JP5433123B2 - Laminated glass - Google Patents

Laminated glass Download PDF

Info

Publication number
JP5433123B2
JP5433123B2 JP2001276955A JP2001276955A JP5433123B2 JP 5433123 B2 JP5433123 B2 JP 5433123B2 JP 2001276955 A JP2001276955 A JP 2001276955A JP 2001276955 A JP2001276955 A JP 2001276955A JP 5433123 B2 JP5433123 B2 JP 5433123B2
Authority
JP
Japan
Prior art keywords
glass
laminated glass
fine particles
glass plate
intermediate film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001276955A
Other languages
Japanese (ja)
Other versions
JP2002173346A (en
Inventor
久仁子 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001276955A priority Critical patent/JP5433123B2/en
Publication of JP2002173346A publication Critical patent/JP2002173346A/en
Application granted granted Critical
Publication of JP5433123B2 publication Critical patent/JP5433123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10633Infrared radiation absorbing or reflecting agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Glass Compositions (AREA)

Description

本発明は、合わせガラスに関する。  The present invention relates to laminated glass.

近年、自動車内の温度上昇を抑え、冷房負荷を低減させる目的のため、車両用窓ガラスに赤外線遮蔽窓ガラスを使用することが普及しつつある。従来の赤外線遮蔽窓ガラスとしては、ガラス板の表面に各種の金属または金属酸化物の薄膜を積層した薄膜付きガラス板が用いられ、これらの膜の作用により、車内に入射する太陽輻射エネルギーを大幅にカットすることができる。  In recent years, the use of infrared shielding window glass for vehicle window glass has become widespread for the purpose of suppressing temperature rise in automobiles and reducing cooling load. As a conventional infrared shielding window glass, a glass plate with a thin film in which thin films of various metals or metal oxides are laminated on the surface of the glass plate is used, and the action of these films greatly increases the solar radiation energy incident on the vehicle interior. Can be cut.

しかし、上記薄膜は導電性を有するため、窓ガラスの電波透過性を低減させ、窓ガラスに付与されているラジオ、テレビまたはGPS(Global Positioning System)等のアンテナ機能に不具合を生じさせることがある。これらのアンテナは、リアガラス等の車内側に印刷された配線パタン(導電性セラミックペーストの焼成体など)で作られる。そのため、アンテナとしての機能を維持するためには、窓ガラスに高い電波透過性能が要求される。  However, since the thin film has conductivity, it may reduce the radio wave permeability of the window glass and cause problems in antenna functions such as radio, television, or GPS (Global Positioning System) attached to the window glass. . These antennas are made of a wiring pattern (such as a fired body of conductive ceramic paste) printed on the inside of the vehicle such as rear glass. Therefore, in order to maintain the function as an antenna, high radio wave transmission performance is required for the window glass.

〔従来技術1〕
そこで、このような問題を改善すべく、特開平8−259279号公報(以下、279号公報という)には、電波透過性能を確保しつつ、赤外線を遮蔽する合わせガラスが提案されている。この合わせガラスは、粒径が0.2μm以下の機能性微粒子を分散配合した中間膜を有し、赤外線を遮蔽するとともに、電波受信障害を低減できるとされている。
[Prior art 1]
In order to solve such problems, JP-A-8-259279 (hereinafter referred to as 279) proposes a laminated glass that shields infrared rays while ensuring radio wave transmission performance. This laminated glass has an intermediate film in which functional fine particles having a particle size of 0.2 μm or less are dispersed and blended to shield infrared rays and reduce interference with radio waves.

例えば279号公報には、実施例6として、20wt%ITO超微粒子(粒径0.1μm以下)を分散含有したDIDP(ジイソデシルフタレート)7gと通常のDIDP95gとを、PVB樹脂323gに添加して作られた中間膜を、ガラス板で挟んだ合わせガラスが開示されている。すなわち、厚さ2mmのクリヤガラス板と厚さ2mmのグリーンガラス板とを、ITO超微粒子が分散配合された中間膜(中間膜の全質量100質量部に対して、ITO超微粒子が約0.3(≒0.2×7÷(7+95+323)×100)質量部配合された中間膜に相当)により接合した合わせガラスが記載されている。この合わせガラスは、その日射透過率Tsが42.0%、ヘイズHが0.2%であり、充分な日射透過率を有するとともに、低いヘイズを実現している。  For example, in publication No. 279, as Example 6, 7 g of DIDP (diisodecyl phthalate) in which 20 wt% ITO ultrafine particles (particle size of 0.1 μm or less) are dispersed and 95 g of normal DIDP are added to 323 g of PVB resin. The laminated glass which pinched | interposed the obtained intermediate film with the glass plate is disclosed. That is, a clear glass plate having a thickness of 2 mm and a green glass plate having a thickness of 2 mm are mixed with an ITO ultrafine particle dispersed in an intermediate film (the ITO ultrafine particle is about 0.00% relative to 100 parts by mass of the total mass of the intermediate film. 3 (equivalent to an intermediate film containing approximately 0.2 × 7 ÷ (7 + 95 + 323) × 100) parts by mass) is described. This laminated glass has a solar transmittance Ts of 42.0% and a haze H of 0.2%, has a sufficient solar transmittance, and realizes a low haze.

しかし、この実施例6では、ITO超微粒子の含有割合が少ないため、近赤外線の透過を充分に抑えることができず、車内のシートやステアリングホイールの表面温度および室温を上昇させる原因となる。  However, in Example 6, since the content ratio of the ITO ultrafine particles is small, the transmission of near infrared rays cannot be sufficiently suppressed, which causes the surface temperature and the room temperature of the vehicle seat and the steering wheel to rise.

〔従来技術2〕
一方、赤外線遮蔽性能と微粒子の量との関係については、特許第2715859号公報(以下、859号公報という)に記載されている。この公報には、ITO粉末を有機樹脂中に分散した赤外線カットオフ材に関する記載があり、859号公報の図1には赤外線遮蔽性能とITO粉末の添加量との関係が記載されている。
[Prior art 2]
On the other hand, the relationship between the infrared shielding performance and the amount of fine particles is described in Japanese Patent No. 2715859 (hereinafter referred to as “859”). This publication describes an infrared cut-off material in which ITO powder is dispersed in an organic resin, and FIG. 1 of No. 859 describes the relationship between infrared shielding performance and the amount of ITO powder added.

同図の実施例3と実施例4とを比較することにより、次のことがわかる。実施例3は、ITO粉末8gをアクリル樹脂溶液10gを含む溶媒に分散練合したものである。それに対して、実施例4は、ITO粉末8gをポリカーボネート樹脂4gを含む溶媒に分散練合したものである。実施例3と実施例4との大きな違いは、実施例4の方が実施例3よりも樹脂に対するITO粉末の添加割合が多いことにある。  The following can be understood by comparing Example 3 and Example 4 in FIG. In Example 3, 8 g of ITO powder was dispersed and kneaded in a solvent containing 10 g of an acrylic resin solution. On the other hand, in Example 4, 8 g of ITO powder was dispersed and kneaded in a solvent containing 4 g of polycarbonate resin. The major difference between Example 3 and Example 4 is that Example 4 has a larger proportion of ITO powder added to the resin than Example 3.

また、859号公報の図1のグラフから明らかなように、1,500nm付近の中赤外線領域の波長の光の遮蔽性能は、ITO粉末の添加割合にさほど大きな影響を受けないが(実施例3の透過率は約5%、実施例4の透過率は約1%)、1,000nm付近の近赤外線領域の波長の光の遮蔽性能は、ITO粉末の添加割合の影響を受けていることがわかる(実施例3の透過率は約22%、実施例4の透過率は3%)。したがって、ITO粉末の添加割合を大きくすることにより、波長1,000nm付近の近赤外線領域の波長の光の遮蔽性能を向上させることができる。  Further, as is clear from the graph of FIG. 1 of the 859 gazette, the light shielding performance in the mid-infrared wavelength region near 1,500 nm is not greatly affected by the addition ratio of the ITO powder (Example 3). The transmittance of about 5%, the transmittance of Example 4 is about 1%), and the light shielding performance in the near-infrared wavelength region near 1,000 nm is influenced by the addition ratio of ITO powder. It can be seen (the transmittance of Example 3 is about 22% and the transmittance of Example 4 is 3%). Therefore, by increasing the addition ratio of the ITO powder, it is possible to improve the light shielding performance of light in the near-infrared wavelength region near the wavelength of 1,000 nm.

しかし、ITO粉末の添加割合を大きくして近赤外線領域の波長の光の遮蔽性能を上げた場合、赤外線通信を利用した各種のシステムで不具合が生じることがある。  However, when the ITO powder addition ratio is increased to improve the light shielding performance of light in the near-infrared region, problems may occur in various systems using infrared communication.

例えば近年日本においては、光ビーコンを用いたVICS(Vehicle Information and Communication System)が普及しつつある。これは情報センタで収集された交通情報を各自動車へ通知し、かつ自動車側の情報を情報センタへ通知することにより、道路での渋滞等を防止するためのシステムである。具体的には道路に設置された装置(以下、路側アンテナという)と、自動車内に設置された装置(以下、車載器という)との間で、双方向の赤外線通信が行われる。  For example, in recent years, VICS (Vehicle Information and Communication System) using an optical beacon is spreading in Japan. This is a system for preventing traffic jams on roads by notifying each vehicle of traffic information collected at the information center and notifying the information center of information on the vehicle side. Specifically, bidirectional infrared communication is performed between a device (hereinafter referred to as a roadside antenna) installed on a road and a device (hereinafter referred to as a vehicle-mounted device) installed in an automobile.

また、キーレスエントリは、自動車の所有者が所持する発光器を使って、自動車内の受光器に赤外線信号を送信することにより、ドアロックの開閉を行うシステムである。したがって、これらのシステムを正常に動作させるためには、窓ガラスが赤外線透過性能を有する必要があり、特にこれらのシステムでは約850nmの波長の赤外光が用いられている。  The keyless entry is a system that opens and closes a door lock by transmitting an infrared signal to a light receiver in the automobile using a light emitter possessed by the owner of the automobile. Therefore, in order for these systems to operate normally, the window glass needs to have infrared transmission performance. In particular, infrared light having a wavelength of about 850 nm is used in these systems.

そのため、自動車用窓ガラスは、約850nmの波長の赤外光を充分に透過する性能が必要である。しかし、遮熱ためのITO粉末の添加は、1,000nm付近の波長の赤外光をカットするだけでなく、約850nmの波長の赤外光もカットしてしまうという問題がある。また、多量のITO粉末等の微粒子を中間膜に分散させた場合、その透明度が低下し、作製した合わせガラスのヘイズが大きくなるという問題も生じる。ヘイズの増大は、運転者の視界を悪くする原因となる。  Therefore, the window glass for automobiles is required to have a capability of sufficiently transmitting infrared light having a wavelength of about 850 nm. However, the addition of ITO powder for heat shielding has a problem that it not only cuts infrared light having a wavelength near 1,000 nm, but also cuts infrared light having a wavelength of about 850 nm. In addition, when a large amount of fine particles such as ITO powder is dispersed in the intermediate film, the transparency is lowered and the haze of the produced laminated glass is increased. The increase in haze causes the driver's visibility to deteriorate.

発明が解決しようとする課題Problems to be solved by the invention

以上から明らかなように、自動車用窓ガラスにおいては、車内温度の上昇に寄与する1,000〜1,100nmの波長の赤外光を遮蔽し、かつ、赤外線通信に使用される約850nmの波長の赤外光を透過する窓ガラスが求められている。しかしながら、1,000〜1,100nmの波長の赤外光を充分に遮蔽するためには、ITO超微粒子の添加割合を大きくしなければならない。その結果、約850nmの波長の赤外光を遮蔽して赤外線通信を阻害し、またヘイズを増大させるという新たな問題を引き起こすことがあった。  As is clear from the above, in an automotive window glass, infrared light having a wavelength of 1,000 to 1,100 nm that contributes to an increase in vehicle interior temperature is shielded, and a wavelength of about 850 nm used for infrared communication. There is a need for a window glass that transmits infrared light. However, in order to sufficiently shield infrared light having a wavelength of 1,000 to 1,100 nm, the addition ratio of ITO ultrafine particles must be increased. As a result, infrared light having a wavelength of about 850 nm is shielded so that infrared communication is hindered and haze is increased.

本発明は、このような従来技術における課題を解決するものであり、室内温度の上昇要因となる1,000〜1,100nmの波長の赤外光をカットするとともに、赤外線通信に使用される約850nmの波長の赤外光を透過する合わせガラスを提供することを第1の目的とする。  The present invention solves such a problem in the prior art, and cuts infrared light having a wavelength of 1,000 to 1,100 nm, which causes an increase in room temperature, and is used for infrared communication. A first object is to provide a laminated glass that transmits infrared light having a wavelength of 850 nm.

また、本発明は、ITO粉末の添加によって生じるヘイズの増大を抑制し、外観性を向上させた合わせガラスを提供することを第2の目的とする。  Moreover, this invention makes it the 2nd objective to provide the laminated glass which suppressed the increase in the haze which arises by addition of ITO powder, and improved the external appearance property.

課題を解決するための手段Means for solving the problem

このような目的を達成するために、本発明は、複数枚のガラス板と、前記各ガラス板の間に設けられた中間膜とが積層された合わせガラスにおいて、前記中間膜は、粒径が0.2μm以下の赤外線遮蔽性微粒子が分散配合された有機樹脂膜からなり、前記各ガラス板の日射透過率の積は、0.3〜0.6であり、前記中間膜中の前記赤外線遮蔽性微粒子の分散配合割合は、前記中間膜の全質量100質量部に対して0.1〜0.5質量部であることを特徴とする合わせガラスを提供する。  In order to achieve such an object, the present invention provides a laminated glass in which a plurality of glass plates and an intermediate film provided between the glass plates are laminated. It consists of an organic resin film in which infrared shielding fine particles of 2 μm or less are dispersed and blended, and the product of solar transmittance of each glass plate is 0.3 to 0.6, and the infrared shielding fine particles in the intermediate film The dispersion blending ratio of is 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the total mass of the intermediate film.

また、本発明の一態様として以下の構成を採ることが好ましい。すなわち、前記複数枚のガラス板は、ソーダライムシリカガラスからなり、前記各ガラス板の日射透過率の積が0.3〜0.6となるように、前記各ガラス板に含まれる鉄の量が調整されていることが好ましい。  Moreover, it is preferable to take the following structures as 1 aspect of this invention. That is, the plurality of glass plates are made of soda lime silica glass, and the amount of iron contained in each glass plate so that the product of the solar transmittance of each glass plate is 0.3 to 0.6. Is preferably adjusted.

また、前記合わせガラスから切り出した1cmの合わせガラス片を構成する各ガラス板に含まれるFe換算した全鉄の含有量の総和は、2〜7mgであることが好ましい。また、前記赤外線遮蔽性微粒子は、錫がドープされた酸化インジウム、およびアンチモンがドープされた酸化錫から選択される何れか一つからなることが好ましい。A sum of the alignment in terms of Fe 2 O 3 was the content of the total iron contained in the glass plate constituting the glass pieces combined in 1 cm 2 cut from the glass is preferably 2~7Mg. The infrared shielding fine particles are preferably made of any one selected from tin-doped indium oxide and antimony-doped tin oxide.

また、前記合わせガラスから切り出した1cmの合わせガラス片を構成する各ガラス板に含まれるFe換算したFeOの含有量の総和は、0.5〜2.5mgであることが好ましい。さらに、前記合わせガラスから切り出した1cmの合わせガラス片における中間膜に含まれる前記微粒子の含有量は、0.1〜0.5mgであることが好ましい。Also, the mating sum of the content of Fe 2 O 3-converted FeO contained in each glass plate constituting the glass pieces combined in 1 cm 2 cut from the glass is preferably 0.5 to 2.5. Furthermore, it is preferable that the content of the fine particles contained in the interlayer film in the 1 cm 2 laminated glass piece cut out from the laminated glass is 0.1 to 0.5 mg.

次に、本発明の実施の形態を図面を参照して説明する。
〔1.合わせガラスの構造〕
図1は、本発明の一つの実施の形態(合わせガラス)を示す概略断面図である。合わせガラス1は、中間膜12を挟持した2枚のガラス板11a、11bを、オートクレーブ内で加圧し、これらを圧着して一体化することにより作製される。中間膜12は、ポリビニルブチラール系膜またはエチレン−酢酸ビニル共重合体系膜に、粒径が0.2μm以下(好ましくは0.001〜0.15μm)の赤外線遮蔽性微粒子を分散配合して作られる。
Next, embodiments of the present invention will be described with reference to the drawings.
[1. Laminated glass structure)
FIG. 1 is a schematic sectional view showing one embodiment (laminated glass) of the present invention. The laminated glass 1 is produced by pressurizing two glass plates 11a and 11b sandwiching the intermediate film 12 in an autoclave, and pressing and integrating them. The intermediate film 12 is made by dispersing and blending infrared shielding fine particles having a particle size of 0.2 μm or less (preferably 0.001 to 0.15 μm) into a polyvinyl butyral film or an ethylene-vinyl acetate copolymer film. .

〔2.中間膜の製造方法〕
ここで、中間膜の製造方法について述べる。可塑剤中に粒径が0.2μm以下の赤外線遮蔽性微粒子を分散させ、次いでこの可塑剤を樹脂溶液中に分散添加して混合混練することにより、膜用樹脂原料を得る。その後、この膜用樹脂原料を押出成形等で成形することにより、赤外線遮蔽性微粒子が分散配合された中間膜が得られる。
[2. Method for producing interlayer film]
Here, a method for manufacturing the intermediate film will be described. Infrared shielding fine particles having a particle size of 0.2 μm or less are dispersed in a plasticizer, and then this plasticizer is dispersed and added to the resin solution, followed by mixing and kneading to obtain a resin material for a film. Thereafter, this film resin raw material is formed by extrusion molding or the like to obtain an intermediate film in which infrared shielding fine particles are dispersed and blended.

なお、可塑剤を樹脂溶液中に分散添加する際に、各種の添加剤を一緒に加えることもできる。添加剤の種類としては、例えば各種顔料、有機系紫外線吸収剤、または有機系赤外線吸収剤等があげられる。また、上記可塑剤および樹脂溶液としては、公知のものを用いることができる。  Various additives can be added together when the plasticizer is dispersed and added to the resin solution. Examples of the type of additive include various pigments, organic ultraviolet absorbers, organic infrared absorbers, and the like. Moreover, a well-known thing can be used as said plasticizer and resin solution.

〔3.赤外線遮蔽性微粒子の種類〕
赤外線遮蔽性微粒子の材質としては、例えばSn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moの金属、酸化物、窒化物、硫化物、またはこれらにSbもしくはFをドープしたドープ物からなる微粒子が例示される。これらの微粒子を単独または複合物として使用することができる。また、これらの単独物または複合物を有機樹脂に混合した混合物、またはこれらの単独物または複合物を有機樹脂で被覆した被覆物を用いることは、自動車用窓ガラスに求められる種々の性能を得るために有効である。
[3. (Types of infrared shielding fine particles)
Examples of the material of the infrared shielding fine particles include Sn, Ti, Si, Zn, Zr, Fe, Al, Cr, Co, Ce, In, Ni, Ag, Cu, Pt, Mn, Ta, W, V, and Mo. Examples thereof include fine particles made of metal, oxide, nitride, sulfide, or a dope doped with Sb or F. These fine particles can be used alone or as a composite. In addition, use of a mixture obtained by mixing these alone or composite with an organic resin or a coating obtained by coating these alone or composite with an organic resin provides various performances required for window glass for automobiles. It is effective for.

また、赤外線遮蔽性微粒子としては、アンチモンがドープされた酸化錫(ATO)微粒子、または錫がドープされた酸化インジウム(ITO)微粒子を用いることが好ましい。ATO微粒子およびITO微粒子は共に赤外線遮蔽性能に優れ、中間膜への配合量が少なくて済む。なお、ATO微粒子とITO微粒子とを比較した場合、ITO微粒子の方が赤外線遮蔽性能に優れるため、赤外線遮蔽性微粒子としてITO微粒子を用いることが特に好ましい。  Further, as the infrared shielding fine particles, it is preferable to use antimony-doped tin oxide (ATO) fine particles or tin-doped indium oxide (ITO) fine particles. Both ATO fine particles and ITO fine particles are excellent in infrared shielding performance, and the blending amount in the intermediate film is small. In addition, when the ATO fine particles and the ITO fine particles are compared, the ITO fine particles are more preferably used as the infrared shielding fine particles because the ITO fine particles have better infrared shielding performance.

一方、所望の赤外線遮蔽性能を得るためには、一定量以上の赤外線遮蔽性微粒子を中間膜に分散させる必要があるが、多量の微粒子の添加は中間膜のヘイズを増大させることになる。そこで、中間膜のヘイズを小さくするために、中間膜中の赤外線遮蔽性微粒子の分散配合割合は、中間膜の全質量100質量部に対して0.1〜0.5質量部とすることが好ましい。  On the other hand, in order to obtain a desired infrared shielding performance, it is necessary to disperse a certain amount or more of infrared shielding fine particles in the intermediate film, but the addition of a large amount of fine particles increases the haze of the intermediate film. Therefore, in order to reduce the haze of the intermediate film, the dispersion blending ratio of the infrared shielding fine particles in the intermediate film should be 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the total mass of the intermediate film. preferable.

ただし、この分散配合割合では、中赤外線領域(1,500〜5,000nm)の波長の光の遮蔽性能は充分であるが、近赤外線領域(特に1,000nm付近)の波長の光の遮蔽性能が充分でないため(後述の図3(a)の合わせガラスの実施例5、図3(b)の合わせガラスの実施例22を参照)、以下に示す工夫を施す。  However, with this dispersion blending ratio, the light shielding performance for light in the mid-infrared region (1,500 to 5,000 nm) is sufficient, but the light shielding performance for light in the near-infrared region (particularly around 1,000 nm). Is not sufficient (see Example 5 of laminated glass in FIG. 3A described later and Example 22 of laminated glass in FIG. 3B), the following measures are taken.

〔4.ガラス板の種類〕
ガラス板11a、11bのうちの少なくとも一方に、通常のフロートガラスよりも多量の鉄を含有させたソーダライムシリカガラスを用いる。その結果、近赤外線をガラス板に吸収させることができ、赤外線遮蔽性微粒子の添加量が少なくても赤外線遮蔽性能を維持することができる。具体的には、ガラス板11aおよび11bのJIS R3106−1998に準拠して求められた日射透過率の積が0.3〜0.6となるように、鉄の含有量を調節する。
[4. (Type of glass plate)
Soda lime silica glass containing a larger amount of iron than ordinary float glass is used in at least one of the glass plates 11a and 11b. As a result, near infrared rays can be absorbed by the glass plate, and the infrared shielding performance can be maintained even if the addition amount of the infrared shielding fine particles is small. Specifically, the iron content is adjusted so that the product of the solar transmittance obtained in accordance with JIS R3106-1998 of the glass plates 11a and 11b is 0.3 to 0.6.

赤外線遮蔽性微粒子としてITO微粒子を用いた場合であれば、合わせガラスから切り出した1cmの合わせガラス片を構成する各ガラス板に含まれるFe換算した全鉄の含有量の総和が2〜7mg(好ましくは3〜6mg)となるように、鉄の含有量を調整する。この場合、合わせガラス片の各ガラス板に含まれるFeOの含有量の総和は、0.5〜2.5mgであることがさらに好ましく、1,100nmの波長の赤外光のうちの70%以上を遮蔽することができる。If ITO fine particles are used as the infrared shielding fine particles, the total content of iron in terms of Fe 2 O 3 contained in each glass plate constituting a 1 cm 2 laminated glass piece cut out from the laminated glass is 2 The iron content is adjusted to be -7 mg (preferably 3-6 mg). In this case, the total content of FeO contained in each glass plate of the laminated glass pieces is more preferably 0.5 to 2.5 mg, and 70% or more of infrared light having a wavelength of 1,100 nm. Can be shielded.

ソーダライムシリカガラスの具体的な組成としては、ソーダライムシリカ系の母ガラスに、質量百分率表示でFe換算した金鉄0.2〜1%を含有したものが好ましい。近赤外線の吸収は、全鉄のうちの2価の鉄による吸収が支配的であるため、Fe換算したFeO(2価の鉄)の質量がFe換算した全鉄の質量の20〜40%であることが好ましい。As a specific composition of soda lime silica glass, a soda lime silica base glass containing 0.2 to 1% gold iron converted to Fe 2 O 3 in terms of mass percentage is preferable. Near-infrared absorption is dominated by divalent iron out of total iron, so the mass of FeO converted to Fe 2 O 3 (divalent iron) is the mass of total iron converted to Fe 2 O 3. It is preferable that it is 20 to 40% of.

なお、以下では「Fe換算したFeOの質量」を単に「FeOの質量」と称し、「FeOの含有量」も同様の意味で用いる。また、「Fe換算した全鉄の質量」を単に「全鉄の質量」と称し、「全鉄の含有量」も同様の意味で用いる。Hereinafter, “FeO mass in terms of Fe 2 O 3 ” is simply referred to as “FeO mass”, and “FeO content” is also used in the same meaning. Further, “mass of total iron in terms of Fe 2 O 3 ” is simply referred to as “mass of total iron”, and “content of total iron” is also used in the same meaning.

〔5.合わせガラス片の特性〕
合わせガラスから切り出した1cmの合わせガラス片について説明する。
図2(a)は、合わせガラスと、この合わせガラスから切り出した合わせガラス片とを示す正面図である。図2(b)は、B−B’線拡大断面図である。図2(a)に示すように、合わせガラス1の表面に、1cm四方の正方形領域を想定すると、その断面は図2(b)に示すガラス板11aAと中間膜12Aとガラス板11bAとで構成される。
[5. Characteristics of laminated glass pieces
A 1 cm 2 laminated glass piece cut out from the laminated glass will be described.
Fig.2 (a) is a front view which shows a laminated glass and the laminated glass piece cut out from this laminated glass. FIG. 2B is an enlarged sectional view taken along line BB ′. As shown in FIG. 2A, assuming a 1 cm square area on the surface of the laminated glass 1, the cross section is composed of the glass plate 11aA, the intermediate film 12A, and the glass plate 11bA shown in FIG. Is done.

したがって、合わせガラス片Aを構成する各ガラス板に含まれる鉄の含有量の総和は、ガラス板11aAに含まれる鉄の含有量とガラス板11bAに含まれる鉄の含有量との和を示す。同様に、合わせガラス片Aを構成する各ガラス板に含まれるFeOの含有量の総和は、ガラス板11aAに含まれるFeOの含有量とガラス板11bAに含まれるFeOの含有量との和を示す。また、後述の合わせガラス片を構成する中間膜に含まれるITO微粒子の含有量は、中間膜12Aに含まれるITO微粒子の含有量を示す。  Therefore, the sum total of the content of iron contained in each glass plate constituting the laminated glass piece A indicates the sum of the iron content contained in the glass plate 11aA and the iron content contained in the glass plate 11bA. Similarly, the sum total of the content of FeO contained in each glass plate constituting the laminated glass piece A indicates the sum of the content of FeO contained in the glass plate 11aA and the content of FeO contained in the glass plate 11bA. . Further, the content of ITO fine particles contained in an intermediate film constituting the laminated glass piece described later indicates the content of ITO fine particles contained in the intermediate film 12A.

なお、鉄、FeOおよびITO微粒子等は、基本的に合わせガラス中に均一に分散しているため、合わせガラス片Aを切り出す位置は、図3(a)に示した位置に限定されるものではない。合わせガラス1の任意の領域から切り出すことができる。  Since iron, FeO, ITO fine particles and the like are basically uniformly dispersed in the laminated glass, the position where the laminated glass piece A is cut out is not limited to the position shown in FIG. Absent. It can be cut out from any region of the laminated glass 1.

ここで、合わせガラス片の各ガラス板に含まれるFeOの含有量の総和が0.5〜2.5mgであることが好ましい理由について説明する。光ビーコンが正常に動作するためには、約850nmの波長の赤外光が合わせガラスを充分に透過する必要がある。合わせガラス片を構成する各ガラス板に含まれるFeOの含有量の総和が2.5mgを超えると、その合わせガラスは約850nmの波長の赤外光のうちの25%以上を遮蔽することになる。  Here, the reason why the total content of FeO contained in each glass plate of the laminated glass pieces is preferably 0.5 to 2.5 mg will be described. In order for the optical beacon to operate normally, it is necessary that infrared light having a wavelength of about 850 nm is sufficiently transmitted through the laminated glass. If the total content of FeO contained in each glass plate constituting the laminated glass piece exceeds 2.5 mg, the laminated glass will shield 25% or more of infrared light having a wavelength of about 850 nm. .

逆に合わせガラス片を構成する各ガラス板に含まれるFeOの含有量の総和が0.5mg未満の場合、合わせガラスの日射透過率を50%以下にするためには、多量の赤外線遮蔽性微粒子を添加する必要が生じ、ヘイズを増大させることになる。したがって、合わせガラス片の各ガラス板に含まれるFeOの含有量の総和は、0.5〜2.5mgであることが好ましい。  On the contrary, when the total content of FeO contained in each glass plate constituting the laminated glass piece is less than 0.5 mg, in order to make the solar transmittance of the laminated glass 50% or less, a large amount of infrared shielding fine particles Will need to be added, increasing haze. Therefore, the total content of FeO contained in each glass plate of the laminated glass pieces is preferably 0.5 to 2.5 mg.

次に、赤外線遮蔽性微粒子としてITO微粒子を用いることが好ましい理由について説明する。合わせガラス片の各ガラス板に含まれるFeOの含有量の総和が0.5〜2.5mgである場合、合わせガラス片の中間膜に含まれるITO微粒子の含有量は0.1〜0.5mgであることが好ましい。  Next, the reason why it is preferable to use ITO fine particles as the infrared shielding fine particles will be described. When the total content of FeO contained in each glass plate of the laminated glass pieces is 0.5 to 2.5 mg, the content of ITO fine particles contained in the interlayer film of the laminated glass pieces is 0.1 to 0.5 mg. It is preferable that

この理由は次のとおりである。合わせガラス片のFeOの含有量やITO微粒子の含有量は、合わせガラスの単位面積当りに照射される日射の透過率に影響を与える。その一方、中間膜のヘイズを小さく抑えるためには、中間膜中のITO微粒子の分散配合割合を、中間膜の全質量100質量部に対して0.1〜0.5質量部とする必要がある。  The reason for this is as follows. The content of FeO and the content of ITO fine particles in the laminated glass piece affect the transmittance of solar radiation irradiated per unit area of the laminated glass. On the other hand, in order to keep the haze of the intermediate film small, it is necessary that the dispersion compounding ratio of the ITO fine particles in the intermediate film is 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the total mass of the intermediate film. is there.

中間膜の厚さが0.3〜1.0mmの範囲である場合、合わせガラス片の中間腹中に含まれるITO微粒子の含有量は、おおむね0.05〜0,5mgの範囲にある。また、0.1mgに満たないITO微粒子を含む合わせガラス片の中間膜では、1,100nmの波長の赤外光のうちの90%以上を透過する。したがって、1,100nmの波長の赤外光を充分に遮蔽するためには、合わせガラス片の中間膜に0.1mg以上のITO微粒子が含まれることが好ましい。  When the thickness of the intermediate film is in the range of 0.3 to 1.0 mm, the content of the ITO fine particles contained in the intermediate belly of the laminated glass piece is generally in the range of 0.05 to 0.5 mg. Further, an intermediate film of laminated glass pieces containing ITO fine particles less than 0.1 mg transmits 90% or more of infrared light having a wavelength of 1,100 nm. Therefore, in order to sufficiently shield infrared light having a wavelength of 1,100 nm, it is preferable that 0.1 mg or more of ITO fine particles are contained in the interlayer film of the laminated glass piece.

合わせガラス片に含まれる2.5mg程度のFeOと0.1mg以上のITOとにより、1,100nmの波長の赤外光のうちの80%以上を遮蔽できる。  About 2.5% of FeO contained in the laminated glass piece and 0.1 mg or more of ITO can shield 80% or more of infrared light having a wavelength of 1,100 nm.

ところで、中間膜中に分散配合されたITO微粒子は、約850nmの波長の赤外光の透過率にほとんど影響を与えない。すなわち、合わせガラスのヘイズに問題が生じない程度のITO微粒子の分散配合割合であれば、約850nmの波長の赤外光の透過率はFeOの量に応じて決まる。FeOの添加は、1,100nmの波長の赤外光の透過率、および850nmの波長の赤外光の透過率を下げる。合わせガラス片に含まれる0.5〜2.5mgのFeOと0.1〜0.5mgのITOとは、850nmの波長の赤外光の透過率を30%以上にでき、光ビーコンを正常に動作させる上で好ましいといえる。  By the way, the ITO fine particles dispersed and blended in the intermediate film hardly affect the transmittance of infrared light having a wavelength of about 850 nm. That is, the transmittance of infrared light having a wavelength of about 850 nm is determined according to the amount of FeO as long as it is a dispersion blend ratio of ITO fine particles that does not cause a problem in haze of the laminated glass. The addition of FeO decreases the transmittance of infrared light having a wavelength of 1,100 nm and the transmittance of infrared light having a wavelength of 850 nm. 0.5 to 2.5 mg of FeO and 0.1 to 0.5 mg of ITO contained in the laminated glass piece can increase the transmittance of infrared light at a wavelength of 850 nm to 30% or more, so that the optical beacon is normal. It can be said that it is preferable for operation.

また、合わせガラスを構成する各ガラス板のJIS R3106−1998に準拠して求められた日射透過率の積を0.3〜0.6にすることにより、中間膜の全質量100質量部に対して0.1〜0.5質量部の赤外線遮蔽性微粒子が中間膜に分散配合されている合わせガラスの日射透過率を50%以下にできる。なお、日射透過率の積とは、合わせガラスを構成する各ガラス板の日射透過率(百分率表示を100で割ったもの)の積を意味する。  Moreover, by making the product of the solar radiation transmittance | permeability calculated | required based on JISR3106-1998 of each glass plate which comprises a laminated glass to 0.3-0.6, with respect to 100 mass parts of total mass of an intermediate film Therefore, the solar transmittance of the laminated glass in which 0.1 to 0.5 parts by mass of the infrared shielding fine particles are dispersed and mixed in the intermediate film can be reduced to 50% or less. In addition, the product of solar transmittance means the product of the solar transmittance (percentage display divided by 100) of each glass plate constituting the laminated glass.

さらに、合わせガラスを構成する各ガラス板の1,100nmの波長の光の透過率の積は0.15〜0.5であることが好ましい。これにより、合わせガラスのヘイズを小さく抑えつつ、充分な赤外線遮蔽性能を有する合わせガラスを得ることができる。なお、1,100nmの波長の光の透過率の積とは、合わせガラスを構成する各ガラス板の透過率(百分率表示を100で割ったもの)の積を意味する。  Furthermore, it is preferable that the product of the transmittance | permeability of the light of 1,100 nm wavelength of each glass plate which comprises laminated glass is 0.15-0.5. Thereby, the laminated glass which has sufficient infrared shielding performance can be obtained, suppressing the haze of a laminated glass small. In addition, the product of the transmittance | permeability of the light of a wavelength of 1,100 nm means the product of the transmittance | permeability (percentage display divided by 100) of each glass plate which comprises a laminated glass.

なお、本実施の形態において、1,100nmや850nm等の各波長の赤外光の透過率は、JIS R3106−1998に準拠した分光透過率の測定により得られる。また、中間膜の分光透過率の測定方法は、基本的にガラス板および合わせガラスと同様の方法を用い、中間膜にエンボスが付与されている場合は、中間膜を加熱して平滑化してから測定する。  In the present embodiment, the transmittance of infrared light of each wavelength such as 1,100 nm and 850 nm can be obtained by measuring the spectral transmittance according to JIS R3106-1998. In addition, the method for measuring the spectral transmittance of the intermediate film is basically the same method as that of the glass plate and laminated glass, and when the intermediate film is embossed, the intermediate film is heated and smoothed. taking measurement.

(ガラス板の組成例1)
一方、合わせガラスのうちの少なくとも1枚のガラス板に、以下に示す特性のガラス板を用いてもよい。実厚で、ISO−9050に準拠して求められた紫外線透過率が30%以下、標準光源Aにより測定した可視光線透過率が70%以上、主波長が480〜570nm、標準光源Aにより測定した刺激純度が6%以下の特性を有するガラス板を用いるとよい。
(Composition example 1 of a glass plate)
On the other hand, you may use the glass plate of the characteristic shown below for the at least 1 glass plate of laminated glass. Actual thickness, UV transmittance determined according to ISO-9050 is 30% or less, visible light transmittance measured with standard light source A is 70% or more, main wavelength is 480 to 570 nm, measured with standard light source A It is preferable to use a glass plate having a characteristic that the excitation purity is 6% or less.

上記特性を有するガラス板は、実質的に質量百分率表示で以下の組成からなるソーダライムシリカガラスを用いることで作製される。すなわち、SiO:65〜75%、Al:0.1〜5%、NaO+KO:10〜18%、CaO:5〜15%、MgO:1〜6%、Fe換算した全鉄:0.3〜1%、CeO換算した全セリウムおよび/またはTiO:0.5〜2%からなる。The glass plate which has the said characteristic is produced by using the soda-lime silica glass which consists of the following compositions by a mass percentage display substantially. That, SiO 2: 65~75%, Al 2 O 3: 0.1~5%, Na 2 O + K 2 O: 10~18%, CaO: 5~15%, MgO: 1~6%, Fe 2 O 3-converted total iron: 0.3% total cerium CeO 2 in terms and / or TiO 2: consisting of 0.5% to 2%.

また、以上の特性を有するガラス板は、赤外線吸収性能を有するため、赤外線遮蔽性微粒子の中間膜への配合量を小さくしても、充分な赤外線遮蔽性能を付与した合わせガラスを製造できる。そのため、中間膜のヘイズを小さくでき、合わせガラスの外観を良好にできる。  Moreover, since the glass plate which has the above characteristic has infrared absorption performance, even if it mix | blends the compounding quantity to the intermediate film of infrared shielding fine particles, the laminated glass which provided sufficient infrared shielding performance can be manufactured. Therefore, the haze of the intermediate film can be reduced, and the appearance of the laminated glass can be improved.

(ガラス板の組成例2)
さらに、実厚で、ISO−9050に準拠して求められた紫外線透過率が15%以下、標準光源Aにより測定した可視光線透過率が70%以上、主波長が480〜570nm、標準光源Aにより測定した刺激純度が6%以下の特性を有するガラス板は、次の効果を有する。すなわち、上記ガラス板を用いた合わせガラスは、赤外線遮蔽性微粒子の添加にともなうヘイズの増大を防止し、赤外線遮蔽性能と紫外線遮蔽性能との両機能を併せ持つことができる。
(Composition example 2 of glass plate)
Furthermore, in actual thickness, the ultraviolet light transmittance determined in accordance with ISO-9050 is 15% or less, the visible light transmittance measured by the standard light source A is 70% or more, the dominant wavelength is 480 to 570 nm, and the standard light source A is used. A glass plate having a characteristic that the measured stimulus purity is 6% or less has the following effects. That is, the laminated glass using the above glass plate can prevent an increase in haze accompanying the addition of infrared shielding fine particles, and can have both functions of infrared shielding performance and ultraviolet shielding performance.

このガラス板の紫外線透過率は、実際のガラス板の厚さで求められ、ISO−9050に準拠して求められた紫外線透過率は、30%以下(好ましくは15%以下)となる。また、上記ガラス板のJIS Z8701−1982に準拠して求められた主波長は、480〜570nm(好ましくは500〜540nm)となる。さらに、上記ガラス板の実厚における刺激純度は、標準光源Aを用いたJIS Z8701−1982に準拠して求められ、6%以下(好ましくは2〜6%)となる。なお、JISは日本工業規格を意味する。  The ultraviolet transmittance of this glass plate is determined by the actual thickness of the glass plate, and the ultraviolet transmittance determined in accordance with ISO-9050 is 30% or less (preferably 15% or less). Moreover, the main wavelength calculated | required based on JISZ8701-1982 of the said glass plate will be 480-570 nm (preferably 500-540 nm). Furthermore, the excitation purity at the actual thickness of the glass plate is determined according to JIS Z8701-1982 using the standard light source A, and is 6% or less (preferably 2 to 6%). JIS means Japanese Industrial Standard.

(ガラス板の厚さ)
本実施の形態における各ガラス板の厚さは、それぞれ1.2〜5mmが好ましい。この場合、複数枚のガラス板の各厚さは同じであっても異なっていてもよい。複数枚のガラス板の厚さが同じ場合、各ガラス板の厚さは1.7〜3mmが好ましい。複数枚のガラス板の厚さが異なる場合、薄いガラス板の厚さが1.2〜2.5mmであり、かつ、厚いガラス板の厚さが2〜5mmであることが好ましい。
(Thickness of glass plate)
As for the thickness of each glass plate in this Embodiment, 1.2-5 mm is respectively preferable. In this case, each thickness of the plurality of glass plates may be the same or different. When the thickness of a plurality of glass plates is the same, the thickness of each glass plate is preferably 1.7 to 3 mm. When the thicknesses of the plurality of glass plates are different, it is preferable that the thickness of the thin glass plate is 1.2 to 2.5 mm, and the thickness of the thick glass plate is 2 to 5 mm.

図1に示した例では、合わせガラス1は、2枚のガラス板が中間膜を介して積層されているが、3枚以上のガラス板が中間膜を介して積層された合わせガラス(ガラス板/中間膜/ガラス板/・・・/中間膜/ガラス板)であってもよい。その場合、中間膜は複数枚になるので、複数枚の中間膜のうち少なくとも1枚の中間膜が、赤外線遮蔽性微粒子の分散配合された中間膜であればよい。なお、3枚以上のガラス板を有する合わせガラスの場合、合わせガラス片を構成する各ガラス板に含まれる全鉄やFeOの含有量の総和が、合わせガラス片の各ガラス板に含まれる全鉄やFeOの含有量の総和に相当する。以上のように、本実施の形態の合わせガラスは、各ガラス板が同じ特性を有してもよいし、互いに異なる特性を有してもよい。  In the example shown in FIG. 1, the laminated glass 1 has two glass plates laminated via an intermediate film, but laminated glass (glass plate) obtained by laminating three or more glass plates via an intermediate film. / Intermediate film / glass plate /.../ intermediate film / glass plate). In that case, since there are a plurality of intermediate films, at least one of the intermediate films may be an intermediate film in which infrared shielding fine particles are dispersed and blended. In the case of laminated glass having three or more glass plates, the total iron contained in each glass plate constituting the laminated glass pieces and the total content of FeO are all iron contained in each glass plate of the laminated glass pieces. This corresponds to the total content of FeO and FeO. As mentioned above, as for the laminated glass of this Embodiment, each glass plate may have the same characteristic and may have a mutually different characteristic.

〔6.合わせガラスの外観〕
一方、本実施の形態の合わせガラスを自動車窓用の合わせガラスとして用いる場合、各ガラス板が異なる特性を有すること、特に車外側ガラス板のFeOの含有量が車内側のガラス板の含有量よりも多いことは好ましい。その理由は以下のとおりである。自動車窓用の合わせガラスの場合、車外側のガラス板の色が車内側のガラス板に比べて濃い(以下、車内側のガラス板の色と車外側の色との濃さの表現は、両者の相対比較を意味する)ことにより、窓ガラスと自動車のボディとの外観上の一体感が得られる。これは車外から合わせガラスを見たときに車内側のガラス板の色が濃いと、車内側のガラス板の位置に窓の面があるかのように、窓ガラスが窪んで見えるからである。
[6. (Appearance of laminated glass)
On the other hand, when the laminated glass of the present embodiment is used as a laminated glass for an automobile window, each glass plate has different characteristics, in particular, the content of FeO in the outside glass plate is more than the content of the inside glass plate. It is preferable that there are also many. The reason is as follows. In the case of laminated glass for automobile windows, the color of the glass plate on the outside of the vehicle is darker than that of the glass plate on the inside of the vehicle (hereinafter, the expression of the darkness between the color of the glass plate on the inside of the vehicle and the color on the outside of the vehicle is both This means that the window glass and the body of the automobile are integrated with each other. This is because if the color of the glass plate on the inside of the vehicle is dark when the laminated glass is viewed from the outside of the vehicle, the window glass appears to be depressed as if there is a window surface at the position of the glass plate on the inside of the vehicle.

また、車内側のガラス板の色が薄いと車内空間が広く感じられる。これは、車外側のガラス板の色が濃いことで、車外から合わせガラスを見たときに、車外側のガラス板の位置に窓の面があるかのように、窓ガラスが窪んで見えるからである。  Moreover, if the color of the glass plate inside the vehicle is light, the interior space can be felt wide. This is because the color of the glass plate on the outside of the vehicle is dark, and when the laminated glass is viewed from outside the vehicle, the window glass appears to be depressed as if there is a window surface at the position of the glass plate on the outside of the vehicle. It is.

ところで、本実施の形態の合わせガラスは、ガラスの表面に金属または金属酸化物からなる薄膜を設ける必要がないため、窓ガラスのシート抵抗を従来製品よりも高くできる。その結果、本実施の形態の合わせガラスは電波透過性能を有し、自動車窓用に好適といえる。なお、本実施の形態におけるガラス板のシート抵抗値としては、例えば20kΩ/□以上(特に10MΩ/□以上)であることが好ましい。  By the way, the laminated glass of this Embodiment does not need to provide the thin film which consists of a metal or a metal oxide on the surface of glass, Therefore The sheet resistance of a window glass can be made higher than the conventional product. As a result, the laminated glass of this embodiment has radio wave transmission performance and can be said to be suitable for automobile windows. In addition, as a sheet resistance value of the glass plate in this Embodiment, it is preferable that it is 20 kohm / square or more (especially 10 Mohm / square or more), for example.

次に、本発明の実施例について説明する。ただし、本発明はこれらに限定されるものではない。
〔中間膜の実施例1〕
ITO微粒子(粒径0.02μm以下)を分散含有した3GH(トリエチレングリコールビス(2−エチルブチレート))を10g(ITO微粒子の添加量は1g)、通常の3GHを130g、PVB(ポリビニルブチラール)樹脂を360g用意する。PVB樹脂中に3GHを添加し、約70℃に加熱した状態で3本ロールミキサーにより約15分程度練り込みこれらを混合し、得られた製膜用樹脂原料を190℃前後まで加熱する。その後、型押出機を使って厚さ約0.8mmのフイルム状に成形し、ロールに巻き取り、実施例1に係る中間膜を得た。
Next, examples of the present invention will be described. However, the present invention is not limited to these.
[Example 1 of interlayer film]
10 g of 3GH (triethylene glycol bis (2-ethylbutyrate)) dispersed with ITO fine particles (particle size of 0.02 μm or less) (addition amount of ITO fine particles is 1 g), 130 g of normal 3GH, PVB (polyvinyl butyral) ) Prepare 360 g of resin. 3GH is added to the PVB resin, and the mixture is kneaded for about 15 minutes with a three-roll mixer while being heated to about 70 ° C., and the obtained resin material for film formation is heated to about 190 ° C. Thereafter, the film was formed into a film having a thickness of about 0.8 mm using a mold extruder and wound on a roll to obtain an intermediate film according to Example 1.

〔中間膜の実施例2〕
ITO微粒子の添加量を1gから1.25gに変更し、実施例1と同様の処理を行い、実施例2に係る中間膜を得た。
[Example 2 of interlayer film]
The amount of ITO fine particles added was changed from 1 g to 1.25 g, and the same treatment as in Example 1 was performed to obtain an intermediate film according to Example 2.

〔中間膜の実施例3〕
ITO微粒子の添加量を1gから1.5gに変更し、実施例1と同様の処理を行い、実施例3に係る中間膜を得た。
[Example 3 of interlayer film]
The amount of ITO fine particles added was changed from 1 g to 1.5 g, and the same treatment as in Example 1 was performed to obtain an intermediate film according to Example 3.

〔中間膜の実施例4〕
ITO微粒子の添加量を1gから1.75gに変更し、実施例1と同様の処理を行い、実施例4に係る中間膜を得た。
[Example 4 of interlayer film]
The amount of ITO fine particles added was changed from 1 g to 1.75 g, and the same treatment as in Example 1 was performed to obtain an intermediate film according to Example 4.

〔中間膜の実施例5〕
ITO微粒子の添加量を1gから2.5gに変更し、実施例1と同様の処理を行い、実施例5に係る中間膜を得た。
[Example 5 of interlayer film]
The amount of ITO fine particles added was changed from 1 g to 2.5 g, and the same treatment as in Example 1 was performed to obtain an intermediate film according to Example 5.

〔ガラス板の実施例1〜3〕
1,000mm×1,500mmの寸法で、厚さ2mmのガラス板を3種類用意した。3種類のガラス板(ガラス板の実施例1〜3)は、実質的に質量百分率表示で表1に記載の組成のソーダライムシリカガラスからなる。なお、実施例3は、通常の無色のソーダライムシリカガラスからなる。
[Examples 1 to 3 of glass plate]
Three types of glass plates having a size of 1,000 mm × 1,500 mm and a thickness of 2 mm were prepared. Three types of glass plates (Examples 1 to 3 of the glass plate) are substantially composed of soda lime silica glass having the composition described in Table 1 in terms of mass percentage. In addition, Example 3 consists of normal colorless soda-lime silica glass.

Figure 0005433123
Figure 0005433123

〔合わせガラスの実施例1〜22〕
次に、ガラス板の実施例と中間膜の実施例とを適宜組み合わせ、表2に示す自動車窓用の合わせガラス(実施例1〜22)を作製した。なお、表2中の符号は図1のものと同等であり、ガラス板11aは車内側に設置され、ガラス板11bは車外側に設置されるものと仮定する。
[Examples 1 to 22 of laminated glass]
Next, the example of the glass plate and the example of the interlayer film were appropriately combined to produce a laminated glass (Examples 1 to 22) for an automobile window shown in Table 2. In addition, the code | symbol in Table 2 is equivalent to the thing of FIG. 1, and it assumes that the glass plate 11a is installed in the vehicle inside and the glass plate 11b is installed in the vehicle outside.

Figure 0005433123
Figure 0005433123

合わせガラスの実施例1〜22について、分光光度計(日立製作所製U4000)により波長300〜2,100nmの間の透過率を測定し、JIS R3106−1998に準拠して、可視光透過率T(%)および日射透過率T(%)を求めた。また、JIS K6714に準拠して、合わせガラスのヘイズH(%)を測定した。For Examples 1 to 22 of the laminated glass, by a spectrophotometer (manufactured by Hitachi, Ltd. U4000) were measured for transmittance between the wavelength 300~2,100Nm, in conformity with JIS R3106-1998, visible light transmittance T V (%) And solar transmittance T e (%) were determined. Moreover, based on JISK6714, the haze H (%) of the laminated glass was measured.

測定結果を表3に示す。ここで、表中の(1)は合わせガラス片の各ガラス板に含まれる全鉄の含有量の総和(mg)を示す。(2)は合わせガラス片の各ガラス板に含まれるFeOの含有量の総和(mg)を示す。(3)は合わせガラス片の中間膜に含まれるITO微粒子の含有量(mg)を示す。(4)は合わせガラスの1,100nmの波長の赤外光の透過率(%)を示す。(5)は合わせガラスの850nmの波長の赤外光の透過率(%)を示す。(6)は2枚のガラス板の1,100nmの波長の赤外光の透過率の積を示す。(7)は2枚のガラス板の850nmの波長の赤外光の透過率の積を示す。(8)は中間膜の1,100nmの波長の赤外光の透過率(%)を示す。(9)は中間膜の850nmの波長の赤外光の透過率(%)を示す。(10)は2枚のガラス板の日射透過率の積を示す。なお、実施例6〜17の合わせガラスのヘイズHの測定結果、1,100nmおよび850nmの波長の赤外光の透過率((4)〜(9))の記載は省略している。  Table 3 shows the measurement results. Here, (1) in a table | surface shows the sum total (mg) of content of the total iron contained in each glass plate of a laminated glass piece. (2) shows the total content (mg) of FeO contained in each glass plate of the laminated glass piece. (3) indicates the content (mg) of ITO fine particles contained in the interlayer film of the laminated glass piece. (4) shows the transmittance (%) of infrared light having a wavelength of 1,100 nm of laminated glass. (5) shows the transmittance (%) of infrared light having a wavelength of 850 nm of laminated glass. (6) shows the product of the transmittance of infrared light having a wavelength of 1,100 nm of two glass plates. (7) shows the product of the transmittance of infrared light having a wavelength of 850 nm between two glass plates. (8) indicates the transmittance (%) of infrared light having a wavelength of 1,100 nm of the intermediate film. (9) indicates the transmittance (%) of infrared light having a wavelength of 850 nm of the intermediate film. (10) indicates the product of solar transmittance of two glass plates. In addition, description of the measurement result of the haze H of the laminated glass of Examples 6-17 and the transmittance | permeability ((4)-(9)) of the infrared light of a wavelength of 1,100 nm and 850 nm is abbreviate | omitted.

Figure 0005433123
Figure 0005433123

図3(a)は合わせガラスの実施例1〜5の分光透過率を示し、図3(b)は合わせガラスの実施例18〜22の分光透過率を示すグラフである。各グラフの縦軸は透過率(%)、横軸は波長(nm))を示す。また、表3から明らかなように、中間膜の全質量100質量部に対してITO微粒子の分散配合割合を0.1〜0.5質量部にすることにより、合わせガラスのヘイズを1%以下にできる。  FIG. 3A is a graph showing the spectral transmittance of Examples 1 to 5 of laminated glass, and FIG. 3B is a graph showing the spectral transmittance of Examples 18 to 22 of laminated glass. In each graph, the vertical axis represents transmittance (%), and the horizontal axis represents wavelength (nm). Further, as apparent from Table 3, the haze of the laminated glass is 1% or less by setting the dispersion blending ratio of the ITO fine particles to 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the total mass of the intermediate film. Can be.

このように、実施例1〜3、実施例8〜10、実施例13〜15、および実施例18〜20に係る合わせガラスは、少ないITO微粒子の分散配合割合であるにもかかわらず、各ガラス板の日射透過率の積を0.3〜0.6とすることにより、日射透過率Teを50%以下にできる。  Thus, although the laminated glass which concerns on Examples 1-3, Examples 8-10, Examples 13-15, and Examples 18-20 is a dispersion | distribution compounding ratio of few ITO microparticles | fine-particles, each glass By setting the product of the solar transmittance of the plate to 0.3 to 0.6, the solar transmittance Te can be reduced to 50% or less.

さらに、合わせガラス片の各ガラス板に含まれるFeOの含有量の総和を0.5〜2.5mgにすることで、合わせガラス片の中間膜に含まれるITO微粒子の含有量の多少(中間膜の実施例1の0.17mg、中間膜の実施例5の0.41mg)にかかわらず、合わせガラスの850nmの波長の赤外光の透過率を20%以上に保ち、かつ、1,100nmの波長の赤外光の透過率を30%以下にできる。さらに、合わせガラス片の各ガラス板に含まれるFeOの含有量の総和を1〜2mgにしかつ合わせガラス片の中間膜に含まれるITO微粒子の含有量を0.1〜0.5mgにすることで、1,100nmの波長の赤外光の透過率を30%以下、かつ、850nmの波長の赤外光の透過率を20%以上、かつ、日射透過率Teを50%以下にできる。  Further, the total content of FeO contained in each glass plate of the laminated glass pieces is set to 0.5 to 2.5 mg, so that the content of the ITO fine particles contained in the intermediate film of the laminated glass pieces (intermediate film) (1) of Example 1 of 0.17 mg and 0.41 mg of Example 5 of the interlayer film), the transmittance of infrared light at a wavelength of 850 nm of the laminated glass is kept at 20% or more, and 1,100 nm The transmittance of infrared light having a wavelength can be reduced to 30% or less. Furthermore, the total content of FeO contained in each glass plate of the laminated glass pieces is 1-2 mg, and the content of ITO fine particles contained in the interlayer film of the laminated glass pieces is 0.1-0.5 mg. The transmittance of infrared light having a wavelength of 1,100 nm can be 30% or less, the transmittance of infrared light having a wavelength of 850 nm can be 20% or more, and the solar transmittance Te can be 50% or less.

ところで、上記赤外線通信を自動車間で行った場合(すなわち車載器同士が通信を行った場合)、対向車同士であれば、赤外光は2枚の合わせガラスを透過することになる。そのため、合わせガラスの僅かな透過率の違いが、赤外光の到達範囲に大きく影響する。その理由は、850nmの波長の赤外光の透過率が20%、25.8%、28.3%および33.9%の各合わせガラスについて検討することで説明できる。  By the way, when the said infrared communication is performed between motor vehicles (namely, when onboard equipment communicates), if it is an oncoming vehicle, infrared light will permeate | transmit two laminated glass. Therefore, a slight difference in transmittance of the laminated glass greatly affects the reach range of infrared light. The reason can be explained by examining each laminated glass having 20%, 25.8%, 28.3%, and 33.9% transmittance of infrared light having a wavelength of 850 nm.

まず、1枚目の合わせガラスを透過したときの赤外光の輝度は透過率に応じて決まるため、それぞれ20%、25.8%、28.3%および33.9%となる。その後、さらに2枚目の合わせガラス(1枚目と同じ透過率)を透過すると、各赤外光の輝度は、光源での発光時における4.0(=0.2×0.2×100)%、6.7(≒0.258×0.258×100)%、8.0(≒0.283×0.283×100)%、11.5(≒0.339×0.339×100)%となる。  First, since the luminance of infrared light when it passes through the first laminated glass is determined according to the transmittance, it is 20%, 25.8%, 28.3%, and 33.9%, respectively. Thereafter, when passing through a second laminated glass (the same transmittance as that of the first sheet), the brightness of each infrared light is 4.0 (= 0.2 × 0.2 × 100) when the light source emits light. )%, 6.7 (≈0.258 × 0.258 × 100)%, 8.0 (≈0.283 × 0.283 × 100)%, 11.5 (≈0.339 × 0.339 × 100)%.

したがって、合わせガラスの850nmの波長の赤外光の透過率を25.8%にすることにより、2枚の合わせガラスを透過した赤外光の輝度を5%以上に保つことができ、さらに透過率を33.8%にすれば10%以上の輝度を保つことができる。  Therefore, by setting the transmittance of infrared light at a wavelength of 850 nm of the laminated glass to 25.8%, the luminance of the infrared light transmitted through the two laminated glasses can be maintained at 5% or more, and further transmitted. If the rate is 33.8%, the luminance of 10% or more can be maintained.

また、透過率25.8%の合わせガラスで使用される光源の発光輝度は、透過率が20%の合わせガラスで使用される光源の発光輝度の約60%(≒4÷6.7×100)で足りる。同様に、透過率33.9%の合わせガラスで使用される光源の発光輝度は、透過率20%の合わせガラスで使用される光源の発光輝度の約35(≒4÷11.5×100)%で足りる。したがって、合わせガラスの透過率を高くすることにより、低輝度の光源でも充分に通信を行うことができるようになる。  Further, the light emission luminance of the light source used in the laminated glass having a transmittance of 25.8% is approximately 60% (≈4 ÷ 6.7 × 100) of the light emission luminance of the light source used in the laminated glass having a transmittance of 20%. ) Is enough. Similarly, the light emission luminance of the light source used in the laminated glass having a transmittance of 33.9% is approximately 35 (≈4 ÷ 11.5 × 100) of the light emission luminance of the light source used in the laminated glass having a transmittance of 20%. % Is enough. Therefore, by increasing the transmittance of the laminated glass, communication can be sufficiently performed even with a low-luminance light source.

これらを踏まえると、合わせガラスの850nmの波長の赤外光の透過率を25%以上とすることは好ましく、30%以上とすることはさらに好ましいといえる。また、これらの透過率を得るためには、合わせガラス片の各ガラス板に含まれるFeOの含有量の総和を1〜1.5mgにし、かつ、合わせガラス片の中間膜に含まれるITO微粒子の含有量を0.2〜0.4mgとするとよい。  Considering these, it is preferable that the transmittance of infrared light with a wavelength of 850 nm of the laminated glass is 25% or more, and more preferably 30% or more. Moreover, in order to obtain these transmittances, the total content of FeO contained in each glass plate of the laminated glass piece is set to 1 to 1.5 mg, and the ITO fine particles contained in the interlayer film of the laminated glass piece The content is preferably 0.2 to 0.4 mg.

発明の効果Effect of the invention

以上の説明から明らかなように本発明は、粒径が0.2μm以下の赤外線遮蔽性微粒子が分散配合された中間膜を用いた合わせガラスに、鉄を含有するソーダライムシリカガラスからなるガラス板を用いている。この鉄の含有量を適宜調整しているため、所望の赤外線遮蔽性能が付与された合わせガラスが得られる。  As apparent from the above description, the present invention is a glass plate made of soda-lime silica glass containing iron in laminated glass using an intermediate film in which infrared shielding fine particles having a particle diameter of 0.2 μm or less are dispersed and blended. Is used. Since the iron content is appropriately adjusted, a laminated glass having desired infrared shielding performance is obtained.

また、この合わせガラスは、赤外線遮蔽性微粒子の配合割合を小さく抑えることによってヘイズを低くすることができ、窓ガラスの外観の不具合が生じにくい。また、赤外線遮蔽性微粒子の配合割合を調整することにより、各種の赤外線通信システム(例えばVICSの光ビーコンやキーレスエントリシステム等)の動作で使用される約850nm付近の波長の赤外光を透過させることができる。さらに、本発明に係る合わせガラスは、自動車用窓ガラスに適用だけでなく、その他の移動体(例えば航空機、船舶、列車等)や建築物の窓ガラスに適用できる。  Moreover, this laminated glass can make haze low by restraining the mixture ratio of infrared shielding fine particles small, and it is hard to produce the malfunction of the appearance of a window glass. Further, by adjusting the blending ratio of the infrared shielding fine particles, infrared light having a wavelength of about 850 nm used in the operation of various infrared communication systems (for example, VICS optical beacon and keyless entry system) is transmitted. be able to. Furthermore, the laminated glass according to the present invention can be applied not only to window glass for automobiles, but also to other moving objects (for example, aircraft, ships, trains, etc.) and window glass for buildings.

本発明の一つの実施の形態を示す概略断面図である。It is a schematic sectional drawing which shows one embodiment of this invention. (a)合わせガラスの正面図であり、(b)B−B’線拡大断面図である。(A) It is a front view of a laminated glass, (b) It is a B-B 'line expanded sectional view. (a)合わせガラスの実施例1〜5の分光透過率を示すグラフであり、(b)合わせガラスの実施例18〜22の分光透過率を示すグラフである。(A) It is a graph which shows the spectral transmittance of Examples 1-5 of a laminated glass, (b) It is a graph which shows the spectral transmittance of Examples 18-22 of a laminated glass.

1:合わせガラス
11a、11b:ガラス板
12:中間膜
1: Laminated glass 11a, 11b: Glass plate 12: Intermediate film

Claims (4)

複数枚のガラス板と、前記各ガラス板の間に設けられた中間膜とが積層された合わせガラスにおいて、前記中間膜は、粒径が0.2μm以下のITO微粒子が分散配合された有機樹脂膜からなり、前記各ガラス板の日射透過率の積は、0.3〜0.6であり、前記中間膜中の前記ITO微粒子の分散配合割合は、前記中間膜の全質量100質量部に対して0.1〜0.5質量部であり、前記合わせガラスから切り出した1cmの合わせガラス片を構成する各ガラス板に含まれるFe換算した全鉄の含有量の総和は2〜7mgであり、前記合わせガラスから切り出した1cmの合わせガラス片を構成する各ガラス板に含まれるFe換算したFeOの含有量の総和は0.5〜2.5mgであり、車外側ガラス板のFe換算したFeO含有量が車内側ガラス板のFe換算したFeO含有量よりも多く、前記各ガラス板が、質量百分率表示で以下の組成からなるソーダライムシリカガラスであることを特徴とする合わせガラスであって、車内温度の上昇に寄与する1,000〜1,100nmの波長の赤外光を70%以上遮蔽し、かつ赤外線通信に使用される約850nmの波長の赤外光を30%以上透過する合わせガラス。
SiO:65〜75%
Al:0.1〜5%
NaO+KO:10〜18%
CaO:5〜15%
MgO:1〜6%
Fe換算した全鉄:0.3〜1%
CeO換算した全セリウムおよび/またはTiO:0.5〜2%
ただし、Fe換算したFeO(2価の鉄)の質量が、Fe換算した全鉄の質量の20〜40%
In a laminated glass in which a plurality of glass plates and an intermediate film provided between the glass plates are laminated, the intermediate film is made of an organic resin film in which ITO fine particles having a particle size of 0.2 μm or less are dispersed and blended. The product of the solar transmittance of each glass plate is 0.3 to 0.6, and the dispersion blending ratio of the ITO fine particles in the intermediate film is based on 100 parts by mass of the total mass of the intermediate film. The total content of iron in terms of Fe 2 O 3 contained in each glass plate constituting a 1 cm 2 laminated glass piece cut out from the laminated glass is 0.1 to 0.5 parts by mass. The total content of FeO in terms of Fe 2 O 3 contained in each glass plate constituting a 1 cm 2 laminated glass piece cut out from the laminated glass is 0.5 to 2.5 mg, and the outside glass Fe 2 O of plate The FeO content in terms of 3 is larger than the FeO content in terms of Fe 2 O 3 of the vehicle interior glass plate, and each glass plate is a soda lime silica glass having the following composition in terms of mass percentage. The laminated glass shields 70% or more of infrared light having a wavelength of 1,000 to 1,100 nm, which contributes to an increase in the temperature inside the vehicle, and provides infrared light having a wavelength of about 850 nm used for infrared communication. Laminated glass that transmits 30% or more.
SiO 2: 65~75%
Al 2 O 3 : 0.1 to 5%
Na 2 O + K 2 O: 10~18%
CaO: 5 to 15%
MgO: 1-6%
Total iron in terms of Fe 2 O 3 : 0.3 to 1%
All cerium CeO 2 in terms and / or TiO 2: 0.5 to 2%
However, Fe 2 O 3 mass conversion was FeO (2-valent iron) is, Fe 2 O 3 20~40% by weight of the total iron in terms
前記各ガラス板の日射透過率の積が0.3〜0.6となるように、前記各ガラス板に含まれる鉄の量が調整されている、請求項1に記載の合わせガラス
The laminated glass of Claim 1 in which the quantity of the iron contained in each said glass plate is adjusted so that the product of the solar radiation transmittance of each said glass plate may be 0.3-0.6.
前記合わせガラスから切り出した1cmの合わせガラス片における中間膜に含まれる前記ITO微粒子の含有量は、0.1〜0.5mgである、請求項1〜2の何れか一項に記載の合わせガラス。
The lamination according to any one of claims 1 to 2, wherein the content of the ITO fine particles contained in the intermediate film in a 1 cm 2 laminated glass piece cut out from the laminated glass is 0.1 to 0.5 mg. Glass.
前記合わせガラスから切り出した1cmの合わせガラス片に含まれるFe換算したFeOの含有量の総和が、1〜1.5mgであり、前記合わせガラスから切り出した1cmの合わせガラス片における中間膜に含まれる前記ITO微粒子の含有量は、0.2〜0.4mgである、請求項1〜3の何れか一項に記載の合わせガラス。
In the 1 cm 2 laminated glass piece cut out from the laminated glass, the total content of FeO in terms of Fe 2 O 3 contained in the 1 cm 2 laminated glass piece cut out from the laminated glass is 1 to 1.5 mg. The laminated glass according to any one of claims 1 to 3, wherein the content of the ITO fine particles contained in the intermediate film is 0.2 to 0.4 mg.
JP2001276955A 2000-09-14 2001-09-12 Laminated glass Expired - Lifetime JP5433123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276955A JP5433123B2 (en) 2000-09-14 2001-09-12 Laminated glass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000279881 2000-09-14
JP2000-279881 2000-09-14
JP2000279881 2000-09-14
JP2001276955A JP5433123B2 (en) 2000-09-14 2001-09-12 Laminated glass

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011192799A Division JP5659988B2 (en) 2000-09-14 2011-09-05 Laminated glass

Publications (2)

Publication Number Publication Date
JP2002173346A JP2002173346A (en) 2002-06-21
JP5433123B2 true JP5433123B2 (en) 2014-03-05

Family

ID=26599991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276955A Expired - Lifetime JP5433123B2 (en) 2000-09-14 2001-09-12 Laminated glass

Country Status (1)

Country Link
JP (1) JP5433123B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60122077T2 (en) * 2000-09-14 2007-02-15 Asahi Glass Co., Ltd. Laminated glass
JP2004075400A (en) * 2002-08-09 2004-03-11 Sekisui Chem Co Ltd Interlayer film for laminated glass, and laminated glass
JP2004075433A (en) * 2002-08-13 2004-03-11 Sekisui Chem Co Ltd Interlayer film for laminated glass, and laminated glass
JP2004131335A (en) * 2002-10-10 2004-04-30 Asahi Glass Co Ltd Light control window
JP2005139046A (en) * 2003-11-10 2005-06-02 Nippon Sheet Glass Co Ltd Heat insulating laminated glass
EP1970356A4 (en) * 2005-10-28 2010-06-02 Nippon Sheet Glass Co Ltd Laminated glass with shade band
US20070248809A1 (en) 2006-04-19 2007-10-25 Steven Vincent Haldeman Interlayers Comprising Stable Infrared Absorbing Agents
GB0710808D0 (en) * 2007-06-06 2007-07-18 Pilkington Automotive Ltd Tinted laminated vehicle glazing
DE102009017805B4 (en) 2009-04-20 2012-05-16 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparent laminated glass and its use
GB201020311D0 (en) * 2010-12-01 2011-01-12 Pilkington Group Ltd Laminated glazing
KR20180019127A (en) * 2015-06-02 2018-02-23 코닝 인코포레이티드 Laminated structures including light guide plates and automotive glazing
JP6549044B2 (en) * 2016-01-07 2019-07-24 王子ホールディングス株式会社 Heat shielding laminated glass for automobiles
JP6885404B2 (en) * 2016-08-05 2021-06-16 Agc株式会社 Laminated glass
US10556821B2 (en) * 2017-04-26 2020-02-11 Guardian Glass, LLC Laminated window including different glass substrates with low-E coating adjacent vehicle or building interior and/or methods of making the same
WO2019194292A1 (en) * 2018-04-05 2019-10-10 Agc株式会社 Laminated glass

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656466A (en) * 1992-08-05 1994-03-01 Asahi Glass Co Ltd Glass having low sunlight transmittance and low ultraviolet light transmittance
AU696443B2 (en) * 1994-10-26 1998-09-10 Asahi Glass Company Limited Glass having low solar radiation and ultraviolet ray transmittance
JP3154645B2 (en) * 1995-01-23 2001-04-09 セントラル硝子株式会社 Automotive laminated glass
JP3086165B2 (en) * 1995-11-30 2000-09-11 セントラル硝子株式会社 UV-infrared absorbing green glass
JPH10152347A (en) * 1996-11-20 1998-06-09 Nippon Sheet Glass Co Ltd Multiple glass
JPH10152345A (en) * 1996-11-20 1998-06-09 Nippon Sheet Glass Co Ltd Heat ray-shielding glass and heat ray-shielding multiple glass
JP2000143288A (en) * 1998-11-09 2000-05-23 Nippon Sheet Glass Co Ltd Colored film coated glass article
JP2000233946A (en) * 1998-11-18 2000-08-29 Nippon Sheet Glass Co Ltd Heat ray reflecting glass and laminated glass using the same
JP2000159546A (en) * 1998-11-25 2000-06-13 Nippon Sheet Glass Co Ltd Heat ray reflecting glass and multilayer glass using the same

Also Published As

Publication number Publication date
JP2002173346A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
JP5659988B2 (en) Laminated glass
KR100766765B1 (en) Laminated glass and automobile using it
JP5433123B2 (en) Laminated glass
US6686032B1 (en) Laminated glass
JP3154645B2 (en) Automotive laminated glass
US6733872B2 (en) Laminated glass
JP4460550B2 (en) Laminated glass
JP2002326847A (en) Laminated glass
JP4876362B2 (en) Laminated glass and automobile using the same
EP2786972A1 (en) Heat-ray-shielding film, combined heat ray shielding and transparent substrate, vehicle equipped with heat-ray-shielding transparent laminated substrate as window material, and building using heat-ray-shielding transparent laminated substrate as window material
JP7559525B2 (en) Laminated glass, vehicle
JPH10297945A (en) Safety glass and its production
JP2001151539A (en) Laminated glass
CN113246562B (en) Laminated glass and vehicle
US20070154724A1 (en) Heat-shielding laminated glass
JP2005089244A (en) Laminated glass
JP2003055006A (en) Laminated glass and edge light device
JP4418830B2 (en) Method for producing resin composition for interlayer film of laminated glass
JP2001214012A (en) Raw material resin for film and method for producing the same
WO2023186717A1 (en) Head-up display for a vehicle window
WO2024017577A1 (en) Heatable composite pane with reflective layer
WO2023186715A1 (en) Head-up display for a vehicle window
JP2001206745A (en) Sandwich glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121029

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R151 Written notification of patent or utility model registration

Ref document number: 5433123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term