JP2005089244A - Laminated glass - Google Patents

Laminated glass Download PDF

Info

Publication number
JP2005089244A
JP2005089244A JP2003325046A JP2003325046A JP2005089244A JP 2005089244 A JP2005089244 A JP 2005089244A JP 2003325046 A JP2003325046 A JP 2003325046A JP 2003325046 A JP2003325046 A JP 2003325046A JP 2005089244 A JP2005089244 A JP 2005089244A
Authority
JP
Japan
Prior art keywords
film
laminated glass
glass
laminated
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003325046A
Other languages
Japanese (ja)
Inventor
Masaji Onishi
正司 大西
Isao Nakamura
功 中村
Chiharu Takimoto
千晴 瀧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2003325046A priority Critical patent/JP2005089244A/en
Priority to US10/572,321 priority patent/US7517583B2/en
Priority to EP04773079A priority patent/EP1674433A4/en
Priority to PCT/JP2004/013406 priority patent/WO2005028393A1/en
Publication of JP2005089244A publication Critical patent/JP2005089244A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the heat-insulating laminated glass, in which electroconductive ultra-fine particles having heat-ray-shielding property are dispersed in a laminated interlayer film, has small reflectance in a near infrared region of ≤1,000 nm and the heat-insulating performance of the glass is insufficient. <P>SOLUTION: An infrared ray reflecting film, which reflects near infrared rays selectively and has a sheet resistance value within a range of 1 kΩ/square to 10 GΩ/square, is formed on at least one transparent glass sheet constituting the laminated glass. The infrared ray reflecting film is a film obtained by periodically laminating low refractive index layers and high refractive index layers, or a film obtained by laminating each single layer of a metal, an oxide and a nitride, having absorption and reflection in the infrared region, or alternately laminating the metal, the oxide and the nitride. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両用窓ガラス、建築用窓ガラス等に用いられる赤外線(熱線)反射性、電波透過性に優れる合わせガラスに関する。   The present invention relates to a laminated glass excellent in infrared (heat ray) reflectivity and radio wave transmission used for window glass for vehicles, window glass for buildings, and the like.

近年、建築用ガラス又は車輌用ガラスにおいて室内或いは車内に通入する太陽輻射エネルギーを遮蔽し、室内或いは車内の温度上昇、冷房負荷を低減させる目的から熱線(赤外線)遮蔽性を有する断熱ガラスが、さらに車輌用ガラスにおいては人的、物的両面や環境に優しくするため紫外線遮蔽を付加したものが採用されている。   In recent years, heat insulating glass having heat ray (infrared ray) shielding properties for the purpose of shielding solar radiation energy that passes into a room or vehicle in building glass or vehicle glass, and reducing the temperature rise or cooling load in the room or vehicle, Furthermore, in order to be friendly to both human and physical aspects and the environment, glass for vehicles is added with ultraviolet shielding.

なかでも、最近、導電性超微粒子を合わせガラス用中間膜中に分散した断熱合わせガラスは、前記断熱性、紫外線遮蔽性とともに可視光線透過性、電波透過性等にも優れるために、それらに関する特許出願がなされつつある。   Among them, recently, heat insulating laminated glass in which conductive ultrafine particles are dispersed in an interlayer film for laminated glass is excellent in visible light transmission, radio wave transmission, etc. in addition to the above heat insulating properties, ultraviolet shielding properties, and patents related thereto. An application is being made.

例えば、特許文献1には、2枚の透明ガラス板状体の間に中間層を有する合わせガラスにおいて、該中間膜層中に0.2μm以下の導電性等の機能性を有する微粒子を分散させた合わせガラスが開示されており、特許文献2には、一対のガラスと該ガラスの間に設けた軟質樹脂からなる合わせガラスにおいて、該軟質樹脂層は熱線遮断性金属酸化物を含有してなる合わせガラスが開示されている。   For example, in Patent Document 1, in a laminated glass having an intermediate layer between two transparent glass plates, fine particles having functionality such as conductivity of 0.2 μm or less are dispersed in the intermediate film layer. A laminated glass comprising a pair of glasses and a soft resin provided between the glasses is disclosed in Patent Document 2, wherein the soft resin layer contains a heat ray-blocking metal oxide. Laminated glass is disclosed.

また、特許文献3には、少なくとも2枚の透明ガラス板状体の間に3層からなる合わせ中間膜を設けた合わせガラスにおいて、該3層中の第2層の中間膜中に粒径が0.2μm以下の機能性超微粒子を分散させてなる合わせガラスが、特許文献4には、粒径0.1μm以下の熱線遮蔽性無機化合物が分散した可塑剤を透明樹脂に添加し、この透明樹脂を成形することを特徴とする透明樹脂成形体の製造方法が開示されている。   Further, in Patent Document 3, in a laminated glass in which a laminated interlayer film composed of three layers is provided between at least two transparent glass plates, the particle size of the interlayer film of the second layer in the three layers is A laminated glass formed by dispersing functional ultrafine particles of 0.2 μm or less is disclosed in Patent Document 4 in which a plasticizer in which a heat ray shielding inorganic compound having a particle size of 0.1 μm or less is dispersed is added to a transparent resin. A method for producing a transparent resin molded product characterized by molding a resin is disclosed.

太陽光線の中でも、780nm以上の波長をもつ赤外線(特に、波長780nmから2100nmの近赤外線)は、熱的作用が大きく物質に吸収されると熱として放出され温度上昇をもたらすことから熱線(赤外線)と呼ばれ、窓ガラスから入る赤外線を遮断すれば車輌や建築物の温度上昇を抑えることによって断熱性を高めることができる事が知られている。   Among solar rays, infrared rays having a wavelength of 780 nm or more (especially, near infrared rays having a wavelength of 780 nm to 2100 nm) are released as heat when the thermal action is greatly absorbed by a substance, resulting in a temperature rise. It is known that heat insulation can be improved by suppressing the temperature rise of vehicles and buildings if the infrared rays entering from the window glass are cut off.

特開平8−259279号公報JP-A-8-259279 特開平8−217500号公報JP-A-8-217500 特開平10−297945号公報Japanese Patent Laid-Open No. 10-297945 特許第3040681号公報Japanese Patent No. 3040681

しかしながら、特許文献1〜4に記載の、合わせ中間膜中に熱線遮蔽性を有する導電性超微粒子を分散させてなる断熱合わせガラスは、合わせ中間膜中に熱線遮蔽性超微粒子を含有しない汎用の合わせ中間膜を用いた通常の合わせガラスと比較して熱線反射性能は格段に向上するが、赤外線でもエネルギーの大きい約1000nm以下の近赤外領域の反射率が小さく、断熱性能が十分なものとは言い難い。   However, the heat insulating laminated glass described in Patent Documents 1 to 4 in which conductive ultrafine particles having heat ray shielding properties are dispersed in the laminated intermediate film is a general-purpose material that does not contain heat ray shielding ultrafine particles in the laminated intermediate film. Compared to ordinary laminated glass using laminated interlayer film, the heat ray reflection performance is significantly improved, but even in the infrared, the reflectivity in the near infrared region below about 1000 nm where the energy is large is small, and the heat insulation performance is sufficient. Is hard to say.

また、一般にLow−Eと呼ばれる銀等の貴金属を積層したコーティングは、熱線を反射することにより吸収エネルギー量を低減でき効果的であるが、大気中の水分により容易に劣化したり、ガラスアンテナやETC等で利用される車輌通信システムの電波を減衰する問題を有していた。   In addition, a coating of a noble metal such as silver generally called Low-E is effective in reducing the amount of energy absorbed by reflecting heat rays, but it is easily degraded by moisture in the atmosphere, There has been a problem of attenuating radio waves of a vehicle communication system used in ETC or the like.

本発明は、従来技術のこのような問題点に鑑みてなしたものであり、導電性超微粒子を合わせ中間膜中に分散させた中間膜(以後機能性合わせ中間膜と呼ぶ)を用いるとともに、近赤外線の特定領域の波長を選択的に反射する赤外線反射膜を相対向する2枚のガラス基板の少なくとも1枚に設け、電波透過性能を有する、非常に高性能な断熱合わせガラスを提供する。   The present invention has been made in view of such problems of the prior art, and uses an intermediate film in which conductive ultrafine particles are dispersed in an intermediate film (hereinafter referred to as a functionally combined intermediate film). An extremely high performance heat-insulated laminated glass having radio wave transmission performance is provided by providing an infrared reflection film that selectively reflects wavelengths in a specific region of near infrared rays on at least one of two opposing glass substrates.

すなわち、本発明の合わせガラスは、少なくとも2枚の透明ガラス板状体の間に中間膜層を有する合わせガラスにおいて、該中間膜層の中に粒径が0.2μm以下の機能性超微粒子を分散せしめ、合わせガラスを構成する少なくとも1枚の透明ガラス板状体に、近赤外線を選択的に反射する、シート抵抗値が1kΩ/口〜10GΩ/口の範囲にある赤外線反射膜が形成されてなり、該機能性超微粒子は、Sn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moの金属、酸化物、窒化物、硫化物またはSbやFのドープ物の各単独物、もしくはこれらの中から少なくとも2種以上を選択してなる複合物、あるいは当該各単独物もしくは複合物に有機樹脂物を含む混合物、あるいは当該各単独物もしくは複合物を被覆した被膜物、あるいはアンチモンドープ錫酸化物および/または錫ドープインジウム酸化物でなることを特徴とする合わせガラスである。   That is, the laminated glass of the present invention is a laminated glass having an intermediate film layer between at least two transparent glass plates, and functional ultrafine particles having a particle size of 0.2 μm or less are contained in the intermediate film layer. An infrared reflecting film having a sheet resistance value in the range of 1 kΩ / port to 10 GΩ / port is formed on at least one transparent glass plate that is dispersed and constitutes a laminated glass, and selectively reflects near infrared rays. The functional ultrafine particles are Sn, Ti, Si, Zn, Zr, Fe, Al, Cr, Co, Ce, In, Ni, Ag, Cu, Pt, Mn, Ta, W, V, and Mo metals. , Oxides, nitrides, sulfides, Sb and F dopes, or composites selected from at least two of these, or organic resins for each of these singles or composites A mixture, including Is a laminated glass characterized by comprising in the each single compound or coating was coated composite, or antimony-doped tin oxide and / or tin-doped indium oxide.

また、本発明の合わせガラスは、前記赤外線反射膜が、低屈折率層と高屈折率層とが周期的に積層された構成の膜であることを特徴とする合わせガラスである。   The laminated glass of the present invention is a laminated glass characterized in that the infrared reflective film is a film having a structure in which a low refractive index layer and a high refractive index layer are periodically laminated.

また、本発明の合わせガラスは、赤外線反射膜が、赤外域に吸収及び反射を有する金属、酸化物、窒化物を単層及び交互に積層されたものであることを特徴とする合わせガラスである。   In addition, the laminated glass of the present invention is a laminated glass characterized in that the infrared reflective film is formed by laminating a single layer and alternately a metal, an oxide, and a nitride having absorption and reflection in the infrared region. .

また、本発明の合わせガラスは、赤外線反射膜のシート抵抗値が、1kΩ/□以上であり、建物の窓に使用することを特徴とする合わせガラスである。   The laminated glass of the present invention is a laminated glass characterized in that the sheet resistance value of the infrared reflective film is 1 kΩ / □ or more and is used for a window of a building.

また、本発明の合わせガラスは、赤外線反射膜のシート抵抗値が、20kΩ/□であり、車両の窓に使用することを特徴とする合わせガラスである。   The laminated glass of the present invention is a laminated glass characterized in that the sheet resistance value of the infrared reflecting film is 20 kΩ / □, and it is used for a vehicle window.

本発明の高断熱合わせガラスは、電波を透過し、高い熱線遮蔽性能を有する合わせガラスを提供するものである。   The highly heat-insulated laminated glass of the present invention provides a laminated glass that transmits radio waves and has high heat ray shielding performance.

本発明による高断熱合わせガラスは電波塔か性能を有し、AM電波、FM電波、TV電波帯等の放送における受信障害などの低減をすることができ、フロートガラスと同等の電波透過性能を有するので、車輌用のテレビ、ラジオ、携帯電話等のためのガラスアンテナの受信性能を低下させることなく、あるいはゴースト現象等の電波障害を低減することができ、本来のガラスアンテナ性能を発揮させ、車輌内外での快適な環境を確保することができる。   The highly heat-insulated laminated glass according to the present invention has the performance of a radio tower, can reduce reception interference in broadcasting of AM radio waves, FM radio waves, TV radio bands, etc., and has radio wave transmission performance equivalent to that of float glass. Therefore, it is possible to reduce the radio wave interference such as a ghost phenomenon without deteriorating the reception performance of the glass antenna for a vehicle TV, radio, mobile phone, etc. A comfortable environment inside and outside can be secured.

さらに、ガラスとガラス、ガラスと合成樹脂板、バイレヤー等の合わせガラスとして使用可能であり、色調も無色から各種色調を選択することができ、建築、自動車あるいは飛行機などの開口部に用いられる窓ガラスに、電波透過型の高断熱合わせガラスを提供するものである。   Furthermore, it can be used as laminated glass such as glass and glass, glass and synthetic resin plate, barrier, etc., and the color tone can be selected from various colors from colorless to window glass used for openings in architecture, automobiles, airplanes, etc. In addition, a radio wave transmission type highly insulated laminated glass is provided.

本発明は、機能性超微粒子が分散させられている機能性合わせ中間膜を用いて、少なくとも2枚の透明ガラス板状体が積層され合わせガラスであり、しかも、2枚の透明ガラス板状体の少なくとも1面に、電波透過性能を有する赤外線反射膜が形成されたものである。図1は、機能性合わせ中間膜3を1枚用い、赤外線反射膜4が1層でなる、本発明の合わせガラスの簡単な構成例である。   The present invention is a laminated glass in which at least two transparent glass plates are laminated using a functional laminated interlayer in which functional ultrafine particles are dispersed, and two transparent glass plates An infrared reflecting film having radio wave transmission performance is formed on at least one surface. FIG. 1 shows a simple configuration example of the laminated glass of the present invention, in which one functional laminated intermediate film 3 is used and the infrared reflective film 4 is composed of one layer.

中間膜に分散させる機能性超微粒子の粒径を0.2μm以下とするのは、可視光域の散乱反射を抑制しながら赤外線(熱線)を遮蔽する等の超微粒子の機能特性を充分発揮しつつ、超低ヘーズ値、電波透過性能、透明性を確保するためと、超微粒子を含有せしめても従来の合わせ中間膜として、例えば、接着性、透明性、耐久性等の物性を維持し、通常の合わせガラス製造ラインの通常作業で合わせガラス化処理ができるようにするためである。   When the particle size of the functional ultrafine particles dispersed in the interlayer film is 0.2 μm or less, the functional properties of the ultrafine particles such as shielding infrared rays (heat rays) are sufficiently exhibited while suppressing scattering reflection in the visible light region. While maintaining ultra-low haze value, radio wave transmission performance, transparency, and maintaining conventional physical properties such as adhesion, transparency, durability, etc., even if ultrafine particles are included, This is because a laminated vitrification process can be performed in a normal operation of a normal laminated glass production line.

さらに、粒径は、0.15μm以下とする方が好ましく、より好ましくは0.10〜0.001μmの範囲である。なお粒径分布の範囲については、例えば0.03〜0.01μmと均一化されていることがよい。   Furthermore, the particle size is preferably 0.15 μm or less, and more preferably in the range of 0.10 to 0.001 μm. In addition, about the range of particle size distribution, it is good to make it uniform with 0.03-0.01 micrometer, for example.

また、合わせ中間膜への機能性超微粒子の混合割合は10.0重量%以下であることが好ましい。10.0重量%以下とすることにより、超微粒子の粒径と同様に、可視光域の散乱反射を抑制しながら熱線を遮蔽するという機能特性を充分発揮させ、さらに、超低ヘーズ値、電波透過性能、透明性であるようにし、しかも、超微粒子を含有せしめても従来の合わせ中間膜として、例えば、接着性、透明性、耐久性等の物性を維持し、通常の合わせガラス製造ラインによる通常作業で合わせガラス化処理ができるようにするためである。   The mixing ratio of the functional ultrafine particles to the laminated interlayer film is preferably 10.0% by weight or less. By making it 10.0% by weight or less, it is possible to sufficiently exhibit the functional characteristics of shielding the heat ray while suppressing the scattering reflection in the visible light region, as well as the particle size of the ultrafine particles. Even if it is made to have permeation performance and transparency, and even if it contains ultrafine particles, as a conventional laminated interlayer film, for example, it maintains physical properties such as adhesiveness, transparency, durability, etc. This is because the laminated vitrification process can be performed in a normal operation.

機能性超微粒子の混合割合が10.0重量%を超えるようになると、透明性、電波透過性、接着性などを、特に自動車用窓ガラスはもちろん建築用窓ガラスとしても実現し難くなるためである。例えば、建築用の高断熱合わせガラスの場合は、混合割合が10〜0.1重量%必要であり、より好ましくは8.0〜0.05重量%であり、自動車用の場合には、好ましい混合割合としては約2.0〜0.01重量%、より好ましくは1.5〜0.05重量%、さらに好ましくは1.0〜0.1重量%である。いずれにしても、合わせガラスとしての性能保持とめざす機能性能との兼ね合いでその混合割合(含有量)は適宜決定することが望ましい。   If the mixing ratio of functional ultrafine particles exceeds 10.0% by weight, it will be difficult to achieve transparency, radio wave transmission, adhesion, etc., especially for automotive windowpanes as well as architectural windowpanes. is there. For example, in the case of highly heat-insulated laminated glass for construction, the mixing ratio is required to be 10 to 0.1% by weight, more preferably 8.0 to 0.05% by weight, which is preferable for automobiles. The mixing ratio is about 2.0 to 0.01% by weight, more preferably 1.5 to 0.05% by weight, and still more preferably 1.0 to 0.1% by weight. In any case, it is desirable to appropriately determine the mixing ratio (content) in view of maintaining the performance as a laminated glass and the functional performance aimed at.

機能性合わせ中間膜用の樹脂としては、ポリビニルブチラール系樹脂膜(PVB系)、あるいはエチレンー酢酸ビニル共重合体系樹脂膜(EVA系)を用いることが出来、これらが合わせ中間膜として汎用性のものであるから好ましく、合わせガラスとしての品質をニーズに整合し得るような合わせ中間膜となるものであれば特に限定するものではない。具体的には可塑性PVB[積水化学工業社製、三菱モンサント社製等]、EVA[デュポン社製、武田薬品工業社製、デュラミン]、変性EVA[東ソー社製、メルセンG]等である。なお、紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色、接着調製剤等を適宜添加配合する。特に、紫外線吸収剤を合わせ中間膜用樹脂に添加すると、赤外線とともに紫外線をもカットできるので人的、物的両面や環境に優しくなりより好ましい。   As the resin for the functionally bonded interlayer film, a polyvinyl butyral resin film (PVB system) or an ethylene-vinyl acetate copolymer resin film (EVA system) can be used. Therefore, it is not particularly limited as long as it is a laminated interlayer film that can match the quality of the laminated glass with the needs. Specific examples include plastic PVB [manufactured by Sekisui Chemical Co., Ltd., Mitsubishi Monsanto Co., Ltd.], EVA [manufactured by DuPont Co., Ltd., Takeda Pharmaceutical Co., Ltd., Duramin], modified EVA [manufactured by Tosoh Corporation, Mersen G], and the like. In addition, ultraviolet absorbers, antioxidants, antistatic agents, heat stabilizers, lubricants, fillers, coloring agents, adhesive preparation agents, and the like are appropriately added and blended. In particular, it is more preferable to add an ultraviolet absorber to the resin for the interlayer film because it can cut both ultraviolet rays as well as infrared rays.

なお、合わせ中間膜として、超微粒子入り機能性合わせ中間膜と従来の合わせ中間膜とを、例えば両者を重ね合わせる、或いは超微粒子入り機能性合わせ中間膜を従来の合わせ中間膜でサンドイッチする等の構成とするものとしてもよい。   In addition, as a laminated intermediate film, for example, a functional laminated intermediate film containing ultrafine particles and a conventional laminated intermediate film are overlapped, or a functional laminated intermediate film containing ultrafine particles is sandwiched between conventional laminated intermediate films, etc. It may be configured.

機能性超微粒子には、Sn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moの金属、酸化物、窒化物、硫化物あるいはSbやFのドープ物の各単独物、もしくはこれらの中から少なくとも2種以上を選択してなる複合物、さらに当該各単独物もしくは複合物に有機樹脂物を含む混合物または有機樹脂物を被覆した被膜物から選ばれるか、あるいはアンチモンドープ錫酸化物および/または錫ドープインジウム酸化物等、導電性を有する超微粒子を用いることが望ましい。   Functional ultrafine particles include Sn, Ti, Si, Zn, Zr, Fe, Al, Cr, Co, Ce, In, Ni, Ag, Cu, Pt, Mn, Ta, W, V, and Mo metals, oxidation , Nitrides, sulfides, Sb and F dopes, or composites selected from at least two of them, and each single or composite contains an organic resin. It is desirable to use a mixture or a film coated with an organic resin, or to use ultrafine particles having conductivity such as antimony-doped tin oxide and / or tin-doped indium oxide.

特に、可視光領域では透明であり、赤外領域の光に対しては高反射性を有する錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)が、建築用や自動車用に求められる種々の機能性および性能を合わせガラスとして発現するので特に好ましい。   In particular, tin-doped indium oxide (ITO) and antimony-doped tin oxide (ATO), which are transparent in the visible light region and highly reflective to light in the infrared region, are variously required for construction and automobile use. This is particularly preferable because it exhibits the functionality and performance of a laminated glass.

PVB(ポリビニルブチラール)系またはEVA(エチレン−酢酸ビニル共重合体)系合わせ中間膜の場合には、機能性超微粒子を可塑剤中に分散せしめて超微粒子分散可塑剤とし、次いで該超微粒子分散可塑剤をPVB系またはEVA系樹脂溶液中に添加し、適宜その他の添加剤を加え、混合混練して膜用原料樹脂から得るようにすると、可塑剤溶液中に前記機能性超微粒子を均一に分散せしめることができる。   In the case of PVB (polyvinyl butyral) or EVA (ethylene-vinyl acetate copolymer) laminated interlayer film, functional ultrafine particles are dispersed in a plasticizer to form an ultrafine particle dispersed plasticizer, and then the ultrafine particle dispersion When a plasticizer is added to a PVB-based or EVA-based resin solution, and other additives are added as appropriate, and mixed and kneaded to obtain from the film raw resin, the functional ultrafine particles are uniformly distributed in the plasticizer solution. Can be dispersed.

可塑剤としては、例えば、ジオクチルフタレート(DOP)ジイソデシルフタレート(DIDP)、ジトリデシルフタレート(DTDP)、ブチルベンジルフタレート(BBP)などのフタル酸エステル、また、トリクレシルホスフェート(TCP)、トリオクチルホスフェート(TOP)などのリン酸エステル、また、トリブチルシトレート、メチルアセチルリシノレート(MAR)などの脂肪酸エステル、また、トリエチレングリコール・ジ−2−エチルブチレート(3GH)、テトラエチレングリコール・ジヘキサノールなどのポリエーテルエステルなど、また、さらにこれらの混合物が挙げられる。   Examples of the plasticizer include phthalic acid esters such as dioctyl phthalate (DOP) diisodecyl phthalate (DIDP), ditridecyl phthalate (DTDP), butyl benzyl phthalate (BBP), tricresyl phosphate (TCP), and trioctyl phosphate. (TOP) phosphate esters, tributyl citrate, methyl acetyl ricinolate (MAR) fatty acid esters, triethylene glycol di-2-ethylbutyrate (3GH), tetraethylene glycol dihexanol And the like, and also a mixture thereof.

また、有機系紫外線吸収剤あるいは有機系赤外線吸収剤については、有機系紫外線吸収剤としては、例えば、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ・tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ・tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ・tert−アミルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系誘導体、また、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ドデシルオキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン等のベンゾフェノン系誘導体、また、2−エチルヘキシル−2−シアノ−3,3’−ジフェニルアクリレート、エチル−2−シアノ−3,3’−ジフェニルアクリレート等のシアノアクリレート系誘導体などが挙げられる。具体的には、例えば、TINUVIN327[チバガイギー社製]等である。   As for the organic ultraviolet absorber or the organic infrared absorber, examples of the organic ultraviolet absorber include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole and 2- (2′-hydroxy). -3 ', 5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2' -Hydroxy-3 ', 5'-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3', 5'-di-tert-amylphenyl) benzotriazole and other benzotriazoles Derivatives, such as 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy Ci-4-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2-hydroxy-4 Benzophenone derivatives such as methoxy-5-sulfobenzophenone and cyanoacrylate derivatives such as 2-ethylhexyl-2-cyano-3,3′-diphenyl acrylate and ethyl-2-cyano-3,3′-diphenyl acrylate Etc. Specifically, for example, TINUVIN327 (manufactured by Ciba Geigy) or the like.

さらに、有機系赤外線吸収剤としては、例えば、NIR−AM1[帝国化学産業社製]、ことに、近赤外線吸収剤としては、SIR−114、SIR−128、SIR−130、SIR−132、SIR−169、SIR−103、PA−1001、PA−1005[三井東圧化学社製]等が挙げられる。特に、建築用や自動車用に求められる合わせガラスの品質を維持しつつ発揮するものであれば、限定することなく使用できることは言うまでもない。   Furthermore, as an organic type infrared absorber, for example, NIR-AM1 [manufactured by Teikoku Chemical Industry Co., Ltd.], and particularly as a near infrared absorber, SIR-114, SIR-128, SIR-130, SIR-132, SIR -169, SIR-103, PA-1001, PA-1005 [manufactured by Mitsui Toatsu Chemicals] and the like. Needless to say, it can be used without limitation as long as it exhibits the quality of laminated glass required for construction and automobiles.

また、PTFEなどのフッ素樹脂、シリコーンレジン、シリコーンゴムなどの有機樹脂の微粒子を用いることもでき、これらはPVB中間膜とガラスなどの透明基板との接着強度を低減するために適宜用いることができる。すなわち、ATO、ITOなどの金属酸化物の超微粒子は、規格以上の接着強度を付与するようなことが起こりうるために、合わせガラスの接着強度の評価規格であるパンメル値を規格値ないに入るよう適宜調製するために、例えば、前記ガラス基板表面へのプライマー塗布、前記フッ素樹脂、シリコーンレジン、シリコーンゴム等の有機樹脂を被覆した被膜物などと同様の目的で用いることができる。   In addition, fine particles of fluororesin such as PTFE, organic resin such as silicone resin and silicone rubber can be used, and these can be appropriately used to reduce the adhesive strength between the PVB intermediate film and a transparent substrate such as glass. . That is, ultrafine particles of metal oxides such as ATO and ITO may give a bond strength higher than the standard, so the Pummel value, which is an evaluation standard for the adhesive strength of laminated glass, falls outside the standard value. In order to prepare appropriately, it can be used for the same purpose as, for example, application of a primer to the surface of the glass substrate, and a film coated with an organic resin such as the fluororesin, silicone resin, or silicone rubber.

本発明に用いる赤外線反射膜としては、近赤外線の特定領域の波長を選択的に吸収・反射する単層膜、あるいは、低屈折率層と高屈折率層とが周期的に積層された構成の膜を用いることができる。   The infrared reflective film used in the present invention is a single layer film that selectively absorbs / reflects a wavelength in a specific region of near infrared, or a structure in which a low refractive index layer and a high refractive index layer are periodically laminated. A membrane can be used.

吸収・反射をする波長域は、機能性合わせ中間膜が遮蔽する赤外線の波長域と異なるようにすると、熱線の遮蔽性能が向上するので望ましい。   It is desirable to make the wavelength range for absorption and reflection different from the wavelength range of infrared rays shielded by the functional alignment intermediate film, since the heat ray shielding performance is improved.

赤外線反射膜は、透明ガラス板状体に塗膜し、塗膜された赤外線反射膜を中間膜側に配置するようにして積層し、合わせガラスとすることが、赤外線反射膜の耐候性の問題を解消できるので好ましい。   Infrared reflective film is coated on a transparent glass plate, laminated so that the coated infrared reflective film is placed on the intermediate film side, and laminated glass is a problem of weather resistance of the infrared reflective film Is preferable.

限定するものではないが、金属としては、屈折率4.00〜5.00のケイ素、屈折率3.00〜4.00のステンレス鋼、屈折率13.00〜14.00のクロム、窒化物としては、屈折率1.50〜2.50の窒化ケイ素、屈折率1.50〜2.50の窒化クロム、屈折率0.50〜1.50の窒化チタン、屈折率2.00〜3.00の窒化ステンレス鋼等、酸化物としては、屈折率1.20〜2.50の酸化ケイ素、酸化チタン、酸化亜鉛、酸化スズ、酸化タンタル、ITO、屈折率0.10〜1.00の酸化クロム、酸化ステンレス鋼、酸化ニクロム等を単層、あるいは、交互に積層したものを赤外線反射膜として、好適に用いることができる。     Although not limited, the metal includes silicon having a refractive index of 4.00 to 5.00, stainless steel having a refractive index of 3.00 to 4.00, chromium having a refractive index of 13.01 to 14.00, and nitride. As silicon nitride having a refractive index of 1.50 to 2.50, chromium nitride having a refractive index of 1.50 to 2.50, titanium nitride having a refractive index of 0.50 to 1.50, and a refractive index of 2.00 to 3. As an oxide such as 00 nitrided stainless steel, silicon oxide having a refractive index of 1.20 to 2.50, titanium oxide, zinc oxide, tin oxide, tantalum oxide, ITO, oxidation having a refractive index of 0.10 to 1.00 A single layer or alternately laminated layers of chromium, oxidized stainless steel, nichrome oxide, and the like can be suitably used as the infrared reflecting film.

また、金属及び窒化物の膜は、成膜条件や膜厚により、導電性を有し、電波を反射してしまうので、電波を反射しないように、膜厚や膜の成分を決定することが好ましい。   In addition, metal and nitride films have conductivity and reflect radio waves depending on the film formation conditions and film thickness. Therefore, film thickness and film components can be determined so as not to reflect radio waves. preferable.

例えば、クロム、ステンレス鋼等の金属膜については、膜厚を10nm以下とするか、10重量%以下の酸素や窒素を膜中に含有させたりすることが好ましい。窒化ケイ素、窒化クロム、窒化チタン、窒化ステンレス等の窒化物については、膜厚を15nm以下とするか、または、5重量%以下の酸素を膜中に含有させることが好ましい。   For example, for a metal film such as chromium or stainless steel, it is preferable that the film thickness is 10 nm or less, or oxygen or nitrogen of 10% by weight or less is included in the film. For nitrides such as silicon nitride, chromium nitride, titanium nitride, and stainless steel nitride, it is preferable that the film thickness be 15 nm or less, or 5 wt% or less oxygen be included in the film.

赤外線反射膜の成膜方法は、塗膜する膜の成分・膜厚に合わせて、特に限定するものではないが、PVD、CVDあるいはゾルーゲル法など、各種の塗膜手段から適当に選択すればよい。   The method for forming the infrared reflecting film is not particularly limited in accordance with the component and film thickness of the film to be coated, but may be appropriately selected from various coating means such as PVD, CVD or sol-gel method. .

透明ガラス板状体としては、無機質ガラス、有機ガラスあるいはこれらの複合ガラス、特に、所謂フロート法で製造された無機質で透明なクリアから着色ガラス、強化ガラスやそれに類するガラス、プライマーや各種機能性膜等被覆膜付きガラスであって、好ましくは、例えば、グリーン系ガラスやブロンズ系ガラスであり、さらに、例えば、グレー系ガラスやブルー系ガラス等も採用可能である。また、合わせガラスのほか複層ガラス、バイレヤーガラス等、さらに、平板あるいは曲げ板等各種板ガラス製品として使用できることは言うまでもない。   Transparent glass plate-like materials include inorganic glass, organic glass or composite glass thereof, in particular, inorganic and transparent clear to colored glass produced by the so-called float method, tempered glass or similar glass, primer and various functional films. The glass with an equal coating film, preferably, for example, green glass or bronze glass, and further, for example, gray glass or blue glass can be employed. Moreover, it cannot be overemphasized that it can use as various plate glass products, such as a laminated glass, a barrier glass, etc. besides a laminated glass, and also a flat plate or a bending plate.

また、透明ガラス板状体の板厚としては、例えば、1.0 mm以上12mm以下であり、建築用としては、2.0mm以上10mm以下が好ましく、自動車用としては、1.5mm以上3.0mm以下が好ましく、より好ましくは2.0mm以上2.5mm以下である。   The plate thickness of the transparent glass plate is, for example, from 1.0 mm to 12 mm, preferably from 2.0 mm to 10 mm for construction, and from 1.5 mm to 3 mm for automobiles. 0 mm or less is preferable, More preferably, it is 2.0 mm or more and 2.5 mm or less.

本発明の合わせガラスは、種々の建築用窓ガラス等として使用できることはもちろん、特に、自動車用窓ガラスとして、例えば、フロントガラス、リアガラス、ことに、シェードバンド付きリアガラス、サイドガラスあるいはサンルーフガラスあるいは他の種々のガラス等に使用できるものである。
本発明の合わせガラスの光学特性は、相対向する2枚のガラス基板としてクリアーガラス(FL2)を用いた場合に換算して、可視光線透過率(波長380〜780nm)が65%以上、日射透過率(波長300〜2100nm)が65%以下であることが好ましい。なお、特に自動車用窓ガラスの場合には、可視光線透過率が70%以上で日射透過率が60%以下であればより好ましい。また、日射反射率は7.0%以上であることが好ましい。また、2枚のガラス基板としてグリーンガラス(MFL2)を用いた場合に換算すると、可視光線透過率が70%以上、日射透過率が60%以下であることが好ましく、日射反射率は7.0%以上であることがより好ましい。
The laminated glass of the present invention can be used as various architectural windowpanes, etc. Of course, particularly as windowpanes for automobiles, for example, windshields, rear glasses, particularly rear glasses with shade bands, side glasses, sunroof glasses, or other It can be used for various glasses.
The optical characteristics of the laminated glass of the present invention are as follows when the clear glass (FL2) is used as two opposing glass substrates, the visible light transmittance (wavelength 380 to 780 nm) is 65% or more, and the sunlight is transmitted. The rate (wavelength 300 to 2100 nm) is preferably 65% or less. In particular, in the case of an automobile window glass, it is more preferable that the visible light transmittance is 70% or more and the solar radiation transmittance is 60% or less. The solar reflectance is preferably 7.0% or more. Further, when converted to the case where green glass (MFL2) is used as the two glass substrates, the visible light transmittance is preferably 70% or more and the solar radiation transmittance is preferably 60% or less, and the solar reflectance is 7.0. % Or more is more preferable.

特に、自動車用窓ガラスとしては、電波透過性能を透明ガラス板状体の電波透過性能と同等な程度とし、かつ赤外線(熱線)遮蔽性能を日射透過率が50%以下と格段に高め、居住性をさらに向上したなかで、運転者や搭乗者等が安全上等で必要である可視光透過率を65%以上とした透視性、例えば、可視光透過率が70%以上等を確保し法規上もクリアできるようにでき、しかも、運転者や搭乗者等における透視性低下、誤認あるいは目の疲労などの防止に必要である可視光反射率を従来の値よりさらに低減せしめることができ、最適な電波透過型高断熱合わせガラスが得られる。なお、自動車用としては、好ましくは可視光透過率が68〜70%以上、可視光反射率が14%以下、しかも、日射透過率が60%以下であり、建築用としては、好ましくは可視光透過率が30%以上、可視光反射率が20%以下、しかも、日射透過率が65%以下である。   In particular, for automotive window glass, radio wave transmission performance is comparable to that of transparent glass plates, and infrared (heat ray) shielding performance is dramatically improved to a solar radiation transmittance of 50% or less. As a result of further improvements, the visibility of the visible light transmittance required by drivers and passengers for safety, etc. is 65% or higher, for example, the visible light transmittance is 70% or higher, etc. In addition, the visible light reflectivity necessary for preventing loss of transparency, misperception or eye fatigue in drivers and passengers can be further reduced from the conventional value. A radio wave transmission type high heat insulation laminated glass is obtained. For automobiles, the visible light transmittance is preferably 68 to 70% or more, the visible light reflectance is 14% or less, and the solar radiation transmittance is 60% or less. For construction, preferably visible light is used. The transmittance is 30% or more, the visible light reflectance is 20% or less, and the solar radiation transmittance is 65% or less.

赤外線反射膜のシート抵抗値は、電波を透過させるため、500Ω/口〜10GΩ/口の範囲にあることが好ましく、電波を十分に透過させるためには1kΩ/口〜10GΩ/口の範囲とすることが好ましい。   The sheet resistance value of the infrared reflecting film is preferably in the range of 500Ω / port to 10 GΩ / port in order to transmit radio waves, and in the range of 1 kΩ / port to 10 GΩ / port in order to transmit radio waves sufficiently. It is preferable.

また、自動車のフロントガラス、リアーガラスあるいはサイドガラス等、自動車用のガラスとして用いる場合は、20kΩ/□以上とすることが好ましく、ガラスに通信用のアンテナが設けられている場合は、10MΩ/□以上とすることが好ましい。   In addition, when used as automotive glass, such as an automobile windshield, rear glass, or side glass, it is preferably 20 kΩ / □ or more, and when a communication antenna is provided on the glass, 10 MΩ / □ or more. It is preferable that

建物の窓ガラスに用いられる場合は、AM電波、FM電波等の放送における受信障害あるいはTV映像でのゴースト現象等の電波障害などを発現しないようにするために、赤外線反射膜のシート抵抗値は1kΩ/□以上とすることが望ましい。   When used for window glass of buildings, the sheet resistance value of the infrared reflecting film is set to prevent reception interference in broadcasting of AM radio waves, FM radio waves, etc. or radio interference such as ghost phenomenon in TV images. 1 kΩ / □ or more is desirable.

本発明の合わせガラスは、自動車や建築に通常用いられる合わせガラスと同様の方法、すなわち、減圧下で常温から120℃まで昇温した後、80〜120℃の温度範囲で20〜30分間加熱する、オートクレーブ法による合わせ加工で作製することができる。   The laminated glass of the present invention is heated in the same manner as the laminated glass usually used in automobiles and buildings, that is, from room temperature to 120 ° C. under reduced pressure, and then heated in the temperature range of 80 to 120 ° C. for 20 to 30 minutes. , And can be produced by a combination process by an autoclave method.

以下、実施例により本発明を具体的に説明する。ただし、本発明は実施例によって限定されるものではない。   Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to the examples.

実施例1
(1)機能性合わせ中間膜の作製
20重量%ITO超微粒子(粒径0.02μm以下)を分散含有させたBBP(ブチルベンジルフタレート)10gと通常のBBP90gをPVB(ポリビニルブチラール)樹脂322gに添加し、他の紫外線吸収剤等とともに3本のロールのミキサーにより約70℃で約15分間練り込み混合した。得られた成膜用原料樹脂を型押出機にて190℃前後で厚み約0.8mmにフィルム化し、ロールに巻き取り機能性合わせ中間膜を作製した。なお、フィルム表面には均一な凹凸のしぼを設けた。
Example 1
(1) Production of functionally matched interlayer film 10 g of BBP (butylbenzyl phthalate) in which 20 wt% ITO ultrafine particles (particle size of 0.02 μm or less) are dispersed and 90 g of ordinary BBP are added to 322 g of PVB (polyvinyl butyral) resin. The mixture was kneaded and mixed at about 70 ° C. for about 15 minutes with a mixer of three rolls together with other ultraviolet absorbers and the like. The obtained raw material resin for film formation was formed into a film having a thickness of about 0.8 mm at around 190 ° C. by a mold extruder, and a roll-up functionally matched intermediate film was produced on a roll. The film surface was provided with uneven irregularities.

(2)赤外線反射膜の成膜
透明ガラス板状体に板厚が2mmのフロート法によって製造された透明な板ガラスを用いた。該板ガラスを中性洗剤と純水とによる洗浄を行った後に、スパッタリング装置を用いて下記手順で赤外線反射膜を形成した。先ず、スパッタリング装置に、成膜に必要な金属ターゲットを取り付けたのち、成膜前に真空度が約10-3Paとなるまでスパッタリング装置内を排気した。なお、本方法は、真空チャンバー内のターゲットの下方に搬送ロールが設置され、該搬送ロール上をガラス基板が往復動する時に電力が印加されたターゲットより所定の金属膜窒化膜、酸化物がガラス板上に成膜されるようになっている。1パス目として、成膜室の雰囲気を酸化性雰囲気(O2:Ar=95:5)に保持し、Znターゲットにより第1層誘電体層の1層目としてのZnOを14nm成膜した。2パス目として成膜室の雰囲気をアルゴン雰囲気(Ar=100)に保持し、SSTターゲットにより2層目としてのSSTを8nm成膜した。3パス目として成膜室の雰囲気を酸化性雰囲気(O2:Ar=95:5)に保持し、Znターゲットにより3層目としてのZnOを14nm成膜した。成膜後のガラスは真空チャンバーから排出した。
(2) Formation of Infrared Reflective Film A transparent plate glass produced by a float method having a plate thickness of 2 mm was used for a transparent glass plate. After the plate glass was washed with a neutral detergent and pure water, an infrared reflection film was formed by the following procedure using a sputtering apparatus. First, after attaching a metal target necessary for film formation to the sputtering apparatus, the inside of the sputtering apparatus was evacuated until the degree of vacuum was about 10 −3 Pa before film formation. In this method, a transport roll is installed under the target in the vacuum chamber, and when a glass substrate reciprocates on the transport roll, a predetermined metal film nitride film and oxide are glass from the target to which power is applied. A film is formed on a plate. In the first pass, the atmosphere of the film formation chamber was maintained in an oxidizing atmosphere (O 2 : Ar = 95: 5), and ZnO as a first layer of the first dielectric layer was formed to 14 nm with a Zn target. As the second pass, the atmosphere of the film formation chamber was maintained in an argon atmosphere (Ar = 100), and an SST target as a second layer was formed with a thickness of 8 nm. As the third pass, the atmosphere of the film formation chamber was kept in an oxidizing atmosphere (O 2 : Ar = 95: 5), and a ZnO film of 14 nm was formed as a third layer with a Zn target. The glass after film formation was discharged from the vacuum chamber.

(3)合わせガラスの作製
前記(1)で作製した機能性合わせ中間膜を用い、(2)で作製した赤外線反射膜を表面に成形した透明ガラス板状体と、厚みが2mmのフロート法で製造された板ガラスとを合わせ加工して、合わせガラスを作製した。
(3) Production of laminated glass Using the functional laminated interlayer produced in (1) above, a transparent glass plate formed on the surface of the infrared reflective film produced in (2) and a float method having a thickness of 2 mm The produced plate glass was laminated and processed to produce a laminated glass.

図1に示すように、赤外線反射膜4は、機能性合わせ中間膜側3に位置させた。   As shown in FIG. 1, the infrared reflection film 4 was positioned on the functional alignment intermediate film side 3.

合わせガラスの作製は次のようにした。   The laminated glass was produced as follows.

赤外線反射膜を形成した透明ガラス板状体1と機能性合わせ中間膜3とを重ね、次いで機能性合わせ中間膜の上に透明ガラス板状体2を重ねた。さらに、透明ガラス板状体1,2のエッジからはみ出た機能性合わせ中間膜3をエッジに沿って裁断した。次いで、該重ね合わせた透明ガラス板状体5をゴム製の真空袋に入れ、袋内を脱気減圧し、80〜110℃で20〜30分保持した後一旦常温までし、袋から取り出してオートクレーブ装置に入れ、圧力約10〜14kg/cm2、温度110〜140℃で20分間、加圧加熱して、合わせガラス加工し、本発明の合わせガラスを作製した。 The transparent glass plate 1 on which the infrared reflecting film was formed and the functional matching intermediate film 3 were stacked, and then the transparent glass plate 2 was stacked on the functional matching intermediate film. Furthermore, the functional alignment intermediate film 3 that protruded from the edges of the transparent glass plates 1 and 2 was cut along the edges. Next, the laminated transparent glass plate-like body 5 is put in a rubber vacuum bag, the inside of the bag is degassed and depressurized, held at 80 to 110 ° C. for 20 to 30 minutes, once brought to room temperature, and taken out from the bag. It put into the autoclave apparatus, pressure was heated at the pressure of about 10-14 kg / cm < 2 >, the temperature of 110-140 degreeC for 20 minutes, the laminated glass was processed, and the laminated glass of this invention was produced.

作製した合わせガラスについて、下記の測定および評価を行った。   The produced laminated glass was subjected to the following measurements and evaluations.

[光学特性]:分光光度計(340型自記、日立製作所製)で波長300〜2100nmの間の透過率を測定し、JIS Z 8722及びJIS R 3106又はJIS Z 8701によって可視光線透過率、可視光線反射率(380〜780nm、D65光源)、日射透過率、日射反射率(300〜2100nm)を求めた。   [Optical characteristics]: Transmittance between wavelengths of 300 to 2100 nm is measured with a spectrophotometer (manufactured by Hitachi, 340), and visible light transmittance, visible light according to JIS Z 8722, JIS R 3106 or JIS Z 8701 The reflectance (380 to 780 nm, D65 light source), solar transmittance, and solar reflectance (300 to 2100 nm) were determined.

[電波透過性]:KEC法測定(電界シールド効果測定器)によって、電波10〜1000 MHzの範囲の反射損失値(dB)を通常の板厚3mmのクリアガラス(FL3)単板品と対比し、その差の絶対値(△dB)が2dB以内を合格とした。   [Radio wave transmissivity]: By KEC method measurement (electric field shielding effect measuring instrument), the reflection loss value (dB) in the radio wave range of 10 to 1000 MHz is compared with a normal clear glass (FL3) single plate product with a thickness of 3 mm. The absolute value (ΔdB) of the difference was determined to be within 2 dB.

[接着性]:−18±0.6℃の温度で16±4時間放置し調整後、ハンマー打ちでガラスの剥離での合わせ中間膜の露出程度を評価し、露出の少ないものを合格とした。   [Adhesiveness]: After adjusting for 16 ± 4 hours at a temperature of −18 ± 0.6 ° C., the degree of exposure of the laminated interlayer film by hammering was evaluated. .

[耐熱性]:100℃の煮沸水中にて2時間煮沸した後、周辺10mmを除き、残りの部分での泡の発生、くもり、ガラスのひび割れ等の異常がないものを合格とした。   [Heat resistance]: After boiling in boiling water at 100 ° C. for 2 hours, except for the periphery of 10 mm, a product having no abnormality such as generation of bubbles in the remaining portion, cloudiness, and cracking of the glass was regarded as acceptable.

[耐湿性]:50±2℃、相対湿度95±4℃の調製内に2週間静置した後、泡の発生、くもり、ガラスのひび割れ等の異常がないものを合格とした。   [Humidity resistance]: After leaving for 2 weeks in the preparation of 50 ± 2 ° C. and relative humidity 95 ± 4 ° C., a product having no abnormalities such as generation of bubbles, cloudiness, and glass cracking was regarded as acceptable.

[電気的特性]:三菱油化製表面高低抗計(HIRESTA HT−210)によって測定し、シート抵抗値(MΩ/口)が0.02MΩ/口以上を合格とした。   [Electrical Characteristics]: Measured by a surface height resistance meter (HIRESTA HT-210) manufactured by Mitsubishi Oil Chemical Co., Ltd., and a sheet resistance value (MΩ / port) of 0.02 MΩ / port or more was determined to be acceptable.

なお、接着性、耐熱性および耐湿性の評価は、JIS R 3212安全ガラスに準処した。   In addition, evaluation of adhesiveness, heat resistance, and moisture resistance was applied to JIS R 3212 safety glass.

評価結果は表2に示すように、可視光線透過率が74.8%、可視光線反射率が11.0%、日射透過率が59.1%、日射反射率が8.8%を有する。高可視光線透過率、低日射透過率の赤外線遮蔽断熱合わせガラスが得られた。同じ硝子構成である後述の比較例1と比較すると、実施例1のガラスは、可視光線透過率が65%以上を確保し、日射透過率については約9.0%も向上しており、赤外線反射膜の効果の大きいことが判る。   As shown in Table 2, the evaluation results have a visible light transmittance of 74.8%, a visible light reflectance of 11.0%, a solar transmittance of 59.1%, and a solar reflectance of 8.8%. An infrared shielding heat insulating laminated glass having high visible light transmittance and low solar transmittance was obtained. Compared to Comparative Example 1 described later which has the same glass configuration, the glass of Example 1 has a visible light transmittance of 65% or more, and the solar radiation transmittance is improved by about 9.0%. It can be seen that the effect of the reflective film is great.

また、電波透過性については、赤外線反射膜の抵抗値が0.2MΩ/□と非常に高く、通常の単板ガラスと同等の電波透過性を示した。   In addition, regarding the radio wave transmissivity, the resistance value of the infrared reflecting film was as extremely high as 0.2 MΩ / □, and the radio wave transmissivity equivalent to that of a normal single plate glass was exhibited.

また、接着性と耐熱性ならびに耐湿性は、通常の合わせガラスと同等であった。   Moreover, adhesiveness, heat resistance and moisture resistance were equivalent to those of ordinary laminated glass.

実施例2〜実施例11
実施例2から実施例11は、透明板状体に形成した赤外線反射膜のみが実施例1と異なるもので、そのほかは全て実施例1と同様にして作製した合わせガラスである。
Example 2 to Example 11
Examples 2 to 11 are laminated glass produced in the same manner as in Example 1 except that only the infrared reflecting film formed on the transparent plate is different from that in Example 1.

各実施例の赤外線反射膜を構成する各層は、表1に示すターゲット金属、ガス組成、電力および圧力の条件で、実施例1と同様の方法により成膜した。   Each layer constituting the infrared reflective film of each example was formed by the same method as in Example 1 under the conditions of the target metal, gas composition, power and pressure shown in Table 1.

得られた高断熱合わせガラスを評価した結果、表2に示すように、実施例2から実施例11のいずれの合わせガラスも、比較例1比べて日射透過率が低く、赤外線遮蔽断熱性能の良い合わせガラスが得られた。また、各実施例の赤外線反射膜のシート抵抗値は高抵抗であり、電波透過性のよいものであった。   As a result of evaluating the obtained highly heat-insulated laminated glass, as shown in Table 2, any laminated glass of Example 2 to Example 11 has lower solar radiation transmittance than that of Comparative Example 1, and has good infrared shielding heat insulating performance. A laminated glass was obtained. Moreover, the sheet resistance value of the infrared reflective film of each Example was high resistance, and the radio wave permeability was good.

また接着性、耐熱性、耐湿性等の合わせガラスとしての性能も、実施例1と同様に全て合格であった。   Moreover, the performance as laminated glass, such as adhesiveness, heat resistance, and moisture resistance, all passed as in Example 1.

比較例1
赤外線反射膜を設けない他は全て実施例1と同じにして合わせガラスを作製した。評価結果は、表1に示すように可視光線透過率は87.9%、可視光線反射率は8.5%、日射透過率は68.1%、日射反射率は5.7%であった。
Comparative Example 1
A laminated glass was produced in the same manner as in Example 1 except that no infrared reflecting film was provided. As shown in Table 1, the visible light transmittance was 87.9%, the visible light reflectance was 8.5%, the solar transmittance was 68.1%, and the solar reflectance was 5.7%. .

比較例2
赤外線反射膜として、Ag膜を用いるいわゆるLOW−Eと呼ばれる膜を用い、実施例1と同様にして合わせガラスを作製した。評価の結果、表1に示すように可視光線透過率は74.9%、可視光線反射率は14.1%、日射透過率は52.0%、日射反射率は27.5%であり、日射透過率は実施例1から実施例11に比較し低く、断熱性能に優れているが、赤外線反射膜はシート抵抗値が7Ω/□であり、電波透過性能はほとんどなかった。
Comparative Example 2
A laminated glass was produced in the same manner as in Example 1 using a film called LOW-E using an Ag film as an infrared reflecting film. As a result of the evaluation, as shown in Table 1, the visible light transmittance is 74.9%, the visible light reflectance is 14.1%, the solar transmittance is 52.0%, and the solar reflectance is 27.5%. The solar radiation transmittance was lower than in Examples 1 to 11 and excellent in heat insulation performance, but the infrared reflective film had a sheet resistance value of 7Ω / □ and almost no radio wave transmission performance.

Figure 2005089244
Figure 2005089244

Figure 2005089244
Figure 2005089244

実施例1〜5に用いた赤外線反射膜および比較例1の、日射の中で比較的高エネルギーである近赤外域(波長範囲800〜1000nm)の透過率を、表3に示す。比較例1は、赤外線反射膜を形成していない、ITOでなる機能性超微粒子を分散させた中間膜のみによる赤外域の透過率であり、実施例1〜5で用いた赤外線反射膜は、機能性超微粒子を分散させてなる中間膜のみでは達成できない、近赤外域における透過率を低下させるものである。従って、本発明により、機能性超微粒子を分散させてなる中間膜のみでは達成できない、熱線遮蔽性能と、電波透過性能を有する合わせガラスが得られた。   Table 3 shows the transmittance in the near-infrared region (wavelength range of 800 to 1000 nm) that is relatively high energy in the solar radiation of the infrared reflective film used in Examples 1 to 5 and Comparative Example 1. Comparative Example 1 is a transmittance in the infrared region only by the intermediate film in which the functional ultrafine particles made of ITO are dispersed without forming the infrared reflective film, and the infrared reflective film used in Examples 1 to 5 is The transmittance in the near-infrared region is lowered, which cannot be achieved only by an intermediate film formed by dispersing functional ultrafine particles. Therefore, according to the present invention, a laminated glass having heat ray shielding performance and radio wave transmission performance, which cannot be achieved only by an intermediate film formed by dispersing functional ultrafine particles, was obtained.

Figure 2005089244
Figure 2005089244

本発明の合わせガラスの断面図である。It is sectional drawing of the laminated glass of this invention.

符号の説明Explanation of symbols

1,2:透明ガラス板状体
3:機能性合わせ中間膜
4:赤外線反射膜
5:合わせガラス
1, 2: Transparent glass plate 3: Functional laminated interlayer film 4: Infrared reflective film 5: Laminated glass

Claims (5)

少なくとも2枚の透明ガラス板状体の間に中間膜層を有する合わせガラスにおいて、該中間膜層の中に粒径が0.2μm以下の機能性超微粒子を分散せしめ、合わせガラスを構成する少なくとも1枚の透明ガラス板状体に、近赤外線を選択的に反射する、シート抵抗値が1kΩ/口〜10GΩ/口の範囲にある赤外線反射膜が形成されてなり、該機能性超微粒子は、Sn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moの金属、酸化物、窒化物、硫化物またはSbやFのドープ物の各単独物、もしくはこれらの中から少なくとも2種以上を選択してなる複合物、あるいは当該各単独物もしくは複合物に有機樹脂物を含む混合物、あるいは当該各単独物もしくは複合物を被覆した被膜物、あるいはアンチモンドープ錫酸化物および/または錫ドープインジウム酸化物でなることを特徴とする合わせガラス。 In a laminated glass having an intermediate film layer between at least two transparent glass plates, functional ultrafine particles having a particle size of 0.2 μm or less are dispersed in the intermediate film layer to form at least a laminated glass. An infrared reflective film having a sheet resistance value in the range of 1 kΩ / mouth to 10 GΩ / mouth, which selectively reflects near infrared rays, is formed on one transparent glass plate, and the functional ultrafine particles are: Sn, Ti, Si, Zn, Zr, Fe, Al, Cr, Co, Ce, In, Ni, Ag, Cu, Pt, Mn, Ta, W, V, Mo metal, oxide, nitride, sulfide Alternatively, each Sb or F dope, or a composite comprising at least two or more selected from these, or each single or a mixture containing an organic resin in the composite, or each single Or cover the composite The coating material, or antimony-doped tin oxide and / or laminated glass characterized by comprising tin-doped indium oxide. 赤外線反射膜が、低屈折率層と高屈折率層とが周期的に積層された構成の膜であることを特徴とする請求項1に記載の合わせガラス。 The laminated glass according to claim 1, wherein the infrared reflective film is a film having a structure in which a low refractive index layer and a high refractive index layer are periodically laminated. 赤外線反射膜が、赤外域に吸収及び反射を有する金属、酸化物、窒化物を単層及び交互に積層されたものであることを特徴とする請求項1に記載の合わせガラス。 2. The laminated glass according to claim 1, wherein the infrared reflecting film is formed by laminating a single layer and alternately a metal, an oxide, and a nitride having absorption and reflection in the infrared region. 赤外線反射膜のシート抵抗値が、1kΩ/□以上であり、建物の窓に使用することを特徴とする請求項1乃至3のいずれかに記載の合わせガラス。 The laminated glass according to any one of claims 1 to 3, wherein the infrared reflective film has a sheet resistance value of 1 kΩ / □ or more and is used for a window of a building. 赤外線反射膜のシート抵抗値が、20kΩ/□であり、車両の窓に使用することを特徴とする請求項1乃至3に記載の合わせガラス。 4. The laminated glass according to claim 1, wherein the infrared reflective film has a sheet resistance value of 20 kΩ / □ and is used for a window of a vehicle.
JP2003325046A 2003-09-17 2003-09-17 Laminated glass Pending JP2005089244A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003325046A JP2005089244A (en) 2003-09-17 2003-09-17 Laminated glass
US10/572,321 US7517583B2 (en) 2003-09-17 2004-09-15 Laminated glass
EP04773079A EP1674433A4 (en) 2003-09-17 2004-09-15 Laminated glass
PCT/JP2004/013406 WO2005028393A1 (en) 2003-09-17 2004-09-15 Laminated glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325046A JP2005089244A (en) 2003-09-17 2003-09-17 Laminated glass

Publications (1)

Publication Number Publication Date
JP2005089244A true JP2005089244A (en) 2005-04-07

Family

ID=34455608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325046A Pending JP2005089244A (en) 2003-09-17 2003-09-17 Laminated glass

Country Status (1)

Country Link
JP (1) JP2005089244A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020791A1 (en) * 2005-08-16 2007-02-22 Asahi Glass Company, Limited Laminated glass for vehicle window
WO2007049478A1 (en) * 2005-10-26 2007-05-03 Central Glass Company, Limited Near infrared ray reflective substrate and near infrared ray reflective laminated glass employing that substrate, near infrared ray reflective double layer glass
JP2007145689A (en) * 2005-10-26 2007-06-14 Central Glass Co Ltd Near infrared ray-reflective substrate and near infrared ray-reflective laminated glass using the substrate, and near infrared ray-reflective double-glazed unit
JP2007148330A (en) * 2005-11-04 2007-06-14 Central Glass Co Ltd Near infrared ray reflective substrate and near infrared ray reflective laminated glass using the same
US7629040B2 (en) 2005-08-16 2009-12-08 Asahi Glass Company, Limited Infrared reflection glass plate and laminated glass for vehicle window
JP2009285864A (en) * 2008-05-27 2009-12-10 Bridgestone Corp Heat ray shielding film, and heat ray shielding glass laminate using the same
US7760424B2 (en) 2006-06-22 2010-07-20 Toyoda Gosei Co., Ltd. Infrared reflecting device
US8009351B2 (en) 2007-07-13 2011-08-30 Toyoda Gosei, Co., Ltd. Infrared reflective member, and infrared reflective device and method of making same
WO2013099564A1 (en) * 2011-12-28 2013-07-04 コニカミノルタ株式会社 Infrared shielding film, heat reflective laminated glass using same, and method for producing heat reflective laminated glass
JPWO2019221218A1 (en) * 2018-05-16 2021-04-08 積水化学工業株式会社 Laminated glass interlayer film, laminated glass and automobiles

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076896B2 (en) * 2005-08-16 2012-11-21 旭硝子株式会社 Laminated glass for vehicle windows
US7629040B2 (en) 2005-08-16 2009-12-08 Asahi Glass Company, Limited Infrared reflection glass plate and laminated glass for vehicle window
US7638184B2 (en) 2005-08-16 2009-12-29 Asahi Glass Company, Limited Laminated glass for vehicle window
WO2007020791A1 (en) * 2005-08-16 2007-02-22 Asahi Glass Company, Limited Laminated glass for vehicle window
WO2007049478A1 (en) * 2005-10-26 2007-05-03 Central Glass Company, Limited Near infrared ray reflective substrate and near infrared ray reflective laminated glass employing that substrate, near infrared ray reflective double layer glass
JP2007145689A (en) * 2005-10-26 2007-06-14 Central Glass Co Ltd Near infrared ray-reflective substrate and near infrared ray-reflective laminated glass using the substrate, and near infrared ray-reflective double-glazed unit
JP2007148330A (en) * 2005-11-04 2007-06-14 Central Glass Co Ltd Near infrared ray reflective substrate and near infrared ray reflective laminated glass using the same
US7760424B2 (en) 2006-06-22 2010-07-20 Toyoda Gosei Co., Ltd. Infrared reflecting device
US8009351B2 (en) 2007-07-13 2011-08-30 Toyoda Gosei, Co., Ltd. Infrared reflective member, and infrared reflective device and method of making same
JP2009285864A (en) * 2008-05-27 2009-12-10 Bridgestone Corp Heat ray shielding film, and heat ray shielding glass laminate using the same
WO2013099564A1 (en) * 2011-12-28 2013-07-04 コニカミノルタ株式会社 Infrared shielding film, heat reflective laminated glass using same, and method for producing heat reflective laminated glass
JPWO2013099564A1 (en) * 2011-12-28 2015-04-30 コニカミノルタ株式会社 Infrared shielding film, heat ray reflective laminated glass using the same, and method for producing heat ray reflective laminated glass
JPWO2019221218A1 (en) * 2018-05-16 2021-04-08 積水化学工業株式会社 Laminated glass interlayer film, laminated glass and automobiles

Similar Documents

Publication Publication Date Title
JP3154645B2 (en) Automotive laminated glass
EP2822907B1 (en) Window pane for automobile with thermal radiation reflecting coating
US6686032B1 (en) Laminated glass
EP1923362B1 (en) Infrared reflective glass plate and laminated glass for vehicle window
EP1923365B1 (en) Laminated glass for vehicle window
JP5121733B2 (en) Sheet glass
CN107787275B (en) Laminated glazing
US7517583B2 (en) Laminated glass
WO2011019062A1 (en) Laminated glass for use in vehicles
JP3979790B2 (en) High thermal insulation laminated glass
WO2014127868A1 (en) Panel with a coating which reflects thermal radiation
JP3301591B2 (en) Interlayer for laminated glass and laminated glass
JP2005089244A (en) Laminated glass
JP2005089245A (en) Laminated glass
JP3537089B2 (en) Manufacturing method of laminated glass
JP3859965B2 (en) Laminated glass
JP2001214012A (en) Raw material resin for film and method for producing the same
JP3961216B2 (en) Intermediate film for laminated glass and method for producing the same
JP4418830B2 (en) Method for producing resin composition for interlayer film of laminated glass
JP2856683B2 (en) Radio wave transmission type heat ray shielding glass
JP2010042993A (en) Method for producing resin composition for interlayer of laminated glass
EP4188699A1 (en) Projection arrangement for a head-up display (hud) with p-polarized radiation
JPH09142883A (en) Radio wave transmitting heat-shielding glass and its production
CN115151415A (en) Composite glass panel with improved color effect
JP2004002073A (en) Intermediate film and laminated glass using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A131 Notification of reasons for refusal

Effective date: 20090120

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

A02 Decision of refusal

Effective date: 20091013

Free format text: JAPANESE INTERMEDIATE CODE: A02