JP5430520B2 - Manufacturing method of solar cell - Google Patents

Manufacturing method of solar cell Download PDF

Info

Publication number
JP5430520B2
JP5430520B2 JP2010185683A JP2010185683A JP5430520B2 JP 5430520 B2 JP5430520 B2 JP 5430520B2 JP 2010185683 A JP2010185683 A JP 2010185683A JP 2010185683 A JP2010185683 A JP 2010185683A JP 5430520 B2 JP5430520 B2 JP 5430520B2
Authority
JP
Japan
Prior art keywords
solar cell
layer
powder
substrate
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010185683A
Other languages
Japanese (ja)
Other versions
JP2010272890A5 (en
JP2010272890A (en
Inventor
健次 福井
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010185683A priority Critical patent/JP5430520B2/en
Publication of JP2010272890A publication Critical patent/JP2010272890A/en
Publication of JP2010272890A5 publication Critical patent/JP2010272890A5/ja
Application granted granted Critical
Publication of JP5430520B2 publication Critical patent/JP5430520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Description

太陽電池の製造方法に関する。
The present invention relates to a method for manufacturing a solar cell.

従来の太陽電池は、p型Si基板の表面側に、n+層を設けると共に、裏面側にp+層を設けてn+/p/p+接合を形成し、n+層上に受光面電極を形成すると共に、p+層上に裏面電極を形成した構造を有している。また、一般には受光面側に反射防止膜等も設けられる。   A conventional solar cell has an n + layer on the front side of a p-type Si substrate and a p + layer on the back side to form an n + / p / p + junction, and a light receiving surface on the n + layer. An electrode is formed and a back electrode is formed on the p + layer. In general, an antireflection film or the like is also provided on the light receiving surface side.

この太陽電池の受光面電極と裏面電極の形成には、自動化が容易で生産性が高いことから、印刷法が広く用いられている。この印刷法は、金属粉末とガラス粉末などを有機結合剤や有機溶剤と混練したペースト状の物質をスクリーン印刷法などで塗布して焼き付ける方法である。   A printing method is widely used for forming the light-receiving surface electrode and the back electrode of the solar cell because it is easy to automate and has high productivity. This printing method is a method in which a paste-like substance obtained by kneading metal powder and glass powder with an organic binder or an organic solvent is applied and baked by a screen printing method or the like.

一方、p+層の形成にも印刷法が広く用いられており、このためのペースト状物質もp+層形成用アルミニウムペーストとして市販されている。このアルミニウムペーストは、例えばAl粉末が70重量%、ガラスフリットが1重量%、有機結合剤が3重量%、有機結合剤が26重量%などから成る。   On the other hand, a printing method is also widely used for forming the p + layer, and a paste-like material for this purpose is also commercially available as an aluminum paste for forming the p + layer. This aluminum paste comprises, for example, 70% by weight of Al powder, 1% by weight of glass frit, 3% by weight of organic binder, 26% by weight of organic binder, and the like.

しかし、従来のアルミニウムペーストをSi基板上に印刷して乾燥して焼き付けると、次のような問題があった。すなわち、アルミニウムペーストを焼き付けると、Al層とSi基板の熱膨張率の違いから、焼き付け後にSi基板が反り、焼き付け後のカセット収納や次工程での製造プロセスにおいて、自動機のハンドリングミス等が生じ易く、太陽電池素子の割れや欠けを発生させ、製造歩留りを低下させるという問題があった。   However, when a conventional aluminum paste is printed on a Si substrate, dried and baked, there are the following problems. That is, when the aluminum paste is baked, the Si substrate warps after baking due to the difference in the thermal expansion coefficient between the Al layer and the Si substrate, and handling errors of automatic machines occur in the cassette storage after baking and the manufacturing process in the next process. There was a problem that the solar cell element was easily cracked or chipped and the production yield was lowered.

本発明は、このような従来の問題点に鑑みてなされたものであり、電極材料やp+層を
形成するためのペースト材料を焼き付けて形成する際に、Si基板の反りによる製造歩留
りの低下を招くという従来の問題点を解消した太陽電池の製造方法を提供することを目的とする。
The present invention has been made in view of the above-described conventional problems, and when manufacturing the electrode material and the paste material for forming the p + layer by baking, the manufacturing yield is reduced due to the warpage of the Si substrate. It aims at providing the manufacturing method of the solar cell which eliminated the conventional problem of inviting.

上記目的を達成するために、本発明に係る太陽電池の製造方法は、Si基板の一主面側に、p 層および電極のうち少なくとも一方が設けられている太陽電池の製造方法であって、前記p 層および前記電極のうち少なくとも一方は、前記Si基板の一主面側に、粒径10μm以下のAl粉末と該Al粉末100重量部に対して0.5〜50重量部の粒径10μm以下のSi粉末と多価アルコール系の有機溶剤と有機結合剤とを有するペースト材料を空気中で焼き付けて形成することを特徴とする。 In order to achieve the above object, a method for manufacturing a solar cell according to the present invention is a method for manufacturing a solar cell in which at least one of a p + layer and an electrode is provided on one main surface side of a Si substrate. In addition, at least one of the p + layer and the electrode is formed on one main surface side of the Si substrate with Al powder having a particle size of 10 μm or less and 0.5 to 50 parts by weight with respect to 100 parts by weight of the Al powder. the paste material having the following Si powder diameter 10μm and an organic solvent and an organic binder polyhydric alcohol, characterized that you formed by baking in air.

本発明に係る太陽電池の一実施形態を説明するための断面図である。It is sectional drawing for demonstrating one Embodiment of the solar cell which concerns on this invention. 反り量を説明するための図である。It is a figure for demonstrating the amount of curvature.

以下、本発明の実施の形態を添付図面に基づき詳細に説明する。
図1は太陽電池の構成を示す図であり、1はSi基板、2はn+層、3はp+層、4は受光面電極、5は裏面電極であるSi基板1としては、一主面側に0.3〜0.5μm程度の深さを有する比抵抗約1.5×10-3Ω・cm程度のn+層2を形成した比抵抗1〜5Ω・cm程度のp型Si基板1を用いる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a diagram showing the configuration of a solar cell, where 1 is a Si substrate, 2 is an n + layer, 3 is a p + layer, 4 is a light receiving surface electrode, and 5 is a back electrode. A p-type Si having a specific resistance of about 1 to 5 Ω · cm in which an n + layer 2 having a specific resistance of about 1.5 × 10 −3 Ω · cm is formed on the surface side and having a depth of about 0.3 to 0.5 μm. A substrate 1 is used.

ペースト材料は、Al粉末と、このAl粉末100重量部に対して0.5〜50重量部のSiと、有機溶剤と、必要に応じて加えられる有機結合剤とからなる。   The paste material is composed of Al powder, 0.5 to 50 parts by weight of Si with respect to 100 parts by weight of the Al powder, an organic solvent, and an organic binder added as necessary.

ペーストの構成成分中のAl粉末、有機溶剤、有機結合剤は、従来のAlペーストで用いられるものと同様のものを用いることができる。Al粉末としては粒径10μm以下のものが、有機溶剤としては多価アルコール系のものが、有機結合剤としてはセルロース系化合物やポリメタクリレート系化合物などが特に好適に用いられる。Si粉末としては表面を安定化処理したものが用いられる。   The Al powder, organic solvent, and organic binder in the constituent components of the paste can be the same as those used in the conventional Al paste. As the Al powder, those having a particle size of 10 μm or less, polyhydric alcohols as the organic solvent, and cellulose compounds and polymethacrylate compounds as the organic binder are particularly preferably used. As the Si powder, a powder whose surface is stabilized is used.

表面を安定化処理した粒径10μm以下のAl粉末と安定化処理した粒径10μm以下のSi粉末に、エチルセルロースをα−テルピネオールに溶解したものを加えながら混練し、粘度が約200ポイズ(ずり速度100/秒)のペースト材料を調整する。   An Al powder with a particle size of 10 μm or less and a stabilized Si powder with a particle size of 10 μm or less were kneaded with ethyl cellulose dissolved in α-terpineol, and the viscosity was about 200 poise (shear rate) 100 / sec) paste material.

このペースト材料をp型Si基板1の反対面の全面にスクリーン印刷して乾燥し、空気中の700〜850℃で10分〜30分間程度焼き付けてp+層3と裏面電極5を形成する。   This paste material is screen-printed on the entire opposite surface of the p-type Si substrate 1 and dried, and baked at 700 to 850 ° C. in air for 10 to 30 minutes to form the p + layer 3 and the back electrode 5.

次に、前記n+層2にAgペーストをくし歯状にスクリーン印刷して、空気中の600℃程度で10分間程度焼き付けて受光面電極4を形成する。   Next, Ag paste is comb-screened on the n + layer 2 and baked at about 600 ° C. in air for about 10 minutes to form the light-receiving surface electrode 4.

ペースト材料は、Si基板1上に印刷して焼き付けても、Si基板に反りが発生しない。このAlペーストが従来のAlペーストに比べて非常に良好なペースト材料であるのは、次のような理由による。p+層3を形成するために必要な焼成温度は約700℃以上であり、Alペーストを焼き付けると、Alが溶解してp型ドーパントとしてp+層3を形成する。また、電極として用いる場合には、必要な焼成温度は約500〜800℃である。このときもAlペーストを焼き付けると、Alが溶解してAl層が形成される。いずれの場合においても、熱膨張率がSiでは2.5×10-6deg-1、アルミニウムでは23.25×10-6deg-1と約10倍程度異なるため、焼き付け後にはSi基板1に反りが発生する。一方、本発明によるペースト材料では、Siを添加したことによって熱膨張率の差が低減され、反りが低減される。 Even if the paste material is printed on the Si substrate 1 and baked, the Si substrate does not warp. The reason why this Al paste is a very good paste material compared to the conventional Al paste is as follows. The baking temperature necessary to form the p + layer 3 is about 700 ° C. or higher. When the Al paste is baked, Al is dissolved to form the p + layer 3 as a p-type dopant. Moreover, when using as an electrode, a required baking temperature is about 500-800 degreeC. Also at this time, when the Al paste is baked, Al is dissolved and an Al layer is formed. In any case, the coefficient of thermal expansion is 2.5 × 10 −6 deg −1 for Si and 23.25 × 10 −6 deg −1 for aluminum, which is about 10 times different from that of Si. Warping occurs. On the other hand, in the paste material according to the present invention, the addition of Si reduces the difference in coefficient of thermal expansion and reduces warpage.

さらに、Siの配合割合はAl粉末100重量部に対し、0.5〜50重量部としなければならない。0.5重量部未満の配合割合では、Si基板1に反りが発生する。50重量部を超える配合割合では、均一なp+層3が形成されず、また電極の固有抵抗がやや高くなり、太陽電池の効率低下を招き易くなる。   Furthermore, the blending ratio of Si must be 0.5 to 50 parts by weight with respect to 100 parts by weight of the Al powder. When the blending ratio is less than 0.5 parts by weight, the Si substrate 1 is warped. When the blending ratio exceeds 50 parts by weight, the uniform p + layer 3 is not formed, the specific resistance of the electrode is slightly increased, and the efficiency of the solar cell is easily lowered.

したがって、上記ペースト材料は、従来のペーストを用いた場合のように、焼き付け後にSi基板1が反り、焼き付け後のカセット収納や次工程での製造プロセスにおいて自動機のハンドリングミスなどを生じ易く、素子の割れや欠けを発生させたり、製造歩留りを低下させるという問題がない。   Therefore, as in the case where the conventional paste is used, the paste material warps the Si substrate 1 after baking, and is likely to cause a handling error of an automatic machine in a cassette storage after baking or a manufacturing process in the next process. There is no problem of cracking or chipping of the metal or reducing the manufacturing yield.

また、このペースト材料は、Al粉末と、このAl粉末100重量部に対して0.5〜50重量部のSiと、有機溶剤と、必要に応じて加えられる有機結合剤とからなるものであり、太陽電池の電極用ペースト材料として用いると、比較的大面積の素子に均一な電極を有する太陽電池素子を形成することができる。さらに、比較的大面積の素子に均一な接合を有する太陽電池素子を形成することができる。   Moreover, this paste material consists of Al powder, 0.5-50 weight part Si with respect to 100 weight part of this Al powder, an organic solvent, and the organic binder added as needed. When used as a paste material for an electrode of a solar cell, a solar cell element having a uniform electrode on a relatively large area element can be formed. Furthermore, it is possible to form a solar cell element having a uniform junction with a relatively large area element.

表面を安定化処理した粒径10μm以下のAl粉末と表面を安定化処理した粒径10μm以下のSi粉末(配合割合はAl粉末100重量部に対して10重量部)とを秤量した
。これにエチルセルロース10重量部をα−テルピネオール90重量部に溶解したものを加えながら混練し、粘度が約200ポイズ(ずり速度100/秒)のペースト材料を調整した。
The Al powder having a particle size of 10 μm or less whose surface was stabilized and the Si powder having a particle size of 10 μm or less whose surface was stabilized (the blending ratio was 10 parts by weight with respect to 100 parts by weight of the Al powder) were weighed. This was kneaded while adding 10 parts by weight of ethyl cellulose dissolved in 90 parts by weight of α-terpineol to prepare a paste material having a viscosity of about 200 poise (shear rate 100 / sec).

図1に示すp型Si基板1(比抵抗1.5Ω・cm、15cm角ウェハ)の表面にイオン打ち込み法で深さ0.5μmのn+層2(比抵抗約1.5×10-3Ω・cm)を形成したものを用いた。 An n + layer 2 (specific resistance of about 1.5 × 10 −3 ) having a depth of 0.5 μm is formed on the surface of the p-type Si substrate 1 (specific resistance 1.5 Ω · cm, 15 cm square wafer) shown in FIG. What formed (ohm * cm) was used.

次に、このp型Si基板1の反対面の全面に上記ペーストをスクリーン印刷し、150℃、10分間の乾燥処理をした。   Next, the paste was screen-printed on the entire opposite surface of the p-type Si substrate 1 and dried at 150 ° C. for 10 minutes.

次に、これを空気中の750℃で30分間焼き付けてp+層3と裏面電極5を形成した。   Next, this was baked at 750 ° C. for 30 minutes in the air to form the p + layer 3 and the back electrode 5.

次に、前記n+層2にAgペーストをくし型状にスクリーン印刷し、150℃で10分間の乾燥処理をした。   Next, Ag paste was screen printed in a comb shape on the n + layer 2 and dried at 150 ° C. for 10 minutes.

次に、これを空気中で600℃で10分間焼き付けて受光面電極4を形成した。このようにして作成した太陽電池の反り量および光照射下での電流−電圧特性(V−I)を調べた。なお、反り量とは、図2に示すように、Si基板1の厚さ方向における最底部と最上部との間の寸法である。   Next, this was baked in air at 600 ° C. for 10 minutes to form the light-receiving surface electrode 4. The warpage amount of the solar cell thus prepared and the current-voltage characteristic (VI) under light irradiation were examined. The warpage amount is a dimension between the bottom and top in the thickness direction of the Si substrate 1 as shown in FIG.

Figure 0005430520
Figure 0005430520

表1に示したごとく、Si粉末を配合したペースト材料を用いた太陽電池は、反りを防止するのみでなく、有効なp+層および電極としても使用でき、従来のAlペースト(表1の比較例)に比べて非常に優れていることが確認された。   As shown in Table 1, a solar cell using a paste material blended with Si powder can be used not only for warping but also as an effective p + layer and electrode. It was confirmed that it was very superior to Example).

1:p型Si基板、
2:n+層、
3:p+層、
4:受光面電極、
5:裏面電極
1: p-type Si substrate,
2: n + layer,
3: p + layer,
4: Light receiving surface electrode,
5: Back electrode

Claims (2)

Si基板の一主面側に、p層および電極のうち少なくとも一方が設けられている太陽電池の製造方法であって、
前記p層および前記電極のうち少なくとも一方は、前記Si基板の一主面側に、粒径10μm以下のAl粉末と該Al粉末100重量部に対して0.5〜50重量部の粒径10μm以下のSi粉末と多価アルコール系の有機溶剤と有機結合剤とを有するペースト材料を空気中で焼き付けて形成ることを特徴とする太陽電池の製造方法
A method for manufacturing a solar cell in which at least one of a p + layer and an electrode is provided on one main surface side of a Si substrate,
At least one of the p + layer and the electrode has an Al powder having a particle size of 10 μm or less on one main surface side of the Si substrate and a particle size of 0.5 to 50 parts by weight with respect to 100 parts by weight of the Al powder. method of manufacturing a solar cell using the paste material, wherein that you formed and baked in air having a 10μm following Si powder and polyhydric alcohol-based organic solvent and an organic binder.
前記有機結合剤としてセルロース系化合物を用いることを特徴とする請求項1に記載の太陽電池の製造方法The method for producing a solar cell according to claim 1, wherein a cellulose compound is used as the organic binder.
JP2010185683A 2010-08-21 2010-08-21 Manufacturing method of solar cell Expired - Fee Related JP5430520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010185683A JP5430520B2 (en) 2010-08-21 2010-08-21 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010185683A JP5430520B2 (en) 2010-08-21 2010-08-21 Manufacturing method of solar cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000130857A Division JP2001313402A (en) 2000-04-28 2000-04-28 Paste material for solar battery

Publications (3)

Publication Number Publication Date
JP2010272890A JP2010272890A (en) 2010-12-02
JP2010272890A5 JP2010272890A5 (en) 2011-10-06
JP5430520B2 true JP5430520B2 (en) 2014-03-05

Family

ID=43420611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010185683A Expired - Fee Related JP5430520B2 (en) 2010-08-21 2010-08-21 Manufacturing method of solar cell

Country Status (1)

Country Link
JP (1) JP5430520B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011056087B4 (en) 2011-12-06 2018-08-30 Solarworld Industries Gmbh Solar cell wafer and process for metallizing a solar cell
US20140158192A1 (en) * 2012-12-06 2014-06-12 Michael Cudzinovic Seed layer for solar cell conductive contact

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927579A (en) * 1982-08-04 1984-02-14 Hoxan Corp Manufacture of solar battery
JPS60140881A (en) * 1983-12-28 1985-07-25 Hitachi Ltd Manufacture of semiconductor device
JPS629680A (en) * 1985-07-08 1987-01-17 Hitachi Ltd Manufacture of solar cell
JP3469729B2 (en) * 1996-10-31 2003-11-25 三洋電機株式会社 Solar cell element
JPH10247418A (en) * 1997-03-04 1998-09-14 Murata Mfg Co Ltd Conductive composition for silicon solar battery
JPH10335267A (en) * 1997-05-30 1998-12-18 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2000114556A (en) * 1998-09-30 2000-04-21 Sharp Corp Solar battery and its manufacture

Also Published As

Publication number Publication date
JP2010272890A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
EP2472526B1 (en) Paste composition for electrode of solar cell and solar cell including the same
JP5591716B2 (en) Conductive ink having organometallic modifier
US8148630B2 (en) Conductive paste and grid electrode for silicon solar cells
KR101309809B1 (en) Aluminium paste for solar cell and solar cell using the same
JP5438113B2 (en) Use of aluminum paste and aluminum paste in the production of silicon solar cells
TWI638367B (en) Thick-film composition containing antimony oxides and their use in the manufacture of semiconductor devices
JP6534786B2 (en) Thick film conductive composition and use thereof
JP2006351530A (en) Aluminum thick film composite, electrode, semiconductor device, and their manufacturing method
CN103681949A (en) Use of conductive composition containing leadtellurium- based oxide in manufacture of semiconductor devices with lightly doped emitters
KR101786148B1 (en) Paste compisition for electrode of solar cell, and solar cell including the same
JP4907331B2 (en) Conductive paste for photoelectric conversion element, photoelectric conversion element, and method for producing photoelectric conversion element
KR20110040713A (en) Silver paste composition and solar cell using the same
EP3076401A1 (en) Electro-conductive pastes comprising a metal compound
EP2787511B1 (en) Particles comprising Al and Ag in electro-conductive pastes and solar cell preparation
KR20150089939A (en) Glass frit composition and Electrode composition for solar cell using the same
WO2016156221A1 (en) Electro-conductive pastes comprising an organic metal oxide
US20120145237A1 (en) Electrically conductive paste, electrode for semiconductor device, semiconductor device and method for producing semiconductor device
JP2001313402A (en) Paste material for solar battery
JP5430520B2 (en) Manufacturing method of solar cell
KR101397708B1 (en) Paste for forming electrode of solar cell, Method for Preparing the Same and solar cell using the same
JP5910509B2 (en) Conductive paste and solar cell element using the conductive paste
KR101930284B1 (en) Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
JP2019106525A (en) Solar cell
JP5132929B2 (en) Conductive paste for photoelectric conversion element, photoelectric conversion element, and method for producing photoelectric conversion element
EP2787510A1 (en) Particles comprising Al, Si and Mg in electro-conductive pastes and solar cell preparation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5430520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees