JP5429843B2 - Photocatalytic material having octahedral sheet structure - Google Patents

Photocatalytic material having octahedral sheet structure Download PDF

Info

Publication number
JP5429843B2
JP5429843B2 JP2007225862A JP2007225862A JP5429843B2 JP 5429843 B2 JP5429843 B2 JP 5429843B2 JP 2007225862 A JP2007225862 A JP 2007225862A JP 2007225862 A JP2007225862 A JP 2007225862A JP 5429843 B2 JP5429843 B2 JP 5429843B2
Authority
JP
Japan
Prior art keywords
zinc
octahedral
methylene blue
photocatalytic material
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007225862A
Other languages
Japanese (ja)
Other versions
JP2009056391A (en
Inventor
裕久 山田
パスクワ チェロ
堅志 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007225862A priority Critical patent/JP5429843B2/en
Publication of JP2009056391A publication Critical patent/JP2009056391A/en
Application granted granted Critical
Publication of JP5429843B2 publication Critical patent/JP5429843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、光の照射にて有機物質を分解する八面体シート構造を有する光触媒材料に関する。   The present invention relates to a photocatalytic material having an octahedral sheet structure that decomposes an organic substance by light irradiation.

酸化チタン系光触媒は現在最も注目される機能性材料の一つで、防汚や防曇、室内脱臭分野で広く応用され、産業化が進む一方で、空気浄化や水質浄化などの環境浄化分野での実用化が期待されている。実用化には環境中に拡散する有害物質を濃縮する強力な吸着性能が不可欠であるほか、酸化チタン光触媒粉末の基材や結合材への担持方法に問題があった。そこで従来、粘土鉱物のケイ酸塩層をホストとして、層間を微細なセラミックス粒子で架橋した粘土層間架橋体を触媒として活用することが検討されていた。特に、スメクタイトに代表される粘土鉱物の層間に酸化チタンの柱を立てて細孔構造を形成し、光触媒として機能させるための研究例が多く報告されている。しかし、実用化に至るような、充分な光触媒活性を備えた材料の作製例は、今までほとんど見られなかった。   Titanium oxide photocatalysts are one of the most popular functional materials at present, and are widely applied in the fields of antifouling, antifogging and indoor deodorization. While industrialization is progressing, they are used in environmental purification fields such as air purification and water purification. Is expected to be put to practical use. For practical use, strong adsorption performance that concentrates harmful substances that diffuse into the environment is indispensable, and there are problems with the method of supporting titanium oxide photocatalyst powder on the substrate and binder. Therefore, conventionally, it has been studied to use a clay interlayer crosslinked body having a clay mineral silicate layer as a host and the interlayer crosslinked with fine ceramic particles as a catalyst. In particular, many research examples have been reported for forming a pillar structure of titanium oxide between layers of clay minerals typified by smectite to function as a photocatalyst. However, there have been few examples of production of materials having sufficient photocatalytic activity that have been put to practical use.

<スメクタイトを用いた光触媒として>
特許文献1に示す酸化チタン含有スメクタイト光触媒複合材料は以下のような概要のものであった。
酸化チタンは、安価であり光触媒活性が高いことから現在も精力的に研究が進められている物質である。その効果的な利用には、ハンドリングを容易にする薄膜化、あるいは担体などへの担持が必要である。酸化チタンの高比表面積化と担持を同時に達成する方法の一つに、粘土の層間架橋体を利用する方法がある。粘土層間架橋体は、粘土の層間に異種物質を挿入し、それを利用して層を拡げ、高比表面積化や吸着性能を向上させた材料である。高活性な酸化チタン粒子を層間に保持することで、酸化チタンの表面を反応場として有効に利用することが可能となる。我々は試料調製時の温度条件を制御することで、調製後の熱処理を伴わずにアナターゼ相からなる酸化チタン−粘土複合体が作製できることを見いだした。この複合体は比較的大きなメソ細孔を有する多孔体であり、分解物の大きさに対する選択性を持つことが示された。
<As a photocatalyst using smectite>
The titanium oxide-containing smectite photocatalyst composite material shown in Patent Document 1 has the following outline.
Titanium oxide is a substance that has been studied energetically because it is inexpensive and has high photocatalytic activity. For its effective use, it is necessary to reduce the film thickness to facilitate handling or to support it on a carrier. One method for simultaneously achieving a high specific surface area and loading of titanium oxide is to use a clay cross-linked product. A clay interlayer crosslinked material is a material in which a different substance is inserted between clay layers, and the layer is expanded by using it to increase the specific surface area and the adsorption performance. By holding highly active titanium oxide particles between layers, the surface of titanium oxide can be effectively used as a reaction field. We have found that by controlling the temperature conditions during sample preparation, a titanium oxide-clay complex composed of anatase phase can be produced without heat treatment after preparation. This composite was a porous body having relatively large mesopores and was shown to have selectivity for the size of the degradation product.

本文献の発明では、酸化チタン−粘土層間架橋体としてはこれまでに報告のないルチル相を担持したルチル−粘土複合体を作製し、アナターゼ単独では分解が困難な難分解性の有害有機物の完全分解を達成することを目的としたものであった。
しかし、有機物親和性・吸着能の大幅な向上が確立されず、対象有機物との接触確立が期待ほど大きくなく、有機物分解効率の大幅な向上が認められなかった。さらに、酸化チタンを架橋したために、スメクタイト本来の性質である有機物親和性・吸着能の低下を招いた問題が生じていた。
In the invention of this document, a rutile-clay complex carrying a rutile phase, which has not been reported so far, is prepared as a titanium oxide-clay interlayer cross-linked product, and complete decomposition of difficult-to-decompose harmful organic substances that are difficult to decompose with anatase alone. The purpose was to achieve decomposition.
However, a significant improvement in organic matter affinity / adsorption ability was not established, contact establishment with the target organic matter was not as great as expected, and no significant improvement in organic matter decomposition efficiency was observed. Furthermore, since titanium oxide is cross-linked, there has been a problem that the organic matter affinity / adsorption ability, which is the original property of smectite, is reduced.

スメクタイトに代表される陽イオン交換粘土鉱物、ハイドロタルサイトに代表される陰イオン交換粘土鉱物そのものが、光触媒機能を発現すれば以上の問題点を解決できるはずである。   If the cation exchange clay mineral typified by smectite and the anion exchange clay mineral typified by hydrotalcite itself exhibit a photocatalytic function, the above problems should be solved.

スメクタイトは、マグネシウム八面体層もしくはアルミニウム八面体層を2層のシリカ四面体層が挟んだ三層構造を有する層状珪酸塩であり、陽イオン交換能、さらには金属多核水酸化イオンや各種有機物を層間にインターカレートする機能を有する(非特許文献1、非特許文献2)。   Smectite is a layered silicate that has a three-layer structure in which two layers of silica tetrahedron are sandwiched between a magnesium octahedron layer or an aluminum octahedron layer, and has a cation exchange capacity, as well as metal polynuclear hydroxide ions and various organic substances. It has a function of intercalating between layers (Non-Patent Document 1, Non-Patent Document 2).

八面体層に三価のアルミニウムを主として含む2−八面体型スメクタイトであるモンモリロナイト、バイデライトおよび八面体層に二価のマグネシウムを主として含む3−八面体型スメクタイトであるサポナイト、ヘクトライト、スティーブンサイトなどが知られている。八面体層中のイオンは、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、鉛、カドミウムなどの金属イオンで置換される。シートを構成するOHイオンはFイオンと置換されることがある。   Montmorillonite which is 2-octahedral smectite mainly containing trivalent aluminum in octahedral layer, saponite, hectorite and stevensite which are 3-octahedral smectite mainly containing bivalent magnesium in octahedral layer It has been known. The ions in the octahedral layer are replaced with metal ions such as manganese, iron, cobalt, nickel, copper, zinc, lead, cadmium. The OH ions constituting the sheet may be replaced with F ions.

マイカは、スメクタイトと同様に、マグネシウム八面体層もしくはアルミニウム八面体層を2層のシリカ四面体層が挟んだ三層構造を有する層状珪酸塩である。スメクタイト結晶に比べて、a、b軸方向の結晶性が高く、一枚のシート面積も大きいが、層間には難交換性のカリウムイオンを持つものが多い(非特許文献1)。   Similar to smectite, mica is a layered silicate having a three-layer structure in which a magnesium octahedral layer or an aluminum octahedral layer is sandwiched between two silica tetrahedral layers. Compared to smectite crystals, the crystallinity in the a and b axis directions is high and the area of one sheet is large, but there are many that have difficult exchangeable potassium ions between layers (Non-patent Document 1).

八面体層に三価のアルミニウムを主として含む2−八面体型マイカであるマスコバイト、パラゴナイトおよび八面体層に二価のマグネシウムを主として含む3−八面体型マイカであるフロゴパイト、バイオタイトなどが知られている。マイカの八面体層中のイオンは、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、鉛、カドミウムなどの金属イオンで置換される。シートを構成するOHイオンはFイオンと置換されることがある。合成物として、すべてFイオンで置換されたフロゴパイトなども知られている。   Known as mascobite, 2-octahedral mica mainly containing trivalent aluminum in the octahedral layer, paragonite, and phlogopite, biotite, etc. 3-octahedral mica mainly containing divalent magnesium in the octahedral layer It has been. The ions in the octahedral layer of mica are replaced with metal ions such as manganese, iron, cobalt, nickel, copper, zinc, lead, cadmium. The OH ions constituting the sheet may be replaced with F ions. As a compound, phlogopite substituted with all F ions is also known.

ハイドロタルサイトに代表される層状複水酸化物、陰イオン交換粘土鉱物は2価の金属イオンと、3価の金属イオンから構成される酸化物で、これら2価及び3価の金属イオンが中心に位置する酸素八面体が2次元に連なって、1つの層を構成し、この八面体層と陰イオンが交互に積層し、層間に複水した構造を持つ。   Layered double hydroxides and anion exchange clay minerals typified by hydrotalcite are oxides composed of divalent metal ions and trivalent metal ions, and these divalent and trivalent metal ions are mainly used. The oxygen octahedron located at 2 is connected in two dimensions to form one layer, and the octahedron layer and anion are alternately stacked, and the structure has double water between the layers.

ハイドロタルサイトおよびハイドロタルサイト様化合物はプラスに電荷した基本層と、そのプラスを電気的に中和するアニオンと結晶水を持つ中間層からなる構造単位を有し、構造破壊温度に違いがある他は殆ど似た性質を示すことが知られており、固体塩基性及び陰イオン交換能をもち、インターカレーション反応・再生反応といった特異的な反応を示す。なお、これらの化合物については非特許文献3に詳しく説明されている。上記の層状複水酸化物の具体例としては、スティヒタイト、パイロオーライト、リーベサイト、タコヴァィト、オネサイト、アイオワイト等が挙げられる。   Hydrotalcite and hydrotalcite-like compounds have a structural unit consisting of a positively charged basic layer and an intermediate layer with an anion and crystal water that electrically neutralizes the positive, with different structural breakdown temperatures Others are known to exhibit almost similar properties, have solid basicity and anion exchange ability, and exhibit specific reactions such as intercalation and regeneration reactions. These compounds are described in detail in Non-Patent Document 3. Specific examples of the layered double hydroxide include stichtite, pyroaulite, leevesite, tacovitite, onesite, iowite and the like.

上記いずれのスメクタイト、マイカに代表される陽イオン交換粘土鉱物、ハイドロタルサイトに代表される陰イオン交換粘土鉱物そのものが、光触媒機能を発現すれば以上の問題点を解決できるはずである。しかしながら、上記いずれのスメクタイト、マイカ、ハイドロタルサイトおよびハイドロタルサイト様化合物に関する報告も、その光触媒能の発現に関しては言及していない。   Any of the above smectites, cation exchange clay minerals typified by mica, and anion exchange clay minerals typified by hydrotalcite themselves should be able to solve the above problems. However, none of the above reports on smectite, mica, hydrotalcite and hydrotalcite-like compounds mentions the expression of their photocatalytic activity.

サステナブル社会、省エネルギー社会の創製に際して、入手が容易な元素(ユビキタス元素)を用いた機能性材料・光触媒材料の開発が望まれる。
特開2006−326453 MacEwan,D.M.C., and Wilson, M.J., Interlayer and Intercalation Complexes of Clay Minerals, In “Crystal Structure of Clay Minerals and their X-ray identification” Brindley G.W., Brown, G editors, London: Mineralogical Society, (1980)197-248 Micas: Crystal Chemistry & Metamorphic Petrology, Mottana, A., Sassi, F.P., Thompson, J.B., Guggenheim, Jr. S. editors, Washington, DC, The Mineralogical Society of America (2002) 「スメタイト研究会会報」”スメクタイト”(第6巻第1号P.12−26、1996,5月)
When creating a sustainable and energy-saving society, it is desired to develop functional materials and photocatalytic materials that use easily available elements (ubiquitous elements).
JP 2006-326453 A MacEwan, DMC, and Wilson, MJ, Interlayer and Intercalation Complexes of Clay Minerals, In “Crystal Structure of Clay Minerals and their X-ray identification” Brindley GW, Brown, G editors, London: Mineralogical Society, (1980) 197-248 Micas: Crystal Chemistry & Metamorphic Petrology, Mottana, A., Sassi, FP, Thompson, JB, Guggenheim, Jr.S. editors, Washington, DC, The Mineralogical Society of America (2002) "Smectite Society Report""Smectite" (Vol. 6, No. 1, P.12-26, 1996, May)

酸化チタン系光触媒は現在最も注目される機能性材料の一つで、防汚や防曇、室内脱臭分野で広く応用され、産業化が進む一方で、空気浄化や水質浄化などの環境浄化分野での実用化が期待されている。実用化には環境中に拡散する有害物質を濃縮する強力な吸着性能が不可欠であるほか、酸化チタン光触媒粉末の基材や結合材への担持方法に問題があった。そこで粘土鉱物のケイ酸塩層をホストとして、層間を微細なセラミックス粒子で架橋した粘土層間架橋体を触媒として活用することが検討されていた。特に、スメクタイトに代表される粘土鉱物の層間に酸化チタンの柱を立てて細孔構造を形成し、光触媒として機能させるための研究例が多く報告されている。しかし、実用化に至るような、充分な光触媒活性を備えた材料の作製例は、今までほとんど見られなかった。   Titanium oxide photocatalysts are one of the most popular functional materials at present, and are widely applied in the fields of antifouling, antifogging and indoor deodorization. While industrialization is progressing, they are used in environmental purification fields such as air purification and water purification. Is expected to be put to practical use. For practical use, strong adsorption performance that concentrates harmful substances that diffuse into the environment is indispensable, and there are problems with the method of supporting titanium oxide photocatalyst powder on the substrate and binder. Therefore, it has been studied to use a clay-layered cross-linked body in which a clay mineral silicate layer is used as a host and the layers are cross-linked with fine ceramic particles as a catalyst. In particular, many research examples have been reported for forming a pillar structure of titanium oxide between layers of clay minerals typified by smectite to function as a photocatalyst. However, there have been few examples of production of materials having sufficient photocatalytic activity that have been put to practical use.

本発明は、基本構造内に形成される八面体シートに鉄、マンガン、ニッケル、亜鉛、銅、コバルト、マグネシウム、リチウム,アルミニウムのうちの少なくとも1つが入る層状化合物からなる光触媒材料であって、構成する化学組成を制御すると共に、他の構造要素である四面体シートとの組み合わせを制御することにより触媒能に好適に制御された光触媒材料を提供することを目的とする。   The present invention is a photocatalytic material comprising a layered compound in which at least one of iron, manganese, nickel, zinc, copper, cobalt, magnesium, lithium, and aluminum is contained in an octahedron sheet formed in a basic structure. It is an object of the present invention to provide a photocatalytic material that is suitably controlled for its catalytic ability by controlling the chemical composition and the combination with a tetrahedral sheet that is another structural element.

本発明者は、かかる課題について鋭意研究を重ねた結果、光の照射にて有機物質を分解する光触媒材料を見出した。その材料は、基本構造内に形成される八面体シートに鉄、マンガン、ニッケル、亜鉛、銅、コバルト、マグネシウム、リチウム,アルミニウムのうちの少なくとも1つが入り、他の構造要素である四面体シートとの組み合わせを制御することにより層状化合物を形成し、光触媒活性を生み出し、この知見に基づいて本発明をなすにいたった。光触媒活性は、紫外線照射下での色素(メチレンブルー、ローダミンB、ダイサルフィン ブルー(Disulfine blue)、オレンジIIなど)の分解により明らかにした。   As a result of intensive studies on this problem, the present inventor has found a photocatalytic material that decomposes an organic substance by light irradiation. The material is an octahedral sheet formed in the basic structure, containing at least one of iron, manganese, nickel, zinc, copper, cobalt, magnesium, lithium, and aluminum, and a tetrahedral sheet that is another structural element; By controlling the combination of these, a layered compound was formed to produce photocatalytic activity, and the present invention was made based on this finding. The photocatalytic activity was revealed by the decomposition of dyes (methylene blue, rhodamine B, disulfine blue, orange II, etc.) under ultraviolet irradiation.

即ち、本発明は、光の照射にて有機物質を分解する光触媒材料であって、前記光触媒材料は、層状の基本構造を有する層状化合物からなり、前記基本構造が、八面体シートを2枚の四面体シートでサンドイッチした層状構造又は八面体シートからなる層状構造であり、前記基本構造内に形成される八面体シートは、1価〜3価の金属陽イオンを6つの陰イオンが囲んでなる八面体が稜を共有して二次元的に広がって構成されており、前記陰イオンが、(OH)、O2−又はFの群から選択されるいずれか一の又は二以上の陰イオンであり、前記金属陽イオンが、亜鉛、リチウムのうちの少なくとも一の又は二の金属の陽イオンであることを特徴とする光触媒材料である。
特に、次の1種の光触媒材料が好ましい。
八面体シートを2枚の四面体シートでサンドイッチした基本構造をもち、その一般式が(1)であるスメクタイト組成の層状化合物であることを特徴とする光触媒材料。
(式1)
[(E)(M )(Si4−dAl)O10(OH1−e
但し、式中のMとMは、基本構造内に形成される八面体シート内に入る金属元素であって、Mは、亜鉛であり リチウムであり、Eは層間の交換性陽イオンであって、アルカリ金属イオンから選ばれる陽イオンであり、シートを構成するOHイオンはFイオンと置換することがあり、a=0.3、b=2.7又は3、c=0又は0.3、d=0又は0.3、e=1で表されるスメクタイトである。
That is, the present invention is a photocatalytic material that decomposes an organic substance by light irradiation, and the photocatalytic material is composed of a layered compound having a layered basic structure, and the basic structure includes two octahedral sheets. It is a layered structure sandwiched by tetrahedral sheets or a layered structure consisting of octahedral sheets, and the octahedral sheet formed in the basic structure is composed of monovalent to trivalent metal cations surrounded by six anions. The octahedron is configured to spread two-dimensionally sharing a ridge, and the anion is selected from the group (OH) , O 2−, or F −. It is an ion, and the metal cation is a cation of at least one or two metals of zinc and lithium.
In particular, the following one kind of photocatalytic material is preferable.
A photocatalytic material having a basic structure in which an octahedral sheet is sandwiched between two tetrahedral sheets, and a layered compound having a smectite composition whose general formula is (1).
(Formula 1)
[(E a ) (M 1 b M 2 c ) (Si 4 -d Al d ) O 10 (OH e F 1 -e ) 2 ]
However, M 1 and M 2 in the formula is a metal element into the octahedral the seat formed in the base structure, M 1 is a zinc, M 2 is lithium, E is the interlayer An exchangeable cation, which is a cation selected from alkali metal ions, and OH ions constituting the sheet may be replaced with F ions, and a = 0.3, b = 2.7 or 3, c = 0 or 0.3, d = 0 or 0.3, and e = 1 .

八面体シートを、2枚の四面体シートでサンドイッチした基本構造をもち、その一般式が(2)であるマイカ組成の層状化合物であることを特徴とする光触媒材料。
(式2)
A photocatalytic material having a basic structure in which an octahedral sheet is sandwiched between two tetrahedral sheets, and a layered compound having a mica composition represented by the general formula (2).
(Formula 2)

八面体シートを基本構造とし、その一般式が(3)である層状複水酸化物であることを特徴とする光触媒材料。
(式3)
A photocatalytic material comprising a layered double hydroxide having an octahedral sheet as a basic structure and a general formula of (3).
(Formula 3)

従来は、スメクタイトに代表される粘土鉱物の層間に酸化チタンの柱を立てて細孔構造を形成し、光触媒として機能させるための研究例が多く報告されている。しかし、有機物親和性・吸着能が大きく、対象有機物との接触確立・比表面積の問題から、実用化に至るような光触媒活性を備えた材料の作製例は、今までほとんど見られなかった。本光触媒材料は、ナノシートの集積物である層状構造が光触媒活性を有しており、その比表面積の増加・コーティング化等が容易であり、その適用範囲は従来材料に比較して広いと考えられる。さらに光触媒材料は有機物親和性・吸着能が大きく、対象有機物との接触確立が大きくなり、有機物分解効率が向上する。また有機物親和性にすぐれておることより、フィルム形成能、ポリマーとの複合化に適用が容易となる。さらに有機物親和性、無機化合物との親和性に優れており、界面活性剤などを鋳型としたメソポア化が用意であり、比表面積の増加が可能となり、有機物分解効率が進むことが期待される。   Conventionally, many research examples have been reported for forming a pillar structure of titanium oxide between layers of clay minerals typified by smectite to function as a photocatalyst. However, there have been few examples of production of materials having photocatalytic activity that lead to practical use due to problems of organic substance affinity / adsorption ability, establishment of contact with target organic substances, and specific surface area. This photocatalyst material has a photocatalytic activity as a layered structure that is an accumulation of nanosheets, and its specific surface area can be easily increased and coated, and its application range is considered to be wider than that of conventional materials. . Furthermore, the photocatalyst material has a large affinity for organic matter and adsorption ability, and the contact establishment with the target organic matter becomes large, and the organic matter decomposition efficiency is improved. In addition, since it has excellent affinity for organic matter, it can be easily applied to film forming ability and complexing with a polymer. Furthermore, it has excellent compatibility with organic substances and affinity with inorganic compounds, and it is possible to prepare mesopores using a surfactant as a template, which can increase the specific surface area, and it is expected that the decomposition efficiency of organic substances will advance.

以下、本発明を具体的な実施の形態をもって説明するが、本発明は、後述の形態に限定されるものでない。本発明の光の照射にて有機物質を分解する光触媒材料は、基本構造内に形成される八面体シートに鉄、マンガン、ニッケル、亜鉛、銅、コバルト、マグネシウム、リチウム、アルミニウムのうちの少なくとも1つが入る層状化合物からなる光触媒材料であって、構成する化学組成を制御すると共に、他の構造要素である四面体シートとの組み合わせを制御することにより触媒能に好適に制御されたものである。   Hereinafter, the present invention will be described with specific embodiments, but the present invention is not limited to the embodiments described below. The photocatalytic material for decomposing an organic substance upon irradiation with light according to the present invention has at least one of iron, manganese, nickel, zinc, copper, cobalt, magnesium, lithium, and aluminum on an octahedral sheet formed in the basic structure. It is a photocatalytic material composed of a layered compound into which water is contained, and the chemical composition is controlled, and the catalytic ability is suitably controlled by controlling the combination with a tetrahedral sheet which is another structural element.

即ち、本発明は、八面体シートを2枚の四面体シートでサンドイッチした基本構造をもち、その一般式が(1)であるスメクタイト組成の層状化合物であることを特徴とする光触媒材料。
(式1)
That is, the present invention is a photocatalytic material having a basic structure in which an octahedral sheet is sandwiched between two tetrahedral sheets, and a layered compound having a smectite composition whose general formula is (1).
(Formula 1)

対象となるスメクタイトは、天然物および合成物である。天然物は、その化学組成、構造、欠陥、不純物などの材料特性が変動する傾向があり、その制御が不可能に近く、さらなる高機能性光触媒材料としての応用を考えた場合は、スメクタイト構造を有する層状化合物の合成物が推奨される。   The target smectites are natural and synthetic. Natural products tend to fluctuate in material properties such as chemical composition, structure, defects, impurities, etc., and their control is almost impossible, and when considering application as a further highly functional photocatalyst material, smectite structure is required. A composite of layered compounds with is recommended.

所定の割合のケイ素、アルミニウム及び/又はマグネシウムの酸化物、鉄、マンガン、ニッケル、亜鉛、銅、コバルト、リチウム、マンガン、クロムの中から選ばれる金属酸化物、及びアルカリ金属又はアルカリ土類金属の炭酸塩を混合し、溶融ガラスを調製した後、該ガラス組成物と水の混合物を80〜500℃の温度において水熱反応させることによりスメクタイトが合成される。   A predetermined ratio of silicon, aluminum and / or magnesium oxide, metal oxide selected from iron, manganese, nickel, zinc, copper, cobalt, lithium, manganese, chromium, and alkali metal or alkaline earth metal After mixing carbonate and preparing molten glass, smectite is synthesized by hydrothermal reaction of the glass composition and water mixture at a temperature of 80 to 500 ° C.

構成元素を所定量含有する複合含水酸化物を調整した後、該複合含水酸化物を80〜500℃の温度において水熱反応させることによりスメクタイトが合成される。複合含水酸化物の調整方法としては、(1)コロイド状シリカ又はケイ酸、そして目的の組成に必要となる金属塩からなる酸性水溶液とアルカリ水溶液とを混合して沈殿を形成させ、ろ過などにより回収後、十分に洗浄して副生塩を除去する方法、(2)ケイ酸ナトリウム、アルミン酸ナトリウムなどを含有するアルカリ水溶液と目的の組成に必要となる金属塩を含有する酸性水溶液とを混合して沈殿を形成させ、以下前記(1)と同様に処理する方法、(3)ケイ素及びアルミニウムなど金属アルコキシド、目的の組成に必要となる金属塩を含有する酸性水溶液とアルカリ水溶液とを混合して沈殿を形成させ、以下前記(1)と同様に処理する方法、(4)金属アルミニウム及び/又は金属マグネシウムを酸で溶解した酸性水溶液に目的の組成に必要となる金属塩を混合して、アルカリ水溶液とを混合して沈殿を形成させ、以下前記(1)と同様に処理する方法などを好ましく用いることができる。   After preparing a composite hydrous oxide containing a predetermined amount of constituent elements, smectite is synthesized by hydrothermal reaction of the composite hydrous oxide at a temperature of 80 to 500 ° C. As a method for adjusting the composite hydrous oxide, (1) colloidal silica or silicic acid, and an acidic aqueous solution composed of a metal salt required for the target composition and an alkaline aqueous solution are mixed to form a precipitate, which is then filtered. A method of removing by-product salts by washing thoroughly after recovery, (2) mixing an alkaline aqueous solution containing sodium silicate, sodium aluminate, etc. with an acidic aqueous solution containing a metal salt required for the desired composition Then, a precipitate is formed and treated in the same manner as in the above (1), (3) an acidic aqueous solution and an alkaline aqueous solution containing a metal alkoxide such as silicon and aluminum and a metal salt required for the desired composition are mixed. (4) A method of treating the same as in the above (1), (4) In an acidic aqueous solution in which metallic aluminum and / or metallic magnesium is dissolved with an acid, A mixture of metal salts required for growth, to form a precipitate by mixing an alkaline aqueous solution, can be preferably used a method of treating in the same manner as the (1) below.

たとえばこのようにして得た本発明の八面体シート内に亜鉛を含むスメクタイト光触媒材料の適切な濃度の水溶液(0.05重量%から1重量%)と、適切な濃度のメチレンブルー溶液(1x10−3/100ml ― 1x10−5/100ml)との混合水溶液を、石英ガラス板上に滴下し、室温にて乾燥させ、紫外線の照射下でのメチレンブルーの脱色・分解試験に供した。 For example, an aqueous solution (0.05 wt.% To 1 wt.%) Of a smectite photocatalyst material containing zinc in the octahedral sheet of the present invention thus obtained and an appropriate concentration of methylene blue solution (1 × 10 −3). / 100 ml—1 × 10 −5 / 100 ml) was dropped onto a quartz glass plate, dried at room temperature, and subjected to a decolorization / decomposition test of methylene blue under ultraviolet irradiation.

高輝度光源装置に超高圧UVランプを設置し、紫外線の照射を行い、紫外可視分光光度計による吸光度の測定を行った。メチレンブルーの脱色・分解は、紫外―可視吸収スペクトルの測定により、665nm近傍のメチレンブルーの吸収ピークの強度から見積もった。   An ultra-high pressure UV lamp was installed in a high-intensity light source device, irradiated with ultraviolet rays, and the absorbance was measured with an ultraviolet-visible spectrophotometer. The decolorization / decomposition of methylene blue was estimated from the intensity of the absorption peak of methylene blue near 665 nm by measuring the ultraviolet-visible absorption spectrum.

メチレンブルー単独では、15分の紫外線照射においても、7割強のメチレンブルーの残存が確認できる。しかし、メチレンブルーを担持した八面体シート内に亜鉛を含むスメクタイト光触媒材料では、1分の紫外線照射においても、メチレンブルーの吸収ピークの強度の十分な低下が見られ、15分の照射においてはメチレンブルーの脱色・分解が十分に進み、紫外可視分光光度計の測定限界に近い値を示し、八面体シート内に亜鉛を含むスメクタイトが光触媒活性を有することを明らかに示した。   When methylene blue is used alone, over 70% of methylene blue remains even after 15 minutes of ultraviolet irradiation. However, in the smectite photocatalyst material containing zinc in the octahedron sheet carrying methylene blue, the intensity of the absorption peak of methylene blue is sufficiently lowered even when irradiated with ultraviolet rays for 1 minute. -Decomposition progressed sufficiently, showing a value close to the measurement limit of the UV-visible spectrophotometer, clearly showing that smectite containing zinc in the octahedral sheet has photocatalytic activity.

八面体シートを、2枚の四面体シートでサンドイッチした基本構造をもち、その一般式が(2)であるマイカ組成の層状化合物であることを特徴とする光触媒材料。
(式2)
A photocatalytic material having a basic structure in which an octahedral sheet is sandwiched between two tetrahedral sheets, and a layered compound having a mica composition represented by the general formula (2).
(Formula 2)

対象となるマイカは、天然物および合成物である。天然物は、その化学組成、構造、欠陥、不純物などの材料特性が変動する傾向があり、その制御が不可能に近く、さらなる高機能性光触媒材料としての応用を考えた場合は、マイカ構造を有する層状化合物の合成物が推奨される。   The target mica is a natural product and a synthetic product. Natural products tend to fluctuate in material properties such as chemical composition, structure, defects, impurities, etc., and their control is almost impossible, and when considering application as a further highly functional photocatalytic material, mica structure A composite of layered compounds with is recommended.

所定の割合のケイ素、アルミニウム及び/又はマグネシウムの酸化物、鉄、マンガン、ニッケル、亜鉛、銅、コバルト、リチウム、マンガン、クロムの中から選ばれる金属酸化物、及びアルカリ金属又はアルカリ土類金属の炭酸塩を混合し、溶融ガラスを調製した後、該ガラス組成物と水の混合物を80〜1200℃の温度において水熱反応させることによりマイカが合成される。   A predetermined ratio of silicon, aluminum and / or magnesium oxide, metal oxide selected from iron, manganese, nickel, zinc, copper, cobalt, lithium, manganese, chromium, and alkali metal or alkaline earth metal After mixing carbonate and preparing molten glass, mica is synthesize | combined by making the mixture of this glass composition and water hydrothermally react at the temperature of 80-1200 degreeC.

構成元素を所定量含有する複合含水酸化物を調整した後、該複合含水酸化物を80〜1200℃の温度において水熱反応させることによりマイカが合成される。複合含水酸化物の調整方法としては、(1)コロイド状シリカ又はケイ酸、そして目的の組成に必要となる金属塩からなる酸性水溶液とアルカリ水溶液とを混合して沈殿を形成させ、ろ過などにより回収後、十分に洗浄して副生塩を除去する方法、(2)ケイ酸ナトリウム、アルミン酸ナトリウムなどを含有するアルカリ水溶液と目的の組成に必要となる金属塩を含有する酸性水溶液とを混合して沈殿を形成させ、以下前記(1)と同様に処理する方法、(3)ケイ素及びアルミニウムなど金属アルコキシド、目的の組成に必要となる金属塩を含有する酸性水溶液とアルカリ水溶液とを混合して沈殿を形成させ、以下前記(1)と同様に処理する方法、(4)金属アルミニウム及び/又は金属マグネシウムを酸で溶解した酸性水溶液に目的の組成に必要となる金属塩を混合して、アルカリ水溶液とを混合して沈殿を形成させ、以下前記(1)と同様に処理する方法などを好ましく用いることができる。   After preparing a composite hydrous oxide containing a predetermined amount of constituent elements, mica is synthesized by hydrothermal reaction of the composite hydrous oxide at a temperature of 80 to 1200 ° C. As a method for adjusting the composite hydrous oxide, (1) colloidal silica or silicic acid, and an acidic aqueous solution composed of a metal salt required for the target composition and an alkaline aqueous solution are mixed to form a precipitate, which is then filtered. A method of removing by-product salts by washing thoroughly after recovery, (2) mixing an alkaline aqueous solution containing sodium silicate, sodium aluminate, etc. with an acidic aqueous solution containing a metal salt required for the desired composition Then, a precipitate is formed and treated in the same manner as in the above (1), (3) an acidic aqueous solution and an alkaline aqueous solution containing a metal alkoxide such as silicon and aluminum and a metal salt required for the desired composition are mixed. (4) A method of treating the same as in the above (1), (4) In an acidic aqueous solution in which metallic aluminum and / or metallic magnesium is dissolved with an acid, A mixture of metal salts required for growth, to form a precipitate by mixing an alkaline aqueous solution, can be preferably used a method of treating in the same manner as the (1) below.

対象となるマイカの光触媒活性を検討するには、本発明の八面体シート内に目的とする金属イオンを含むマイカ光触媒材料の適切な濃度の水溶液(0.05重量%から1重量%)と、適切な濃度のメチレンブルー溶液(1x10−3/100ml ― 1x10−5/100ml)との混合水溶液を、石英ガラス板上に滴下し、室温にて乾燥させ、紫外線の照射下でのメチレンブルーの脱色・分解を紫外可視分光光度計を用いて、紫外―可視吸収スペクトルの測定により、665nm近傍のメチレンブルーの吸収ピークの強度から、メチレンブルーの脱色・分解を見積もった試験により明らかにする。もしくは上記混合水溶液を紫外可視分光光度測定用の石英セルに充填し、紫外線の照射下でのメチレンブルーの脱色・分解を紫外可視分光光度計を用いて、紫外―可視吸収スペクトルの測定により、665nm近傍のメチレンブルーの吸収ピークの強度から、メチレンブルーの脱色・分解を見積もった試験により明らかにした。 In order to study the photocatalytic activity of the target mica, an aqueous solution (0.05 wt% to 1 wt%) of an appropriate concentration of the mica photocatalytic material containing the target metal ion in the octahedral sheet of the present invention, A mixed aqueous solution with a methylene blue solution (1 × 10 −3 / 100 ml-1 × 10 −5 / 100 ml) of appropriate concentration is dropped on a quartz glass plate, dried at room temperature, and decolorized / decomposed methylene blue under UV irradiation. The UV-visible spectrophotometer is used to measure the UV-visible absorption spectrum, and from the intensity of the absorption peak of methylene blue near 665 nm, this is clarified by a test for estimating the decolorization / decomposition of methylene blue. Alternatively, the above mixed aqueous solution is filled in a quartz cell for UV-visible spectrophotometry, and the decolorization / decomposition of methylene blue under UV irradiation is measured by measuring the UV-visible absorption spectrum at around 665 nm. From the intensity of the absorption peak of methylene blue, it was clarified by a test that estimated the decolorization and decomposition of methylene blue.

八面体シートを基本構造とし、その一般式が(3)である層状複水酸化物であることを特徴とする光触媒材料。
(式3)
A photocatalytic material comprising a layered double hydroxide having an octahedral sheet as a basic structure and a general formula of (3).
(Formula 3)

対象となる層状複水酸化物は、天然物および合成物である。天然物は、その化学組成、構造、欠陥、不純物などの材料特性が変動する傾向があり、その制御が不可能に近く、さらなる高機能性光触媒材料としての応用を考えた場合は、層状複水酸化物構造を有する層状化合物の合成物が推奨される。   The target layered double hydroxides are natural products and synthetic products. Natural products tend to fluctuate in material properties such as chemical composition, structure, defects, impurities, etc., and their control is almost impossible, and when considering application as a further highly functional photocatalytic material, layered double water A composite of layered compounds having an oxide structure is recommended.

構成元素を所定量含有する複複合含水酸化物後、該複合含水酸化物を室温〜200℃の温度において水熱反応させることにより層状複水酸化物が合成される。複合含水酸化物の調整方法としては、(1)目的の組成に必要となる金属塩からなる酸性水溶液とアルカリ水溶液とを混合して沈殿を形成させ、ろ過などにより回収後、十分に洗浄して副生塩を除去する方法、(2)、目的の組成に必要となる金属アルコキシドを含有する酸性水溶液とアルカリ水溶液とを混合して沈殿を形成させ、以下前記(1)と同様に処理する方法、(3)目的の組成に必要となる金属を酸で溶解した酸性水溶液にアルカリ水溶液とを混合して沈殿を形成させ、以下前記(1)と同様に処理する方法などを好ましく用いることができる。   After the double composite hydrous oxide containing a predetermined amount of constituent elements, the composite double hydroxide is hydrothermally reacted at a temperature of room temperature to 200 ° C. to synthesize a layered double hydroxide. As a method for adjusting the composite hydrous oxide, (1) an acidic aqueous solution composed of a metal salt required for the target composition and an alkaline aqueous solution are mixed to form a precipitate, which is recovered by filtration and then thoroughly washed. A method for removing by-product salt, (2), a method in which an acidic aqueous solution containing a metal alkoxide necessary for a desired composition is mixed with an alkaline aqueous solution to form a precipitate, and the following treatment is performed in the same manner as in (1) above. (3) A method in which an aqueous alkaline solution is mixed with an acidic aqueous solution obtained by dissolving a metal necessary for the target composition with an acid to form a precipitate, and then treated in the same manner as in the above (1) can be preferably used. .

上記の構成元素を所定量含有する複合含水酸化物の調整において、十分に洗浄して副生塩を除去せず、室温〜200℃の温度において水熱反応させ、ろ過などにより回収後、十分に洗浄して副生塩を除去する方法などを好ましく用いることができる。  In the preparation of the composite hydrous oxide containing a predetermined amount of the above-mentioned constituent elements, it is sufficiently washed to remove the by-product salt, hydrothermally reacted at a temperature of room temperature to 200 ° C., recovered sufficiently by filtration, etc. A method of removing by-product salt by washing can be preferably used.

前記アルカリ水溶液としては、例えばアンモニア、水酸化ナトリウム、水酸化カリウムなどを例示することができる。添加するアルカリ量としては、添加後のスラリーpHが8以上となることが好ましい。   Examples of the alkaline aqueous solution include ammonia, sodium hydroxide, potassium hydroxide, and the like. As the amount of alkali to be added, the slurry pH after addition is preferably 8 or more.

対象となる層状複水酸化物の光触媒活性を検討するには、本発明の八面体シート内に目的とする金属イオンを含む層状複水酸化物光触媒材料の適切な濃度の水溶液(0.05重量%から1重量%)と、適切な濃度のダイサルフィン ブルー(Disulfine Blue)溶液(1x10−3/100ml ― 1x10−5/100ml)との混合水溶液を、石英ガラス板上に滴下し、室温にて乾燥させ、紫外線の照射下でのダイサルフィン ブルーの脱色・分解を紫外可視分光光度計を用いて、紫外―可視吸収スペクトルの測定により、ダイサルフィン ブルーの吸収ピークの強度から、ダイサルフィン ブルーの脱色・分解を見積もった試験により明らかにする。もしくは上記混合水溶液を紫外可視分光光度測定用の石英セルに充填し、紫外線の照射下でのダイサルフィン ブルーの脱色・分解を紫外可視分光光度計を用いて、紫外―可視吸収スペクトルの測定により、ダイサルフィン ブルーの吸収ピークの強度から、ダイサルフィン ブルーの脱色・分解を見積もった試験により明らかにした。 In order to examine the photocatalytic activity of the target layered double hydroxide, an aqueous solution (0.05 wt.%) Of the layered double hydroxide photocatalyst material containing the target metal ion in the octahedral sheet of the present invention. % To 1% by weight) and a disulfine blue solution (1 × 10 −3 / 100 ml—1 × 10 −5 / 100 ml) having an appropriate concentration are dropped on a quartz glass plate and dried at room temperature. The decolorization / decomposition of disulfin blue under UV irradiation was estimated from the intensity of the absorption peak of disulfin blue by measuring the ultraviolet-visible absorption spectrum using an ultraviolet-visible spectrophotometer. It is clarified by the test. Alternatively, the above mixed aqueous solution is filled in a quartz cell for UV-visible spectrophotometry, and disulfin blue is decolorized and decomposed under UV irradiation using a UV-visible spectrophotometer. From the intensity of the blue absorption peak, it was clarified by a test that estimated the discoloration and decomposition of disulfin blue.

1000mlのビーカーにエタノール((和光純薬製、特級試薬)300mlを入れ、これにテトラエトキシシラン(関東化学製、高純度試薬3N)31.11gを50℃で2時間攪拌し均質溶液を調製した。500mlのビーカーに水300mlを入れ、これに塩化亜鉛(関東化学製、特級試薬)16.63gと塩化アルミニウム六水和物(和光純薬製、特級試薬)3.24gを室温にて2時間攪拌・溶解したのち、先のテトラエトキシシラン均質溶液を加え、50℃で2時間攪拌しケイ素−マグネシウム−アルミニウム均質溶液を調製した。次いで、この均質溶液に、3規定水酸化ナトリウム水溶液100mlをかき混ぜながら60分間で滴下した。滴下後の液のpHは10.2であり、複合含水酸化物の沈殿が生成した。この沈殿をただちに吸引・ろ過・水洗したのち、1000mlのビーカー中にて、水400mlとかき混ぜる。このスラリーに、水酸化ナトリウム0.32gを水50mlに溶解させた水溶液をかき混ぜながら加えて、原料スラリーを調整した。この均質スラリーをテフロン容器内装型ステンレス製反応容器に移し、自生圧力下に100℃で5日間水熱反応を行った。冷却後、反応物を取り出し、凍結乾燥したのち乳鉢にて粉砕し、結晶構造中に亜鉛を含むスメクタイト(亜鉛型サポナイト(Zn−SAP):Na0.3Zn(Si3.7Al0.3)O10(OH)・nHO)を得た。 In a 1000 ml beaker, 300 ml of ethanol ((Wako Pure Chemicals, special grade reagent) 300 ml was put, and 31.11 g of tetraethoxysilane (Kanto Chemical Co., high purity reagent 3N) was stirred at 50 ° C. for 2 hours to prepare a homogeneous solution. Put 300 ml of water in a 500 ml beaker, and add 16.63 g of zinc chloride (Kanto Chemical Co., Ltd., special grade reagent) and 3.24 g of aluminum chloride hexahydrate (Wako Pure Chemical Co., Ltd., special grade reagent) at room temperature for 2 hours. After stirring and dissolving, the previous tetraethoxysilane homogeneous solution was added and stirred for 2 hours at 50 ° C. to prepare a silicon-magnesium-aluminum homogeneous solution, and then 100 ml of 3N aqueous sodium hydroxide solution was stirred into this homogeneous solution. While the solution was added dropwise over 60 minutes, the pH of the solution after the addition was 10.2, and a precipitate of a composite hydrous oxide was formed. Next, after suction, filtration and washing with water, stir with 400 ml of water in a 1000 ml beaker.To this slurry, add aqueous solution of 0.32 g of sodium hydroxide dissolved in 50 ml of water while stirring to prepare the raw slurry This homogeneous slurry was transferred to a Teflon container-embedded stainless steel reaction vessel and subjected to a hydrothermal reaction for 5 days under an autogenous pressure at 100 ° C. After cooling, the reaction product was taken out, freeze-dried and then ground in a mortar. Then, smectite containing zinc in the crystal structure (zinc-type saponite (Zn-SAP): Na 0.3 Zn 3 (Si 3.7 Al 0.3 ) O 10 (OH) 2 .nH 2 O) was obtained.

光触媒活性を調べるために、上記亜鉛型サポナイト(Zn−SAP)を用いて、メチレンブルーの紫外線光照射下での脱色・分解試験を試み、この時のメチレンブルーの濃度変化を調べた。
メチレンブルー溶液は、メチレンブルー3水和物(和光純薬製、試薬特級)を蒸留水に溶解して調整した。その濃度は、1x10−4/100mlである。次に、亜鉛型サポナイト水溶液を調整した。亜鉛型サポナイト紛粒体0.5gを水1000mlに混合し、スメクタイトが充分に膨潤するまで室温で1日撹拌し、懸濁液を得た。上記亜鉛型サポナイト水溶液100mlとメチレンブルー溶液100mlとを、室温にて1日、混合撹拌し、メチレンブルー担持亜鉛型サポナイト光触媒複合材料を得た。本材料水溶液を、石英ガラス板上に滴下し、室温にて乾燥させ、メチレンブルーの脱色・分解試験に供した。
In order to examine the photocatalytic activity, a decolorization / decomposition test of methylene blue under ultraviolet light irradiation was attempted using the above zinc-type saponite (Zn-SAP), and the change in the concentration of methylene blue at this time was examined.
The methylene blue solution was prepared by dissolving methylene blue trihydrate (manufactured by Wako Pure Chemical Industries, reagent special grade) in distilled water. Its concentration is 1 × 10 −4 / 100 ml. Next, a zinc-type saponite aqueous solution was prepared. 0.5 g of zinc-type saponite powder was mixed with 1000 ml of water and stirred at room temperature for 1 day until the smectite was sufficiently swollen to obtain a suspension. 100 ml of the above zinc-type saponite aqueous solution and 100 ml of methylene blue solution were mixed and stirred at room temperature for 1 day to obtain a methylene blue-supported zinc-type saponite photocatalyst composite material. The aqueous material solution was dropped on a quartz glass plate, dried at room temperature, and subjected to a decolorization / decomposition test for methylene blue.

紫外線の照射は、ウシオ電機製のバックミラータイプの高輝度光源装置(オプティカル・モデュレックスSX−UI 251HQ)に超高圧UVランプ(USH−250SC)(定格ランプ入力250W)を組み込み、光源として使用した。試験時の試験表面の紫外線強度を厳密に決めることが困難であったため、紫外線ランプと試験片の距離を20cmとした。吸光度の測定には島津製作所紫外可視分光光度計UV−2450型を用いて664nmの波長を測定した。なお、太陽光や蛍光灯などの光の影響を排除するために、実験室には安全灯を設置し、さらに測定系は暗室に設置した。紫外―可視吸収スペクトルの測定により、665nm近傍のメチレンブルーの吸収ピークの強度から、メチレンブルーの脱色・分解を見積もった。比較試料として、メチレンブルー溶液を石英ガラス板上に滴下し、室温にて乾燥させて、その脱色・分解試験を同様の方法にて見積もった。   Ultraviolet light was used as a light source by incorporating an ultra-high pressure UV lamp (USH-250SC) (rated lamp input 250 W) in a rearview mirror type high-intensity light source device (Optical Modex SX-UI 251HQ) manufactured by USHIO. . Since it was difficult to precisely determine the ultraviolet intensity of the test surface during the test, the distance between the ultraviolet lamp and the test piece was set to 20 cm. For the measurement of absorbance, a wavelength of 664 nm was measured using a UV-2450 type UV-visible spectrophotometer, Shimadzu Corporation. In order to eliminate the influence of light such as sunlight and fluorescent lamps, a safety light was installed in the laboratory, and the measurement system was installed in a dark room. By measuring the ultraviolet-visible absorption spectrum, the decolorization / decomposition of methylene blue was estimated from the intensity of the absorption peak of methylene blue near 665 nm. As a comparative sample, a methylene blue solution was dropped on a quartz glass plate and dried at room temperature, and the decolorization / decomposition test was estimated by the same method.

図1に、メチレンブルー単独での分解挙動と、メチレンブルー担持亜鉛型サポナイト(Zn−SAP)光触媒複合材料の挙動を示した。横軸が紫外線照射時間(単位は分)を、縦軸が紫外線照射前後での665nm近傍のメチレンブルーの吸収ピークの強度から見積もったメチレンブルーの残存率を示した。縦軸の値が小さいほど、メチレンブルーの脱色・分解が進んでいること、及び光触媒活性が高いことを示している。メチレンブルー単独では、15分の紫外線照射においても、7割強のメチレンブルーの残存が確認できる。しかし、メチレンブルー担持亜鉛型サポナイト光触媒複合材料では、1分の紫外線照射においても、メチレンブルーの吸収ピークの強度の十分な低下が見られ、15分の照射においてはメチレンブルーの脱色・分解が十分に進み、紫外可視分光光度計の測定限界に近い値を示した。   FIG. 1 shows the decomposition behavior of methylene blue alone and the behavior of a methylene blue-supported zinc-type saponite (Zn-SAP) photocatalyst composite material. The horizontal axis represents the ultraviolet irradiation time (unit: minutes), and the vertical axis represents the residual ratio of methylene blue estimated from the intensity of the absorption peak of methylene blue near 665 nm before and after ultraviolet irradiation. The smaller the value on the vertical axis, the more methylene blue is decolorized and decomposed, and the higher the photocatalytic activity. When methylene blue is used alone, over 70% of methylene blue remains even after 15 minutes of ultraviolet irradiation. However, in the methylene blue-supported zinc-type saponite photocatalyst composite material, a sufficient decrease in the intensity of the absorption peak of methylene blue was observed even after 1 minute of ultraviolet irradiation, and the decolorization / decomposition of methylene blue was sufficiently advanced after 15 minutes of irradiation. The value was close to the measurement limit of the UV-visible spectrophotometer.

ケイ酸ナトリウム(和光純薬:メタ珪酸ナトリウム)0.0976gを蒸留水1000mlに攪拌しながら溶解させ、ケイ酸ナトリウム溶液をつくる。別に塩化亜鉛(関東化学製、試薬特級)0.0818gを蒸留水1000mlに攪拌しながら溶解させ、塩化亜鉛溶液をつくる。このケイ酸ナトリウム溶液500mlと塩化亜鉛溶液500mlを混合・攪拌しながら、1規定水酸化ナトリウム水溶液を滴下し、pHを10に調整した。この均質溶液を60℃で24時間反応を行った。反応後遠心分離法(15000回転で30分間の処理)にて反応物を回収し、結晶構造中に亜鉛を含むスメクタイト(亜鉛型スティーブンサイト(Zn−STE):Na0.3Zn2.7Si10(OH)・nHO)を得た。 A sodium silicate solution is prepared by dissolving 0.0976 g of sodium silicate (Wako Pure Chemical: sodium metasilicate) in 1000 ml of distilled water with stirring. Separately, 0.0818 g of zinc chloride (manufactured by Kanto Chemical Co., Ltd., reagent grade) is dissolved in 1000 ml of distilled water with stirring to make a zinc chloride solution. While mixing and stirring 500 ml of this sodium silicate solution and 500 ml of zinc chloride solution, a 1N aqueous sodium hydroxide solution was added dropwise to adjust the pH to 10. This homogeneous solution was reacted at 60 ° C. for 24 hours. After the reaction, the reaction product was recovered by centrifugation (treatment at 15000 rpm for 30 minutes), and smectite containing zinc in the crystal structure (zinc-type stevensite (Zn-STE): Na 0.3 Zn 2.7 Si). 4 O 10 (OH) 2 · nH 2 O) was obtained.

亜鉛型スティーブンサイト(Zn−STE)の光触媒活性は、実施例1の方法により、メチレンブルー担持亜鉛型ヘクトライト光触媒複合材料を作成し、そのメチレンブルーの脱色・分解試験により調べた。図1に、メチレンブルー担持亜鉛型スティーブンサイト(Zn−STE)光触媒複合材料の挙動を示した。実施例1のメチレンブルー担持亜鉛型サポナイト光触媒複合材料と同様に、1分の紫外線照射においても、メチレンブルーの吸収ピークの強度の十分な低下が見られ、15分の照射においてはメチレンブルーの脱色・分解が十分に進み、紫外可視分光光度計の測定限界に近い値を示した。   The photocatalytic activity of zinc-type stevensite (Zn-STE) was examined by preparing a methylene blue-supported zinc-type hectorite photocatalyst composite material by the method of Example 1 and conducting a methylene blue decolorization / decomposition test. FIG. 1 shows the behavior of a methylene blue-supported zinc-type stevensite (Zn-STE) photocatalyst composite material. Similar to the methylene blue-supported zinc-type saponite photocatalyst composite material of Example 1, a sufficient decrease in the intensity of the absorption peak of methylene blue was observed even after 1 minute of ultraviolet irradiation, and decolorization / decomposition of methylene blue was observed after 15 minutes of irradiation. It was sufficiently advanced and showed a value close to the measurement limit of the UV-visible spectrophotometer.

実施例1において、試薬としてテトラエトキシシラン(関東化学製、高純度試薬3N)
35.26g、塩化亜鉛(関東化学製、特級試薬)15.40g及び3規定水酸化ナトリウム水溶液80mlを用い、実施例1と同様な操作により複合含水酸化物を調製した。この際、沈殿形成pHは9.6であった。次に、この複合含水酸化物に、水酸化ナトリウム0.32g(和光純薬製、試薬特級)及び水酸化リチウム1水和物(関東化学製、特級)0.59gを水50mlに溶解させた水溶液をかき混ぜながら加えて、原料スラリーを調整した。この均質スラリーをテフロン容器内装型ステンレス製反応容器に移し、自生圧力下に100℃で5日間水熱反応を行った。冷却後、反応物を取り出し、凍結乾燥したのち乳鉢にて粉砕し、結晶構造中に亜鉛およびリチウムを含むスメクタイト(亜鉛型ヘクトライト(Zn−HEC):Na0.3(Zn2.7Li0.3)Si10(OH)・nHO)を得た。
In Example 1, tetraethoxysilane (manufactured by Kanto Chemical Co., Ltd., high purity reagent 3N) was used as a reagent.
A composite hydrous oxide was prepared in the same manner as in Example 1 using 35.26 g, zinc chloride (Kanto Chemical Co., Ltd., special grade reagent) 15.40 g, and 3N aqueous sodium hydroxide solution 80 ml. At this time, the pH for precipitation formation was 9.6. Next, 0.32 g of sodium hydroxide (manufactured by Wako Pure Chemicals, reagent grade) and 0.59 g of lithium hydroxide monohydrate (manufactured by Kanto Chemical Co., Ltd.) were dissolved in 50 ml of water in this composite hydrous oxide. The aqueous slurry was added while stirring to prepare a raw slurry. This homogeneous slurry was transferred to a Teflon container-embedded stainless steel reaction vessel and subjected to a hydrothermal reaction at 100 ° C. for 5 days under an autogenous pressure. After cooling, the reaction product was taken out, freeze-dried, pulverized in a mortar, and smectite containing zinc and lithium in the crystal structure (zinc-type hectorite (Zn-HEC): Na 0.3 (Zn 2.7 Li 0 .3 ) Si 4 O 10 (OH) 2 .nH 2 O) was obtained.

亜鉛型ヘクトライト(Zn−HEC)の光触媒活性は、実施例1の方法により、メチレンブルー担持亜鉛型ヘクトライト光触媒複合材料を作成し、そのメチレンブルーの脱色・分解試験により調べた。   The photocatalytic activity of zinc-type hectorite (Zn-HEC) was determined by preparing a methylene blue-supported zinc-type hectorite photocatalyst composite material by the method of Example 1 and conducting a methylene blue decolorization / decomposition test.

本発明により、環境中に拡散する各種有害有機物を効率よく吸着し分解する技術を提供できる。
防汚や防曇、室内脱臭分野での応用、空気浄化や水質浄化などの環境浄化分野での実用化への技術が提供できる。また、酸化チタン光触媒粉末の問題点であった基材や結合材への担持方法が容易になる技術を提供できる。本発明の材料は有機物親和性にすぐれていることより、フィルム形成能、コーティング化、ポリマーとの複合化、界面活性剤などを鋳型としたメソポア化の技術が提供できる。さらに、本発明の光触媒材料は、地球表層のある入手が容易な元素(ユビキタス元素)からなる材料であるため、人体・環境への少なく、上水設備なだへの適用も容易である。これにより、21世紀型サステナブル社会、省エネルギー社会の創製に技術を提供できる。
According to the present invention, it is possible to provide a technique for efficiently adsorbing and decomposing various harmful organic substances that diffuse into the environment.
Technology for practical application in the field of environmental purification such as antifouling and antifogging, indoor deodorization, air purification and water purification can be provided. In addition, it is possible to provide a technique that facilitates a method for supporting a titanium oxide photocatalyst powder on a base material or a binder. Since the material of the present invention is excellent in organic substance affinity, it can provide a film forming ability, a coating, a composite with a polymer, a mesopore forming technique using a surfactant as a template. Furthermore, since the photocatalyst material of the present invention is a material composed of an easily available element (ubiquitous element) on the earth's surface layer, it is less likely to be applied to the human body and environment, and can be easily applied to water supply facilities. This will provide technology for the creation of a 21st century sustainable society and an energy-saving society.

亜鉛型ヘクトライト、亜鉛型サポナイトおよび亜鉛型スティーブンサイト光触媒複合材料の紫外線照射下でのメチレンブルーの分解挙動Decomposition behavior of methylene blue under ultraviolet irradiation of zinc-type hectorite, zinc-type saponite and zinc-type stevensite photocatalytic composites

Claims (2)

光の照射にて有機物質を分解する光触媒材料であって、
前記光触媒材料は、層状の基本構造を有する層状化合物からなり、
前記基本構造が、八面体シートを2枚の四面体シートでサンドイッチした層状構造又は八面体シートからなる層状構造であり、
前記基本構造内に形成される八面体シートは、1価〜3価の金属陽イオンを6つの陰イオンが囲んでなる八面体が稜を共有して二次元的に広がって構成されており、
前記陰イオンが、(OH)、O2−又はFの群から選択されるいずれか一の又は二以上の陰イオンであり、
前記金属陽イオンが、亜鉛、リチウムのうちの少なくとも一の又は二の金属の陽イオンであることを特徴とする光触媒材料。
A photocatalytic material that decomposes organic substances when irradiated with light,
The photocatalytic material comprises a layered compound having a layered basic structure,
The basic structure is a layered structure comprising an octahedral sheet sandwiched between two tetrahedral sheets or an octahedral sheet,
The octahedron sheet formed in the basic structure is configured such that an octahedron in which six anions surround monovalent to trivalent metal cations share a ridge and expands two-dimensionally,
The anion is any one or more anions selected from the group of (OH) , O 2− or F ,
The photocatalytic material, wherein the metal cation is a cation of at least one or two metals of zinc and lithium.
八面体シートを、2枚の四面体シートでサンドイッチした基本構造をもち、
その一般式が(1)であるスメクタイト組成の層状化合物であることを特徴とする請求項1に記載の光触媒材料。
(式1)
[(E)(M )(Si4−dAl)O10(OH1−e
但し、式中のMとMは、基本構造内に形成される八面体シート内に入る金属元素であって、Mは、亜鉛であり リチウムであり、Eは層間の交換性陽イオンであって、アルカリ金属イオンから選ばれる陽イオンであり、シートを構成するOHイオンはFイオンと置換することがあり、a=0.3、b=2.7又は3、c=0又は0.3、d=0又は0.3、e=1で表されるスメクタイトである。
It has a basic structure in which an octahedral sheet is sandwiched between two tetrahedral sheets,
2. The photocatalytic material according to claim 1, which is a layered compound having a smectite composition whose general formula is (1).
(Formula 1)
[(E a ) (M 1 b M 2 c ) (Si 4 -d Al d ) O 10 (OH e F 1 -e ) 2 ]
However, M 1 and M 2 in the formula is a metal element into the octahedral the seat formed in the base structure, M 1 is a zinc, M 2 is lithium, E is the interlayer An exchangeable cation, which is a cation selected from alkali metal ions, and OH ions constituting the sheet may be replaced with F ions, and a = 0.3, b = 2.7 or 3, c = 0 or 0.3, d = 0 or 0.3, and e = 1 .
JP2007225862A 2007-08-31 2007-08-31 Photocatalytic material having octahedral sheet structure Expired - Fee Related JP5429843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007225862A JP5429843B2 (en) 2007-08-31 2007-08-31 Photocatalytic material having octahedral sheet structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007225862A JP5429843B2 (en) 2007-08-31 2007-08-31 Photocatalytic material having octahedral sheet structure

Publications (2)

Publication Number Publication Date
JP2009056391A JP2009056391A (en) 2009-03-19
JP5429843B2 true JP5429843B2 (en) 2014-02-26

Family

ID=40552631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007225862A Expired - Fee Related JP5429843B2 (en) 2007-08-31 2007-08-31 Photocatalytic material having octahedral sheet structure

Country Status (1)

Country Link
JP (1) JP5429843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109794293A (en) * 2019-01-24 2019-05-24 杭州师范大学 A kind of application of iron-based photochemical catalyst and its rhodamine B degradation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481629B2 (en) * 2010-06-22 2014-04-23 地方独立行政法人青森県産業技術センター Clay photocatalyst and method for producing the same
CN103157457B (en) * 2011-12-08 2014-11-05 北京化工大学 Mg/Zn/In composite metal oxide photocatalyst, preparation method and applications thereof
WO2014013793A1 (en) 2012-07-17 2014-01-23 Miura Shigenobu METHOD FOR PRODUCING β-GLUCAN
JP2014083504A (en) * 2012-10-24 2014-05-12 Ohara Inc Photocatalyst component and method for manufacturing the same
CN110394185A (en) * 2018-10-26 2019-11-01 榆林学院 A kind of controllable method for preparing and its photocatalytic applications of three-dimensional porous magnetism
JP7027600B1 (en) 2021-04-12 2022-03-01 垰田 宏子 Method for manufacturing photocatalyst powder, photocatalyst molded product, environmental purifier, photocatalyst powder

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277451A (en) * 1993-03-25 1994-10-04 Matsushita Electric Works Ltd Removal of harmful component in air
JPH08259344A (en) * 1995-03-28 1996-10-08 Matsushita Electric Works Ltd Porous adsorbing material
JPH09225318A (en) * 1996-02-23 1997-09-02 Riken Corp Catalyst for photolysis of water and production of hydrogen using the same
JP4075283B2 (en) * 1999-04-22 2008-04-16 コニカミノルタホールディングス株式会社 Printing plate material and manufacturing method thereof
JP2000355872A (en) * 1999-06-16 2000-12-26 Lion Corp Photocatalyst-containing fiber-treating agent
JP2002068949A (en) * 2000-08-29 2002-03-08 Lion Corp Odorproofing deodorant
JP3793806B2 (en) * 2002-03-07 2006-07-05 独立行政法人物質・材料研究機構 Layered restructured aggregate of layered compound nanosheet and method for producing the same
JP2005040704A (en) * 2003-07-22 2005-02-17 Nitto Kagaku Kk Purification sterilization method for drinking water, and purification sterilization vessel for drinking water
JP4729737B2 (en) * 2004-10-08 2011-07-20 独立行政法人物質・材料研究機構 Zinc-containing compounds
JP2006326453A (en) * 2005-05-25 2006-12-07 Tokyo Institute Of Technology Titanium oxide-containing smectite-based photocatalytic composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109794293A (en) * 2019-01-24 2019-05-24 杭州师范大学 A kind of application of iron-based photochemical catalyst and its rhodamine B degradation
CN109794293B (en) * 2019-01-24 2021-09-21 杭州师范大学 Iron-based photocatalyst and application thereof in degrading rhodamine B

Also Published As

Publication number Publication date
JP2009056391A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
Paušová et al. Insight into the photocatalytic activity of ZnCr–CO3 LDH and derived mixed oxides
JP5429843B2 (en) Photocatalytic material having octahedral sheet structure
Bouna et al. Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers
Ajoudanian et al. Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin
Mandal et al. Adsorption of fluoride ions by Zn–Al layered double hydroxides
Bahrami et al. Effect of the supported ZnO on clinoptilolite nano-particles in the photodecolorization of semi-real sample bromothymol blue aqueous solution
de Almeida et al. Enhanced photocatalytic activity of TiO2-impregnated with MgZnAl mixed oxides obtained from layered double hydroxides for phenol degradation
Liu et al. Recent advances in synthesis and applications of clay-based photocatalysts: a review
Seftel et al. Fabrication of CeO2/LDHs self-assemblies with enhanced photocatalytic performance: A case study on ZnSn-LDH matrix
Seftel et al. The influence of the Ti4+ location on the formation of self-assembled nanocomposite systems based on TiO2 and Mg/Al-LDHs with photocatalytic properties
JP5568726B2 (en) Titanium oxide / layered double hydroxide composite and method for producing the same
Prasad et al. Defluoridation using biomimetically synthesized nano zirconium chitosan composite: Kinetic and equilibrium studies
Janani et al. Nanostructured layered double hydroxides based photocatalysts: Insight on synthesis methods, application in water decontamination/splitting and antibacterial activity
Szabados et al. Ultrasonically-enhanced mechanochemical synthesis of CaAl-layered double hydroxides intercalated by a variety of inorganic anions
Tong et al. Transformation of alunite residuals into layered double hydroxides and oxides for adsorption of acid red G dye
Kaplan et al. Enhanced photocatalytic activity of single-phase, nanocomposite and physically mixed TiO2 polymorphs
Pewarna Performance of EGZrO2-EGFe2O3/HY as photocatalyst and its efficacy in decolorization of dye-contaminants
Nuryadin et al. Phosphate adsorption and desorption on two-stage synthesized amorphous-ZrO2/Mg–Fe layered double hydroxide composite
Zhang et al. Synthesis and characterization of TiO 2-montmorillonite nanocomposites and their photocatalytic activity
Darkhosh et al. One pot synthesis of CuFeO2@ expanding perlite as a novel efficient floating catalyst for rapid degradation of methylene blue under visible light illumination
Lakbita et al. Influence of the crystal structure of Ag2CO3 on the photocatalytic activity under visible light of Ag2CO3-Palygorskite nanocomposite material
de Almeida et al. Preparation of calcined hydrotalcite/TiO2-Ag composite and enhanced photocatalytic properties
Liu et al. Mesocrystalline TiO 2/sepiolite composites for the effective degradation of methyl orange and methylene blue
Ettahiri et al. From synthesis to applications: A comprehensive review of geopolymer materials for photocatalytic degradation of organic pollutants
Sumari et al. Adsorption of anionic dyes from aqueous solutions by calcined and uncalcined Mg/Al layered double hydroxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5429843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees