水電解液二次電池の蓄電素子1を組み立てる工程を説明する。
=== Assembly ===
Next, the process of assembling the electrical storage element 1 of the nonaqueous electrolyte secondary battery shown in FIGS. 1 and 2 using the sheet-like positive electrode 10 and the sheet-like negative electrode 20 described above will be described.

まず、シート状正極10とシート状負極20とをセパレータ50を介して対向配置して1単位の積層体60aを作製し、その積層体60aを更に所定数積層してなる電極積層体60を真空中で105℃、20時間の条件で乾燥する。
そして、シート状集電体(12,22)に取り付けられている各タブ40を、正極同士、および負極同士で接続したのち、電極積層体60をアルゴン雰囲気下のグローボックス中にて厚さ0.11mmのアルミニウムラミネートフィルムからなる外装体30の袋内に挿入する。このとき、タブ40を外装体30外に導出させる。そして、電解液を外装体30内に注入した後、ラミネートフィルムを熱圧着して封止し、最終的に図1に示した非水電解液二次電池の蓄電素子1を完成させる。なお、電解液は、エチレンカーボネートとエチルメチルカーボネートとを体積比3:7で混合した溶媒に、1モル/LのLiPF6を溶解させたものに、さらにビニレンカーボネートを加えて調製したものである。
そして、前述してある第1〜第4実施形態グループ毎にそれぞれ各5種類ずつ作製したシート状正極10を用いて、総計20種類の非水電解液二次電池の蓄電素子1を上記のようにして組み立てた。
First, the sheet-like positive electrode 10 and the sheet-like negative electrode 20 are arranged to face each other with the separator 50 interposed therebetween to produce one unit of the laminated body 60a, and the electrode laminated body 60 formed by further laminating a predetermined number of the laminated bodies 60a is vacuumed. It is dried at 105 ° C. for 20 hours.
And after connecting each tab 40 attached to the sheet-like collector (12, 22) with positive electrodes and negative electrodes, the electrode laminated body 60 is made into thickness 0 in the glow box in argon atmosphere. .Into the bag of the outer package 30 made of 11 mm aluminum laminate film. At this time, the tab 40 is led out of the exterior body 30. And after inject | pouring electrolyte solution in the exterior body 30, a laminate film is thermocompression-bonded and sealed, and the electrical storage element 1 of the nonaqueous electrolyte secondary battery shown in FIG. 1 is finally completed. The electrolytic solution was prepared by further adding vinylene carbonate to a solution obtained by dissolving 1 mol / L LiPF6 in a solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7.
And the electric storage element 1 of a total of 20 types of non-aqueous-electrolyte secondary batteries is used as mentioned above using the sheet-like positive electrode 10 produced 5 each for each 1st-4th embodiment group mentioned above, respectively. Assembled.

===特性評価===
上記実施例における20種類の非水電解液二次電池の蓄電素子を、その正極活物質の処理形態に応じて第1〜第4実施形態グループに分類して、それぞれの実施形態グループ毎にその各蓄電素子1の容量特性を従来の非水電解液二次電池の蓄電素子の容量特性と比較した。
ここで各実施形態グループの蓄電素子と従来の蓄電素子とは、正極材料の製造方法のみが異なっており、その他の負極の製造方法やその後の組立手順等は双方ともに同一である。即ち、正極材料の製造方法が異なる(被覆層の欠損部形成処理工程を有していない)、以下のような従来品を作製して比較した。
=== Characteristic evaluation ===
The storage elements of the 20 types of non-aqueous electrolyte secondary batteries in the above examples are classified into first to fourth embodiment groups according to the treatment mode of the positive electrode active material, and each of the embodiment groups The capacity characteristics of each power storage element 1 were compared with the capacity characteristics of the power storage elements of a conventional nonaqueous electrolyte secondary battery.
Here, the storage element of each embodiment group and the conventional storage element differ only in the method for manufacturing the positive electrode material, and the other negative electrode manufacturing method and the subsequent assembly procedure are the same. That is, the following conventional products were produced and compared, with different methods for producing the positive electrode material (having no defect forming process step for the coating layer).

<従来品の正極材料>
正極活物質(LiFePO)と導電材(アセチレンブラック)とバインダ(ポリフッ化ビニリデン)が所定の重量比となるように計量したのち、これらに溶剤(Nメチルピロリドン)を加えて混合しながら攪拌して従来品1の正極材料を作製した。ここで、正極活物質の一次粒子の表面を被覆している導電性炭素の被覆層に対しては、これを欠損させる欠損部形成処理は行わなずに未処理とした。なお、正極活物質と導電材とバインダの重量比は、90:5:5とした。
<Conventional cathode material>
The positive electrode active material (LiFePO 4 ), the conductive material (acetylene black), and the binder (polyvinylidene fluoride) were weighed so as to have a predetermined weight ratio, and then the solvent (N methylpyrrolidone) was added to the mixture and stirred. Thus, a positive electrode material of Conventional Product 1 was produced. Here, the coating portion of the conductive carbon coating the surfaces of the primary particles of the positive electrode active material was not treated without performing the defect portion forming treatment for losing it. The weight ratio of the positive electrode active material, the conductive material, and the binder was 90: 5: 5.

<容量特性>
被覆層の欠損部形成処理が異なる上記第1〜第4の各実施形態グループにおいて、それぞれ5種類ずつの試料を用いて作製した蓄電素子と従来品の蓄電素子との6種類の非水電解液蓄電素子について、25℃の温度下で、0.2Cの充電レートで電圧が4.0Vとなるまで定電流充電を行った後、様々な放電レートで終止電圧が2.0Vとなるまで定電流放電を行い、各蓄電素子の放電容量を測定した。
<Capacitance characteristics>
In each of the first to fourth embodiment groups, in which the defect forming process of the coating layer is different, each of the six types of non-aqueous electrolytes, that is, a power storage element manufactured using five types of samples and a conventional power storage element The electricity storage device was subjected to constant current charging at a temperature of 25 ° C. at a charging rate of 0.2 C until the voltage reached 4.0 V, and then constant current until the final voltage reached 2.0 V at various discharge rates. Discharge was performed and the discharge capacity of each power storage element was measured.

当該測定結果を以下の表1〜表4に示した。ここで、各蓄電素子の容量は、正極活物質の充填量から求めた理論容量を100としたときの相対値で示している。また、表中での比率とは、理論容量を100としたときの比率を示している。   The measurement results are shown in Tables 1 to 4 below. Here, the capacity | capacitance of each electrical storage element is shown by the relative value when the theoretical capacity | capacitance calculated | required from the filling amount of the positive electrode active material is set to 100. FIG. The ratio in the table indicates the ratio when the theoretical capacity is 100.

Figure 0005433276
この表1に示した結果から、熱的衝撃処理を施した第1実施形態グループに係る非水電解液二次電池の蓄電素子では、試料1〜3を用いた蓄電素子にあっては、全ての放電レートにおいて、すなわち、小電流で放電しても、大電流で放電しても、ともに従来品の蓄電素子以上の高い容量を得ることができた。特に加熱処理温度を600℃とした試料3を用いた蓄電素子の容量増大効果が顕著であった。すなわち、高出力化が達成できていることが確認できた。
Figure 0005433276
From the results shown in Table 1, in the storage element of the nonaqueous electrolyte secondary battery according to the first embodiment group subjected to the thermal shock treatment, all the storage elements using Samples 1 to 3 Thus, it was possible to obtain a capacity higher than that of the conventional power storage element, both when discharged at a small current and when discharged at a large current. In particular, the effect of increasing the capacity of the power storage element using Sample 3 with a heat treatment temperature of 600 ° C. was remarkable. That is, it was confirmed that high output was achieved.

また、加熱処理温度を800℃とした試料4を用いた蓄電素子は、0.2Cと0.5の放電レートで従来品の蓄電素子よりも高い容量が得られたが、1.0C,2.0C,3.0Cの放電レートでは従来品の蓄電素子の容量を下回った。すなわち、定性的に見て、放電レートが低い場合の方が容量の増大効果が顕著であった。   In addition, the storage element using Sample 4 with a heat treatment temperature of 800 ° C. obtained a higher capacity than the conventional storage element at a discharge rate of 0.2 C and 0.5, but 1.0 C, 2 The discharge rates of 0.0 C and 3.0 C were lower than the capacity of the conventional power storage element. That is, from the qualitative viewpoint, the effect of increasing the capacity was more remarkable when the discharge rate was low.

ここで、加熱処理温度を1000℃とした試料5を用いた蓄電素子にあっては、全ての放電レートで従来品よりもその容量は低くなってしまった。従来品よりも容量が低くなってしまう要因としては、導電性物質の被覆層に欠損部が大きく形成され過ぎてしまい、その結果として、導電性が損なわれて電極の抵抗が高まってしまうものと考察し得る。   Here, in the electric storage element using Sample 5 whose heat treatment temperature was 1000 ° C., the capacity was lower than that of the conventional product at all discharge rates. The reason why the capacity is lower than that of the conventional product is that the defective portion is formed too large in the coating layer of the conductive material, and as a result, the conductivity is impaired and the resistance of the electrode is increased. Can be considered.

Figure 0005433276
この表2に示した結果から、賦活処理を施した第2実施形態グループに係る非水電解液二次電池の蓄電素子では、試料6と試料7とを用いた蓄電素子にあっては、全ての放電レートにおいて、すなわち、小電流で放電しても、大電流で放電しても、ともに従来品の蓄電素子以上の高い容量を得ることができた。特に賦活処理の時間を1時間とした試料7を用いた蓄電素子の容量増大効果が顕著であった。すなわち、高エネルギー密度化が達成できていることが確認できた。
Figure 0005433276
From the results shown in Table 2, in the storage element of the nonaqueous electrolyte secondary battery according to the second embodiment group subjected to the activation treatment, all the storage elements using the sample 6 and the sample 7 Thus, it was possible to obtain a capacity higher than that of the conventional power storage element, both when discharged at a small current and when discharged at a large current. In particular, the effect of increasing the capacity of the electricity storage device using Sample 7 in which the activation treatment time was 1 hour was remarkable. That is, it was confirmed that high energy density was achieved.

また、処理時間を2時間とした試料8を用いた蓄電素子は、0.2Cの放電レートで従来品の蓄電素子よりも高い容量が得られたが、0.5C,1.0C,2.0C,3.0Cの放電レートでは従来品の蓄電素子の容量を下回った。すなわち、定性的に見て、放電レートが低い場合の方が容量の増大効果が顕著であった。   In addition, the storage element using Sample 8 with a treatment time of 2 hours had a higher capacity than the conventional storage element at a discharge rate of 0.2 C, but 0.5 C, 1.0 C, 2. The discharge rates of 0 C and 3.0 C were lower than the capacity of the conventional power storage element. That is, from the qualitative viewpoint, the effect of increasing the capacity was more remarkable when the discharge rate was low.

ここで、処理時間を3時間および4時間にした試料9と試料10とを用いた蓄電素子にあっては、全ての放電レートで従来品よりもその容量は低くなってしまった。従来品よりも容量が低くなってしまう要因としては、第1実施形態グループの場合と同様に、導電性物質の被覆層に欠損部が大きく形成され過ぎてしまい、その結果として、導電性が損なわれて電極の抵抗が高まってしまうものと考察し得る。   Here, in the electric storage element using the sample 9 and the sample 10 whose processing times were 3 hours and 4 hours, the capacity was lower than that of the conventional product at all discharge rates. The reason why the capacity becomes lower than that of the conventional product is that, as in the case of the first embodiment group, the defect portion is formed too large in the coating layer of the conductive material, and as a result, the conductivity is impaired. It can be considered that the resistance of the electrode increases.

Figure 0005433276
この表3に示した結果から、超音波処理を施した第3実施形態グループに係る非水電解液二次電池の蓄電素子では、試料11〜15を用いたいずれの蓄電素子にあっても、全ての放電レートにおいて、すなわち、小電流で放電しても、大電流で放電しても、ともに従来品の蓄電素子以上の高い容量を得ることができた。特に、処理時間を24時間とした試料13、36時間とした試料14、並びに48時間とした試料15を用いた蓄電素子の容量増大効果が顕著であった。すなわち、高エネルギー密度化が達成できていることが確認できた。また、定性的に見て、放電レートが低い場合の方が容量の増大効果が顕著であった。
Figure 0005433276
From the results shown in Table 3, in the storage element of the nonaqueous electrolyte secondary battery according to the third embodiment group subjected to the ultrasonic treatment, in any storage element using the samples 11 to 15, At all discharge rates, that is, whether discharging with a small current or discharging with a large current, it was possible to obtain a capacity higher than that of a conventional power storage element. In particular, the effect of increasing the capacity of the electricity storage device using Sample 13 with a treatment time of 24 hours, Sample 14 with a treatment time of 36 hours, and Sample 15 with a treatment time of 48 hours was significant. That is, it was confirmed that high energy density was achieved. Further, qualitatively, the capacity increasing effect was more remarkable when the discharge rate was low.

Figure 0005433276
この表4に示した結果から、機械的衝撃処理を施した第4実施形態グループに係る非水電解液二次電池の蓄電素子では、試料17と試料18とを用いた蓄電素子にあっては、全ての放電レートにおいて、すなわち、小電流で放電しても、大電流で放電しても、ともに従来品の蓄電素子以上の高い容量を得ることができた。特に処理時間を18時間とした試料18を用いた蓄電素子の容量増大効果が顕著であった。すなわち、高エネルギー密度化が達成できていることが確認できた。
Figure 0005433276
From the results shown in Table 4, in the storage element of the nonaqueous electrolyte secondary battery according to the fourth embodiment group subjected to the mechanical shock treatment, the storage element using the sample 17 and the sample 18 At all discharge rates, that is, whether discharging with a small current or discharging with a large current, it was possible to obtain a capacity higher than that of the conventional power storage element. In particular, the effect of increasing the capacity of the electricity storage device using Sample 18 with a treatment time of 18 hours was remarkable. That is, it was confirmed that high energy density was achieved.

また、処理時間を6時間とした試料16を用いた蓄電素子は、0.2C,0.5C,1.0C,2.0Cの放電レートで従来品の蓄電素子よりも高い容量が得られたが、3.0Cの放電レートでは従来品の蓄電素子の容量を下回った。また、処理時間を24時間とした試料19を用いた蓄電素子では、0.2Cの放電レートで従来品の蓄電素子よりも高い容量が得られたが、0.5C,1.0C,2.0C,3.0Cの放電レートでは従来品の蓄電素子の容量を下回った。すなわち、定性的に見て、放電レートが低い場合の方が容量の増大効果が顕著であった。   In addition, the storage element using Sample 16 with a treatment time of 6 hours had a higher capacity than the conventional storage element at discharge rates of 0.2C, 0.5C, 1.0C, and 2.0C. However, at the discharge rate of 3.0 C, the capacity of the conventional power storage device was lower. Further, in the electricity storage device using the sample 19 with a treatment time of 24 hours, a higher capacity than that of the conventional electricity storage device was obtained at a discharge rate of 0.2 C. However, 0.5 C, 1.0 C, 2. The discharge rates of 0 C and 3.0 C were lower than the capacity of the conventional power storage element. That is, from the qualitative viewpoint, the effect of increasing the capacity was more remarkable when the discharge rate was low.

ここで、処理時間を30時間にした試料20を用いた蓄電素子にあっては、全ての放電レートで従来品よりもその容量は低くなってしまった。従来品よりも容量が低くなってしまう要因としては、第1,第2実施形態グループの場合と同様に、導電性物質の被覆層に欠損部が大きく形成され過ぎてしまい、その結果として、導電性が損なわれて電極の抵抗が高まってしまうものと考察し得る。   Here, in the electric storage element using the sample 20 whose processing time was 30 hours, the capacity was lower than that of the conventional product at all discharge rates. The reason why the capacity becomes lower than that of the conventional product is that, as in the case of the first and second embodiment groups, the defective portion is formed too large in the coating layer of the conductive material. It can be considered that the resistance of the electrode is increased due to the loss of the properties.

===負極への応用===
上記実施例では、正極にのみ本発明の製造方法を適用していた。もちろん、本発明は負極の製造方法にも及んでおり、ナノ粒子化した負極活物質の一次粒子に対して、その表面を被覆する導電物質の被膜層の一部を欠損させる欠損部形成処理を施して負極材料を製造するようにして適用することが可能である。
=== Application to negative electrode ===
In the said Example, the manufacturing method of this invention was applied only to the positive electrode. Of course, the present invention extends to a method for producing a negative electrode, and a defect forming process is performed in which a part of a coating layer of a conductive material covering the surface of a primary particle of a nanoparticulated negative electrode active material is lost. The negative electrode material can be applied and applied.

1 非水電解液二次電池の蓄電素子
10 正極
11 正極材料
12 正極側シート状集電体
20 負極
21 負極材料
22 負極側シート状集電体
30 外装体
40 タブ
50 セパレータ
DESCRIPTION OF SYMBOLS 1 Storage element of non-aqueous electrolyte secondary battery 10 Positive electrode 11 Positive electrode material 12 Positive electrode side sheet-like current collector 20 Negative electrode 21 Negative electrode material 22 Negative electrode side sheet-like current collector 30 Exterior body 40 Tab 50 Separator

Claims (4)

非水電解液二次電池の電極材料として用いられるリチウム複合化合物の製造方法であって、
該リチウム複合化合物の一次粒子の粒径が1μm以下であり、
該一次粒子の表面に導電物質の被覆層を形成する工程と、
該工程を経た前記一次粒子の粉体を処理することで、該一次粒子の表面に形成されている前記被膜層に欠損部を形成する工程と、
を有し、
該欠損部の形成工程では、導電物質の被覆層が形成されたリチウム複合化合物の一次粒子に熱的衝撃処理が施されて前記欠損部が形成される、
ことを特徴とするリチウム複合化合物の製造方法。
A method for producing a lithium composite compound used as an electrode material for a non-aqueous electrolyte secondary battery,
The primary particle size of the lithium composite compound is 1 μm or less,
Forming a coating layer of a conductive material on the surface of the primary particles;
A step of forming a defect in the coating layer formed on the surface of the primary particles by treating the powder of the primary particles that has undergone the step;
Have
In the forming step of the defect portion, the defect portion is formed by performing a thermal shock treatment on the primary particles of the lithium composite compound on which the conductive material coating layer is formed.
A method for producing a lithium composite compound.
非水電解液二次電池の電極材料として用いられるリチウム複合化合物の製造方法であって、
該リチウム複合化合物の一次粒子の粒径が1μm以下であり、
該一次粒子の表面に導電物質の被覆層を形成する工程と、
該工程を経た前記一次粒子の粉体を処理することで、該一次粒子の表面に形成されている前記被膜層に欠損部を形成する工程と、
を有し、
欠損部の形成工程では、導電物質の被覆層が形成されたリチウム複合化合物の一次粒子に賦活処理が施されて前記欠損部が形成される、
ことを特徴とするリチウム複合化合物の製造方法。
A method for producing a lithium composite compound used as an electrode material for a non-aqueous electrolyte secondary battery,
The primary particle size of the lithium composite compound is 1 μm or less,
Forming a coating layer of a conductive material on the surface of the primary particles;
A step of forming a defect in the coating layer formed on the surface of the primary particles by treating the powder of the primary particles that has undergone the step;
Have
In the step of forming the said defect, said defect activation treatment is performed on the primary particles of the lithium composite compound coating layer formed of a conductive material is formed,
A method for producing a lithium composite compound.
非水電解液二次電池の電極材料として用いられるリチウム複合化合物の製造方法であって、
該リチウム複合化合物の一次粒子の粒径が1μm以下であり、
該一次粒子の表面に導電物質の被覆層を形成する工程と、
該工程を経た前記一次粒子の粉体を処理することで、該一次粒子の表面に形成されている前記被膜層に欠損部を形成する工程と、
を有し、
欠損部の形成工程では、導電物質の被覆層が形成されたリチウム複合化合物の一次粒子に超音波処理が施されて前記欠損部が形成される、
ことを特徴とするリチウム複合化合物の製造方法。
A method for producing a lithium composite compound used as an electrode material for a non-aqueous electrolyte secondary battery,
The primary particle size of the lithium composite compound is 1 μm or less,
Forming a coating layer of a conductive material on the surface of the primary particles;
A step of forming a defect in the coating layer formed on the surface of the primary particles by treating the powder of the primary particles that has undergone the step;
Have
In the step of forming the said defect, the defect in the primary particles sonication is performed of a lithium composite compound coating layer of conductive material is formed is formed,
A method for producing a lithium composite compound.
請求項1〜3のいずれか1項において、前記リチウム複合化合物は、その結晶構造がオリビン型またはスピネル型のいずれかであることを特徴とするリチウム複合化合物の製造方法。 In any one of claims 1 to 3, wherein the lithium composite compound, method for producing a lithium composite compound, wherein the crystal structure is either olivine or spinel.
JP2009082317A 2009-03-30 2009-03-30 Method for producing lithium composite compound Active JP5433276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082317A JP5433276B2 (en) 2009-03-30 2009-03-30 Method for producing lithium composite compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082317A JP5433276B2 (en) 2009-03-30 2009-03-30 Method for producing lithium composite compound

Publications (2)

Publication Number Publication Date
JP2010238389A JP2010238389A (en) 2010-10-21
JP5433276B2 true JP5433276B2 (en) 2014-03-05

Family

ID=43092556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082317A Active JP5433276B2 (en) 2009-03-30 2009-03-30 Method for producing lithium composite compound

Country Status (1)

Country Link
JP (1) JP5433276B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022096142A (en) * 2020-12-17 2022-06-29 キヤノン株式会社 Active material particle and manufacturing method for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601124B2 (en) * 1995-09-22 2004-12-15 株式会社デンソー A positive electrode active material of a secondary battery using a non-aqueous solution, and a positive electrode.
CN101647139A (en) * 2007-03-29 2010-02-10 松下电器产业株式会社 Positive electrode for rechargeable battery with nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte

Also Published As

Publication number Publication date
JP2010238389A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5133020B2 (en) Method for producing positive electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode plate
WO2013080379A1 (en) Lithium secondary battery and method for manufacturing same
JP5849234B2 (en) Nonaqueous electrolyte secondary battery
JP5673690B2 (en) Lithium ion secondary battery and method for producing lithium ion secondary battery
CN111799439B (en) Lithium ion battery
JPWO2012124033A1 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2011096539A (en) Lithium secondary battery
CN105720234A (en) Egative Electrode Material For Lithium Ion Battery
US20230327180A1 (en) Method of producing lithium ion secondary battery and negative electrode material
JP2009199929A (en) Lithium secondary battery
JP5601388B2 (en) Negative electrode and lithium ion secondary battery
JP2016119154A (en) Lithium secondary battery
CN110021782B (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP2011086448A (en) Lithium ion secondary battery
WO2012025963A1 (en) Nonaqueous-electrolyte battery
JP2012238461A (en) Secondary battery, and method for manufacturing the same
JP6478112B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2012033438A (en) Cathode for lithium ion secondary battery and lithium ion secondary battery using the same
JPH11329504A (en) Lithium secondary battery and manufacture of positive active material
JP5433276B2 (en) Method for producing lithium composite compound
JP2010238388A (en) Manufacturing method of electrode of nonaqueous electrolyte storage element, and nonaqueous electrolyte storage element
JP2010102873A (en) Method for manufacturing battery
JP2014123526A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JPH11283612A (en) Lithium secondary battery
JP5366613B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5433276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250